5. Output Stage, desirable characteristics

The output stage is supposed to deliver the final output to an appropriate receiving device, i.e., a lamp, human ear, loud speaker, etc. Within the limits of given DC power supplies, the output stage should provide maximum amount of signal power to the load without large dissipation of electrical signal energy as heat. In a voltage amplifier system, the output resistance should be very low. Further, the output signal waveform should be very close replica of the input signal which means that the output should have very small distortion characteristic. Usually when devices deliver high power, the operation creeps into the domain of nonlinear characteristics and hence harmonics of the signal are generated at the output. A measure of these harmonics is expressed by Total Harmonic Distortion (THD). A high fidelity audio amplifier will perhaps have a THD of the order of a fraction of a percent i.e., 0.1%.

The most challenging task in the design of the output storage is that it delivers the required amount of power to the load in an efficient manner i.e., with as little as possible of power dissipation in the transistors at the output stage. The efficiency depends upon the way the output stage conducts upon application of the signal power. This is achieved by special DC biasing of the transistor. Thus we come across class A, class B and class AB stages. The following are discussed in this chapter.

- Different DC biasing of output stages and associated characteristics
- Special circuits for class AB biasing
- Short circuit protection technique
- Thermal considerations
- Power transistors

5.1: Operation by Different Biasing

5.1.1: Class A operation
In class A operation, the output stage is biased at a DC current level I_C which is greater than the peak signal component of the current I_m. Thus, if the signal is sinusoidal, the instantaneous current through the device never falls below zero over the entire cycle of the input signal. That means the conduction angle of the output stage is 360°, i.e. full cycle. Figures 5.1(a)-(c) demonstrate the concept. The device $Q1$ is biased with $I1=2mA$. The capacitor $C1$ is for isolating the DC signal and is assumed as a short circuit for ac signals. When an input signal v_I of value V_m is applied, the current i_E through the emitter resistance $R1$ follows the input sinusoidal variation as $v_I/R1$. As long as $|V_m/R1|$ is less than $I1$, the waveform of i_E resembles that of v_I (Figs. 5.1(b)-(c)). When $|V_m/R1|$ exceeds the DC bias current $I1$, i_E becomes zero during the negative going excursion of v_I. Thus, the condition of class A operation is violated (Fig.5.1(d)). The current through $R1$ and hence the output signal voltage suffers distortion.
Figure 5.1: DC bias current vs. signal handling capability of Class A output stage (a) the schematic with NPN-BJT device biased for $i_E=2$ mA, (b) $V_{SIN}=1$V peak, $i_E=1$ mA (peak) sinusoidal around 2 mA DC bias, (c) $V_{SIN}=2$V peak, $i_E=2$ mA (peak) sinusoidal around 2 mA DC bias, (d) $V_{SIN}=3$V peak, $i_E=3$ mA positive peak but cutting off toward the negative peak, being limited by the 2 mA DC bias.

Considering from output side, if the amplifier is required to deliver a given level of voltage (say, v_{om}) across the output load (say, R_L), the DC bias level should be sufficient (i.e., $> |v_{om}/R_L|$) so that the transistor never cuts off (i.e., i_E becoming=0) for class A operation. Figure 5.2(a)-(c) illustrate the situation. The schematic in Fig.5.2(a) shows a CC-BJT amplifier output stage biased by a current source and having a load of 8 ohms. It is intended for an output signal power
of 100 mW. This corresponds to a peak \(ac \) current of \(I_m = 160 \) mA. The capacitor \(C3 \) is for isolating the DC signal and is assumed as a \textit{short circuit} for \(ac \) signals. The DC bias current is set for 162 mA (i.e., \(> I_m = 160 \) mA). Figure 5.2(b) shows the case for a load current drive of 150 mA (\(v_{in} = 1.2 \)V peak Sine-wave), while Fig.5.2(c) depicts the case for a load current drive exceeding the DC bias current of 162 mA. This happens for an input signal drive of 2.5V peak Sine-wave requiring the load current to be (noting that the CC stage has a voltage gain close to unity) 312.5 mA. This current exceeds the DC bias current arranged in Fig.5.2(a). The BE junction of the BJT device cuts off for the duration when the signal current remains below -162 mA (see Fig.5.2(d)). Hence, the output signal (current/voltage) encounters distortion over this duration of time.
Figure 5.2: A CC-BJT output stage rated for 100 mW of output power ($v_L=1.28\text{V peak}$); (a) the schematic, (b) output current for $v_L=v_{in}=1.2\text{V peak}$, (c) output current for $v_L=v_{in}=2.5\text{V peak}$, (d) current through the BJT device for $v_L=v_{in}=2.5\text{V peak}$

5.1.1.1: Bias current circuit design

Consider a CC-BJT amplifier in an IC environment where the device Q_1 (an NPN BJT device) is biased by the current-mirror circuit comprised of Q_2 and Q_3 (see Figure 5.3). The instantaneous load current is i_L, and the dc bias current is I. Then

$$i_{E1} = I + i_L$$
For class A operation, \(i_{E1} \) is always > 0 i.e. \(I > i_L \). In the linear operation region, maximum positive output is \(v_o^+|_{max} = V_{CC} - v_{CE,sat}|_{Q1} \). Similarly, maximum negative output is \(v_o^-|_{max} = -V_{CC} + v_{CE,sat}|_{Q2} \).

Corresponding to the worst case negative swing at the output, the load current will be

\[
i_L = \frac{-V_{CC} + v_{CE,sat}|_{Q2}}{R_L},
\]

where \(R_L \) is the load resistance. Since, for class A operation \(I > i_L \), then

\[
I > i_L = \frac{-V_{CC} + v_{CE,sat}|_{Q2}}{R_L},
\]

gives a guideline for designing the proper DC bias current for class A operation. On the positive swing side: \(I \leq \frac{V_{CC} - v_{CE,sat}|_{Q1}}{R_L} \). In a practical case one need to choose higher of the two possible values of \(I \). The biasing resistance in the reference current source transistor (Q3) can now be chosen as (ignoring the effect of finite beta of the BJT)

\[
R \leq \frac{0 - (V_{CC} + 0.7)}{I}
\]
Example 5.1.1: In Fig.5.3 consider $V_{CC} = 15V$, $V_{CE(sat)} = 0.2V$, $V_{BE} = 0.7V$, and that h_{FE} is very high. Find R to allow for the largest possible output signal swing across the load $R_L = 1k\Omega$.

Determine the minimum and maximum currents through the device Q_1.

Solution/hints:

Maximum signal swing = $15 - 0.2 = 14.8V$ peak (both positive and negative)
Peak load current $i_L = 14.8V/1k\Omega = 14.8 mA$ (both positive and negative)
For class A operation, $i_{E1} = i_L + I$ will always be > 0, so $I = 14.8 mA$.
With h_{FE} very high, $I_{REF} = I_C$ in Q_3 will be = $I = 14.8 mA$.
With $V_{BE} = 0.7V$, $R = \left[\frac{-15 + 0.7}{14.8 mA}\right] = 0.97k\Omega$.
Minimum (instantaneous) current through Q_1 = 0
Maximum (instantaneous) current through Q_1 = 14.8 times 2 = 29.6 mA (assuming a sinusoidal input signal).

5.1.1.2: Power conversion efficiency

In the class A amplifier the DC power consumption is $P_s = 2IV_{CC}$ → both carrying average current I and bus to bus voltage being $2V_{CC}$. Let $P_s = 2IV_{CC}$ be the power drawn from the supply bus.

Average ac (sinusoidal) signal power delivered to the load is $P_L = \frac{\hat{v}_o^2}{2R_L}$, where \hat{v}_o is the peak output ac voltage.

Efficiency of power conversion $\eta = \frac{P_L}{P_s} = \frac{1}{4V_{CC}IR_L}$. The highest value of the efficiency will be $\frac{1}{4}$, i.e., 25% when $\hat{v}_o = V_{CC} = IR_L$. In general, since $\hat{v}_o < V_{CC}$, and $\hat{v}_o < IR_L$ the power conversion efficiency will be $< \frac{1}{4}$, i.e., 25 %. The best case efficiency that can be obtained in a Class A operation is thus 25%.

5.1.2: Class B operation

In class B operation, the DC bias current through the device (Fig.5.4(a)) is kept at zero. So the device conducts current for only $\frac{1}{2}$ of the input signal cycle (Fig.5.4(b)). The conduction angle is thus, 180. The output signal is highly non-linear. To overcome this drawback a complementary pair of PNP and NPN transistors is used in practice.
Figure 5.4: Class B amplifier stage (a) schematic (in PSpice), (b) output waveform at the emitter of the BJT.

5.1.2.1: Practical Class B output stage

A practical class B amplifier using BJT devices appears as in Fig.5.5(a). The linearity characteristic of the amplifier is shown in Fig.5.5(b) and the output waveform with a sinusoidal
input signal appears as in Fig.5.5(c). The linearity characteristic (Fig.5.5(b)) shows saturation at the limits of the DC supply voltages ($\pm 10V$ in this case) and a no-conduction zone (shown by an **elliptic** curve in Fig.5.5(b)) when in the input is within $\pm V_\gamma$, where V_γ is the cut-in voltage of the emitter-base junction of the transistors.
Figure 5.5: (a) Schematic of a class B output stage using BJT devices, (b) large signal output-input characteristic, (c) output with sinusoidal input.

Figure 5.5(c) shows the output for an input sinusoidal signal. The region of no (or poor) conduction corresponds to zero (or very small) output (shown by elliptic enclosure). This produces distortion components at the output. The distortion is referred to as crossover distortion since the distortion occurs when the current conduction changes over from one transistor (say, the NPN) to the other (i.e., the PNP) and vice versa. SPICE analysis of the

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(R_R4)

<table>
<thead>
<tr>
<th>HARMONIC NO</th>
<th>FREQUENCY (HZ)</th>
<th>FOURIER COMPONENT</th>
<th>NORMALIZED PHASE (DEG)</th>
<th>NORMALIZED PHASE (DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000E+03</td>
<td>1.070E+00</td>
<td>1.000E+00</td>
<td>1.796E+02</td>
</tr>
<tr>
<td>2</td>
<td>2.000E+03</td>
<td>1.806E-02</td>
<td>1.687E-02</td>
<td>9.215E+01</td>
</tr>
<tr>
<td>3</td>
<td>3.000E+03</td>
<td>2.128E-01</td>
<td>1.988E-01</td>
<td>2.249E+00</td>
</tr>
<tr>
<td>4</td>
<td>4.000E+03</td>
<td>1.557E-02</td>
<td>1.454E-02</td>
<td>8.659E+01</td>
</tr>
<tr>
<td>5</td>
<td>5.000E+03</td>
<td>7.293E-02</td>
<td>6.813E-02</td>
<td>1.817E+00</td>
</tr>
<tr>
<td>6</td>
<td>6.000E+03</td>
<td>1.375E-02</td>
<td>1.285E-02</td>
<td>8.499E+01</td>
</tr>
<tr>
<td>7</td>
<td>7.000E+03</td>
<td>2.218E-02</td>
<td>2.072E-02</td>
<td>6.019E+00</td>
</tr>
<tr>
<td>8</td>
<td>8.000E+03</td>
<td>1.340E-02</td>
<td>1.252E-02</td>
<td>8.185E+01</td>
</tr>
<tr>
<td>9</td>
<td>9.000E+03</td>
<td>9.838E-03</td>
<td>9.191E-03</td>
<td>3.431E+01</td>
</tr>
</tbody>
</table>

TOTAL HARMONIC DISTORTION = 2.132541E+01 PERCENT
circuit in Fig. 5.5(a) indicates a total harmonic distortion (THD) of 21.32%. The principal contribution to the THD comes from the crossover distortion.

The crossover distortion can be reduced by including the class B stage in a negative feedback loop with a high gain amplifier (i.e., an operational amplifier). The circuit is shown in figure 5.6(a). The output waveform now appears as in figure 5.6(b). The Fourier analysis data shows a THD of only 0.093%.

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(R_R4)

DC COMPONENT = -7.467272E-05

<table>
<thead>
<tr>
<th>HARMONIC NO</th>
<th>FREQUENCY (HZ)</th>
<th>FOURIER COMPONENT</th>
<th>NORMALIZED COMPONENT</th>
<th>PHASE (DEG)</th>
<th>NORMALIZED PHASE (DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000E+03</td>
<td>1.977E+00</td>
<td>1.000E+00</td>
<td>-1.800E+02</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>2</td>
<td>2.000E+03</td>
<td>1.595E-04</td>
<td>8.070E-05</td>
<td>1.850E+01</td>
<td>3.784E+02</td>
</tr>
<tr>
<td>3</td>
<td>3.000E+03</td>
<td>1.154E-03</td>
<td>5.839E-04</td>
<td>-1.329E+02</td>
<td>4.070E+02</td>
</tr>
<tr>
<td>4</td>
<td>4.000E+03</td>
<td>2.000E-05</td>
<td>1.012E-05</td>
<td>-1.010E+01</td>
<td>7.098E+02</td>
</tr>
<tr>
<td>5</td>
<td>5.000E+03</td>
<td>9.928E-04</td>
<td>5.023E-04</td>
<td>-1.613E+02</td>
<td>7.385E+02</td>
</tr>
<tr>
<td>6</td>
<td>6.000E+03</td>
<td>1.960E-05</td>
<td>9.914E-06</td>
<td>-8.828E+01</td>
<td>9.915E+02</td>
</tr>
<tr>
<td>7</td>
<td>7.000E+03</td>
<td>8.112E-04</td>
<td>4.104E-04</td>
<td>1.667E+02</td>
<td>1.426E+03</td>
</tr>
<tr>
<td>8</td>
<td>8.000E+03</td>
<td>3.022E-05</td>
<td>1.529E-05</td>
<td>-1.319E+02</td>
<td>1.308E+03</td>
</tr>
<tr>
<td>9</td>
<td>9.000E+03</td>
<td>6.182E-04</td>
<td>3.128E-04</td>
<td>1.272E+02</td>
<td>1.747E+03</td>
</tr>
</tbody>
</table>

TOTAL HARMONIC DISTORTION = 9.308423E-02 PERCENT
Figure 5.6: Class B output stage with reduced crossover distortion arrangement (a) the schematic, (b) the output waveform.
5.1.2.2: *Power Conversion Efficiency*

Consider the illustrations shown in Fig. 5.7. The traces in red corresponds to conduction by the NPN BJT and the traces in blue are due to conduction of the PNP BJT. We have ignored the crossover distortion zone (*dead-zone*) in this case. If \(\hat{v}_o \) is the peak value of the output voltage \(v_o \), the average signal power output is \(\hat{v}_o^2 / 2R_L \) (ignoring the dead-zone effect). For the positive half of \(v_t \), the load current comprise of half sinusoids (ignoring the dead zone) like in a half-wave rectifier (*red* traces). So the average current will be \(\frac{1}{\pi} \frac{\hat{v}_o}{R_L} \) (as obtained by Fourier Series expansion). Similarly, for the negative half of \(v_t \), the load current will appear as a half-wave rectified form, but all the lobes will be in the negative direction now (*blue* traces in Fig.5.7). So the average dc current in this case will be

\[
-\frac{1}{\pi} \frac{\hat{v}_o}{R_L}.
\]

Figure 5.7: Output wave shapes in class B operation (*red* trace due to \(Q_1 \), and *blue* trace due to \(Q_2 \)). The crossover distortion component has been assumed negligible.
When $v_I > 0$, the dc power is consumed from $+V_{CC}$ supply. So the average power consumed is:

$$V_{CC} \frac{1}{\pi} \frac{\hat{v}_o}{R_L}.$$

When $v_I < 0$, the dc power is consumed from $-V_{CC}$ supply. So the average power consumed is $(\hat{-v}_o)(\frac{1}{\pi} \frac{\hat{v}_o}{R_L}).$

Net average power consumed over the entire period of $v_I = 2 V_{CC} \frac{1}{\pi} \frac{\hat{v}_o}{R_L}$. Then, power conversion efficiency is: (average signal power in R_L) / (average power consumed from the DC supply rails)

$$= (\hat{v}_o^2 / 2R_L) / (2V_{CC} \hat{v}_o / \pi R_L)$$

In an ideal case (ignoring $v_{CE,\text{sats}}$ of the BJT devices), $\hat{v}_o \equiv V_{CC}$. So the best case efficiency η will be $\pi / 4$, i.e., about 78.5%. Maximum average signal power available from a class B output stage is obtained by putting $\hat{v}_o \equiv V_{CC}$, and is $(1/2)(V_{CC}^2 / R_L)$.

5.1.2.3: Power Dissipation in the Devices (i.e., transistors) for class B operation

In class B stage, no power is dissipated under quiescent (no signal) condition. When a signal is applied, a certain part of the power is dissipated as heat in the device. This can be figured out as follows.

$$P_D = P_{sup} - P_L = \text{DC supply power} - \text{average signal power at load}.$$

Since (for sinusoidal output signal) $P_L |_{avg} = v_o^2 / 2R_L$, and $P_{sup} = 2\hat{v}_o V_{CC} / \pi R_L$,

$$P_D = \frac{2}{\pi} \frac{\hat{v}_o}{R_L} V_{CC} - \frac{1}{2} \frac{\hat{v}_o^2}{R_L}.$$

Thus, P_D depends on v_o by a non-linear (i.e., quadratic) relation. So, a maximum or minimum of P_D is possible, as a function of v_o. This can be formed, by letting $\partial P_D / \partial \hat{v}_o = 0$, and checking the sign of $\partial^2 P_D / \partial \hat{v}_o^2$. The procedure leads to an optimum value for v_o, $v_o |_{opt} = (2 / \pi) V_{CC}$ for a maximum of P_D. Then, $P_{D|\text{max}}$ (by substituting $v_o = (2 / \pi) V_{CC}$) in the above expression) = $\frac{2}{\pi^2} \frac{V_{CC}^2}{R_L}$ (see Fig.5.8).
Figure 5.8: Plot of power dissipation with output voltage magnitude

One-half of this power is dissipated in each of the P-and N type BJT. So each transistor dissipates a maximum power of \(P_{D\max}/2 \), i.e., \(\frac{1}{\pi^2} \cdot \frac{V_{CC}^2}{R_L} \); a fact to be considered to choose proper BJT devices for the design of the output stage.

When the transistors dissipates maximum power, the efficiency drops. Thus,

\[
\eta = \frac{\pi \cdot \hat{v}_o \cdot \frac{2}{\pi} \cdot \frac{V_{CC}}{V_{CC}}}{4/\pi} = \frac{1}{2}, \text{ i.e., } 50\% \text{ only.}
\]

Example 5.1.2.1:
Example 5.1.2.1: In a class B output stage we need the average output signal power to be 20W across an 8Ω load. The DC supply should be about 5V greater than the peak output voltage. Determine

(i) DC supply required.
(ii) Peak current drawn from each supply.
(iii) Total power drawn from the DC supplies.
(iv) Power conversion efficiency.
(v) Power dissipation in each transistor of the class B circuit.

Solution/hints: (i) $P_L = \frac{1}{2} \frac{v_o^2}{R_L} = 20$, gives $\hat{v}_o = 17.9$ V. Then $V_{CC} = | - V_{CC} | = 5 + 17.9 \approx 23$ V.

(ii) Peak current $= \frac{17.9}{8} = 2.24$ A drawn from each supply.

(iii) Average current drawn from each supply is $\frac{\hat{i}_L}{\pi} = 0.713$ A. So average DC power drawn from the two DC supplies is $2 \times 23 \times 0.713 = 32.79$ W.

(iv) Power conversion efficiency $\eta = \frac{20}{32.79} \rightarrow 61\%$

(v) Power dissipation in each transistor $(32.79 - 20)/2 = 6.4$ W. The maximum power dissipation in each transistor will be $\frac{V_{CC}^2}{\pi^2} \frac{1}{R_L} \approx 6.7$ W

5.1.3: Class AB Operation

5.1.3.1: Principle of operation

In class AB operation, a small DC bias is added to the base of a complementary (i.e., PNP-NPN BJT, or PMOS-NMOS devices) pair. As a result, with input signal $v_I = 0$, a small quiescent current I_Q flows. The load current i_L remains = 0. Thus consider the schematic in Fig. 5.9. For $v_I = 0$, $i_L = 0$, $i_P = i_N = I_Q = I_S e^{v_{BB}/2r}$, where we have assumed I_S for both NPN and PNP device as same. The bias voltage V_{BB} is set up to produce the required I_Q.

When v_I increases Q_N conducts more since v_{BEN} becomes higher than $V_{BB}/2$; similarly Q_P conducts less since v_{EBP} goes below $V_{BB}/2$. The difference $i_N - i_P = i_L$ flows out as load
Figure 5.9: Schematic of a basic class AB output amplifier using BJT devices current \(i_L \) producing the output \(v_o = i_L R_L \), increasing in the positive direction. Specifically, \(v_o = v_I + V_{BB}/2 - v_{BEN} \).

The increase in \(i_N \) is accompanied by a corresponding decrease (or vice versa) in \(i_P \) in accordance with the relation as derived below.

\[
v_{BEN} + v_{EBP} = V_{BB}, \quad i_N = I_S e^{v_{BEN}/V_T}, \quad i_P = I_S e^{v_{EBP}/V_T}.
\]

Then, \(v_{BEN} = V_T \ln(i_N / I_S) \), \(v_{EBP} = V_T \ln(i_P / I_S) \), while from \(I_Q = I_S e^{v_{EBP}/2V_T} \), we get: \(V_{BB} = 2V_T \ln(I_Q / I_S) \). Then,

\[
V_T \ln(i_N / I_S) + V_T \ln(i_P / I_S) = 2V_T \ln(I_Q / I_S),
\]

leading to \(i_N i_P = I_Q^2 \), which holds right from the quiescent point (i.e., \(v_I = 0 \)). The equation \(i_N i_P = I_Q^2 \) can be combined with \(i_L = i_N - i_P \) to solve for either \(i_N \) or \(i_P \) in terms of \(I_Q \) and \(i_L \) in a quadratic equation of the form, for example, in \(i_N \) (substituting \(i_P = i_N - i_L \)):

\[
i_N^2 - i_L i_N - I_Q^2 = 0
\]

When \(v_I \) goes negative, \(v_{EBP} \) increases, \(v_{BEN} \) decreases, \(i_N \) decreases, \(i_P \) increases, \(i_L \) reverses sign and \(v_o \) decreases towards negative values thereby following \(v_I \) again. This accounts for the negative going swing of \(v_o \). Thus the push-pull action as in class B stage continues. Since \(I_Q \neq 0 \)
transition of conduction from the NMOS to PMOS occurs in a smooth manner. Cross-over distortion is thereby reduced considerably. Figure 5.10(a) shows the PSpice schematic of a class AB output stage. Figure 5.10(b) shows the output waveform for an input signal of 1kHz with 2V amplitude. The crossover distortion zone is considerably reduced compared with that in Fig.5.5(c) (class B output stage).

Example 5.1.3.1: For a class AB stage shown in figure 5.11, consider the given data:

\[V_{CC} = 15V; \quad R_L = 100\ \Omega; \quad v_o = 10\sin \omega t; \] the output devices \(Q_P \) and \(Q_N \) are matched with \(I_S = 10^{-13} \) A; \(h_{FE} = 50 \); The biasing diodes have 1/3rd the junction area of the output devices.

Find

(i) The value of required \(I_{Bias} \) so that a minimum of 1mA current flows through the biasing diodes all the time.

(ii) The zero signal (i.e., quiescent) bias current through the output devices.

(iii) Quiescent power dissipation in the devices.

(iv) \(V_{BB} \) for \(v_o = 0 \)

(v) \(V_{BB} \) for \(v_o = 10V \) peak
Figure 5.10: Performance of a class AB output stage; (a) PSpice schematic, (b) output waveform for 1kHz input sinusoidal signal of 2V amplitude.
Solution/hints:

(i) Since v_o (peak) is 10V, $i_L(peak)=\hat{i}_L = 0.1A$.

For maximum positive swing of v_o, $i_N |_{max} = \hat{i}_L = 0.1A=100\ mA$.

Then $i_{BN} |_{max} = \frac{100}{h_{FE}} = 2\ mA$. The current through the diode column follows the KCL equation: $I_D = I_{Bias} - i_{BN}$. Then for a minimum value of $I_D = 1mA$, we must have $I_{Bias} \geq 3\ mA$

(ii) Let $I_{Bias} = 3mA$. Since Q_N, Q_P has three times the junction area relative to the biasing diodes (D_1,D_2), I_Q for the output devices will be three times of $3mA$, i.e., 9 mA.

(iii) Quiescent power dissipation is $2\times15\times9 = 270\ mW$.

(iv) For $v_o = 0$, $i_{BN} = 9/50 = 0.18\ mA$. Then $I_D = 3-0.18 = 2.82\ mA$. For the diodes

$I'_S = I_S/3 = 0.33\times10^{-14}\ mA$. We now have to use the diode I-V equation

$I_D = I'_S \exp\left(\frac{V_{BB}}{2V_T}\right)$, with $V_T = 25\ mV$ (assumed since no other value is provided). Thus,

$V_{BB} = 1.26V$.

(v) For v_o (peak) = 10V, $i_{BN} = 2mA$, $I_D = 1mA$, $V_{BB} = 1.21V$.

In practice two diode connected transistors can be used for D_1, and D_2.

Figure 5.11 (refer Example 5.1.3.1)
5.2: Different techniques for deriving the bias voltage V_{BB}

5.2.1: Class AB biasing circuit using V_{BE} multiplier

Figure 5.12 shows a popular technique to derive the biasing voltage V_{BB} in class AB output stage. In transistor Q_1, if the base current is neglected, we can see that $V_{BE1} = I_R R_1$. Then,

$$V_{BB} = I_R (R_1 + R_2) = V_{BE1} (1 + \frac{R_2}{R_1})$$

Hence the name V_{BE}-multiplier. Choosing the ratio R_2/R_1, any suitable V_{BB} value (greater than V_{BE1}) can be generated.

![Figure 5.12: Class AB stage with V_{BE} multiplier circuit.]

V_{BE1} is basically related to the collector current of Q_1. Thus, $I_{C1} = I_{S1} e^{-V_{BE1}/V_T}$, where $I_{C1} = I_{Bias} - I_R$ (neglecting i_{BN}). Then $V_{BE1} = V_T \ln (I_{C1}/I_{S1})$. Another assumption is that during the positive half cycle or positive going swing of v_o, i_{BN} increases and this might compete with I_{C1} since $I_{Bias} = I_{C1} + I_R + i_{BN}$. Since i_{BN} is very small and even large change in I_{C1} may cause only little change in V_{BE1} (because of exponential I-V relation), V_{BE1} and hence V_{BB} remains substantially unchanged.

Example 5.2.1.1: For a class AB stage shown in figure 5.12, consider the following:
$V_{CC}=15\text{V}$; $R_L=100\Omega$; $v_o=10\sin\omega t$; the output devices Q_P and Q_N are matched with $I_s=10^{-13}\text{A}$; $h_{FE}=50$; In absence of any signal $I_{Q_n}=I_{Q_p}=2\text{mA}$. The transistor Q_1 has $I_s=10^{-14}\text{A}$. The I_{Bias} has to drive a minimum of 1mA through the V_{BE} multiplier circuit when the maximum input signal drive occurs producing a corresponding maximum output voltage level of 10V peak.

Provide a design for the V_{BE} multiplier circuit.

Solution/hint: Following the case for Example 5.1.3.1, we see that for peak value of v_o (i.e., 10V), $i_L(\text{peak})=\frac{10}{100}=0.1\text{A}=i_N|_{\text{max}}$.

Then $I_{Bias}=I_R+I_{Q_1}+i_{BN}|_{\text{max}}$ must be $\geq 3\text{mA}$. The 1mA current through the V_{BE} multiplier circuit can be distributed as $I_R=0.5\text{mA}$, and $I_{Q_1}=0.5\text{mA}$.

With minimum signal drive (i.e., $v_o=0$) the entire I_{Bias} of 3mA will be divided between I_R and I_{Q_1}.

We will assume the distribution as $I_R=0.5\text{mA}$ and $I_{Q_1}=2.5\text{mA}$.

For $v_o=0$, the condition $I_{Q_n}=I_{Q_p}=2\text{mA}$, leads to $V_{BB}=2V_T\ln(\frac{2\times10^{-3}}{10^{-13}})=1.185\text{V}$. This being the voltage drop across R_1,R_2 in series with $I_R=0.5\text{mA}$, we can deduce $R_1+R_2=2.38\text{k}\Omega$.

At the same time the value $I_{Q_1}=2.5\text{mA}$ provides $V_{BE1}=V_T\ln(2.5\times10^{-3}/10^{-14})=0.66\text{V}$. Hence $R_1=0.66\text{V}/0.5\text{mA}=1.32\text{k}\Omega$. Then $R_2=1.06\text{k}\Omega$.

5.2.2: Class AB biasing circuit using complementary CC stages

Figure 5.13 shows an arrangement where a complementary pair of common collector (CC) BJT devices are used to provide the V_{BB} bias to the output transistors Q_P and Q_N. The resistances R_{E1}, R_{E2} ensure to stabilize the DC bias current through Q_N, Q_P transistors. The resistances R_1, and R_2 are designed to provide the required $V_{BB}=V_{E1}-V_{E2}$, where V_{E1} and V_{E2} are dependent upon the DC bias component in v_I, the input signal.

5.2.3: Class AB output stage using compound transistors

Figures 5.14(a)-(b) show two compound transistor stages each of which is equivalent to a single transistor with an effective current gain factor equal to the product of the individual current gain factor of the constituent transistors. The arrangement in Fig.5.14(a) is also known as *Darlington* pair, while Fig.5.14(b) presents a compound PNP transistor.
For either of the cases, the current gain factor is $h_{FE} = h_{FE1} h_{FE2}$, where h_{FE1}, h_{FE2} are the current gain factors of Q_1 and Q_2 respectively.

A class AB output stage employing the compound transistors and a V_{BE} multiplier circuit is shown in figure 5.15.
Figure 5.15 A class AB output stage with compound transistors biased by a V_{BE} multiplier circuit.

5.3 Short Circuit Protection in Output Power Stages

Protecting the output stage from burn out because of accidental short circuit is an important concern in high output power system. Short circuit means $R_L \rightarrow 0$ by accident. A short circuit protection scheme for a class AB output stage is shown in Fig.5.16.
Basically any sudden surge of current in the output because of $R_L \rightarrow 0$, causes a drop across R_{E1} (or R_{E2}) of such magnitude that the by-pass transistor Q_3 turns ON. Then Q_3 shunts away large part of the base bias drive current to Q_1. This way Q_1 is saved from a burn out. Note that for accidental short circuit $i_L > 0$, so consideration of current in the opposite direction, i.e., protection of Q_2 (the PNP) transistor does not arise. The disadvantage of the protection scheme is a slight reduction in the output voltage v_o because of series voltage drop in R_{E1}.

5.4: Power BJTs

Transistors that deliver large power have to carry large amount of currents. Thus they have to be of special construction, special packaging and special mounting. Since large amount of power is dissipated in the transistor, the collector-base junction area has to be large. Such dissipation of heat increases the junction temperature. Undue rise in temperature may damage the transistor. The wafer may fuse, the thin bonding wires may melt. Transistor manufactures specify a
maximum junction temperature $T_{j\text{max}}$ which must not be exceeded while the device is in operation. For silicon devices this range from 150 °C to 200 °C. BJTs fabricated with high power dissipation ability are called power BJTs. The power level range from few watts to hundreds of watts.

5.5 Thermal considerations

5.5.1: Thermal Resistance

As the BJT junction temperature rises, heat is generated and is dissipated in the surrounding environment. This tends to lower the junction temperature. This is analogous to flow of current through a resistance trying to lower the voltage difference between the ends of the resistance. The temperature difference may be considered as a voltage difference while the power dissipated into the medium can be considered as a current. In the steady state in which the transistor is dissipating P_D watts, the temperature rise of the junction relative to the surrounding ambience can be expressed as: $T_J - T_A = \theta_{JA} P_D$, where θ_{JA} is the thermal resistance between the junction and the ambience. θ_{JA} has the unit of °C per watt. In order that the transistor can dissipate large amount of power without raising the junction temperature above $T_{j\text{max}}$, it is desirable to have as small value of θ_{JA} as possible. What it means that $T_J - T_A$ should be maintained constant, with $T_J \rightarrow T_{j\text{max}}$, then $\theta_{JA} P_D \rightarrow$ constant. Hence, if P_D increase, θ_{JA} must decrease. The relationship $T_J - T_A = \theta_{JA} P_D$ can be depicted by an equivalent electric network as shown in Fig.5.17.

![Figure 5.17: Equivalent circuit relating heat dissipation with rise of junction temperature](image)

The transistor manufacturers usually specify $T_{j\text{max}}$, the maximum power dissipation at a particular ambient temperature T_{AO} °C (usually 25 °C) and the thermal resistance θ_{JA}. These are related by $\theta_{JA} = \frac{T_{j\text{max}} - T_{AO}}{P_{DO}}$.
At an ambient temperature T_A higher than T_{AO}, the maximum allowable power dissipation $P_{D_{max}}$ can be obtained from the above relation by $P_{D_{max}} = \frac{T_{j_{max}} - T_A}{\theta_{jA}}$.

As T_A becomes close to $T_{j_{max}}$, $P_{D_{max}}$ decreases. For $T_A < T_{AO}$, it is assumed that P_D is $= P_{DO}$, a steady state value. Only when $T_A > T_{AO}$, P_D degrades or derates with a slope of $\frac{1}{\theta_{jA}}$.

Utility of the above relationships can be understood by considering the following example.

Example 5.5.1.1: A BJT is specified to have a maximum power dissipation P_{DO} of 2W at $T_{AO}=25^\circ$C, and a maximum junction temperature $T_{j_{max}}$ of 150$^\circ$C. Find (i) the thermal resistance of the device, (ii) the maximum power that can be safely dissipated at an ambient temperature of 50$^\circ$C.

Solution:

(i) $\theta_{jA} = \frac{T_{j_{max}} - T_{AO}}{P_{Do}} = \frac{150 - 25}{2} = 62.5 ^\circ$C/W

(ii) $P_{D_{max}} = \frac{T_{j_{max}} - T_{AO}}{\theta_{jA}} = \frac{150 - 50}{62.5} = 1.6$W

5.5.2: Transistor Case and Heat Sink

In order to improve the heat dissipation capacity of a transistor, the transistor is encapsulated in a large area case with the collector connected to the case and the case is bolted to a large metal plate called heat sink. For high power transistors these heat sinks are also made of special structure with several fins, which increases the heat dissipating surface area without undue increase in volume. See the back of the power amplifiers, of your stereo system, for example. With all these interfaces, the equivalent thermal resistance becomes sum total of the thermal resistances of the elements. Thus, one can express θ_{jA} as $\theta_{jA} = \theta_{jC} + \theta_{CA}$, where θ_{jC} is the thermal resistance between the junctions of the transistor and the transistor case (package), θ_{CA} is the thermal resistance between the case and the ambient. θ_{jC} can be reduced by having a large metal case for packaging the transistor. θ_{CA} can be reducing using a heat sink, an option at the disposal of the amplifier and the package designer.
With a heat sink, $\theta_{CA} = \theta_{CS} + \theta_{SA}$. In this, θ_{CS}, is the thermal resistance between case to heat sink, and θ_{SA}, is the heat sink to ambient thermal resistance. The overall electrical equivalent circuit can be modeled as shown in Fig.5.18. The power dissipation equation becomes:

$$T_j - T_A = P_D (\theta_j + \theta_{CS} + \theta_{SA}).$$

![Figure 5.18: Transistor heat dissipation equivalent circuit with casing and heat sink.](image)

It may be noted that the θ's in the above equation behave similar to conductances, i.e., thermal resistances connected in parallel. Device manufacturers also supply θ_j and a derating curve of $P_{D_{max}}$ versus case temperature T_C. If the device case temperature T_C can be maintained in the range $T_{CO} \leq T_C \leq T_{j_{max}}$, the maximum safe power dissipation is obtained when $T_j = T_{j_{max}}$, with

$$P_{D_{max}} = \frac{T_{j_{max}} - T_{CO}}{\theta_j}.$$

T_{CO} is usually taken as 25º C. Figure 5.19 depicts several packaging and heat sinking arrangements for high power transistors.
Figure 5.19: Packaging and heat sinking arrangements for power transistors; (a), (b) two different packaging technique, (c) typical heat sink arrangement.

5.6: Large and Small signal parameters for Power BJT

1. At high currents the constant n in the exponential I-V characteristic assume a value close to 2, i.e., $i_c = I_s e^{yae/2y_r}$.

2. β is low, typically about 50, but could be as low as 5. It must be remembered that β has a positive temperature coefficient.

3. At high currents r_π becomes very small and hence the base material resistance r_s assumes a dominant role.

4. The short circuit current gain transition frequency f_T is low (few MHz only), C_μ becomes large (hundreds of pF) and C_π is even larger.

5. I_{CEO} is large (few tens of micro amps.) and doubles every 10°C rise in temperature.

6. BV_{CEO} is typically 50 to 100 V, but it can be as high as 500V.

7. I_{Cmax} is typically in the ampere range, but can become as high as 100A.