Quantifying and Mitigating Turnover-Induced Knowledge
Loss: Case Studies of Chrome and a project at Avaya

iPeter C. Rigby, "Yue Cai Zhu, fSamuel M. Donadelli, Audris Mockus
*Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

$Department Electrical Engineering and Computer Science, University of Tennessee, Knoxville, USA
first.last@concordia.ca, audrisQavaya.com

ABSTRACT

The utility of source code, as of other knowledge artifacts, is
predicated on the existence of individuals skilled enough to
derive value by using or improving it. Developers leaving a
software project deprive the project of the knowledge of the
decisions they have made. Previous research shows that the
survivors and newcomers maintaining abandoned code have
reduced productivity and are more likely to make mistakes.
We focus on quantifying the extent of abandoned source
files and adapt methods from financial risk analysis to assess
the susceptibility of the project to developer turnover. In
particular, we measure the historical loss distribution and find
(1) that projects are susceptible to losses that are more than
three times larger than the expected loss. Using historical
simulations we find (2) that projects are susceptible to large
losses that are over five times larger than the expected loss.
We use Monte Carlo simulations of disaster loss scenarios
and find (3) that simplistic estimates of the ‘truck factor’
exaggerate the potential for loss. To mitigate loss from
developer turnover, we modify Cataldo et al.’s coordination
requirements matrices. We find (4) that we can recommend
the correct successor 34% to 48% of the time. We also
find that having successors reduces the expected loss by as
much as 15%. Our approach helps large projects assess the
risk of turnover thereby making risk more transparent and
manageable.

Categories and Subject Descriptors

D.2.8 [Software Engineering)]: [Metrics]; K.6.3 [Software
Management|: [Software development; Software mainte-
nance; Software process]

Keywords

Quantitative Risk Management, Mining Software Reposi-
tories, Knowledge Distribution, Truck Factor, Successors,
Turnover

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICSE 16, May 14 - 22, 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3900-1/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145,/2884781.2884851

1. INTRODUCTION

Software projects have a variety of risks that range from
uncertainty about future technologies and user needs to sim-
ple programming errors. Individuals who create software
transfer their, often tacit knowledge, into the inner workings
of the system making it difficult for others to maintain. It
is, therefore important to evaluate the risk of developers
leaving the project. Developer turnover has a wide range of
reasons, including job dissatisfaction from boredom or con-
flict, alternative job opportunities, and personal issues [17].
Organizational changes in the business environment and glob-
alization may lead to turnover in the form of outsourcing
and offshoring practices [25, 21]. While new developers may
bring insights and enthusiasm, the departure of developers
negatively affects both quality and productivity in a software
project creating substantial risks [20, 30]. The aim of this
paper is to quantify the risk of developer turnover and in-
vestigate ways to mitigate this risk to make projects more
resilient.

Risk management involves the quantification of the impact
of a risk and the probability of it materializing. We measure
the impact of turnover via knowledge loss (source files aban-
doned after developers leave). We adapt techniques from
financial risk management and use historic knowledge loss
data to obtain the probability that a certain level of losses
will be sustained. We run simulations to determine alternate
turnover scenarios. In historical simulations we randomly
choose the set of developer who leave, but keep the number
of leavers at historical levels. In a Monte Carlo simulation
we vary the number of developers leaving the project to sim-
ulate disaster or ‘truck factor’ scenarios. Combining software
mining techniques with quantitative risk management, we
estimate and simulate how at risk (risk exposure) a software
project is to developer turnover and examine ways to reduce
the risk by suggesting successors.

We perform two case studies on large software projects
because the risks from turnover are trivially assessed on small
projects, i.e. if a small group of developers leaves, the entire
project is abandoned. We chose one open source project
and one project in a traditional closed-source environment
to measure the differences in their risk profiles and answer
three research questions.

1.1 Research Questions
RQ1: Loss distributions: What is the historical knowledge
loss distribution and the size of large unexpected losses?
While turnover in moderate amounts may bring innovation
to the project [2], high turnover rates have been associated

with lower quality because of loss of expertise [20], lower
productivity because newcomers may not be as productive as
the developer they replace [30, 19] and may introduce more
defects [12]. In other domains, turnover has been shown to
be associated with higher incidence of health problems in a
study of mid-level managers and executives in the Canadian
civil service [1]. Furthermore, maintaining abandoned code
may lead to higher incidence of serious defects [20] because
the project survivors are likely to lack the understanding
of the design and structure of the abandoned code. We,
therefore, gauge the rate of turnover in projects.

In particular we calculate the loss distribution, expected
loss, and two measures of unexpectedly large losses: Knowl-
edge at risk (KaR) and the expected shortfall (ES) [18].
Unexpectedly large losses describe the right tail of the loss
distribution. With most losses being small, the expected
loss may not appear to be large. However, large unexpected
losses, such as when a core developer leaves, can threaten
the success of a project. We examine the level of risk from
the perspective of expected and unexpected knowledge loss
and compare the projects to each other. In particular, our
risk analysis allows project managers to estimate the number
of developers they may need to replace in any quarter, i.e.
three month period.

RQ2, Turnover simulations: How susceptible is the project
to alternate historical loss and disaster scenarios?

The historical loss distribution describes losses that ac-
tually occur. Financial risk assessments required at large
banks involve a historical simulation and often a Monte Carlo
simulation of loss scenarios [18]. We replay the losses sus-
tained each quarter and use stratified random sampling to
select developers to leave. This historical simulation gives
us a sense of how bad the actual loss is compared to how
bad it could have been. Some recent studies have evaluated
disaster loss scenarios, which are known colloquially as the
‘truck factor’ [24, 29, 26, 10]. These previous works have only
quantified how large disaster scenarios can be but not how
likely they are to occur. For risk management the impact
(loss) needs to be weighted by the likelihood of an event. Pre-
vious work on disaster scenarios, however, does not consider
the likelihood of the event. Following financial models, we
incorporate the most likely disaster scenarios (i.e. those that
occur at least 1% of the time) to enable risk management.

RQ3: Successors: Can we mitigate the tmpact of turnover
by suggesting the developer who should take over an aban-
doned file?

Turnover is inevitable; for example, in a report by the job
website PayScale the average tenure of a new developer at
Google and Amazon is only slightly more than one year [23].
It is important to find ways to mitigate the effects of high
turnover on code ownership by identifying the best candidates
to take over the maintenance of abandoned code.

A development team faced with a departing developer
can hire a new developer or select an existing developer to
maintain abandoned code. Reserving abandoned files for
incoming developers would be effective in keeping existing
developers on the code they already own, but it may be risky
because newcomers may not understand the project, let alone
the specific code that was abandoned [30]. To reduce risk
of errors it may be critical to have experienced developers
maintain more central code instead of leaving it without an
owner or in the hands of newcomers. We first investigate
which option was chosen in the projects we studied.

We then use a modified version of Cataldo et al’s [8]
coordination requirements matrix to recommend developers
who have worked in similar areas to the abandoned file.
We measure how many possible successors exist for each
abandoned file in the system and evaluate how well our
technique predicts actual succession on abandoned files. We
also determine how much the risk of turnover is reduced
by having available successors. Our results quantify, for
project managers, the reduction in risk attained by assigning
co-developers to risky files.

The remainder of the paper is structured as follows. In
Section 2 we describe our data and methods. In Section 3
we introduce quantitative risk management, including the
historical loss distribution and measures of unexpected loss.
In Section 4, we simulate alternative historical losses and
disaster or ‘truck factor’ scenarios. We assign a probability to
each loss thereby allowing teams to plan for higher probability
losses instead of unrealistic maximal losses. In Section 5,
we mitigate losses from turnover by recommend possible
successors based on co-change relationships with abandoned
files. We determine how well we can predict successors and
if these successors reduce the risk involved in turnover. In
the final sections, we discuss threats to validity and conclude
the paper.

2. DATA AND METHOD

To study turnover, we select two large projects one indus-
trial project and one open source project. The industrial
project is from Avaya and has been developed for over twenty
years. We will refer to this project as Avaya throughout
this paper. The Avaya project is in the domain of core tele-
phony and networking and is sold to small to medium sized
businesses. The code is mostly written in the C language
as cost, concerns require efficiency of an embedded platform.
The product has over 5M SLOC with the development team
primarily located in the UK, Romania, and India.

The second project is Chrome a Google-lead project that
is open source. In contrast to the Avaya project, Chrome is
a webbrower designed for end users. Chrome development is
conducted in public but the practices it uses mirror those used
by Google internally and many of the developers are Google
employees. Chrome has been under development since 2008
and this study follows it up to the present. Excluding third
party tools that are part of the Chrome source repository,
there are 3M LOCs. Since there are a large number of
peripheral contributors on OSS projects, we define the core
team using Mockus et al.’s measure of the top developers
whose combined effort is 80% of the development work. We
stratify the developers into core and non-core to limit the
volatility introduced by transient developers.

2.1 Identifying Developers

On Chrome, the author and committer of the change are
the same and are identified by his or her email address. A
single developer may have made commits with multiple email
addresses. To resolve multiple address to a single individual,
we use Canfora et al’s [7] name aliasing tool. We added
an additional cleaning stage where diacritics are converted
into their ASCII form as their tool cannot handle these
characters (e.g., 6 is converted to o). At Avaya, developers
use a company assigned username when they commit changes
to the system, so a manual check was sufficient to correct
any variations in duplicate usernames.

We need to know when a developer joins and leaves a
project. For OSS projects, we do not have the official records
of when a developer joins and leaves a project. We use
developers first commit and last commit dates to indicate
when they join and leave a project, respectively. Although
Avaya keeps records of when developers join and leave the
company, the records of when they join and leave a project
are not kept. Since our results are at the project level, we
use the same commit data strategy for estimating joining
and leaving times for the Avaya project.

2.2 File Ownership and Abandonment

For this paper, the amount of knowledge lost when a devel-
oper leaves is dependent on what code the developer created
or maintained. We do not factor in non-code contribution,
such as those made by a user experience designer or archi-
tect. Determining code ownership and the related concept
of developer expertise has received considerable attention in
the software engineering literature. Previous studies consider
each commit to a software artifact as a unit of developer’s
ownership and expertise [22, 4]. Further elaboration of own-
ership is the degree of knowledge model where later commits
decrease the expertise of developers with earlier commits [13].
These measures have a serious shortcoming because the num-
ber of commits is not always representative of the knowledge
in the system that must be maintained. For example, with
a commit-based approach the deletion and addition of lines
are counted equally. However, the deletion of a line removes
knowledge that must be maintained, while an addition in-
creases the maintenance burden. As a result, a commit-based
approach is inaccurate when assessing the amount of source
code knowledge that must be maintained when a developer
leaves a project. For example, a team could delete the leaving
developers module reducing the maintenance burden to zero.

Instead of a commit-based approach, we use a blame-based
approach. The blame function present in version control
systems determines the person who last changed a line of
code. In this way we are able to follow the ownership trend
at a finer granularity of each line of code in the system.
We limit our analysis to source files only, for example, on
Avaya we only consider ‘.c’ and ‘h’ files. We consider a
file to be abandoned when 90% of the lines in the file have
been abandoned. We also use the blame-based ownership
approach to simulate historical-based and disaster scenarios.
The simulation methodology are presented in Section 4.

2.3 Definitions

We measure turnover at quarterly intervals i.e. in four
month periods. We use the following dependent definitions
of ownership, abandonment, and knowledge loss:

1. Line ownership is calculated using git blame to de-
termine the last person changing a line of code (See
Section 2.2).

2. A developer leaves during the quarter of his or her last
commit. We exclude the last year of historic data to
avoid categorizing an up to 364 day leave of absence
as departure.

3. A line of code is abandoned when blame attributes the
line to a developer who has left the project.

4. A file is abandoned when 90% or more of the lines in
a file are abandoned. We use the 90% threshold to

exclude developers with trivial contributions to a file.
Note: a file that is abandoned in one quarter may be
adopted by developers making changes in subsequent
quarters.

5. The knowledge loss in a quarter is the number of files
that are abandoned.

In Sections 3 and 4, we describe how we adopt financial
risk models by replacing dollar loses, as in writing off bad
loans, with knowledge loss, i.e. files abandoned by developers
leaving in a quarter. This mapping does not violate the
assumptions of the financial risk models and, therefore, can
be applied to assess risk from knowledge loss.

2.4 File Dependencies and Succession

When turnover occurs and files are abandoned, we want to
be able to suggest the most qualified developer to take over
the maintenance of the file. Our simple method involves cal-
culating co-changing files using a modified version of Cataldo
et al.’s coordination matrices [8]. We test whether developers
who have changed files that co-changed with an abandoned
file are likely to take over the maintenance of the abandoned
file. We also quantify the degree to which files that have
potential successes reduce overall turnover risk. The details
of our approach is described in Section 5.

3. ACTUAL LOSSES AND RISK MEASURES

RQ1: What is the historical knowledge loss distribution
and the size of large unexpected losses?

Risk management involves quantifying the impact or size of
a loss and determining the probability that a loss of that size
will occur [5]. To model financial risks, large banks track the
losses that they sustain from a set of loans. Overtime they
are able to understand the loss distribution, which in turn
allows them to assess the riskiness of their loan portfolio [18].
Since software development is a knowledge intensive activity,
we adapt this methodology to measure knowledge loss from
developer turnover on large software projects.

Using the history of the software projects we calculate
the loss distribution as the number of files that become
abandoned in a four month period, i.e. a quarter. Based
on this distribution we can calculate the expected loss and
two measures of unexpected large losses: the knowledge at
Risk (KaR), which measures the size of a loss that has a
5% chance of occurring, and Expected Shortfall (ES), which
measures the average size of losses that happen less than 5%
of the time.

Historical knowledge loss distribution: In Figures 1
and 2 we see the loss distribution as the number of files
abandoned in a four month period. We can see the mean
and median loss for Avaya are 209 and 130 files and for
Chrome they are 194 and 132, respectively. This means, for
example, that for Chrome we can expect that 194 files will be
abandoned in any quarter. From the figures it is clear, that
the number of abandoned files is not normally distributed
with the majority of the values cluster around small numbers
of abandoned files per quarter. Although the mean is an
overestimate of the median loss, in risk management we are
concerned with how big we can expect our losses to be, so
we are interested in the right tail of the loss distribution.

Risk from unexpected large losses: The economic
models in the 1980’s failed to predict the recession, i.e. a

Mean loss KaR ES
o
Al
o
o
o
>
3 |
[0
o o
S
<
o
o
o
o
o
o‘ T T T T
0 200 400 600 800

File Abandonment

Figure 1: Avaya: loss distribution

series of large losses, as a result, economists developed tech-
niques to predict large losses [16]. As we can see from our loss
distributions, Figure 1 and 2, it is not normally distributed.
So if we naively assume that we will have the mean loss in
each quarter, we underestimate the size of a large turnover
event. Since these large turnover events can have dispro-
portionately high risks, e.g., the project may fail from high
knowledge loss if we lose core team members, it is critical to
understand how often we can expect to have a large loss. We
adapt the most common financial measures of unexpected
large losses to a software knowledge loss setting.
Knowledge at Risk (KaR): is adapted from Value at
Risk (Var) and is defined over a confidence interval « € (0, 1).
Given a confidence level of o, KaR, is the size of loss, [, that
actual loss, L, occurs with a probability of 1 — « [18]:

KaR, =inf{leR: P(L>1)<1-—a}

It can be thought of 1 — a percentile of knowledge loss
distribution. In effect, KaR, is the quantile at « in the loss
distribution. Unless otherwise mentioned we use KaRgs5 in
this work. KaRgs can be interpreted as the size of loss that
has a 5% chance of occurring in a quarter. From the loss
distributions in Figure 1 and 2 we see that the KaRgs5 for
Avaya is 642. This means that in any quarter there is a 5%
chance that 642 of the files will become abandoned. The
corresponding KaR for Chrome is 444 files.

Expected Shortfall (ES): The main criticism of KaR
is that it can underestimate the size of the largest losses [18].
In effect, KaR, is the maximum loss that would occur at
most 1 — a percent of the time. Expected shortfall is the
expected value that would occur at least 1 — o percent of
the time. Formally ES, can be defined in terms of KaR,
and expected value, E, as

ES. =BE({l: 1> KaRa})

o Mean loss KaR ES
(o2}
o
Q
o
o
Al
o
<
o
=
D 4
c
[}
= o
o
<
o
. \/\
o
o
o
o' T

T T T T
0 200 400 600 800
File Abandonment

Figure 2: Chrome: loss distribution

As we can see in the figures, the ESgs or mean of the
largest losses that occur at most 5% of the time for Avaya
and Chrome are 797 and 709 files, respectively.

The longer the right tail of the loss distribution the larger
the unexpected losses. The ES is 1.2, 3.8, and 6.1 times
larger than the KaR, mean, and median for Avaya. The ES
loss is 1.2, 3.6, and 5.4 times larger than the mean, median,
and KaR for Chrome. For both projects, the ES is many
times larger than the expected loss indicating a long right
tail and a potential for large losses.

Previous works on software knowledge loss report losses
as percentages of total files or lines [15, 24]. These works
examined small projects, but on larger projects even large
losses of knowledge can be small compared to the overall
size of the project. For example, the ES of 709 files on
Chrome represents only 4% of total number of files in the
system. Despite this low percentage, it is a daunting task
to find maintainers for 709 recently abandoned files. As a
result, we follow the norm in financial risk management and
report the actual losses instead of the percentage of total
loss. In the next section we simulate disaster scenarios and
give further examples of why percentages are inappropriate
to represent risk from loss. These simulations also make our
results actionable for project managers.

4. SIMULATING LOSS SCENARIOS

RQ2: How susceptible is the project to alternate historical
loss and disaster scenarios?

We adapt the simulation methodologies used by large banks
with the goal of understanding how bad losses could have
been [18]. The loss distribution and resulting knowledge at
risk depend on the knowledge distribution of the system (i.e.
the file ownership distribution) and the specific developers
who leave. Although we have a limited number of quarters
for Avaya and Chrome, 8 and 17 respectively, we are able
to use the hundreds of developers and tens of thousands of

files in the underlying file co-ownership distribution to esti-
mate the likelihood of extreme events. Through simulation,
we manipulate these two variables to understand how the
knowledge distribution has changed over time (historical sim-
ulation) and how well the current distribution of knowledge
withstands ‘disaster’ scenarios (Monte Carlo simulation). By
using the underlying file co-ownership and randomly sam-
pling the groups of developers that leave, we are able to
assess the risk in a wide range of scenarios.

4.1 Historical Simulation

For the historical simulation, we hold the file co-ownership
distribution (i.e. knowledge distribution) and the number of
developers who leave constant, but vary which developers
actually leave. In this way we understand whether the actual
loss was better or worse than what we could expect based on
the file co-ownership distribution and the number of people
who leave. Since the distribution of work on the development
team is skewed, we stratify developers into core and non-core
(see Section 2). It is important to stratify developers because
different types of developers have different reasons to leave.
Specifically, we do the following:

1. we use the knowledge distribution of each quarter

2. we use the number of core developers, [., and non-core
developers, l,., who leave for each quarter

3. we use stratified random sampling [9] to choose the
same number of leavers, rnd(l¢, lnc). Stratified random
sampling ensures that we randomly pick the number
of core and non-core developers who actually left in
a quarter. Since more non-core developers leave, if
we use uniform random sampling, we would randomly
pick an unrealistically large number of core developers
as leavers. This would inflate the risk. We run 1000
simulations for each quarter

4. we compare the actual knowledge loss in a quarter to
the simulated loss in terms of expected loss, KaR, and
ES

In Figure 3 and 4 we see the simulated historical losses
for Avaya and Chrome. The vertical line represents a 95%
confidence interval. The value at the 95th quantile is the
simulated KaR and the triangle represents the simulated ES.
The actual loss is represented by an a cross. For Avaya, we
see that the actual losses are always within a 95% confidence
interval of the simulated random losses, indicating that the
actual knowledge loss cannot be statistically differentiated
from the randomly simulated losses. Quarters 4, 6, and 8
show a trend toward a higher actual loss than the simulation
mean indicating that in these quarters important developers
left. In contrast, for Chrome, the actual loss is always at
or below the simulated mean indicating that in all cases
developers with lower importance left, and in some cases the
result is statistically lower (e.g., quarters 15 and 16). On
Chrome, it appears that core developers that are likely to
cause larger knowledge losses are less likely to leave.

Comparing the actual losses to the unexpected losses, we
see that the most extreme simulated ES for Avaya and
Chrome is 1114 and 1099 files, respectively. This repre-
sents a 5.3 and 5.7 times larger loss than the expected actual
loss. Compared with the actual ES of 797 and 709 the largest
simulated ES is between 1.4 and 1.6 times larger for Avaya

and Chrome. The simulations clearly show that the losses
could have been much worse than they actually were. This
indicates that the more files a developer owns (that are not
co-owned by others) the more that developer has invested in
the project and the less likely he or she is to leave. Future
work investigating this relationship is necessary.

4.2 Disaster Scenario Simulation

Recent works studying turnover have quantified disaster
loss scenarios through the ‘truck factor’ — the number of
developers that must leave (e.g., get hit by a truck or bus)
before the project becomes unsustainable [29]. However, the
truck factor provides only the impact of the worst case loss,
not its likelihood. Risk analysis has two aspects, the impact
of a loss and the probability that the loss will occur, so we
simulate disaster scenarios and illustrate how likely they are
to actually occur.

To calculate the truck factor one must consider the number
of files that are abandoned when a group of size g developers
leave. For a team of n developers this involves (Z) calcu-
lations. This is infeasible on large projects and even after
adding a stopping condition to the truck factor algorithm,
we were only able to calculate up to g = 7 on Chrome [11].
Previous studies of the truck factor have examined small
projects [24, 29, 26, 10]. To calculate the truck factor for a
large projects we use a Monte Carlo simulation. It not only
provides an approximation of the worst possible case, but
also provides estimates of the likelihood for any particular
amount of loss that occurs in the simulation. We follow these
steps:

1. we use the knowledge distribution of the most recent
quarter

2. we vary the group size, g, of developers who leave from
1 to 200 people

3. we select groups of developers to leave at random,
rnd(g). We do 1000 runs for each group size.

4. using the actual losses in terms of files and developers
and the historically simulated losses we determine the
likelihood of each disaster scenario

To make our results easier to interpret we have added two
lines to our disaster scenario simulations in Figures 5 and
6. The horizontal line represent the historically simulated
ES. The vertical line represents the maximum number of
developers we would expect to lose per quarter 1% of the
time.! We have limited the group size on the x axis to
60 developers because, as we will see later, losses even at
this level are highly unlikely. Since Chrome is open source
and has many transient developers who contribute little
but exaggerate the number leavers, we only consider core
developers. For Avaya, we consider all developers as they
are paid to contribute to the project.

Risk based on historical developer losses: The fig-
ures show that per quarter losses above 15 developers and
12 core developers have less than a 1% chance of occurring
on Avaya and Chrome, which means, in terms of files, that

'We calculate developer loss using KaRgg on the historical
number of developers who leave.

A ES A A ES A
o o KaR o o KaR
S _| * Simulation Mean a) 8 —| « Simulation Mean o
© | x Actual Loss — | x Actual Loss
5 3 :
c o 4 c Q A
o © -0 o © o
g8 g :
3 3
3] 8 © 8 o
8 © N A 3 © a
— o b=
= = o
“— u— N
1)) A 5
5 O 5 &1 s, & 87| @
o ¥ o v o 5 & o X x
S S A o N
S o =] A h A
Pz 8 A Pz o o o o o
B 8 o
N A o 8 8V o A x)L
g & B * o Ay o X
o L * i o O é E g o X o
o 4 8 ® o o g x
o 4
T T T T T T T T T T T
1 2 3 4 5 6 7 8 5 10 15
Quarters Quarters
Figure 3: Historical Simulation for Avaya Figure 4: Historical Simulation for Chrome
Yy
o
8 -
< 5 I
280 20800
n 000 o S 206
o K o0 K] g B AAaooo
= o o = 250
3 - et 3 ol
A
c ® Paxes c 8 v
(e} Mooo o S 00° °
© AMOO T N Mo o
c 250 o c s o°
g s 00 8 AAAOOO o©
Ao o o
© 8 MAOOO o0 c S | AAAOOO OOOo
N S Aoo® o 0 AAOOO)
T & 2o ° © - i oo™
) A o 00 7} 2000 =)
3 2800 e » 2550 o
K=} 2800 o o 209 o0
) A0 oooo) 8 ! AAgO OOO
o o A 0© OOOOO o Agﬁoo 0000
T o | 20 ° 28 00
O O o 0o [0} O ol
= - [A8 071 1 Be DR = A0 o°
= oo 500 2 o Aéo o°
° 280 00 o O -k T b e e AR E LR
e 250 500 c 450 ; 500
X 260 50°° X Aééo + o0
2° 500 e 4“ 09
oll 00 SOH 00
o - 88000000%° o | 88
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Number of Leavers Number of Leavers

Figure 5: Truck Factor Simulation Avaya Figure 6: Truck Factor Simulation Core Developers on Chrome
Each figure contains a 95% confidence interval (the bounded vertical lines) and ES (the triangle) for the disaster simulation.
Losses to the right of the additional vertical line have a probability of occurring less than 1% of the time. The horizontal line
represents the simulated historical ES file loss. The range of 95% confidence intervals that it crosscuts indicates the likelihood
of developer losses should be planned for.

contingencies for a disaster ES of 1322 and 7012 files, respec-
tively should be planned. Although we can simulate what
would happen with much larger losses of developers, i.e. the
truck factor, these catastrophic losses are usually uncontrol-
lable by developers and project managers. For example, such
catastrophes could be represented by outsourcing of an entire
project or of Google removing funding for Chrome.

In contrast, banks usually hold reserves for losses that have
a probability of occurrence of at least 1% [18]. If we use the
same threshold, Chrome should ensure that they can deal
with losses of 12 or fewer core developers in a quarter and
Avaya should ensure that they can deal with losses of 15 or
fewer developers.

Risk based on simulated historical losses: The dis-
advantage of the previous approach is that we use historical
developer losses, which may underestimate the risk of unseen
events. Another approach would be to use the simulated
historical file losses that are based on the knowledge distri-
bution to give a range of the number of developers who may
have to be replaced. For Chrome in Figure 6, the horizontal
line represents the historically simulated ES. Where the line
intersects the 95% confidence interval, we can say that a loss
of size ES will occur less than 5% of the time for core group
loss of 10 or fewer developers. The same loss would occur
at least 95% of the time for a loss of 19 or more developers.
As a result, provisions in a loss plan for a disaster loss of
at least 10 core developers should be made. Losses of up
to 19 developers may happen even though, as we have seen
historically, a loss above 12 developers is very unlikely. The
corresponding disaster loss 95% confidence interval for Avaya
ranges from 11 to 33 developers, however, losses above 15
developers are unlikely (see Figure 5).

As a final discussion point in this section, we again caution
against the use of loss percentages. For example, Torchiano
et al. [26] suggest that a good ‘truck factor’ threshold is the
number of developers that would be necessary for 60% of
the files to be abandoned. On the largest project that they
studied there were 38 developers and if 7 left 60% of the
project would be abandoned (the likelihood of such as loss
was not calculated). Using this percentage on a project like
Chrome, we find that a minimum of 200 developers must
leave the project for 60% of the project to be abandoned.
For Avaya to have 60% of its system abandoned the project
would need to lose 50 developers. On large projects this 60%
abandonment threshold could be renamed ‘airplane factor’
reminding managers that they should not put all their core
developers on the same plane.

5. SUCCESSORS

RQ3: Can we mitigate the impact of turnover by suggesting
the developer who should take over an abandoned file?

In the previous section we have quantified the size of loss
a project can expect to have with a certain likelihood. This
quantification allows teams to plan and prepare appropri-
ately for turnover. In this section, we focus on providing
information and suggestions that may help to mitigate devel-
oper turnover. Specifically, we look at the level of expertise
of actual successors and propose a simple technique to find
potential successors. Finally, we determine how much succes-

2The ES for Chrome is smaller than in the previous section
because we only consider core developers in the disaster
scenario

sors reduce the risk of turnover by calculating the reductions
in the loss distribution if we adjust for the presence of such
“backup” experts who can immediately step in when a devel-
oper leaves a project.

Some degree of turnover is inevitable, and when it hap-
pens a development team can either hire a new developer
or assign an existing developer to the abandoned files. To
understand which of these options teams choose in practice,
we ask, how much experience does the developer who takes
over maintenance have?

There is a large literature on mentoring and integrating new
developers into software projects. For example, Zhou and
Mockus examined the impact of development environment
on new developers [31]. Bird et al. [3] looked at the survival
rate of new developers. Zhou and Mockus examined the
amount of time it takes a developer to become productive.
Mockus [20] suggested mentors for developers based on past
work and Canfora et al. [7] suggested mentors based on the
email communication network.

Adding a new developer seems an obvious solution to file
abandonment. However, on the projects we studied, the
experts adopted the majority of abandoned files. In Figure 7
we can see that for Avaya 81% of developers who take over
the maintenance of a file have at least one year and often
many more years of experience. The corresponding number
for Chrome is 54%, and only 16% of files are adopted by
newcommers in their first quarter on the project.

Our findings are consistent with Zhou and Mockus’s [30]
developer learning curve. They find that although the num-
ber of tasks a new developer takes on plateaus at three to 12
months, when the centrality (i.e. how many files are included
in a task) and difficulty are accounted for, developer pro-
ductivity continues to increase over the entire measurement
period of three years. In our study, we see that experienced
developers tend to be the ones taking over the maintenance
burden of abandoned files. Determining the type of files that
newcomers tend to take on would be interesting future work.

5.1 Possible Successors

How many possible successors are there?

Since expert developers tend to take over the maintenance
of an abandoned file, we want to determine which developer
has the most related expertise. In this work we develop a
simple preliminary succession measure. The measure is based
on the intuitive idea that if file A has changed with file B,
and file A becomes abandoned, then the developer who works
on file B will likely know something about the functionality
of file A. Our potential successor measure incorporates the
commonly used measures of developer experience [22] and
co-changes among files [6].

The successor measure involves calculating the developer
to file matrix (Dev-File) based on the number of times a
developer has changed a file. We then calculate the file to
abandoned file matrix (File-AbandondedFile) based on the
files that have co-changed with each abandoned file. We
multiply the Dev-File matrix with the File-AbandondedFile
matrix and are left with the Dev-AbandondedFile matrix.
Since there are no developers who have changed the aban-
doned file left on the project, the Dev-AbandondedFile matrix
represents the number of times each developer has changed
a file that has co-changed with the abandoned file. We rank
possible successors based by the number of files that they
have changed that have co-changed with the abandoned file.

e First Successor
All Successors

1 + Successors Experience in Years (log)

T T
Avayai Chrome

Figure 7: Experience of actual successors

The measure can also be seen as incorporating the first
matrix multiplication in Cataldo et al.’s [8] coordination re-
quirements measure. We apply the file matrix multiplication
only to abandoned files.

On large projects like Chrome it can become very compu-
tationally expensive to perform these matrix multiplications.
We eliminated commits that contained over 100 files as Hindle
and German [14] showed that these commits are misleading
because they often represent uninteresting changes, such as
changing the copyright for all files in the system. The devel-
oper making this massive change is unlikely to understand
all the relationships between these files. We implemented
a database approach to multiply matrices and only include
those files which co-changed with abandoned files making it
possible to perform the multiplications on large projects.

The number of files that have at least one potential suc-
cessor is 56% for Avaya and 77% for Chrome. In Figure 8,
we see the median number of potential successor for aban-
doned files on the Avaya project is 5 and 35 for Chrome.
Although many files have no successors, the distribution is
skewed towards higher numbers of potential successors. At
the 75th percentile Avaya files have 16 and Chrome files have
132 potential successors. The large number of successors
for Chrome indicate that some files co-change with many
other files. We can conclude that on both projects there is a
reasonably good distribution of knowledge because there are
a large number of developers who are potential successors for
abandoned files. Suggesting hundreds of potential successors
may not be helpful, so in the next section we use this measure
to suggest the top five successors ranked by the number of
files they co-changed with the abandoned file. We evaluate
how often our suggested successors modify the abandoned
file in the future.

500
1

100 200

50

20

1 + Number of successors (log)
10

Avayai Chrome

Figure 8: Number of potential successors for an abandoned file

5.2 Suggesting Successors

Can we mitigate the impact of developer turnover by sug-
gesting potential successors?

Projects faced with turnover can assign the developer with
the most related expertise, can hire a new developer, or
can assign a developer who is available at that time. We
evaluate how well each of these scenarios accurately predicts
the person who performs future maintenance. We use the
measure in the previous section to rank potential expert
successors by the number of files they have changed that
co-changed with the abandoned file in the past. We suggest a
new developer who has no co-change expertise and less than
6 months of experience on the project. As a comparison, we
suggest developers chosen at random to simulate the selection
of a developer who happens to be available.

For each abandoned file we suggest 5 potential successors
and a new developer, who has no co-change experience and
less than six months of experience. As a simple control we
select 5 “available” developers at random. Since there is
usually only a small number of changes to an abandoned file
in the future, we consider a suggestion to be correct if at
least one of these developers actually works on the file in the
future. Suggesting only five developers narrows the search
space 18 and 113 times on Avaya and Chrome respectively.

The work that is most similar to ours is that of Mockus
who created a measure to find mentors and successors for a
developer who’s job is being moved off-shore [19]. Much of
the complexity of Mockus’s measures come from determining
who is mentor and who is follower. In our research this rela-
tionship is unnecessary because the file is abandoned and no
current developer has modified the file. Furthermore, Mockus
considers only the ownership matrix (i.e. Dev-File), while
we multiply this matrix with the files that have co-changed
with the abandoned file. Our output suggests who should
take over an abandoned file, while Mockus’s output suggests
which developer should succeed or train a new developer.

To increase the resiliency of the project a combination of
these two approaches could be taken where developers who’s
departure would lead to the largest losses would train the
most suitable successors.

When we suggest a successor who actually modifies the
abandoned file in the future, we consider our suggestion to
be correct. We do not use recall because when a change must
be made to an abandoned file, only one of many potential
successors actually does the modification. In the control
case where we randomly suggest five available developers,
the suggestion is correct 10% and 7% of the time for Avaya
and Chrome. In the case where we recommend an expert
developer who has co-changed related files, the suggestion
is correct 48% and 34% of the time for Avaya and Chrome.
When we recommend a new developer, i.e. a developer with
no co-change expertise and less than 6 months of experience
on the project, our suggestion is correct 19% and 30% of
the time for Avaya and Chrome. Combining the new devel-
oper and the expert developer scenarios, we make a correct
recommendation 67% and 64% of the time for Avaya and
Chrome.

The control case of a random available developer is tied
to the size of the project, with the smaller Avaya project
outperforming the larger Chrome project. Our expertise
measure substantially outperforms the control case. For
Avaya where there are fewer new developers than Chrome,
we can see that the expertise measure is more accurate.
The Chrome project uses many new developers with 30%
of our suggestions leading to a new developer taking over
maintenance.

5.3 Successor Risk Mitigation

Our successor measure is a simple modification of Cataldo
et al.’s [8] coordination requirement measure. As a result, we
can provide a preliminary test of the conjecture that teams
that have more collaboration among developers have a re-
duced risk of knowledge loss from turnover. To quantify and
test the truth of this statement, we exclude abandoned files
that we correctly predicted a successor from the loss distri-
bution. These files were not at risk to abandonment because
even when the owning developer left, there was a successor
who had related knowledge on the project who could perform
maintenance tasks. The successor loss distribution shows a
reduction in the size of ES by 4% and 7% for Avaya and
Chrome compared to the actual loss distribution (See Figure
3 and 4 in Section 3). The corresponding reduction in expect
loss is 7% and 15%. For the median loss the reduction is
26% and 25%. Although the unexpected loss sees a mod-
erate reduction in size, the median loss sees a substantial
reduction. We suspect that the reason why the improve-
ment is less pronounced in ES is large losses occur because
a developer hoards a file and does not have any potential
successors when he or she leaves. Our preliminary results
suggest that reducing the amount of hording can drastically
reduce the risk of loss, as evident in the difference between
ES and median loss. This result is promising for future work
because a simple successor measure based on co-changed files
can reduce risk of turnover when there are potential succes-
sors. Future work is necessary to propose advanced successor
suggestion algorithms and to provide managers with a clear
understanding of the risk reduction of discouraging hording
and encouraging co-development and collaboration. This
work could also include measures of how central a file is to

the project [30] and how many many developers know each
of the languages that the system is written in [27].

6. THREATS TO VALIDITY

We have examined only two large projects so it is unclear
whether our findings will generalize to other settings. We
have, however, introduced a risk assessment methodology
that can be applied to other large projects that must keep
track of large turnover risks. We explicitly excluded small
projects as they usually depend on a single or small number
of developers. In this case, there is no need to quantify the
risk as it is already clear that if any of these developers
leave the project will fail. This size limitation is apparent in
the previous works on turnover and in particular the ‘truck
factor’ [24, 29, 26, 10].

Our analysis depends on accurate file ownership informa-
tion. Both projects in our study were migrated from another
version control system at some point in their history. The
ownership information is removed when the migration occurs.
The blame function will attribute the entire system to the
developer who made the migration commit. Since the attri-
bution is incorrect on these lines of code, we exclude them
from our analysis. We also begin our analysis two years after
a migration to ensure that we are studying a substantial
portion of the codebase.

We consider a file to be abandoned when more than 90% of
the lines in the file have no owner. Other works in code own-
ership have used similar percentages, such as Bird et al. [4].
Previous works on developer turnover have considered a file
to be abandoned only when all lines are abandoned [26]. On
OSS projects we feel that this is a too liberal definition of
ownership as many minor contributors have contributed a
few lines to a file, but have much less knowledge than a core
developer who may have contributed hundreds of lines to
the same file. Compared to these previous works our work
is more conservative (i.e. our loss may be larger), which
is appropriate when accessing uncommon events like large
unexpected losses.

7. CONCLUSIONS

The tight relationship between the author and the au-
thored source code makes software development susceptible
to knowledge loss when authors leave the project and aban-
don their code. The newcomers who replace them tend to be
less productive and more prone to making errors modifying
an unfamiliar codebase. This, in conjunction with modern
business practices that do not invest in worker tenure and
globalization with its tendency to move work to low-cost
locations result in an environment where developer turnover
is so high that it may pose substantial risks for project
survival [20].

Risks in software projects are often difficult to quantify and
the impact and probability of the risks are left for developers
to estimate. For example, a common technique is to give each
project risk a ranking on a ten point scale from 1, unlikely,
to 10, very likely [28]. In contrast to these rough estimates,
in this work, we have adapted the financial risk management
measures (value at risk) to a developer turnover context
(knowledge at risk) and quantified the risk from turnover
through the historical knowledge loss distribution. We found
large unexpected losses to be 3.8 and 3.6 times larger than
the expected past losses for Avaya and Chrome, respectively.

A historical simulation based on the loss distribution and
the number of leaving developers discovered that the losses
could be even larger with simulated large losses being 5.3
and 5.7 times larger than the actual expected loss for Avaya
and Chrome, respectively.

We ran a Monte Carlo simulation to examine the likelihood
of disaster or ‘truck factor’ scenarios. We found that given
an unexpectedly large loss, it may be necessary to replace
from 10 to 19 core developers for Chrome and from 11 to 33
developers for Avaya. However, the extreme losses suggested
by the ‘truck factor’ simulations were unrealistically high
with a likelihood of occurrence of less than 1%. For example,
the threshold suggested by Torchiano et al. [26] would require
the departure of more than 200 Chrome developers within a
single quarter. This ‘truck factor’ threshold would need to
be renamed the ‘airplane factor’ on large projects.

By modifying Cataldo et al.’s coordination requirements
matrix we are able to predict the developer with the most
related expertise as a successor. This simple preliminary
approach allowed us to correctly predict the successor who
would perform maintenance 48% and 34% percent of the time
for Avaya and Chrome. Recalculating the loss distribution to
include these successors as co-owners, we found that having
readily available successors on a project reduces the risk of
expected loss from turnover by 7% and 15% for Chrome and
Avaya.

Obtaining a detailed turnover risk profile is a first step
in increasing the understanding of knowledge loss risk. The
identification of the parts of the code that are most vulnera-
ble to knowledge loss could help newcomers to prioritize their
contributions and help mentors with successor training. It
could lead to new approaches that increase the resilience of a
project against knowledge losses. The proposed affordances
created by the ability to objectively and easily identify de-
velopers and code that pose high risk can help projects and
contributors take actions improving the chances of project
survival even in cases of rare adverse events.

8. REFERENCES

[1] M. Armstrong-Stassen. Coping with downsizing: A
comparison of executive-level and middle managers.
International Journal of Stress Management,
12(2):117-141, 2005.

[2] G. Beenen, K. Ling, X. Wang, K. Chang,

D. Frankowski, P. Resnick, and R. E. Kraut. Using
social psychology to motivate contributions to online
communities. In Proceedings of the 2004 ACM
conference on Computer supported cooperative work,
2004.

[3] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and
G. Hsu. Open borders? immigration in open source
projects. In MSR: Proceedings of the Fourth
International Workshop on Mining Software
Repositories, page 8. IEEE Computer Society, 2007.

[4] C. Bird, N. Nagappan, B. Murphy, H. Gall, and
P. Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
FEuropean Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 4-14, New York,
NY, USA, 2011. ACM.

[5] B. W. Boehm. Software risk management: Principles

and practices. IEEE Softw., 8(1):32-41, Jan. 1991.

L. Briand, W. Melo, C. Seaman, and V. Basili.

Characterizing and assessing a large-scale software

maintenance organization. In Proceedings of the 17th

International Conference on Software Engineering,

ICSE ’95, pages 133-143, New York, NY, USA, 1995.

ACM.

[7] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella.

Who is going to mentor newcomers in open source

projects? In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of

Software Engineering, page 44. ACM, 2012.

P. A. Cataldo, Marcelo an dWagstrom, J. D. Herbsleb,

and K. M. Carley. Identification of coordination

requirements: implications for the design of
collaboration and awareness tools. In Proceedings of the

2006 20th anniversary conference on Computer

supported cooperative work, CSCW’06, pages 353-362,

NewYork,NY,USA, 2006. ACM.

[9] W. G. Cochran. Sampling Techniques. John Wiley,
1963.

[10] V. Cosentino, J. Izquierdo, and J. Cabot. Assessing the
bus factor of git repositories. In Software Analysis,
Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, pages 499-503,
March 2015.

[11] S. M. Donadelli. The impact of knowledge loss on
software projects: turnover, customer found defects,
and dormant files. Master’s thesis, Concordia
University, 2015.

[12] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and
J.-R. Falleri. Impact of developer turnover on quality in
open-source software. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 829-841, New York, NY, USA,
2015. ACM.

[13] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and
E. Hill. Degree-of-knowledge: Modeling a developer’s
knowledge of code. ACM Trans. Softw. Eng. Methodol.,
23(2):14:1-14:42, Apr. 2014.

[14] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: a taxonomical study of large commits.
In Proceedings of the 2008 international working
conference on Mining software repositories, pages
99-108. ACM, 2008.

[15] D. Izquierdo-Cortazar, G. Robles, F. Ortega, and
J. Gonzalez-Barahona. Using software archaeology to
measure knowledge loss in software projects due to
developer turnover. In System Sciences, 2009. HICSS
’09. 42nd Hawaii International Conference on, pages
1-10, 2009.

[16] P. Jorion. Value at risk: the new benchmark for
managing financial risk, volume 3. McGraw-Hill New
York, 2007.

[17] D. Joseph, K.-Y. Ng, C. Koh, and S. Ang. Turnover of
information technology professionals: A narrative
review, meta-analytic structural equation modeling,
and model development. MIS Quarterly, 31(3):547-577,
2007.

[18] A. McNeil, R. Frey, and P. Embrechts. Quantitative
risk management, volume 10. 2005.

[19] A. Mockus. Succession: Measuring transfer of code and

[6

8

[26]

developer productivity. In Proceedings of the 31st
International Conference on Software Engineering,
ICSE ’09, pages 6777, Washington, DC, USA, 2009.
IEEE Computer Society.

A. Mockus. Organizational volatility and its effects on
software defects. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of
software engineering, FSE 10, pages 117-126, New
York, NY, USA, 2010. ACM.

A. Mockus and J. Herbsleb. Challenges of global
software development. In Software Metrics Symposium,
2001. METRICS 2001. Proceedings. Seventh
International, pages 182—-184. IEEE, 2001.

A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In ICSE:
Proceedings of the 24th International Conference on

Software Engineering, pages 503-512. ACM Press, 2002.

PayScale. Companies with the Most & Least Loyal
Employees, 2015. http://www.payscale.com/
data-packages/employee-loyalty/least-loyal-employees.
F. Ricca, A. Marchetto, and M. Torchiano. On the
difficulty of computing the truck factor. In Proceedings
of the 12th International Conference on Product-focused
Software Process Improvement, PROFES’11, pages
337-351, Berlin, Heidelberg, 2011. Springer-Verlag.

P. B. Tambe and L. M. Hitt. How offshoring affects it
workers. Communications of the ACM, 53(10):62-70,
2010.

M. Torchiano, F. Ricca, and A. Marchetto. Is my

27]

28]

29]

(30]

(31]

project’s truck factor low?: theoretical and empirical
considerations about the truck factor threshold. In
Proceedings of the 2nd International Workshop on
Emerging Trends in Software Metrics, WETSoM 11,
pages 12-18, New York, NY, USA, 2011. ACM.

B. Vasilescu, A. Serebrenik, and M. G. Brand. The
babel of software development: Linguistic diversity in
open source. In Proceedings of the 5th International
Conference on Social Informatics - Volume 8238,
Soclnfo 2013, pages 391-404, New York, NY, USA,
2013. Springer-Verlag New York, Inc.

L. Williams. Risk Management, 2004. http://agile.csc.
ncsu.edu/SEMaterials/RiskManagement.pdf.

N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R.
Basili, and K. Schneider. Are developers complying
with the process: An xp study. In Proceedings of the
2010 ACM-IEEFE International Symposium on
Empirical Software Engineering and Measurement,
ESEM °’10, pages 14:1-14:10, New York, NY, USA,
2010. ACM.

M. Zhou and A. Mockus. Developer fluency: Achieving
true mastery in software projects. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10,
pages 137-146, New York, NY, USA, 2010. ACM.

M. Zhou and A. Mockus. Does the initial environment
impact the future of developers? In Proceedings of the
83rd International Conference on Software Engineering,
ICSE 11, pages 271-280, New York, NY, USA, 2011.
ACM.

