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Chapter 6 
 

ELECTRONIC FILTERS, TUNED AMPLIFIERS and OSCILLATORS 
 

 
6.1 Filter types, characteristics, parameters1 
 
An electronic filter is a system which transmit signals in a specified frequency band to 
pass through with very little loss, while signals at some other frequency bands are 
severely attenuated through the system.  An ideal low-pass filter will have a brick-wall 
type of transmission characteristics 

Frequency

p

 

oK

Gain



0

 
 
Thus, the gain is constant over the frequency range 0 < w < wp and the gain abruptly 
reduces to zero at w = wp.  The frequency range 0  wp is called the pass-band, the 
frequency wp is called the pass-band edge frequency.  The band w > wp of frequencies is 
known as the stop- band. 
 
When the pass-band is 0 < w < wp and stop-band is w > wp, the filter is termed as a low- 
pass filter. Other types of filters are defined as follows. 
 
Passband Stopband  Filter type 
wp < w < infinite 0 < w < wp High- pass 
wp1 < w < wp2 0 < w < wp1, wp2 < w < ∞ Band-pass 
0 < w < wp1, wp2 < w < ∞ wp1 < w < wp2 Band -stop  
0 < w < ∞ - All- pass 
 
An ideal characteristic such as the brick-wall type is seldom achievable in practice.  Thus 
the ideal characteristic is approximated by suitable mathematical function.  This is known 
as filter approximation problem.  In this approximation, the loss in the pass-band is held 

                                                 
1 R. Raut and M.N.S. Swamy, Modern Analog Filter Analysis and Design, A Practical Approach , WILEY-
VCH, ISBN 978-3-527-40766-8, © 2010. 
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to below an worst case limit Amax (or Ap), while the loss in the stop-band is held above an 
worst case minimum limit  Amin (or Aa ). These losses are measured in decibels (db). 
 
The band of frequencies over which the loss changes gradually from Ap to Aa is known as 
the transition band.  Narrower this transition band is, sharper is the gain characteristics of 
the filter and closer it is to ideal brick-wall characteristics.  But more complex and 
expensive it becomes to realize such near ideal filters in practice.  
 
Before implementing a filter, one must know at least the following four parameters: 
 
 Ap = Amax  maximum loss (in decibels) in the pass- band 
 Aa = Amin  minimum loss (in decibels) in the stop-band  
 wp = pass-band edge (i.e. frequency after which the loss becomes > Amax) 
 wa = stop-band edge (frequency where the loss > Amin) 
 

 
 
6.2 Transfer function, poles, zeros 
 
The filter transfer function is the ratio of an output quantity to an input quantity.  Both of 
these will, in general, be functions of frequency.  There can be four different kinds of 
transfer functions such as: 
 
 Vo/Vi (voltage gain), Vo/Ii (trans-impedance gain), Io/Ii (current gain), and Io/Vi 
(trans-conductance gain) functions. 
 
In majority of the cases we shall assume the voltage gain function as the desired transfer 
function.  Since these are functions of frequency one can readily write: 
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At the frequencies s = jw = z1, z2,….|T(s)| becomes = 0.  So z1, z2…. are called 
transmission zeros.   
 
At the frequencies s = jw = p1, p2,….|T(s)| becomes = infinite.  So p1, p2…. are called 
transmission poles or simply, the poles of the transfer function. 
 
If no transmission zeros are cited for finite values of the frequency w, it is assumed that 
the transmission zeros are located at infinity (i.e. for w  infinity).  When all the 
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transmission zeros are at infinity, the transfer function is known as an all- pole transfer 
function. Then 

1 2
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( ) , ,  radian frequency.
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6.3 Maximally Flat, Butterworth and Chebyshev Filter functions 
 
Classically, it has been the practice to define a given filter response characteristics in 
terms of an associated low pass filter with a pass-band edge at wp =1 rad/sec.  This 
reference filter is called the normalized low-pass filter. The actual filter transfer function 
can be obtained from this normalized low pass function by appropriately scaling the 
frequency variable ‘s’ or by transforming the frequency variable ‘s’ to other frequency 
function. 
 
For an all- pole filter function, two types of approximating functions are principally used  
to define the normalized low-pass function. These are: 
 

1) Maximally flat magnitude approximation: In this function, the response is a 
continuous curve beginning at w = 0 and passes through a loss of Amax at w = 
wp. The functional form for a filter of order N (i.e., N number of poles) is:  
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When  = 1, the loss at w = wp is 1
20 log 3

1 1
 


 (db). For this special case the 

filter approximation is known as Butterworth approximation and the filter 
satisfying this characteristic is called a Butterworth filter.  This is an all-pole 
filter function. In general, for maximally flat magnitude approximation  
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A A A A
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2) Chebyshev magnitude approximation: In this,  the response has sinusoidal 

ripples in the passband 0 < w < wp, but it rolls off monotonically after w > wp.  
The loss in the pass-band is known as loss- ripple. Graphically, the 
characteristic appears as shown below. 
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6.4 First order functions 
 
The order of the filter is represented by the degree of the denominator polynomial D(s) in 
the transfer function ( ) ( ) / ( )T s N s D s .Thus a first order transfer function can be given by 

1
1 2
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T s T s

s b s 


 
 

, and so on. The function T1(s) is an all-pole function with a gain 

of Ao/wo at dc (i.e. w = 0), a pole at w = wo and represents a low -pass characteristic.The 
Second function T2(s) is a bilinear first order function since both the numerator N(s) and 
denominator D(s) have first order (i.e., exponent of ‘s’ is unity) terms in the complex 
frequency ‘s’.  This function has a pole at 1/p o b   , a zero at 1/z oa a  , a low frequency (w 

= 0, s = 0) gain of ao/wo and a high frequency (i.e.,   ) gain of a1/b1. 
 
Further reading suggestion (Sedra and Smith’s book, 5th edn. p.1098-1100, 6th edn. p. 
1271-1273). 
 
A general second order transfer function is given by: 

2
2 1

2 2
( )

( / )
o

o o

a s a s a
T s

s Q s 
 


 

 

 
Since both the numerator and denominator contain second order terms in ‘s’, this function 
is also known as a bi-qudratic (biquad) transfer function. The numerator function decide 
the type of the filter i.e., for a2, a1 = 0, T(s) becomes a low- pass filter.  The denominator 
determines the pole frequency wo and the frequency selectivity (i.e., narrowness of the 
transition band of the filter)   in terms of wo and Q. Q is called the pole-Q (pole quantity 
factor).  The two poles of T(s) (i.e. zeros of D(s), D(s) = 0)) are given by: 

2
1 2, / 2 1 1/ 4o op p Q j Q      

 
A graphical plot reveals that for Q > 0.5, the poles become complex conjugate pair in the 
two dimensional (Re- and Im- axes) s-plane. This implies frequency selectivity. –wo/2Q 
is the real part of the poles.  When Q is high, the real part becomes smaller, the poles 
become closer to the jw axis – this implies higher frequency selectivity.   
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Note that the real part of the poles is negative.  If the real part becomes > 0 (i.e. 
equivalently Q < 0), the poles move to the  right-half of the complex S- plane.  This 
implies a response that grows  with time ( from inverse Laplace transform on S, 
producing terms of the form te )  This represents an unstable system.  In filter design this 
situation must be avoided. 
 
6.5 Standard Biqudratic filter functions 
 
Seven possible types of second order filter can be defined for special values of the 
numerator coefficients.  These are (i) Low-pass, (ii) High-pass, (iii) Band-pass, (iv) All-
pass, (v) Low-pass notch, (vi) High-pass notch, and (vii) Notch filters. 
 
Further reading suggestion (Sedra and Smith’s book, 5th edn. p.1103-1105, 6th edn. 
1276-1278). 
 
6.5.1 Analysis of a typical second order filter network 
Consider the network below, which uses three operational amplifiers (as VCVS 
elements). Two of the OP-AMPs are connected as integrators and one as an inverting 
amplifier. This is known as Tow-Thomas filter network (after the inventor’s names) . 
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The OA#2 is an integrator with only one input. We can readily write: 2 1 /o oV V sCR  . 

Similarly, for OA#3, 3 2 2o o o

r
V V V

r
    . For OA#1, if one inspects carefully, it is possible to 

figure out that this stage is functioning as an integrator with several inputs. These inputs 
are from Vi, Vo1, and V03. Then we can write: 

1 1 3

1 1 1

( / )o i o oV V V V
sC R K sCQR sCR

     
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On substituting for Vo2 and Vo3, 1 1 1

1 1 1
( )o i o o

K
V V V V

sCR sCQR sCR sCR
    . Simplifying and changing 

sides, we get: 1 2

1 1
[1 ]
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V
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    . On further simplification, we can get the voltage 
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2 2 2 2
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.  

The above represents a band-pass filter function. Thus, if we let s = jw, w  0, 1/CR and  
infinity successively, the magnitude | T(s) |  becomes, respectively, zero, QK and zero. 
This response is that of a band pass filter. 
 
If we calculate Vo3 / Vi, it will show a low-pass filter characteristic. 
 
Design Example: Consider the design case for a second order band-pass filter with fo=1 
kHz, Q=5. Use C in microfarads range. 
 
6.6 Tuned Amplifiers 
 
Tuned amplifiers are amplifiers with a tuned circuit as its load.  The tuned circuit is 
realized from a band-pass filter network. For high frequency application this is comprised 
of parallel LC elements..  The reason is that with small values (and hence small sizes) of 
L, C elements, the resonant frequency 1/o LC   can be very high i.e., 100 KHz – 100 

MHz. Further the tuned load circuit does not consume any DC power. 
 
The response of a tuned amplifier resembles a band-pass characteristic. The parallel L, C 
network imparts this band-pass filter characteristic.  By virtue of amplification, one can 
achieve a band pass filtering function with enhancement of power in the desired signal 
frequency band. 
 
In studying tuned amplifiers, we shall assume that in the frequency range of tuning, the 
amplifying device (i.e. the BJT on MOS) is operating in the mind-band range.  Thus the 
device ac equivalent circuit is purely resistive with a linear controlled source.  Then, the 
voltage gain is given by the simple formula like –gm ZL where gm is the transconductance 
of the device and ZL is the impedance of the tuned circuit load. 
 
There are few special terms associated with a tuned amplifier.  These are 

a) Center frequency wo i.e. frequency at which gain vs. frequency curve shows 
maximum magnitude. 

b) Bandwidth:  B, the frequency values at which the gain is 3dB down relative to 
the gain at the center frequency.  Quite often a selectivity factor is associated 
with a tuned amplifier response.  This is designated by Q which is = wo /B . 
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c) Skirt selectivity: ratio of BW for -30 dB response to the BW for -3dB 
response relative to the response at wo, the center frequency 

 
Example: Consider a BJT CE amplifier stage with a tuned circuit as its load.  The DC 
biasing arrangement has not been shown, but it exists in real practice. 

CCV

EEV

iV
oV

EC
EI

L C
L C

_

v



mg v

r
R

(Partial) schematic
ac equivalent model

ov





 
In the equivalent circuit, R is the combination of the output resistance ro of the BJT and 
the resonant resistance Rt of the tuned circuit.  The voltage gain relative to the input 

signal v is m Lg Z , where 
21 1 1

L

s LCR sL R
sC

Z sL R sLR

 
    . Then, the gain function is: 

2
1[ ]m

s LCR sL R
g

sLR
 

 , which can be simplified to 
2

/
( )

/ 1/m

s C
T s g

s s CR LC
 

 
. This is a band-pass 

filter function. So the tuned amplifier will manifest a band-pass characteristic. The 
performance parameters are: 

Center frequency 1/ ,  Bandwidth / 1/ ,  Mid-band gain=- R o o mLC B Q CR g     

 
6.7 Amplifier with Multiple tuned Circuits 
 
Quite often a number of tuned circuits are need in a tuned amplifier to achieve either 
 

a) a broader bandwidth than that of a single tuned LC network, or 
b) a narrower bandwidth than that of a single LC turned circuit. 
 

6.7.1 Synchronous tuning 
 
In this, two or more tuned circuits, each having the ‘same’ center frequency is used.  The 
resultant bandwidth shrinks relative to the bandwidth of either tuned circuit.  For ‘N’ 

tuned circuits in the system, the overall bandwidth becomes: 1/ (1) 1/2 1 2 1N NoB B
Q


    , 

where B(1) is the bandwidth for a single tuned circuit. A typical schematic for a multi-
tuned amplifier network is shown on p.109 (left). It is to be noted that R1, R2, and RE are 
biasing resistances, Cc1, Cc2 are coupling capacitances, and CE is the by-pass capacitance. 
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The two LC networks have some resonant frequency, i.e.,
1 1 2 2

1 1
o

L C L C
   . 

Example: Given fo = 10.7 MHz, two synchronous tuned stages.  Overall 3 dB bandwidth 
is 200 kHz.  L = 3µH.  What will be C and R? 

Use the relation 1/ (1) 1/2 1 2 1N NoB B
Q


    , with B200kHz, N=2, gives 

B(1)310.83kHz. Since fo=10.7MHz, wo=2fo=
1

LC
. With L=3H, C=

2

1

oL
=73.7pF. 

Then, since the stage bandwidth (1) 1
B

CR
 , and C=73.7pF. R=6.95 k. 

 
6.7.2. Stagger Tuned System 
 
In this the two tuned circuits used have different center frequencies.  As a result the 
overall response becomes more flat near the system center frequency.  Consider the 
figure on p.113 (on left).  Analysis shows that if ‘B’ is the system bandwidth and wo is 
the system center frequency, the center frequencies and BW of the constituent tuned 
circuit, for maximally flat band-pass response, are given by: 

1 2 1 2 1 2, , , 2
2 2 2 2 2

o
o o o o

B B B
B B Q Q

B

            

These formulae are used to determine the design of the constituent band-pass tuned 
circuits. 
Examples: Sedra and Smith’s book, 5th edn.  p.1148-1152 Exercises :D12.35, D12.36 

Sedra and Smith’s book, 6th edn.  p.1322-1327 Exercises :D16.35, D16.36 
 
6.8 Sinusoidal Oscillators 
 
6.8.1 Berkhausen Conditions for Oscillation 
 
In an oscillator an amplifier is connected with a feedback network in much the same way 
as in negative feedback system.  But the difference is that now the feedback is positive. 
Thus, considering the feedback system diagram, one deduces, the feedback gain 

s

o
f x

x

A

A
A 




1
. 

Considering frequency dependence of A and  and letting 
 

L(s) = A(s) (s), the loop gain, oscillation will occur when  

L(s) = 0, i.e., Af infinite. Thus,  A(s) (s) = 1 i.e. | A(jω)(jω) | = 1, and 
0)]()(ATan[(  jjA . 
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Thus when the magnitude of the loop gain is unity and phase of loop gain is 0 degrees 
with positive feedback, the system will oscillate i.e. xo  will be finite although xs = 0. 
 
On putting s = jw, there can be only one frequency w = wo where the network will 

simultaneously satisfy the two conditions . | A(s)(s) | = 1, and ( ) ( ) 0A s s  . These 

conditions are known as Berkhausen conditions. In this case, oscillation will occur at a 
single frequency wo and the wave shape will be sinusoidal. If the two conditions are not 
satisfied at a single frequency, there will be mixtures of frequencies in the oscillation and 
the oscillator wave form will be non-sinusoidal.  It is convenient to assume that |A(jwo)| = 

Am constant, so (wo) will determine the frequency of oscillation.   
 
6.8.2: Oscillation Amplitude Control 
 
Attendant with the concept of infinite gain arises the question – will the amplitude of 
oscillation become infinite? It appears that the oscillation will grow beyond limits. But in 
reality no oscillator provides infinite output. The dilemma is solved by understanding that 
the concept of infinite gain arises under the assumption of a linear system with small 
signal input.  As the signal level rises, the linearity assumption does not hold any more 
(why?, the transfer characteristic of a typical amplifier is non-linear). Thus, considering 
the devices that make up the amplifier, when signals are large, the operation goes into the 
non-linear region of the transfer characteristics.  The result is a reduction in the gain 

which thus tends to slow down the increase in  |A| thereby limiting it to remain close to 
unity. Apart from the basic amplifier additional limiter circuit or certain voltage 

dependent network element can be included in the feedback loop.  This will facilitate |A| 
= 1 when the amplitude of the signal goes up.  In any case, each practical system operates 
with finite valued power supplies and the oscillation amplitude can never exceed these 
values.  If it tends to do so, distortions will set in and the oscillating waveform will no 
longer remain sinusoidal. 
 
6.9 Active RC Oscillators (OP-AMP Based)  
 
6.9.1. Wien-Bridge oscillator ( Sedra and Smith’s book, 5th edn.,  section 13.2, p.1171-
1174; 6th edn., section 17.2, pp.1342-1344). 
 
Example: Sedra and Smith’s book, 5th edn.  p.1174, Exercises :13.3 

Sedra and Smith’s book, 6th edn.  p.1344, Exercises :17.3 
 

Note that the loop gain L(s) is: 2

1

,  where 1p

p s

Z R
K K

Z Z R
 


. For oscillation, Berkhausen 

condition requires L(s)=1. That is KZp=Zp+Zs. Substituting for Zp and Zs, we get: 
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/
( 1) 1/ .

1/

R sC
K R sC

R sC
  


 On simplifying, we get the quadratic equation 

2 2 2 (2 1 ) 1 0s C R sRC K     . The poles are the roots of the above equation, that is, 
2 2 2 2 2

2
1 2 2 2

(3 ) (3 ) 4 3 1
, (3 ) 4

2 2 2

RC K R C K R C K
s s K

R C RC RC

     
     . With K=1+(20.3/10)=3.03 

and RC=10k.16.10-9=16.10-5, one can get 
5

1 2 5 5

.03 10
, (0.015 )

32 10 16 10 16

j
s s j    

 
. 

(a) Frequency of oscillation 1
o CR

  , giving fo=994.718 Hz. 

(b) At va node, the KCL is: 1 1 10.7 15 0.7 3.03
0.

3 1

v v v

K K

   
   This gives v1=-3.36V. 

Then vo=Kv1=3.03.(-3.36)V=-10.18 Volts. 
(c)  

 
Demonstration by circuit simulation  
 
Figure WB Osc.1(a) shows the PSpice schematic for the oscillator with an OP-AMP set 
for a gain of +3. Since this satisfies the condition of oscillation, oscillatory signal is 
generated (Fig. WB Osc. (b)) but with only a small amplitude (i.e., 50 milli volts). This 
is because a gain of K=3 is just on the borderline of making the system unstable, i.e., 
oscillatory. 
 
In figure WB Osc.2(a), the OP-AMP is arranged to provide a non-inverting gain of +3.3. 
The growth of oscillation from a small value (~ noise floor level) to about the DC supply  
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WB Osc 1(a) 

 
 

 
WB Osc. 1(b) 
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rail values of 10 V is visible (Fig. WB Osc.2(b)). 
 

 
WB Osc. 2(a) 

 

 
WB Osc. 2(b) 
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6.9.2. Phase Shift Oscillator  
(Sedra and Smith’s book, 5th edn., section 13.2.2, p.1174-1175) 
(Sedra and Smith’s book, 6th edn., section 17.2.2, p.1344-1346) 
 
The fundamental principle behind the operation of phase shift oscillator is the phase shift 
of 180o produced by several  L-sections of R,C elements followed by an inverting gain 
amplifier (i.e., phase shift of 180o) which compensates for  the attenuation produced in 
the signal by the chain of R,C elements. Thus the loop gain magnitude becomes unity 
while the total phase shift around the loop becomes 360o. 
 
Since a single L-section of R,C elements can produce a phase shift of at most 90o only 
when the frequency is infinite, while the infinite frequency is of no practical significance 
(it is just a mathematical concept), it is not possible to build any practical oscillator with 
two L-section of R,C elements, and an inverting amplifier. In practice, a minimum of 
three L-sections of R,C elements are employed to build the simplest possible oscillator. 
Figure PS Osc.1 shows this configuration, where a VCVS (i.e., a voltage amplifier) of 
gain –K is used to enable the total phase shift of 360o (equivalently zero degree) around 
the positive feedback loop. 





C

R

C C

R R

 
Figure: PS Osc 1 
 
Analysis using nodal admittance matrix (NAM): 
 
If we carefully review the results of analysis using NAM, it becomes clear that the 
transfer (i.e., gain) function for any of the nodal voltages (which are the objects of 
evaluation) has a denominator which is the determinant of the admittance matrix 
pertaining to the circuit on hand. For the same circuit, the denominator is fixed. From the 
principle of operation of an oscillator, which produces a signal without injection of any 
input signal (i.e., zero input signal), it is also understood that the voltage (or current) 
signal gain at any node of such system is infinity ,i.e., the denominator function in the 
gain expression as T(s)=N(s)/D(s) is zero. 
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The above observation provides a straightforward method to investigate the frequency of 
oscillation and the gain requirement in an oscillator by using the NAM analysis 
technique. The method involves (i) setting up the NAM, and then (ii)equate the 
determinant of the admittance matrix to zero. Since the determinant is a function of the 
complex variable s=jω, equating the real part and the imaginary part of the expression of 
the determinant to zero will lead to results related to the frequency of oscillation and the 
required gain of the amplifier to generate and sustain an oscillation. 
 
Considering Fig. PS Osc 1, the NAM equation can be written as (using a dummy source 
Ix at node 1, and G =1/R) 
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 ..PS Osc (1) 

It is also understood that each row (say row#1) of the NAM equation represents the KCL 
at that node (i.e., node#1). Further the presence of the voltage amplifier forces a 
constraint equation between the input and output nodes of the amplifier. Thus, in case of 
Fig. PS Osc 1, we have V4 =-KV3. Incorporation of the constraint equation facilitates 
elimination of the dependent variable, which, in this case is the voltage at node 3 or at 
node 4. Using this information we can deduce an algorithm to re-write PS Osc (1) in a 
more compact form. The algorithm is (considering Yij  as the admittance element in row i 
and column j) :  
 

oldioldicurrenti YYY ||| 433   for al i=1,2,3,4 where KVV  34 / (in this case). 

 
Further, since the KCL at the output node of a voltage amplifier (i.e., ideal VCVS) is 
arbitrary, the row associated with that node can be discarded from the NAM equation 
written in PS OSC (1). Hence, the reduced (in size) NAM equation becomes 
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The determinant of the matrix is 

1),5(6 33332223  jKCCCGjCGG   

Equating the real and imaginary parts to zero individually, we can get 
RC

o
6

1
 as 

the frequency of oscillation, and K =29. This is the gain required of the inverting 
amplifier. 
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Demonstration by circuit simulation  
 
Figure PD Osc 1(a) shows the schematic of a phase shift oscillator where the inverting 
gain (of 30, i.e., actual gain -30) amplifier made from an OP-AMP is isolated from the  

 
Figure: PS Osc 1(a) 
 
R,C network by an ideal unity gain buffer stage. This isolation is necessary for proper 
validation of the theoretical analysis. Figure PS Osc 1(b) shows the gradual growth of the 
oscillatory signal. 
 
Figure PS Osc 2(a) shows the circuit with an inverting gain of 33. Figure PS Osc 2(b) 
shows fully grown oscillation with amplitudes near the  power supply values used for 
the OP-AMP. 
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Figure PS Osc 1(b) 
 

 
Figure PS Osc 2(a): 
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Figure PS Osc 2(b): 
 

 
6.10 LC Oscillators (Hartley and Colpitts Oscillator) 
(Sedra and Smith’s book, 5th edn., section 13.3, p.1179-1182) 
(Sedra and Smith’s book, 6th edn., section 17.3, p.1349-1353) 
 
Active R,C oscillators are efficient over a small range of frequencies (up to few kHz) 
especially because the active device (i.e., an OP-AMP) is severely limited in its high 
frequency response. At higher than few kHz, the parasitic capacitances of an OP-AMP 
can be included together with several resistances connected around the OP-AMP to build 
oscillators which are specifically known as active R oscillators. Oscillations in the range 
of few hundred kHz can be obtained from such systems, but the performance depends 
very much on the accuracy with which the internal characteristic of the OP-AMP is 
known to the designer. 
 
For oscillators with applications in MHz to few hundred MHz frequencies, the efficient 
choice is a pair of reactive elements (L, C – the inductance and the capacitor, together 
with a wide band amplifier. The wideband amplifier can be built from one or several 
transistor amplifier stages. 
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6.10.1 Colpitts Oscillators 
 Colpitts oscillator is an L,C oscillator where the capacitor in the L,C tank circuit is split 
into two parts and the signal across one of the capacitors is fed back to compete the 
positive feedback loop. The active device is usually a single wide band transistor 
configured as a CE or CB BJT amplifier stage. Figures 1(a)-(b) show two possible 
configurations using respectively a CE and a CB BJT amplifier. 
 

 
Figure Colpit Osc 1: 
 
Analysis using nodal admittance matrix: 
 
6.10.1(a): Analysis for CE BJT-based Colpitts oscillator 
 
Consider the ac equivalent circuit, Fig. Colpit Osc 2, pertaining to the CE –Colpitts 
oscillator. The NAM (by inspection) equation is (with IX  as a dummy source): 
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After re-arranging the dependent source gmV2, the NAM equation becomes  
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Figure Colpit Osc 2: 
 
The determinant of the matrix is: 

])([][ 2122222
2

22221
2

1222 moooo gggLCgLCGLCGgjCLCCCLggLGg   
 
In the above expression  rgRGrg oo /1,/1,/1 22  . The real part of the expression is 

][ 2221
2

1222 CLCCCLggLGg oo    , while the imaginary part is 

])([ 2122222
2

2 moo gggLCgLCGLCGg   . 

 
The determinant of the matrix has to be zero for oscillations to occur. Equating the real 
part to zero, we can get the frequency of oscillation as:  
 

212

21222

CCL

CCgLgGLg oo
o


   , which is (approximately) =

212

21

CCL

CC 
, if we assume 

go =0, i.e.,  ro = infinity. 
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Equating the imaginary part (i.e., coefficient of j) to zero and substituting ω=ωo will 
generate the design value of gm which will enable the oscillation to begin. On neglecting  

go and gπ in comparison with gm, we can arrive at 
12

2

CR

C
gm  as a design equation 

(approximate) for the oscillation. The detail is left as an exercise to the student. Note that 
gm is related to the DC bias current in the BJT device. 
 
6.10.1(b): Analysis for CB BJT-based Colpitts oscillator 
 
Consider the ac equivalent circuit, Fig. Colpit Osc 3, pertaining to the CB –Colpitts 
oscillator. The NAM (by inspection) equation is (with IX  as a dummy source): 
 

 
 
Figure Colpit Osc 3: 
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Recognizing that 1Vv  , and rearranging the dependent source gmV1, the NAM 

equation becomes 
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The determinant of the matrix is:  
 

])([)[ 4845486
2

65485
2

8464 moooo gggLCgLCgLCGGjCLCCCLGgLgg   
 
In the above expression,  rgRGrg oo /1,/1,/1 66  . The determinant of the matrix has 

to be zero for oscillations to occur. The real part equated to zero gives the oscillation 
frequency  
 

854

85464

CCL

CCLGgLgg oo
o


  , which approximates to (assuming go =0, i.e.,  ro = 

infinity) 
854

85

CCL

CC
o


 . 

 
The imaginary part equated to zero leads to 

0)( 4845486
2

6  moo gggLCgLCgLCGG  . On substitution for ω=ωo, 

neglecting go and gπ in comparison with gm, we can arrive at 
56

8

CR

C
gm  as a design 

equation (approximate) for the oscillator. Note that gm is related to the DC bias current in 
the BJT device. 
 
6.11: Crystal Oscillator 
 
(Reading suggestion: Sedra and Smith’s book, 5th edn., section 13.3.2, p.1182-1184) 
(Sedra and Smith’s book, 6th edn., section 17.3.2, p.1353-1355) 
 


