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ABSTRACT
Software constantly evolves in response to user needs: new fea-

tures are built, deployed, mature and grow old, and eventually

their usage drops enough to merit switching them off. In any large

codebase, this feature lifecycle can naturally lead to retaining un-

necessary code and data. Removing these respects users’ privacy

expectations, as well as helping engineers to work efficiently. In

prior software engineering research, we have found little evidence

of code deprecation or dead-code removal at industrial scale. We

describe Systematic Code and Asset Removal Framework (SCARF),

a product deprecation system to assist engineers working in large

codebases. SCARF identifies unused code and data assets and safely

removes them. It operates fully automatically, including commit-

ting code and dropping database tables. It also gathers developer

input where it cannot take automated actions, leading to further

removals. Dead code removal increases the quality and consistency

of large codebases, aids with knowledge management and improves

reliability. SCARF has had an important impact at Meta. In the last

year alone, it has removed petabytes of data across 12.8 million

distinct assets, and deleted over 104 million lines of code.
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1 INTRODUCTION
Software rapidly evolves to meet users’ changing needs. As it does,

some features become unnecessary, and the associated code and
data need to be removed. In this paper, we introduce SCARF, a

system which safely removes both dead code and data at scale.

Users expect organisations to only store their data when there

is a clear need and purpose, and achieving this goal is necessary

for every product that respects users’ privacy expectations. One

important aspect of this expectation is to prevent storing data for

which no purpose exists at all. At first, storing unused data for

which there is no clear need or purpose seems counter-intuitive

and unlikely to happen in practice. We observe however that in

the modern product development lifecycle new product features

are constantly prototyped and assessed, collecting and persisting

data in the process. For example, when prototyped features are

sunset, any associated data collected during their operation should

be proactively deleted. If not, data would reside in product databases

for no particular purpose and remain unused in perpetuity.

Dead code is a common problem for all software engineers: al-

most all have personally experienced a class or method that is

bloated with code that appears to be unnecessary. Removing this

code is often non-trivial, and manually deleting it can lead to missed

dependencies. For example, while linters [13] can catch simple cases

of unreachable code such as unused private methods or code after

a return statement, they can easily miss more complex or dynamic

usage such as reflection or disabled feature flags [20]. As a concrete

example, it is unclear whether a static initializer in C++ has side-

effects, and whether those side-effects have a meaningful business

impact (such as, registering an HTTP endpoint in a web request

framework, even if that HTTP endpoint is not actually used). This

in turn means that it is not easy for an engineer to decide whether

it is safe to delete a seemingly-unused static initializer. In a survey
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of Meta developers, we found that of engineers who said, “I find it

challenging to work in the codebase", 30% of them cited dead code

as the reason.

More generally, manual removal of code or data by engineers

does not necessarily follow standard processes to avoid breakages.

For example, codebase maintainers might wish to enforce that data

is quarantined before being deleted, for instance by applying a strict

Access Control List (ACL) to prevent reads and writes. This allows

any production issues to be detected while it is still easy to revert

the quarantine, instead of having to rely on restoration from back-

ups. Similarly, manually removing data from a large and complex

graph may not be an instantaneous operation: database scans that

iterate over millions or billions of rows can take significant time

to complete (not including the quarantine time), and the engineer

running the removal needs to remember to monitor the scan.

1.1 Overview and Example
Before we discuss the technical details, we provide an overview

of SCARF. We have broken down the automated deletion process

into three stages shown in Figure 1: Data Collection, Processing,

and Deprecation. We describe each stage using a simple running

example: a MariaDB [16] table which is used in several different

codebases and specified in a data schema.

Collect Data. We identify dead code and data using two main

data sources: source dependencies (e.g., method calls) and runtime

usage (e.g., how much traffic a method handles). We create graphs

based on these dependencies and connect code and data assets into

subgraphs. For the example of our MariaDB table, we would collect

the following information: a set of all tables which currently exist,

metadata about how many reads and writes each table receives in

production, and then pointers to the code which queries the table,

as well as the location of the data schema defining the table.

Process. The data collected is passed through data quality checks

and converted to a unified format. This standardisation is impor-

tant since we require several systems to understand each of the

heterogeneous data sources which comprise SCARF’s data collec-

tion. Once standardised, the data are exported to a graph database

for consumption by both SCARF and a suite of other internal tool-

ing. From there, SCARF leverages this graph to select candidates

for automated deprecation. It also presents insights into the sub-

graphs of this graph to engineers, to allow them to inspect a given

subgraph and understand both its runtime usage as well as how to

isolate it from the rest of the graph to unblock deprecation. For the

example of our MariaDB table, our collected data can be analysed

to locate tables which have no usages in code, no defining data

schemas, and no production reads or writes.

Deprecate. Once identified as safe-for-deletion, some assets re-

quire approval for deprecation (e.g., a database table), while others
(e.g., an unused method in code) can have a patch (or a diff at Meta)

automatically generated and sent for code review. This occurs with

a four step process: SCARF can alert the asset owner that depreca-

tion is proceeding, obtain approval from that owner if necessary,

then quarantine the asset (make it inaccessible), and finally enact

the deprecation. For the example of our MariaDB table, SCARF can

start by filing an internal ticket for the table’s owner. If the table

has no rows, it may skip obtaining approval for the deprecation.

Next, SCARF can apply an ACL on the table to disallow all non-

infrastructure reads and writes, and then finally it can issue a DROP

TABLE command against the table.

1.2 Structure
This paper has the following structure. In Section 2, we provide

background on Meta including the software development process

and tools. In Section 3, we discuss the data we collect and the

graphs that we create to facilitate dead code and data removal. In

Section 4, we discuss the data processing stages which includes

data cleaning and identifying subgraphs that can be safely removed.

In Section 5, we present our approach to safe deprecation which

includes quarantining data before final removal. In Section 7, we

describe the scale and impact of dead code and data deletion at Meta.

In Section 8, we position our work in the context of the literature.

In Section 9, we describe our contributions and conclude the paper.

2 BACKGROUND
Meta is a large online services company that works across the spec-

trum in the communications, retail, and entertainment industries.

Meta has tens of thousands of employees with offices spread across

the globe (North America, Europe, Middle East, and Asia). Meta has

its own dedicated infrastructure teams where the tools used are a

mix of commercial and in-house developed systems. Like any large

scale system, outdated code and data must be removed to avoid

technical debt or unsupported features.

2.1 Software Development Process at Meta
A good resource for understanding software development process

at Meta is provided by Feitelson, Frachtenberg, and Beck [12]. Here,

we elaborate on the key aspects that have either undergone some

changes or need more detail to better understand the context of

our study..

Meta, like other Internet companies, builds software for their

own servers as well as client software deployed onmobile devices or

specialized hardware such as Virtual Reality headsets. This enables

rapid updates to the software and allows fine-grained control over

versions and configurations. At Meta, this deployment has led to

a practice of regular “push”es of new code to production. Before

being pushed, code is subject to peer review, internal user testing,

and extensive automated testing. After being pushed, engineers

monitor logs to identify potential issues.

As with Open Source Software (OSS), Meta developers are also

users, and have first-hand knowledge of what the system does and

what services it provides. Engineers continuously develop new

features and make them available to users because of the need

to constantly evolve to satisfy not only changing user needs but

also a developing product landscape. As in many other Internet

companies, Meta’s new code is deployed as a series of small changes

as soon as they are ucc ready. Since most of the functionality is on

the server side, deploying new software to the servers immediately

makes it available to all users, without any need for downloads

and local installation. The ability to deploy code quickly in small

increments behind feature toggles enables rapid innovation [19].
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Figure 1: Architecture of SCARF, which shows its three stages. The data collection stage (Section 3) gathers metadata about code
and data assets at Meta; the processing stage (Section 4) analyses, standardises and exports that data to other systems, and also
determines candidates for automated deprecation; and the deprecation stage (Section 5) handles the safe, automated removal of
assets. Components highlighted in gray are shared between instances of SCARF; components in white are implemented on a
per-instance basis.
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At Meta, code is generally reviewed by other engineers. This

serves multiple purposes. First, the original engineer is motivated

to ensure that the code is of high quality. Second, the reviewer

comes with a fresh mind and might find defects or suggest alterna-

tives. Third, knowledge about coding practices and the code itself

spreads throughout the company. Phabricator [18] is the backbone

of Meta’s Continuous Integration (CI) system and is used for mod-

ern code review, through which developers submit changes (diffs)

and comment on each others’ diffs, before they ultimately become

accepted into the code base or are discarded.

Phabricator and the version control systems are also used to

measure the development process where both events associated

with the code change and developer and reviewer actions and the

current state of diffs are recorded. When developers submit their

code for review, they make a commit (create a version of the code,

also known as patch) representing the initial version of the so-called
diff. If reviewers notice any issues or suggest improvements, they

may make additional revisions until the diff is either approved and

incorporated into the code base (“landed”), or abandoned. The diff

is a collection of patches representing the initial version of a code

change, together with revisions that were needed to make it “land.”

2.2 Tooling
Static analysis tools are widely deployed at Meta. To identify source

code dependencies and find unused code, we use Glean
1
for C/C++

code and for Hack. Another relevant tool for the approach presented

in this paper is Apache Hive [25]. Hive is an open-source data

warehousing and analytics solution built on top of the Hadoop

Distributed File System. It was developed byMeta and released as an

open-source project in 2008. Hive allows users to query and manage

large datasets residing in distributed storage by using HiveQL, a

SQL-like language. It provides a way to project structure onto the

data and query it using SQL-like syntax, making it easier for users

familiar with relational databases to analyse big data.

2.3 Sources of Deprecation Candidates
We observe three major sources of unused data likely to occur in

most products and applications.

First, engineers need to perform thorough cleanup of a feature
after turning it off. For example, Ramanathan, Clapp, Barik, and

Sridharan [21] describe “feature flags” which determine which users

are able to see particular product features. Disabling the feature

flags of a deprecated feature is not sufficient to ensure the eventual

deletion of underlying data schemas and associated data.

Second, engineers identify relevant scope of deletion. Often, dead
code cleanup is performed after conducting experiments, or when

a new feature has replaced old features. Since the deprecated fea-

ture’s code may be interlinked with still-live parts of the product,

engineers must identify which specific sections of code are depre-

cated, potentially down to the function- or method-level within a

class.

Third, engineers need to delete it safely and completely. For ex-
ample, one common definition of “unused” may be “database logs

indicate no queries to the table.” However, it is common for large

1
Glean is an open-source system for working with facts about source code. Available

at https://glean.software/

databases to have periodic scans over all data, for example from

Data Loss Prevention (DLP) software or operational metrics. An-

other potential definition of “unused” is “no code references to the

database exist”, but large, interconnected systems often do not pro-

vide strong boundaries between the code and data for one feature

and another within a larger product. A large feature can reach many

different storage systems, and manually finding all the individual

pieces of associated data can be very time consuming. In practice,

even when engineers attempt to manually delete any stored data

that is no longer necessary, the process is technically challenging.

3 DATA COLLECTION STAGE
The major components of the system are described in Figure 1. We

have deployed SCARF widely at Meta across many teams, code

repositories and data systems. There are over 50 instances across

two main implementations: automated removal of code and of data.
We discuss the data collection stage in this section. SCARF gath-

ers information about code and data assets at Meta. These assets can

be a symbol of code, such as a class or a method, or a logical type

of data in a database, such as a table. The list of assets is stored in a

key-value store, and for each one we gather additional information:

(1) Basic data: the asset such as size or creation time

(2) Runtime usage: how often is this asset invoked, read from,

or written to

(3) Relationships: what else refers to this asset?

3.1 Collecting Information about Code
We start by describing the information that SCARF gathers about

code assets.

3.1.1 Basic data. SCARF gathers metadata directly about each

asset. At minimum, this consists of a unique name or identifier, and

the asset class and location (e.g. function in repository X or table in

database Y). Where possible, it also gathers the size of the asset (e.g.

lines of code or number of rows), creation metadata such as original

author and timestamp, and data classification where relevant.

We use existing data catalog tools at Meta to collect this infor-

mation about code and data assets. Within that catalog is a set of

domain-specific implementations for each codebase or data system.

3.1.2 Runtime usage. SCARF gathers information about how each

asset is used in production, mainly by instrumenting production

frameworks and systems with logging that records all usage. For

example, the runtime usage of a data table consists of its read

and write traffic volume: how many bytes per second are being

added or updated to the table, and how many are being queried by

other systems. Runtime usage of code consists of usage logging:

for instance, in an Model-View-Controller (MVC) framework the

usage might be the Queries Per Second (QPS) being served by each

controller, or in an Object Relational Mapping (ORM) it might be

the frequency which with its load/store methods are called.

To implement this instrumentation for Meta’s codebases, we

integrate SCARF-specific logic into a variety of systems, scanning

access logs or counters for individual frameworks within the code-

base. For example, our primary web codebase contains an MVC

request handling framework to which we added access logging to

record how often each controller is loaded. Similarly, we wrote

https://glean.software/
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extensions for MySQL to record usage metrics by incrementing a

per-table counter each time a client queries it.

This granularity of logging can present problems with some of

Meta’s largest data systems such as TAO [4]: their read volume

can be too high to count every hit without causing performance

regressions. To solve this, SCARF leverages dynamic sampling: once
we identify a read that we consider as valid runtime usage, we pause

logging for a certain amount of time. We then aggregate counters in

Operational Data Store (ODS), a high-performance global counter

service [5, 24]. This provides good system performance and ensures

that we can detect even one single valid read to each data asset.

Because it throttles expensive logging it also enables us to run more

computationally-expensive classification checks at logging time:

we can filter out system infrastructure traffic and log only “true”

application traffic.

3.1.3 Relationships. SCARF gathers a directed graph representing

the dependencies between assets. Each node in the graph is an asset

and each edge a dependency. The edges have one of three semantic

flags: a deprecation blocker, a transitive deprecation, or no-op.

A deprecation-blocker edge indicates that the destination node

cannot be deprecated until the source node is deprecated, or until

the edge is removed. For example, if a class Foo contains a function
call to bar(), we cannot remove the function definition without

first changing the callsite in the class. To reflect this dependency,

we create a deprecation-blocking edge from Foo → bar(). More

complex examples include class inheritance (Foo extends Bar),
type aliases (type Foo = Bar) or build artifacts (Foo generates

class Bar at build time); all of which create edges Foo → Bar, or
in some cases Foo ↔ Bar. Most edges fall into this category.

A transitive deprecation edge indicates that if the source node is

deprecated, the destination nodemust also be deprecated. Transitive

deprecation edges also block deprecation. For example, we create a

transitive deprecation edge from a data schema to a data asset if

the latter is the schema for the former, since we cannot deprecate a

data asset until its schema is removed from code. This encodes the

fact that once we deprecate the schema we should continue and

deprecate the underlying data asset.

If an edge does not have either of these flags we consider it a

no-op edge. We include these edges because they can be useful

to explain the source of data in a data asset, even if that source

does not block its deprecation. For example, a code reference of

the form if foo instanceof Bar is a no-op edge, since we can

automatically remove that reference by replacing the instance check

with a constant false, if we know that there are no other usages

of the class Bar.
For nodes representing code, these edges primarily come from

static analysis of source code. For nodes representing data, these

edges come from analysing data infrastructure dependencies, as

well as scanning code for mentions of the name of a given type

of data. As with the other types of metadata collected by SCARF,

the implementation of relationship gathering is domain-specific to

each supported use-case.

3.2 Collecting Code Relationships
We use two main technologies to collect code relationships at Meta:

Glean [10] for syntactic references, and BigGrep [26] for others.

Glean is a system for working with facts about source code. It

efficiently stores facts about the code structure (such as “function

foo is called in the following eight files”) and answers queries such

as “what are all the call sites of bar”.
In practice, Glean’s large indexing jobs can take multiple hours,

and produce a relatively large and unwieldy database. In order to

handle large repositories, Glean also supports incremental index-

ing [17]: instead of regenerating the index on every source control

change, it periodically performs a full rebuild of the index, then

updates it to take into account recent code commits.

3.2.1 Complex runtime usage. We found that, in some cases, re-

lying on Glean’s static information to provide sufficient coverage

across the data system or language is difficult. That is, it is often

challenging to find all sources of runtime usage or relationships.

Complex examples include:

• bulk internal traffic such as backup or indexing services,

which create traffic to many data assets;

• unclear external traffic such as web crawlers, which may

load large numbers of endpoints;

• code using string concatenation to construct table names;

• reflection used to call methods on classes without static

references to function names;

• language support for automated factory registration (i.e.,

enumerating all subclasses of a given class);

• compilation artefacts which reference classes but are not

committed to a repository;

• table names stored in a database instead of in code.

Our implementations of SCARF must be resilient to such usage:

SCARF should not cause errors in production by deprecating as-

sets with such references. Where feasible, we design our code and

data systems to prevent non-recommended usage. For example, we

could mandate that references to TAO assets should be through an

ORM, and thus increase our confidence that there are no dynamic

references to such assets. Similarly, we can offer a type-safe API

to construct the Uniform Resource Identifier (URI) for a given con-

troller, and surface lint warnings to developers where the API is

not used.

Where this approach is insufficient we directly codify complex

usage patterns into our collection infrastructure. We implement this

as a decision engine which detects a number of different patterns.

For example, if a certain class hierarchy is known to use reflection,

we can explicitly detect that usage and add deprecation-blocking

edges pointing towards its subclasses in order to reflect the dy-

namic dependencies. There are over three hundred of these pattern

detectors in the largest instance of SCARF as of this writing.

We have found the combination of these two approaches (dis-

couraging non-recommended usage, but allowing business logic

to understand the reality of a large codebase or data system) to

be sufficient to maintain strong production safety guarantees in

practice.

3.2.2 BigGrep. We implemented a specific detector based on tex-

tual references: we perform a code search through all repositories

for all symbols and data assets that may be deprecated. To do this,

we use BigGrep, Meta’s large-scale code search tool.
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We remark on some interesting subtleties while integrating

SCARF with BigGrep. By default, BigGrep returns three possible

types of value: (a) no matches found, (b) a complete list of matches,

or (c) a truncated list of matches to prevent system overload for very

generic queries. A naïve implementation of text reference search

which searched for the name of all potential assets turned out to

be computationally expensive for the indexing service. We there-

fore construct a prefix tree of asset names and submit queries in

depth-first order. If BigGrep truncates a query for an intermediate

node, we query for each of its children in order to reconstruct the

full set of references to each node in the prefix tree.

In some cases, we know more structured information. For exam-

ple, certain types of data asset can only be referenced in code in

a form like Schema.typeID=[0-9]+. In these cases we can submit

a single regex query to BigGrep to return all such results. Optimi-

sations such as these enabled us to reduce the QPS of SCARF to

BigGrep to under 1.

While using a text reference search as well as information from

the language itself can prevent incorrect deprecations, it also in-

creases the rate of incorrect edges i.e., reported dependencies be-

tween parts of the code base which are not in fact true dependencies.

While this can reduce the efficacy of automated deprecation, we

found that the overall benefits in production safety outweighed

any costs. Furthermore, some of the incorrect references can be

mitigated using business-specific heuristics, such as to ignore refer-

ences from certain files. For example, while deploying this subsys-

tem we found an example of a file containing a list of particularly

frequently-invoked functions. We suppressed any references from

this file.

4 PROCESSING STAGE
The second stage in Figure 1 is the processing stage. In this stage, we

write data quality checks, standardise the data, and select potential

candidates for deprecation. Data processing at Meta is orchestrated

using existing data warehouse infrastructure.

Most of the processing is conducted in daily batch jobs running

in Dataswarm [23], a data workflow automation and scheduling

platform, and data stored in Apache Hive [25] tables. Dataswarm

and Hive are designed for large data workloads, and thus suitable

for the scale of analysis required given the size and complexity of

codebases and data systems at Meta. Each day jobs are scheduled

for the various components of each implementation of SCARF:

Dataswarm maintains the graph of dependencies between these

jobs. Failures are highlighted to on-call engineering teams. SCARF

is designed such that a failure in a single implementation of the

system does not block the progression of other parts of the system.

SCARF then performs data quality checks and standardises its

datasets, before exporting data to two systems: Glean [10] for code

implementations of SCARF, and RocksDB [8, 9] for data implemen-

tations. Both of these systems permit the efficient query operations

required by SCARF.

4.1 Implementation of Processing Stage
In large, this stage of SCARF looks like many other data processing

pipelines: it leverages idempotency, retries, health monitoring and

common data analysis techniques to accomplish its goal.

4.1.1 Data quality checks. The data gathered in the data collection

stage needs to be checked for quality, consistency and regressions.

We run both generic and domain-specific checks on the data from

all instances of SCARF. For example, a generic check ensures that

the size of each dataset is greater than zero, and a domain-specific

check ensures that collected MariaDB table names do not con-

tain forbidden characters. SCARF also performs regression testing,

comparing each dataset to the previous day’s data to measure the

day-by-day change. Differences above a certain threshold require

engineer approval to ensure that they are not caused by errors or

system failures but instead are deliberate changes (for example,

when making a significant modification to the system).

4.1.2 Data standardisation. We then standardise the data into a

uniform format which is the same across all instances of SCARF.

This has several benefits. First, we can create asset identifiers which

are unique across all SCARF instances, and hence avoid confusion

between similarly-named assets of different types. This enables

analysis of all SCARF data together, rather than of each individ-

ual implementation. Second, edges in the graph can be connected

across implementations of SCARF. For example, if we have a refer-

ence to a MariaDB table in some Python code, then the MariaDB

relationship collector may only be able to resolve that to a file name

and line number. Inter-implementation standardisation allows fur-

ther resolution of that edge to the exact symbol within the Python

codebase, without the MariaDB relationship collector having to

understand Python code specifically. Third, we store the data in a

graph database to allow low-latency, high-query-load access to the

data. This graph database is queried by SCARF itself in its depreca-

tion candidate selection process. It is also queried by the subgraph

understanding tooling, as well as a suite of other internal tooling

at Meta.

4.2 SCARF data consumers
We then export the results of our analysis to three main consumers

at Meta: deprecation candidate selection, subgraph understanding,

and manual checks and verification.

4.2.1 Deprecation candidate selection. We build a directed depen-

dency graph with nodes representing individual instances of code

or data assets and edges represent static and runtime dependencies.

Each node is also annotated with its basic data and runtime usage.

Once we have built this graph, we pass over the graph to deter-

mine which subgraphs are candidates for deprecation. Candidate

subgraphs must:

(1) have no inbound deprecation-blocking edges, for example,

a function cannot be removed if its return value is used in

production code,

(2) have no runtime usage, for example, a table should not be

deprecated if it is being actively queried by a downstream

system, and

(3) be of the same type, for example, SCARF cannot atomically

deprecate a graph consisting of some functions and some

data tables in one pass.

These candidate subgraphs are exported to the automated dep-

recation pipeline described in Section 5. The subgraphs can also be
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analysed by engineers, using our internal tooling suite, to under-

stand if complicated subgraphs can be deleted.

During deprecation candidate selection, we avoid selecting the

full set of all assets for deprecation for two reasons: rate-limiting

and production safety. We limit the speed of automated deprecation

in order to balance progress through the full set of potential targets

with available developer capacity. This also ensures that, even if

SCARF incorrectly marks assets as deprecated, it will do so at a

limited speed and thus give more time to detect and remediate the

issue.

4.2.2 Subgraph understanding. SCARF can export non-candidate

subgraphs for human analysis: if a developer believes that a certain

subgraph should be a deprecation candidate, they can examine

SCARF’s decisions in an internal tool and take actions to adjust the

subgraph or override its logic. This internal tool presents data about

a subgraph with visualisations, aggregations and human-readable

understanding of the data. This gives the engineer insight into how

the subgraph is being used: they can reason about its combined

runtime usage, as well as how the subgraph is connected to the rest

of the overall graph. The engineer can isolate the subgraph from

its external dependencies in the larger graph, and then understand

the runtime usage of the subgraph’s nodes. To remove the entire

subgraph from production, the engineer needs to bring the runtime

usage down to zero.

The internal tool for subgraph understanding imports its own

copy of the dataset into its own database, for each subgraph that

an engineer is inspecting. This allows for an additional layer of

classification and visualisation not immediately offered by SCARF’s

datasets on their own: namely, the ability to clearly visualise the

boundary of that subgraph, and to adjust it interactively. To do so,

engineers classify edges which cross this boundary, to say if the

boundary should be adjusted, and if so, how. This is an iterative

process, and this internal tool continues to import further data from

SCARF as they go. Once the boundary is set, the tool aggregates

the metadata from SCARF and provides a high-level sequence to

the steps the engineer should take to perform the deprecation. This

ordering is influenced both by the ordering of the imported depen-

dency graph, as well as with custom business rules. For example,

the tool will recommend that mobile code is removed before server-

side code, as this is a good rule-of-thumb for retaining stability of

mobile apps.

The engineer will typically perform this work by committing

code and configuration changes which are then subsequently picked

up by the data collection process. Sometimes the runtime usage of

a node may not drop to zero once its usage is logically removed

from the system: there may be a remnant source of usage. For

example, perhaps an engineer issued some test queries to a database

themselves. In this situation, the engineer can instruct SCARF to

ignore the usage signal: the engineer’s authorisation is then fed

into the deprecation candidate selection phase. Similarly, SCARF

might detect a code reference which it was not able to remove

automatically; in this case, it reports the reference to the developer,

who can manually refactor the caller to remove the reference. For

instances of SCARF that deprecate data assets, this causes SCARF

to comment on the associated ticket for a deprecation indicating

the engineer-driven action that was taken; for instances of SCARF

that deprecate code, this causes a patch to be generated on behalf

of the engineer who took the action, rather than as a service user.

This clearly indicates that the patch is in a different category to the

regular patches submitted by SCARF, and shows that a human was

involved in the patch being generated.

Together these two modes of working (committing changes to

production, and ignoring usage signals) create a feedback loop

that brings their subgraph into isolation. As components of this

subgraph become dead, SCARF will begin initiating their removal.

Over time the engineer and SCARF work together to remove the

entire subgraph.

4.2.3 Manual Checks and Visualization. We implemented tools to

validate and improve SCARF, as well as exporting data to identify

improvements that can be applied to many use cases. For example,

if SCARF identifies a repeated pattern where nodes of a certain type

have low runtime usage but no relationships, it may indicate that

the method by which SCARF gathers that runtime usage metric

needs adjusting. In one instance, we identified a piece of backup

infrastructure causing runtime usage to be logged and thus pre-

venting automated deprecation. This appeared in SCARF logs as a

single source of usage connected to a large number of data assets,

and thus was discoverable by SCARF engineers. Upon investigation

we suppressed this usage traffic as a false positive.

We use deprecation data to power various systems to aid de-

velopers in improving code quality. For example, our dataset on

runtime code usage is used to power a linter [13] which warns

developers of unused functions and suggests their removal. This is

a form of code maintainability metric [1]. At a higher level, we use

the above subgraph understanding tooling to highlight to devel-

opers particular subgraphs which may be unused or have limited

usage, and suggest their deprecation.

Finally, the data are also used to highlight opportunities for

higher-level business decisions around whether to maintain or

deprecate a given feature. Ownership of features may transition to

different teams, and that represents a good opportunity to highlight

the usage of the feature as a motivating factor for deprecating,

rather than continuing, the feature.

5 DEPRECATION STAGE
In the third stage in Figure 1, SCARF initiates a safe removal process

for each deprecation candidate subgraph identified in Section 4.2.1.

Deprecation begins by notifying the responsible engineering team

that safe removal has been initiated. In some configurations, SCARF

then waits for an engineer to approve the request, and in others,

it waits for a fixed safety window. During this waiting time, the

properties of the candidate subgraph that led to safe removal initia-

tion must continue to hold true at every run of the system: if the

subgraph stops being a candidate, then safe removal is aborted.

After this waiting period ends, or once the engineer’s approval

is obtained, where applicable, the instances are then quarantined:

SCARF makes the instances inaccessible, such that other code, data

and systems are not able to use the instances. For example, in the

case of a data table, this could consist of applying a strict ACL to

the table to block production traffic. For code, quarantine means

landing a commit to remove the code. This quarantine is performed

transactionally, since all nodes in the subgraph are part of the same
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production system. Once quarantine has been completed, a further

waiting period is initiated to allow time for any errors caused by

this stage to be detected and reported. In this case, engineers can

revert the quarantine and report an issue to the SCARF team.

After this second waiting period, SCARF enacts the deprecation,

by permanently removing it from the production system or data

system. For example, this could consist of dropping a table, or

deploying a new version of code to production. Finally, a verification

phase ensures that the deprecation was completed successfully, and

a record that the removal was completed is stored.

Chained removals. When a node has completed the safe removal

process, a check is performed to see if it is the source of any tran-

sitive deprecation edges in the SCARF graph. For any identified

destination edges, safe removal is also then initiated. If this dep-

recation cannot be completed due to deprecation-blocking edges,

the engineering team responsible for the deprecation is notified

and asked to resolve the remaining usage to unblock continued

deprecation.

Transitive deprecation. When a subgraph of nodes of the same

type are all collectively eligible for deprecation, SCARF removes

them in one pass. However, when a subgraph comprises nodes

of different types SCARF can still proceed with deprecation by

removing each layer of the graph one iteration at a time (assuming

the graph is in fact a Directed Acyclic Graph (DAG)). For example,

SCARF might remove some code in one repository, which enables

the removal of code in another repository. That code’s removal

may enable the deprecation of an ORM schema, which finally will

enable the deprecation of a table of data. This ability to remove

dependency graphs that cover code and data is a key property of

SCARF.

5.1 CodemodService
We found that scalably generating a large volume of automated

changes in code review required its own automated system, which

we refer to as CodemodService. CodemodService provides a frame-

work for implementing a code automation Config: each Config is

scheduled to run every working day. When run, a Config deter-

mines the set of Inputs that it should be scheduled against: this is the
universe of possible files, symbols or assets over which it operates.

Filters are used to narrow down that set of Inputs to a manageable

working size. Inputs are clustered into Batches (e.g., one batch for

each set of files owned by a team). CodemodService then fans out

a job for each Batch to perform the Config’s Transformation (the

point where the code modification occurs).

From here, CodemodService handles the lifecycle of turning this

code change into a reviewable patch within Meta’s existing code

review infrastructure, which is published with the identity of a

service user (a “bot”). It publishes the patch in the code review

system, and identifies suitable reviewers. Accepted patches are

landed during working hours, and rejected patches are abandoned.

Patches that remain unreviewed are rebased to ensure up-to-date

test coverage signals are present. CodemodService also ensures that

no single Config generates too many patches, through a rate-limit

system.

An open-source system similar to CodemodService called Auto-

Transform exists outside of Meta [22].

In most cases, the patches generated by CodemodService are

treated exactly the same as any other patch produced by an engi-

neer: they are reviewed by other engineers, approved if suitable, and

then landed and processed by CI as normal. In a handful of cases,

we can be highly confident that the changesets are safe to land with-

out human review—for example, if they are removing a method

which we are confident is never referenced or invoked. In these

cases we still generate a patch for review to allow developers to

provide feedback, but we allow the CI to commit the changes auto-

matically after a suitable waiting period. The metadata prescribing

whether a given symbol’s removal would be safe to commit without

human review is one example of an additional piece of metadata

gathered in the collection stage of SCARF: this is derived from a

hand-curated set of kinds of symbols, and symbols pertaining to

specific frameworks within supported codebases, which are known

to not leverage some of the dynamic features (such as reflection) of

supported languages.

To ensure that automated patches remain of high quality, Code-

modService monitors feedback through twomain channels: rejected

patches and an explicit feedback form. Developers of a CodemodSer-

vice config monitor the rate of rejected patches; rejecting patches

from a config with automatic commits generates an alert for the

owner. All automated patches from CodemodService also include a

explicit feedback flow, through which developers reviewing a patch

can flag them as incorrect or difficult to understand, or provide

freeform comments on the config.

SCARF configs for CodemodService generate hundreds of thou-

sands of commits per year across Meta repositories.

6 DEPLOYMENT SEQUENCING
SCARF was rolled out at Meta over several years, progressively

building up to its current state and coverage. The initial phase

of deployment started with a proof-of-concept to remove unused

HTTP endpoints from a large web codebase. This was the first

time that large-scale automated code changes had been done in

the company, and engineering culture had to adjust to support

them. For example, before automated code removal it was common

practice to commit unused code as an example or for future use,

whereas now such code is automatically removed and engineers rely

either on source control or on documentation. As another example,

SCARF was the first system at Meta not geared to a single team’s

codebase to submit patches authored by automation rather than

humans, meaning that code review needed to allow submission of

feedback to the author of the automation instead of the patch.

The early systems for removal of data were solely initiated by

a human, but with safety checks to prevent production incidents

caused by removal of in-use data. In Phase 2, we built a proof of con-

cept to trigger automated removal of data assets in one particular

storage system. This highlighted the need for high-quality runtime

usage metrics (Section 3); at this point these did not exist for all

storage systems and were opt-in where present. The provision of

high-quality runtime usage metrics allowed fully automated dep-

recation initiation to succeed with sufficiently low false-positive
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rates: automated deprecation was successful and we began rolling

it out to more data systems.

Scaling challenges were hit during this stage: we found in the

data system TAO [4] we had millions of types configured in produc-

tion with little or no data, which had been created by an end-to-end

test system: these accounted for up to 99% of the types configured

in TAO (measured by number of types, not number of rows of data).

With these scaling challenges solved we were able to deploy this

early system to several other data systems.

In Phase 3, we abstracted the systems above into the architecture

described in Figure 1. This allowed us to roll out to many more

systems with minimal duplication of effort: adding support in a

new system could reuse shared functionality and thus only required

implementing the system-specific parts of the architecture. At this

stage we introduced a dependency on Glean for code, and on a

unified set of usage metrics; we also built a central user interface.

In Phase 4, we built the additional tooling described in Sec-

tions 4.2.2 and 4.2.3. This enabled SCARF to build a feedback loop:

where it was unable to identify a deprecation candidate, it could

surface deletion-blockers to relevant engineers via internal tooling.

This reveals new deprecation candidates to SCARF, which removes

them and in turn creates new deprecation candidates. At this stage

we also integrated SCARF with company process: for example,

when a decision is taken to deprecate a product, the relevant en-

gineers can inform SCARF of the desired deprecation and use the

internal tooling to track its progress.

6.0.1 Early designs of SCARF. Earlier versions of SCARF did not

collect all usage metadata ahead of time: these earlier versions were

both less efficiently implemented, and were very conservative in the

number of assets they would deprecate in one go. As such, earlier

versions instead only collected the metadata for assets as those

assets were being selected for deprecation: the metadata collection

was invoked synchronously when needed. This allowed for faster

iteration and tighter testing loops which did not involve waiting

for batch data analysis jobs to complete.

6.0.2 Adding automated deprecation to a new system. One specific
goal in designing the SCARF architecture was to make it as easy

as possible to add automated deprecation to a new system. The

process to do so is as follows. First, engineers implement the system-

specific parts of SCARF and integrate them with the new system.

This generally consists of an asset enumeration (e.g., listing all the

database tables or code files) and reference enumeration, which are

provided to SCARF via a standard API. At this stage we configure

SCARF to perform only manual deprecations at the behest of an

engineer, and to expose a simple interface to start or stop depre-

cation for a given asset. We run SCARF in this configuration for a

period of time to monitor the correctness of the implementation;

for example, to confirm that requesting the deprecation of a table

does eventually lead to its complete removal.

After confidence in correctness is reached, we configure SCARF

to begin automatically selecting deprecation candidates at a small

rate e.g., 5 assets per day. At this quantity, each candidate can be

manually inspected by an engineer in a timeframe much shorter

than the waiting periods configured in SCARF. Again, we run

SCARF in this configuration for a period of time to monitor cor-

rectness, focusing this time on developer feedback received. For

example, receiving feedback that a deprecated asset was still being

used may indicate errors with the runtime usage metrics. The daily

limit is gradually increased until it can be removed completely, and

SCARF is able to deprecate the full backlog of candidates which it

identifies.

At this stage few deprecation candidates remain in the system,

and we generally configure SCARF to gather more information

when an engineer requests to stop a deprecation. For example, we

may ask for specific evidence that the asset is in use, or an impact

assessment [27] of the risks of preserving it despite lack of usage.

7 IMPACT OF SCARF AT META
SCARF has had a multifaceted impact on software development and

deployment at Meta. We have a set of dashboards that monitor the

health of SCARF and these also track its impact. In this paper, we

report summary statistics on the number of lines of code and bytes

of data that have been removed. We also report success rates for

automatically generated deletion diffs. Another important saving

has been the reduction of compute power and we estimate those

savings.

Code: In total, SCARF has deleted over 100 million lines of code,

with over 46 million lines deleted in 2022 alone. These lines were

deleted in over 300,000 diffs, with over 140,000 diffs in 2022 alone.

SCARF is effective in multiple languages deleting code from Hack,

Python, JavaScript, Objective C, CSS, Thrift schemas, and GraphQL

schemas.

Code patches are automatically generated for deletion and we

see a patch generation success rate for Hack of 97% in the last three

months. While not all of these diffs land, the majority indeed are

accepted and subsequently landed, some by automation and some

by humans. One area of future work is finding a reviewer who is

able to understand the removal of dead code that may no longer be

owned as well as diffs that crosscut multiple parts of the codebase.

Another issue is that of finding the balance between sending all

diffs in a given part of the codebase to a single expert reviewer,

versus balancing review load amongst a team responsible for a

feature: leaning too much on a single person can create fatigue,

however sharing review load between too many people creates

duplicated context-gathering as each engineer learns the same set

of information to determine how to review the diff.

Engineers are able to select subgraphs that are not completely

dead and have complex dependencies. For example, a decision may

be taken to deprecate a product with low but nonzero usage, and en-

gineers must locate the sources of this usage and disable them. This

feature is successful, with over 7000 completed complex subgraph

removals. There are many ongoing projects, since the time-scale of

these removals can be that of many months, sometimes even years:

a single SCARF deprecation can take over a month of waiting time

from start to finish, and this number compounds when there are

dependencies between assets that take a long time to deprecate

in a single subgraph. Finally, much cleanup work at Meta is done

alongside other projects.

Data: SCARF to date has removed petabytes of data from Meta’s

data warehouse and online data systems, across the many different

instances of SCARF. This corresponds to millions of types of data;
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in some cases (such as TAO), SCARF was able to delete over 98% of

its defined data types.

When SCARF deletes code, that enables the further deletion of

data; SCARF has instances that target ORM schemas to handle this

case in particular, however regular code removal can also enable

further data deletion if the final relation to a data type is removed.

SCARF’s code removal instances have used this type of “chained

deprecation” to enable the deletion of terabytes of data. Through

this process, SCARF has removed over 7000 data logging ORM

schemas, over 6000 online data access ORM schemas, and over

40,000 data warehouse ORM schemas. By eliminating these data

warehouse ORM schemas, the removal of the corresponding pro-

cessing pipelines also saved over one megawatt of compute power.

8 RELATEDWORK
The concept of dead code, also referred to as unused code, unreach-

able code, or lava flow, is a frequent topic in code-smell catalogs

due to its alleged detrimental effect on the comprehensibility and

maintainability of code and related assets [14]. Various dead code

detection techniques have been suggested to aid developers in their

refactoring efforts. As an example, Chen et al. [7] proposed a data

model for C++ software repositories that supports reachability

analysis and dead code detection. Fard and Mesbah introduced JS-

NOSE [11], a metric-based technique for detecting dead code in

JavaScript. Other researchers have proposed dynamic techniques,

static techniques, or a combination of both to detect and elimi-

nate dead code [14, 15]. Most related work techniques are either

language specific, are not automated, and have not been demon-

strated to work at industrial scale. In contrast, we are proposing

an automated technique that is capable of (i) dealing with distinct

programming language and (ii) working at scale.

Many large companies use feature flags, toggles, or gates to al-

low new features to be quickly implemented and rolled out to a

small group of users to determine that the feature works properly

and performs well according to a predefined metric. However, as

Rahman et al. [19] showed on Google Chrome, this technical debt

quickly builds up as new features must be stable before old fea-

ture can be turned off. Chrome introduced a manual spreadsheet

of outdated features, however, after an initial dip in outdated fea-

tures, toggles continued to grow exponentially. These features no

longer are run after the toggle is turned off. SCARF can target these

experimental features and automatically change code to remove

them.

The work most closely related to ours is Piranha [20, 21] that

has been successfully deployed by Uber to handle stale feature flags.

Piranha identifies obsolete feature flags in Objective-C, Java, and

Swift programs. By incorporating into developers’ CI workflows,

Piranha is able to do perform large-scale cleanup of extensive

codebases with millions of lines of code and spanning multiple pro-

gramming languages. Piranha is closely related to work focusing

on eliminating code protected by outdated C preprocessor condi-

tionals and libraries [2, 3, 6]. SCARF advances beyond the current

state-of-the-art by analysing not just flags and call dependencies,

but also identifying a lack of runtime usage.

AutoTransform [22] is a system similar to Meta’s CodemodService,

designed to produce code patches for developer review. In particular,

AutoTransform is a tool — developed by Slack for automated code

transformations — designed to help organizations make large-scale

changes to their codebase efficiently, without requiring manual

modifications of files. AutoTransform allows developers to define

rules for how code should be transformed (e.g., renaming a function,

changing an API endpoint, or updating a library version), and the

tool will automatically apply those changes across your codebase.

The tool also includes features for managing conflicts and handling

errors that may arise during the transformation process. Similar to

CodemodService, this can save a lot of time and effort compared

to manually editing each file. This is particularly important when

dealing with large-scale changes that would be difficult to handle

manually.

9 CONTRIBUTIONS AND CONCLUDING
REMARKS

We have introduced SCARF, our automated dead code and data

deletion system. Our system was designed to work at scale and has

deleted over 104 million lines of code and petabytes of data. Our

major contributions are:

(1) Code deletion at scale is possible, even in non-typed, dynamic

languages that have reflection and side-effects.

(2) Data deletion at scale is possible, even if there are complex,

heterogeneous data systems and data processing pipelines.

(3) Understanding code and data usage from a business perspec-

tive, i.e. runtime usage, as well as a programming language

perspective is important for successful deprecation.

(4) While most deletions happen automatically, complex dele-

tions can unblock automation by allowing engineers to in-

spect subgraphs and remove dependencies.

(5) Building a standardised API for accessing metadata about

code and data assets is key for integration with other busi-

ness tools, and allows deprecation systems to be used across

multiple languages.

The scope, scale, and diversity of programming languages used

at Meta make our approach applicable to most software systems.We

hope that the description of our systemwill inspire other companies

to institute dead code and data deprecation, and allow researchers

to understand the difficulties in dealing with technical debt at scale.
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