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ABSTRACT ~ If classical techniques such as
the root 1locus, Bode plots and Nyquist
diagrams are wused for designing fixed-

structure speed controllers for ac drives,
the design would normally be done around a
nominal value of the controlled plant.
Generally, a sensitivity analysis would
subsequently be done to ensure that the
design specifications are met when the plant
parameters change. This procedure can and has
worked well. In this paper an alternative is
proposed where the parameter variations are
included at the outset of the design task.
The Nichols chart lends itself rather well to
this application since it represents both
magnitude and phase information on a single
diagram. By using this alternative, it may be
possible to reduce the overall time needed to
complete the design. The particular technique
is called Quantitative Feedback Theory (QFT)
which is used in conjunction with the Nichols
chart. This paper presents the basics of QFT
and shows how it can be used for the design
of fixed-structure controllers for
parameter-sensitive plants in conjunction
with the Nichols chart. A design is presented
and verified experimentally.

I. INTRODUCTION

The permanent magnet synchronous motor (PMSM)
which by definition here has a sinusoidal
back emf [l1], is establishing itself as a
serious competitor to the vector-controlled

induction motor (IM) and the dc motor for
high performance speed and position
applications. This 1is partly due to the

increased torque to inertia ratio and power
density [2,3] when compared to the IM or the
dc motor, in the fractional to 30 HP range.
This has been made possible by the use of
high residual flux density/high coercivity
permanent magnets. Current research into
reducing the temperature dependence and
increasing the thermal capability of magnets
will probably increase the penetration of the
PMSM drive in the servo industry.

The high performance attainable from the PMSM
has prompted original research into the
design and performance of the entire motor
drive including the motor [4], position and
speed feedback [5], inverter, current, speed
and position controllers. The application of
a PMSM to an electric vehicle has been
examined {6] while high speed operation has
also been investigated ([7,8].
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In order to extract the best performance from
a given machine, the proper design of the
speed and current controllers (for a speed
servo) is important. However all drives are
parameter sensitive to some degree.
Traditional methods of controller design in
the frequency domain use a nominal value of
the plant parameters. The effects of changes
in the parameters can be subsequently checked
by a sensitivity analysis [9,10]. This method
can work well, however an alternative is
proposed in this paper for the design of
fixed-structure speed controllers [11,13] for
a high performance drive. This consists
essentially of including information on the
drive parameter variations at the outset so
that the performance criteria can be met from
the beginning, without having to subseguently
do a sensitivity analysis. This should reduce
the effort and time of the designer without
compromigsing the design.

Whereas design tools like the root 1locus,
Bode plots and Nyquist diagrams have been
used extensively in controller design, the
Nichols chart lends itself rather well to the
particular problem of representing parameter
variations in a drive. The Nichols chart
represents both phase and magnitude
information on the same diagram unlike Bode
plots which represent them separately.

This paper demonstrates how a
frequency-domain technique known as
’Quantitative Feedback Theory’ may be applied
to the design of fixed-structure speed
controllers for a vector-controlled PMSM
drive where the motor parameters vary between
known limits. The parameter variations can be
caused by changes in temperature, current
level or operating frequency. In robotic
applications, changes in inertia occur as
well. Finally, another source of uncertainty
is the fact that the parameters of the
’Nominal Plant’ are normally measured
(calculated) with a certain error which is
generally expressed as a percentage of the
'nominal’ parameter value.

The aim of this paper is two-fold. Firstly,
the elements of QFT are revised and it is
then shown how QFT can be applied to the
design of fixed-structure controllers for
parameter-sensitive plants. In this case, the
paper is tutorial in nature. Furthermore, a
speed controller design is presented and
verified experimentally. This is the second
contribution of this paper.
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Figure 1

II. MATHEMATICAL MODEL - TRANSFER FUNCTION OF
A PMSM DRIVE WITH PARAMETER VARIATIONS

Mathematical Model

Simplifications occur in the modeling of a
PMSM under vector control which result in a
linear transfer function between the output
and commanded speeds. This can be derived

from the PMSM d,q equations as follows:

Vg = Rgig + Phg + Oghg (1)
vq = Rgig + PAg - mehq (2)
Te = (3/2) P O eig + (Lyg-Lg)igiy) (3)
T, = T, + B o, + J po, (4)
0, =P o, (5)

where vy, v, are the d,q axis voltages; &qu
are the d,q axis flux linkages; iy, i, are the
d,q axis currents, P is the number of pole
pairs; p is the derivative operator; Ly, ILg
are the d,g axis inductances, T, is the
electric torque, T, is the load torque, B is
the damping coefficient and J is the moment
of inertia. The electric speed o, is related
to the mechanical speed through the number of
pole pairs. Finally A,; is the mutual flux
between the magnet and the stator due to the
magnet and

Schematic of a permanent magnet synchronous motor.

Aq = quq (7)
Equations (1) to (3) are nonlinear but if
vector control ([3] is used to force iy to be

zero, then using (6) and (7), (1) to (3)
reduce to

Vg = Rsiq + Lqpiq + o, ¢ (8)
vq = -meLqiq (9)
Te = (3/2) P xafiq = Ktiq (10)

where K, is the torque constant of the PMSM;
the above equations are very similar to that
of a dc motor. It is only necessary to
include the dynamics of i_ in the model since
the electric torque depends only on i;- From
equations (8), (10) and (4) the linear block
diagram in Fig. 1 can be drawn.

A PMSM speed servo drive is obtained from
Fig. 1 by including the speed and current
controllers as shown in Fig. 2 (Note that all
commanded values are indicated with an "*’').
The current controller is used to ensure that
the actual current tracks the commanded
current while the speed controller does the
same for the speed. Current and speed
feedback is normally used as shown in Fig. 2.
For a given configuration of the current
controller, the block diagrams to the right
of the dotted line constitute the controlled
plant P(s) and the aim of this paper is the

Ay = Lgig + A (6) proper design of G, (s) under uncertainties and
d dd af parameter variations in P(s).
—
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l P(s) Figure 2 Schematic of a permanent magnet synchronous motor drive.
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Parameter Variations

Assuming that the current controller gains
are set correctly, parameter uncertainties
are then produced in G;(8), G4(s), Gs(s) and
G¢(8) which represent the machine as a result
of changes in the temperature, current level,
inertia and operating frequency. For example,
changes in the temperature affect the stator
resistance R, and magnet flux linkage A,
which in turn affects K.,. Changes in the
current can saturate L  while changes in
frequency can affect R, but generally to a
lesser extent than changes in the temperature
[10]. In robotics, inertia changes also occur

which will affect Gg(s). The criteria for
choosing the range of variation for the
parameters is presented in Ref. [10] and
include the flux loss coefficient of the
magnet and the degree of saturation for the
machine. This paper has also included the
tolerance in the ‘Nominal Plant’ parameters

due to measurement (calculation) errors. The
ranges of parameter variations are given in
Table I as a fraction of the nominal value
which is at ambient temperature.

Transfer Function

From Fig. 2, the plant transfer function P(s)
is given by

Q,(s) by s + by

(11)

2

3
+ a,s

s + a,s + a

1:1(3) °
which can be attained from block diagram
reduction or Mason’s rule/signal flow graphs.
From an analysis of the parameter variations
shown in Table I, the variations of the
coefficients of P(s) are as follows:

TABLE II. COEFFICIENT VARIATIONS IN P(s)
Nominal Minimum Maximum

by | 1941783.10 470513.74 3814859.20
b, | 8.7865e+09 2.129e+09 1.7262e+10
ag 1.0 1.0 1.0

a, | 9771.01 7504.11 17479.11
a; | 44703871.0 33647342.0 80291919.0
a, | 7026177.70 2702403.20 12548858.0

III. BASICS OF QFT

This section only reviews some of the main
theoretical concepts of QFT since it has been
extensively published elsewhere [11-13].
Consider the regulating feedback system shown
in Fig. 2 whose output equation is given by:
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TABLE I. PARAMETER VARIATIONS FOR AC DRIVE

0.90 < Ry < 1.1 (0.12 ohms)

0.63 < Aye < 1.1 (1.513 V/rad/sec)

0.56 < Lq < 1.3 (0.764 mH)

0.63 < XK. < 1.1 (6.807 N-m/Amps)

1.00 < J < 2.0 (0.0337 Kg-m?)
Numerical values are presented as fractions

of nominal values which are between brackets.

L(s)
*
Q.(s)

Q. (s) (12)

1 + L(s)

where Q_(s), Q;(s) are the Laplace transforms
of o, and m: respectively, L(s) G, (s)P(s)
is the loop transfer function, and P(s) is
the plant whose parameter variations are
shown in Table II.

An analysis of (12) shows that the design
objective is that the plant output Q_(s)
follows the input signal Q:(s) as closely as
possible. Since one of the aims of this paper
is to illustrate the feasibility of the QFT
approach to design a fixed-structure speed
controller for ac drives, the design task has
been simplified by not considering the
influence of any sensor noise or disturbance.
However, it must be clear that this does not
represent a limitation of this design
technique since any spurious signal can also
be considered [13].

The design is done on the Nichols chart which
is shown in Fig. 3; the =x-axis represents
phase (in degrees),the y-axis represents
magnitude (in dB) and a background (dotted
lines) is included which corresponds to
constant phase (or magnitude) curves of
[L(s)/(1+L(s))]. The Nichols chart presents
the advantage that the loop transfer function
L(jo) G; (jo) P (jw) may be easily drawn from
a knowledge of P(jo) by just adding the
magnitude (in dB) and the phase (in degrees)
of G, (jw) to the magnitude and phase of P(jn)
for each relevant frequency (the point P (ju)
is then translated but not rotated).

The uncertainty of P(s) is considered in the
same way as in the tracking designs of
Horowitz {11,12]. The regulator problem is to
maintain | L(s)/(1+L(s))| below a specified
limit at specified frequencies for all
possible P(s) (see Table II). Of all P(s),
the designer usually chooses an arbitrary
P, (s) which corresponds to the so-called
’Nominal Plant’.
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Figure 3  Nichols chart with the plant template for

1.0 rad/s.

The ’'plant templates’ are then fitted between
certain‘L(jm)/(1+L(ij ag curves (boundaries)
around the Nyquist point (-180°, 0 dB) as
shown in the next section. A ’‘plant template’
is the loci of points corresponding to all
P (jw) considered in the uncertainty range
(shown Table II) for a given frequency . Due
to space limitations, only one typical
template of P(jw) for @ = 1.0 rad/s (0.159 Hz)
is shown in Fig. 3 as a shaded area; the
point corresponding to the ’‘Nominal Plant’ is
represented by the letter 'N’.

In a QFT design, the structure of the
controller is not fixed apriori but evolves
as part of the design process. In this way it
is guaranteed that no over- or under-design
of the controller occurs. Disadvantages of
the QFT are that it is not always possible to
establish the wuncertainty range of P(s)
quantitatively and correlation between time-
and frequency-domain specifications is a sort
of an art; but so is much of design.

IV. SYSTEMATIC DESIGN OF THE SPEED CONTROLLER

The design task chosen was to select a G, (s)
which ensures that the closed loop response
| L(jo) / (1+L(jm))| < 1.0 dB (13)
for all frequencies below 150.0 rad/s and for
all possible P(jw) (see Table II). The 1.0 dB
criterion was chosen arbitrarily and the
steady-state speed error must be zero since
this plant is a speed servo. Although these
specifications were set arbitrarily, the
designer can specify other <constraints
according to the application of the drive.

The following steps are carried out in order
to achieve the design specifications:

166

a) Obtain the templates of P(s) for the
range of frequencies which are of
interest (see Fig. 3 for the template
corresponding to 1.0 rad/s).

b) Determine a boundary of the ‘Nominal
Plant’ P (jo) with G;(jo) 1.0 in the
Nichols chart at each relevant frequency
®. This is done by shifting the template
corresponding to a specific frequency ®
(see Fig. 3) around the 1.0 dB curve
such that NO POINT within the template
falls inside the 1.0 dB curve (see
section III: no rotation of the template
must occur, only vertical and/or
horizontal displacements). The point
within the template which corresponds to
P, (jo) (N in Fig. 3) traces out a
boundary of L, (jw) at the considered
frequency . Figure 4 depicts some of the
boundaries thus obtained with the
specific frequency being encircled.
Finally, the 1.0 dB curve is considered
here because this is one of the design
specifications (see (13)).

Design a controller for the ’‘Nominal
Plant’ P_(s) using the Nichols chart. The
design must guarantee that the value of
the loop transfer function L,(j®) (i.e.
P,(jw) and designed G;(jw)) for any
particular frequency ® is outside the
boundary for that f£freguency. Then any
other L(jw) (i.e. for any other P (jo)
within Table II) also meet the design
specifications at that particular
frequency ®. This is true because the
boundaries of P, (jw) were obtained such
that NO POINT of the template (all
considered P(jw)) falls within the 1.0 dB
curve for the considered frequency
(Remember that the magnitude of L(je®) in
the Nichols chart is equal to the sum of
the magnitudes of P(Jjw) and G, (jw) in dB,
and the phase of L(jw) is the sum of the
phases of P(jw) and G,(jw) in degrees).
In other words, if the ’'Nominal Plant’
P.(s) with the designed controller G,(s)
satisfies all specifications, it is then
concluded that all P(s) in Table II must
also satisfy the specifications [11,12].

c)

Figure 4 shows the loci of the loop transfer
function L, (s) for the ’‘Nominal Plant’ with:

Q (s) 5 (1 + s/5)

Gy (s) = (14)

Ql(s) s (1 + s/600)(1 + s/2000)
where G;(s) is the result of following the
above steps in an interactive manner. The
low-pass filters at 600 and 2000 rad/s are
required to reduce high frequency noise. From
an analysis of Fig. 4, it can be noted that
the point L_(jl0) just satifies the boundary
for o 10.0 rad/s; all other relevant points
amply satisfy the design requirements.
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Figure 4 1,0 dB design limits (see (13)) at 10, 100 and
150 rad/s together with the loop transfer
function for the 'Nominal Plant' Po(s) and the
controller Gl(s) (see (14)).
Finally, this design procedure is suitable

for computer implementation in an interactive
manner; the user can graphically note if a
controller satisfies the specifications and
modify the design if necessary.

V. RESULTS

In order to test the design technique, a
design was done on a motor with parameters
presented under motor A in Table III but
actually implemented on motor B which had
different parameters within the uncertainty
range considered in Table II.

TABLE III. PMSM DATA
Parameter Motor A Motor B
HP 8.9 9.4
rated speed (rpm) 1350 1450
rated torque (N~-m) 47.1 46.2
Ky (N-m/amps RMS) 2.39 2.18
back emf (Vll/rpm) 0,144 0.11
Ry @ 25°C (Q) 1.08 1.165
The speed controller G, (s) described
previously was implemented wusing analog
circuits. Without any further tuning, the

controller was tested by commanding a speed
of 520 rpm. The startup speed transient is
shown in Fig. 5. There is a slight overshoot
which was allowed for in the design.

Figure 6 shows the Bode plots of the entire
drive including the controller; the speed
loop bandwidth is approximately 250 rad/s. If
a higher bandwidth is needed, this can be
included as part of the specifications.
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Figure 6 Bode plots of the motor drive with the designed
speed controller (see (14)).

A key test of the performance of a speed
servo 1s its response to a load torque
disturbance. Indeed if rejection capabilities
to a load torque disturbance are judged to be
of prime importance, the speed controller
design can be done with this specification in
mind. To examine the performance of the speed
controller to load torque disturbances, the
transfer function of (Q,/T,) was developed and
its Bode plots are shown in Fig. 7. The high
attenuation, even at 1.0 rad/s and which
increases as the frequency of T, is increased,
attests to the extremely good load rejection
capabilities of the speed controller. The
high attenuation implies that the actual
speed does not respond well to load torque
inputs, which is highly desirable.

In addition to the response of the speed to
a changing load torque input, the steady-
state error in the speed due to a step input
in the load torque was examined. For a 1.0
p.u. input torque, there is a reduction in
2.9% in the full load speed.
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Figure 7 Frequency response of the motor drive to load
disturbances (f%/TL).

Zero steady-state error is difficult if not
impossible to obtain due to the practical
difficulties of implementing a pure
integrator. In practice, it is generally
necessary to implement the integrator pole
close to the 3jo axis and so the pure
integrator is actually implemented as a low
pass filter and hence with some steady-state
error.

VI. CONCLUSIONS

This paper has illustrated how Quantitative
Feedback Theory can be used in conjuntion
with the Nichols chart to design a fixed-
structure speed controller for a PMSM drive.
Parameter variations were taken into account
in the initial stages of the design which is
conducted such that even in the worst case,
the design specifications are met. Parameter
variations due to temperature, saturation,
operating frequency and change in inertia
were considered. A systematic procedure for
the controller design was also given.

In order to <check the ability of the
controller to perform in the presence of
parameter variations, the design was
conducted with one set of motor parameters
but implemented on another motor whose
parameters were within the uncertainty range
of the first. The practical results were
satisfactory thus validating the design
procedure and implementation. The speed loop
Bode plots and load rejection capabilities
were also examined and found to be acceptable
as was the steady-state speed error due to
the practical difficulties of implementing a
pure integrator.
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