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Abstract

The past decade has witnessed significant progress in object detection and tracking in videos. In this paper, we present a col-
laborative model between a pre-trained object detector and a number of single-object online trackers within the particle filtering
framework. For each frame, we construct an association between detections and trackers, and treat each detected image region as a
key sample, for online update, if it is associated to a tracker. We present a motion model that incorporates the associated detections
with object dynamics. Furthermore, we propose an effective sample selection scheme to update the appearance model of each
tracker. We use discriminative and generative appearance models for the likelihood function and data association, respectively.
Experimental results show that the proposed scheme generally outperforms state-of-the-art methods.
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1. Introduction

Multi-object tracking (MOT) is one challenging vision prob-
lem with numerous applications in automatic visual surveil-
lance, behavior analysis, and intelligent transportation systems,
to name a few. In the past decade, more attention has been paid
on detecting and tracking one or more objects in videos. Re-
cent advancement in object detection facilitates collaboration
between the detection and tracking modules for multi-object
tracking [1].

Robust multi-object tracking entails solving many challeng-
ing problems such as occlusion, appearance variation, and il-
lumination change. A pre-trained object detector robust to ap-
pearance variation of one specific class is often used as a critical
module of most multi-object tracking methods. Specifically,
one detector encodes the generic pattern information about a
certain object class (e.g., cars, pedestrians and faces), and one
tracker models the appearance of the specific target to maintain
the target identity in an image sequence. However, an object de-
tector is likely to generate false positives and negatives, thereby
affecting the performance of a tracker in terms of data associa-
tion and online model update.

In multi-object tracking, offline methods based on global op-
timization of all object trajectories usually perform better than
online counterparts [2–10], and an experimental evaluation of
recent methods can be found in [11]. For instance, Brendel et
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al. proposed the maximum-weight independent set of a graph
for data association [3], and Zamir et al. used the generalized
minimum clique graph to solve the data association [6]. In [10],
the data association problem is solved by using a sliding win-
dow of three frames to generate short tracklets, and in case of
inconsistencies, the algorithm uses larger tracklet optimization.
The minimum-cost network flow is then used to optimize the
overall object trajectories. For real-time applications, online
methods [1, 12–14] have been developed within the tracking-
by-detection framework where data association between detec-
tions and trackers are carried out in an online manner.

Table 1 summarizes the multi-object tracking methods that
are most related to this work. Online multi-object tracking can
be carried out by using joint state-space model for multi-targets
[12, 15–19]. For instance, a mixture particle filter has been pro-
posed [12] to compute the posterior probability via the collabo-
ration between an object detector and the proposal distribution
of the particle filter. However, the joint state-space tracking
methods require high computational complexity. The probabil-
ity hypothesis density filter [20] has been incorporated in visual
multi-target tracking [18, 21] since the time complexity is lin-
ear with respect to the number of targets. However, it does not
maintain the target identity, and consequently, requires an on-
line clustering method to detect the peaks of the particle weights
and applies data association to each cluster.

Numerous online multi-object tracking methods deal with
each tracker independently [1, 14, 22–24]. In [1], a method
based on a particle filter and two human detectors with different
features was developed, where the observation model depends
on the associated detection, the detector confidence density and
the likelihood of appearance. In addition, Shu et al. [14] intro-
duced a part-based pedestrian detector for online multi-person
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Table 1: Representative online multi-object tracking algorithms. AM: appearance model, J/I: joint/independent, MU: model update, PF: particle filter, KF: Kalman
filter, CVM: constant velocity motion model, MCMC: Markov Chain Monte Carlo, CH: color histogram, LBP: local binary patterns, BOW: bag of words, DCD:
detection confidence density, SS: sample selection, PGF: probabilistic gating function, q(.): proposal distribution, SGM: sparsity-based generative model, PGM:
2DPCA-based generative model, SDC: sparsity-based discriminative classifier.
Algorithm Search and proposal distribution J/I Sample descriptor Data association MU Likelihood function

Okuma et al. [12]
Mixture particle filters,
q(.) ∝ new observation and
propagated particles

J HSV CH NA No Bhattacharyya similarity

Breitenstein et al. [1] PF with CVM I RGI, LBP Boosted classifier, PGF
and position Yes

Distance between each parti-
cle and the associated detection,
DCD, and Boosted classifier

Yang et al. [22] Bayesian filtering I RGB, shape, BOW CVM, position and scale Yes Joint likelihood of AM features

Shu et al. [14] Detector based or KF I CH, LBP SVM classifier, position,
size

Yes
+
SS

KF (if no associated detection to
the tracker)

Zhang et al. [23] Mean shift tracker or KF I CH, shift vector Size, search area,
tracker re-detection Yes Combination of Mean-shift and

KF
Schumann et al. [24] PF with random walk or CVM I RGB CH Overlap ratio Yes Detector confidence

Duffner & Odobez [17]
MCMC with random walk,
q(.) ∝ new detections and sam-
pled particles

J HSV CH Overlap ratio and position,
tracker re-detection Yes The product of the visible indi-

vidual targets likelihoods

Proposed method
PF with detection based CVM,
q(.) ∝ new associated detec-
tions and propagated particles

I Grayscale Overlap ratio, SGM and
PGM, tracker re-detection

Yes
+
SS

SDC, different weights for
newly created and propagated
particles

tracking. This method combines the detection results with the
Kalman filter, where data association is performed every frame,
and the filter is used when occlusion occurs. Recently, Zhang
et al. [23] used the mean-shift trackers and the Kalman filter
for multi-person tracking, where trackers are either weakly or
strongly trained. We note that these methods are likely to have
low recall as the detector and tracker are not integrated within
the same framework.

The degeneracy problem of particle filters [25] has been ad-
dressed in several methods [26–29] with more effective pro-
posal distributions and re-sampling steps. Rui and Chen [27]
used the unscented Kalman filter for generating the proposal
distribution, and Han et al. [30] used a genetic algorithm to
increase the diversity of the particles. Recently, the Metropo-
lis Hastings algorithm has been used to sample particles from
associated detections in the tracking-by-detection framework
[29]. We note that the above-mentioned methods do not ex-
ploit the collaboration between detectors and trackers [27, 30],
or do not consider the effect of false positive detections on the
trackers [29].

An adaptive appearance model is one of the important fac-
tors for effective object tracking as it accounts for appearance
change [31, 32]. In [12], the appearance model is fixed dur-
ing the tracking process and thus, may result in tracking fail-
ure. On the other hand, the trackers are updated with positive
samples [23] straightforwardly without differentiating whether
they contain noise or not. As multiple objects are likely to be
occluded, it is necessary to analyze the samples and reduce the
likelihood of including noisy samples for model update. Re-
cently, the appearance models [14] have been updated by the
detected non-occluded object parts rather than the holistic sam-
ples.

In this paper, we propose an online multi-object tracking

scheme by using a robust collaborative model for interac-
tion between a number of single-object trackers with sparse
representation-based discriminative classifiers [33, 34], and a
pre-trained object detector in the particle filter framework,
where every target is tracked independently to avoid the high
computational complexity of the joint probability with increas-
ing number of targets. A novel sample selection scheme is used
to update each tracker by using key samples with high con-
fidence from the trajectory of an object, where the key sam-
ple represents the association between the tracker and a de-
tection at time, t. In addition, we present a data association
method with partial occlusion handling by using diverse genera-
tive models composed of sparsity-based generative model [34],
and two-dimensional principal component analysis (2DPCA)
[35] generative model. Finally, we introduce a 2DPCA gen-
erative model to re-identify lost targets. Experimental results
on benchmark datasets demonstrate that the proposed scheme
generally outperforms state-of-the-art methods.

2. Overview of the proposed scheme

The proposed multi-object tracking scheme consists of three
main components: a pre-trained object detector, a data associ-
ation module and a number of single-object trackers. Figure 1
shows the block diagram of the proposed scheme, wherein only
one single-object tracker is shown. The object detector is ap-
plied on every frame and supports the data association module
with a set of detections Dt at time t. The object tracker adopts
a hybrid motion model, and a particle filter with a robust col-
laborative model is used to estimate the target location. The
appearance model consists of a sparsity-based discriminative
classifier (SDC) with holistic features, a sparsity-based genera-
tive model (SGM) with local features, and a 2DPCA-based gen-
erative model (PGM) with holistic features. The SDC is used

2



S( bt , dt )

IN, TRM, OH

Data association

{generative, local and 

holistic features, 

update  (optional)} 

Motion model
{dynamic motion model,

detector associated detection d }

Key samples
{discriminative, holistic 

features, update with 

sample selection}

Appearance model

pos neg

Single-object tracker

IN, TRM, OH

Particle 

filter

Object detector

SGM PGM
GM

SDC

Sample 

selection

Tracker 

Output

Figure 1: Block diagram of the proposed multi-object tracking scheme, where IN, TRM, OH, pos, and neg denote initialization, termination, on-hold, positive, and
negative, respectively (see text for details).

to compute each sample confidence score of the particle filter,
while the SGM and PGM are used to solve the data association
problem. Each tracker also contains a sample selection scheme
to update the appearance model with high confidence key sam-
ples. Finally, the data association module is used to construct
the similarity matrix S to match detections, dt ∈ Dt, with ex-
isting trackers, bt ∈ Bte, at time t. Furthermore, it determines
initialization, termination and on-hold states of the trackers, and
supports the tracker with key samples from the target trajectory.

In this paper, we used the fast pedestrian detector (FPD) [36]
for multi-person tracking. In Section 4, we used other pre-
trained detectors, such as the on-road vehicle detector proposed
in [37], and the method in [38] to measure the tracking per-
formance on several detection conditions and different types of
objects.

3. Tracking scheme

Each object tracker is based on the particle filter tracking
framework that uses the sparse representations and 2DPCA as
the appearance model. We incorporate two measurements from
the detector and tracker into the particle filter, and propose a
novel collaborative model that directly affects the likelihood
function to obtain the posterior estimate of the target location.
We construct the appearance model of the target by using dis-
criminative and generative appearance models, for the likeli-
hood function and the data association. In the following, we
use a gate function Ibt to represent the state of the tracker bt
when associated to the detection dt at time t. The gate function
is defined as

Ibt =

{
1, if bt is associated with dt at time t
0, otherwise

(1)

3.1. Particle filter

In the Bayesian tracking framework, the posterior at time t is
approximated by a weighted sample set {xit,wit}

Ns
i=1, where wit

is the weight of particle, xit, and Ns is the total number of parti-
cles. The state x consists of translation (x, y), average velocity

(vx, vy), scale ŝ, rotation angle θ, aspect ratio η, and skew di-
rection φ.

The measurement model of the proposed particle filter con-
sists of two types. The first measurement is available every time
t from the propagated particles z1:t. The second measurement
is from the newly created particles that are available at time t
when a detection window, dt, is associated to a tracker, bt (i.e.,
Ibt = 1). Assume that at time t, the tracker bt is associated to
a detection dt, then we sample candidate particles from the im-
portance density, q(xit|xi1:t−1, z1:t, dt). The posterior probabil-
ity of the candidate location given the available measurements,
p(xt|z1:t, dt), is

p(xt|z1:t, dt) ≈
Ns∑
i=1

witδ(x1:t − xi1:t) (2)

where

wit ∝ wit−1

p(z1:t, dt|xit)p(xit|xit−1)

q(xit|xi1:t−1, z1:t, dt)
(3)

and p(xit|xit−1) is the transition probability. In the proposed
method, the particles are resampled every time t, and then we
have wit−1 = 1/Ns,∀i, and we ignore wit−1 term. In the current
frame, since the propagated particles sampled at time t corre-
sponding to the tracker position in the previous frame and the
particles sampled at time t from the associated detection are
independent, the particle weights are computed by

wit ∝
p(z1:t|xit)p(dt|xit)p(xit|xit−1)

q(xit|xi1:t−1, z1:t, dt)
(4)

where p(dt|xit) is the likelihood of detection dt given the can-
didate location xit. To determine the term p(dt|xit), the confi-
dence value of the object detector is required at every candi-
date location from each tracker, which is computationally ex-
pensive. Thus, we simplify this detection likelihood term using
the Bayes’ rule as

p(dt|xit) = p(xit|dt)p(dt)/p(xit) ∝ p(xit|dt) (5)

where p(xit|dt) represents the probability of the candidate loca-
tion given that the tracker is associated to a detection, dt. Let
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the proposal distribution be defined as

q(xit|xi1:t−1, z1:t, dt) ∝ p(xit|dt)p(xit|xit−1) (6)

By substituting into (4) with the simplification from (5) and
(6), the simplified particle weights with Markovian model can
be computed by

wit ∝ p(zt|xit) (7)

By normalizing the particle weights, the resulting state estimate
is represented as a weighted average of the candidate locations.
This makes the proposed scheme more robust to noisy detection
results compared to maximum a posteriori methods.

When there is no detection associated to a tracker (i.e.,
Ibt = 0), the proposed particle filter can be simplified to the
bootstrap particle filter [25]. In the bootstrap particle filter,
the measurement model consists of the tracker measurements
z1:t and the importance density at time t can be defined as
q(xit|xi1:t−1, z1:t) ∝ p(xit|xit−1). It can be shown that the parti-
cle weights can be represented by (7).

3.1.1. Motion model
In the proposed method, we adopt a hybrid motion model

based on the first-order Markov chain and the associated detec-
tion. The new candidate state xdt at time t is provided to the
motion model if a detection is successfully associated to the
tracker (i.e., Ibt = 1), and the initial velocity is set to be the
average velocity of the tracker particles. The candidate state at
time t, xt, relates to the set of propagated particles Xbt and the
set of associated detection Xbt,dt by

xt =

{
Fxt−1 +Q if xt ∈ Xbt

xdt + P if xt ∈ Xbt,dt
(8)

where Q and P are the Gaussian noise vectors, Ns = NP
s +

NΓ
s , and NP

s and NΓ
s are the cardinality of Xbt and Xbt,dt ,

respectively. In the above equation, F denotes the transition
matrix of size 8× 8, which is defined as

F =



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(9)

3.1.2. Robust collaborative model
The object detector applies computationally expensive space-

scale search to the entire image to localize specific class of ob-
jects, and proposes candidate locations that have high proba-
bility of existence. To exploit high confidence associated de-
tections, we incorporate a set of new particles, Xbt,dt , in the
likelihood function, to allow the object detector to guide the
trackers. Let H(xit) denote SDC tracker confidence score of
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Figure 2: Effect of changing the collaborative factor γ.
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Figure 3: Effect of the proposed collaborative model on the tracker particles.
(a) Illustrates the candidate particles proposed by the object detector (masked as
gray) and propagated particles (colored). (b) Particles weights for new (masked
as gray) and propagated particles (colored).

candidate xit. The likelihood of the measurement, zt, can be
computed by

p(zt|xit) = πiH(xit) (10)

where

πi =


1− γ if Ibt = 1, xit ∈ Xbt

γ if Ibt = 1, xit ∈ Xbt,dt

1 otherwise, i.e., Ibt = 0

(11)

and γ ∈ [0, 1] is the collaborative factor. In (10), the parti-
cles from the associated detections and previously propagated
particles are weighted differently. Figure 2 shows the effect
of changing the collaborative factor value. Figure 3(a) and (b)
show an example of particle weights for the detector particles
and the propagated particles using γ = 0.54. If Ibt = 1 and
γ > 0.5, the weight πi allows the detector to guide the tracker
by giving more weights to the newly associated particles than
the propagated particles. However, a detector may have false
positives, and thus, the tracker should not depend completely
on the detector. From our experiments, we find that the pro-
posed scheme with the value of γ between 0.5 and 0.85 per-
forms best. If the detector suffers from missing detections (i.e.,
Ibt = 0), the likelihood function in (10) will only depend on
the previously propagated particles xit ∈ Xbt , which repre-
sent the bootstrap particle filter [25]. Our collaborative model
is based on the hybrid motion model that incorporates associ-
ated detections with object dynamics. In contrast, the motion
model adopted in [1] depends only on propagated particles, and
the likelihood function depends on tracker appearance model
and the detector confidence density. The collaborative model in
[12] only exists in the proposal distribution and the likelihood
is without weighting collaborative factor.
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3.1.3. Resampling
In each frame, the set of candidate particles {xit,wit}

Ns
i=1 are

resampled to avoid the degeneracy problem. The resampling
process also allows the detector to guide the tracker effec-
tively. As each tracker resamples particles based on particle
weights computed from the proposed collaborative model (10),
the propagated particles with low weights are replaced with
newly created particles from the associated detections.

3.2. Appearance model
In the proposed method, the SGM and SDC are used in a way

different from that in [34]. First, we do not use the collaboration
between SGM and SDC [34], instead we use SGM with PGM
to compute the similarity matrix of the data association mod-
ule for occlusion handling (23), and the modified SDC model
is used to compute the likelihood of the particle filter (10). The
number of particles in the filter is usually larger than the num-
ber of detections and trackers at time t, and the computational
complexity of SDC is lower than SGM. Therefore, the resulting
tracker is more efficient. Second, our SDC uses the downsam-
pled grayscale image without the feature selection method used
in [34]. Third, our SDC confidence measure depends on the
sparsity concentration index [33]. Finally, we propose the key
sample selection scheme to update the appearance models with
high confidence samples.

3.2.1. Sparsity-based discriminative classifier
We construct a discriminative sparse appearance model to

compute the confidence score as used in (10). The initial train-
ing samples are collected in a similar way to [34], where each
SDC tracker is initialized using Np positive samples drawn
from the object center with a small variation from the center
of the detection state xdt , and Nn negative samples are taken
from the annular region surrounding the target center without
overlap with a detection window dt. Next, each sample is nor-
malized to a canonical size of (m × n), and vectorized to be
one column of the matrix A ∈ Rr×Nt

, where r = mn and
N t = Np + Nn + N t

p,u + N t
n,u, such that N t

p,u and N t
n,u de-

note the buffer size of the selected key samples up to time t. Let
the measurement corresponding to the candidate location xit be
denoted by zit ∈ Rr. We obtain the sparse coefficients αi for the
ith candidate by solving the following optimization problem,

min
αi

∥∥zit −Aαi
∥∥2

2
+ λSDC

∥∥αi∥∥
1

(12)

We compute the classifier confidence score by

H(xit) = exp

(
−

(εi+ − εi−)

σ

)
Ω(αi) (13)

where εi+ =
∥∥zit −A+α

i
+

∥∥2

2
is the reconstruction error of

the candidate zit with respect to the template set of the posi-
tive class A+, and the sparse coefficient vector of the ith can-
didate that corresponds to the positive class, αi+. Similarly,
εi− =

∥∥zit −A−αi−
∥∥2

2
is the reconstruction error of the same

candidate zit with respect to the template set of the negative
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Figure 4: Block diagram of the sparsity-based generative model.

class A−, and the corresponding sparse coefficient vector αi−.
The parameter σ adjusts the confidence measure, and Ω(αi)
represents the sparsity concentration index (SCI) [33] defined
as

Ω(αi) =
J ·maxj‖δ

′

j(α
i)‖1/‖αi‖1 − 1

J − 1
∈ [0, 1] (14)

where δ
′

j is a function that selects the coefficients correspond-
ing to the jth class and suppresses the rest, and J is the number
of classes (J = 2 in this work). The SCI checks the valid-
ity of a candidate such that it can be represented by a linear
combination of the training samples in one class. When the
sparse coefficients concentrate in a certain class, the SCI value
is high. This index allows each tracker to assign high weights to
candidates resembling the positive training samples, and rejects
others related to other targets or background structures.

The SDC tracker is updated every Ru frames using the se-
lected key samples, Kt

u (Section 3.3). At each key sample lo-
cation, we collect positive and negative samples as part of the
initialization process. To leverage between computational load
and memory requirement, we set the maximum number of pos-
itive and negative samples. If the number of positive, N t

p,u or
negative, N t

n,u samples exceeds the limit, we replace the old
samples (other than those collected in the first frame) with the
new selected key samples.

3.2.2. Sparsity-based generative model
We use a sparsity-based generative model to measure similar-

ity in the data association module. Figure 4 illustrates the block
diagram of the proposed SGM in the training and test modes.
The training template consists of M local patches, {yi}Mi=1 and
each patch of size m̂ × n̂. These M patches are vectorized1

and quantized into Nk centroids using the k-means algorithm
to construct the dictionary D ∈ Rr̂×Nk (r̂ = m̂n̂). For the ith

patch, yi, the sparse-coefficients, βi ∈ RNk×1, is computed by

min
βi

‖yi −Dβi‖22 + λSGM ‖βi‖1 (15)

1The vectorization function is defined as Mat2Vec: Rm×n → Rr , where
r = mn is the dimension of the vector, and (m × n) is the order of the
input matrix. The inverse of the vectorization function is defined as Vec2Mat:
Rr → Rm×n.
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Figure 5: Sample results for SGM partial occlusion handling scheme, where
the marked patches with the same tracker color are the patches at which SGM
reconstruction error is greater than the SGM error threshold.

The adopted SGM is concerned with representing the appear-
ance of the positive class of the tracker by using the sparse
coefficients of M local patches of the object and candidate
location c, where each location is represented by a sparse
histogram feature vector ρ = [β1, β2, . . . , βM ]T , and ρc =
[βc1, β

c
2, . . . , β

c
M ]T , corresponding to the initial object and the

candidate location, respectively. To handle occlusion, the patch
reconstruction error, {εi = ‖yci −Dβci ‖

2
2}Mi=1, is used to sup-

press the coefficients of occluded patches. Let ψi be the non-
occlusion indicator for the ith patch and is computed by

ψi =

{
1Nk,1 if εi < ε0

0Nk,1 otherwise
(16)

where 1Nk,1, and 0Nk,1 denote the vector of sizeNk of ones and
zeros. The final histogram can be represented by ϕ = ψ � ρ,
and ϕc = ψ � ρc, corresponding to the training template, and
the candidate location, where � denotes the element-wise mul-
tiplication. By taking the spatial representation into consider-
ation, the resulting histogram, ϕ can handle occlusion effec-
tively. Figure 5 illustrates the effect of the partial occlusion
handling scheme. If the reconstruction error is greater than the
threshold, ε0, then the non-occlusion indicator, ψ, suppresses
these patches. The generative model similarity, GSGM (bt, c),
between the candidate ϕc and the model ϕ is measured by us-
ing the intersection kernel.

As in [34], the dictionary,D, is fixed during the tracking pro-
cess, while the sparse histogram of the initial template, ρinitial,
is updated every update rate, Ru. The sparse histogram is up-
dated by

ρnew = µρinitial + (1− µ)ρK (17)

where µ is the learning rate, and ρK represents the sparse his-
togram corresponding to the selected key sample from the set
Kt
u that provides the maximum similarity to the training tem-

plates (see Section 3.3 for the sample selection scheme). This
conservative update scheme by using the confidence key sam-
ples and maintaining the initial template provide effective track-
ing.

3.2.3. 2DPCA-based generative model
In addition to part-based SGM, we use a holistic generative

model based on the 2DPCA scheme [35], referred to as PGM,
to solve the data association problem. The reason being that a
combination of PGM and SGM increases the tracking perfor-
mance (see Section 4). For each tracker bt, we use N positive

samples, {Yj}Nj=1 each of size m× n, where samples are taken
from the positive class of the initial target location, or selected
key samples, Kt

u. Each jth sample Yj is projected by the or-
thonormal matrix V ∈ Rn×r1 , r1 ≤ n and form F j = YjV , of
size m× r1. The image covariance matrix Γ is defined by

Γ =
1

N

N∑
j=1

(Yj − Ȳ )>(Yj − Ȳ ) (18)

where Ȳ is the average image of all training samples, and Γ is
the nonnegative definite matrix. The objective of 2DPCA is to
find the optimal orthonormal matrix, Vopt, that maximizes the
total scatter in the learned subspace. The total scatter criterion
J(V ) is defined by

J(V ) = V >ΓV (19)

The optimal projection matrix Vopt is composed of the r1 eigen-
vectors of matrix Γ corresponding to the first r1 largest eigen-
values, where the vectors are stacked together in matrix V of
size n × r1. We extract features of the jth training example,
Yj , through projecting on matrix V , as F j = YjV , and then
we vectorize the resulting feature matrix and have the feature
vector f j of size (1×mr1).

For each candidate location, we project the candidate sample,
Y c, using the matrix V , and vectorize the resulting matrix to
obtain the test feature vector f c of size 1 ×mr1. The nearest
neighbor classifier is used to infer the index of the jth training
example, ĵ closest to the test vector f c

ĵ ← argmin
j∈{1,2,...,N}

‖f c − f j‖2 (20)

where ‖.‖2 denotes the l2-norm. The reconstruction er-
ror between the test image and the training examples is
εPGM = ‖aĵ − ac‖2, where aĵ = Mat2Vec(F ĵV >) and
ac = Mat2Vec(F cV >). The similarity between the test and
training features is computed by

GPGM = exp(−εPGM/σ̂2) (21)

Figure 6 shows a sample intermediate output from the pro-
posed PGM scheme. The PGM is able to retrieve the closest
training patches in 2DPCA feature subspace, which provides
accurate similarity measures in (21).

Similar to SDC tracker, PGM is updated everyRu frames, by
using the initial positive and the selected key samples at time
t, where N = Np + N t

p,u. To update 2DPCA feature space,
we used a batch learning technique. In this scheme, we up-
date the optimal projection matrix, Vopt, and extract the feature
vectors,

{
f j
}N
j=1

. While the incremental 2DPCA learning has
been used in [39], we find that batch learning performs more
efficiently than the incremental learning scheme, since we re-
place some samples every update rate with newly selected key
samples.
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Figure 6: (Top) Reconstructed nearest neighbor training samples by PGM.
(Middle) Reconstructed patches at candidate locations. (Bottom) Absolute re-
construction error, where the pixel with brighter color means high error value.

3.3. Sample selection
We propose a sample selection scheme to learn and adapt the

appearance model for each tracker by using the samples with
high confidence from the object trajectory, in a way similar to
existing methods [1, 14, 40]. Examples for key sample loca-
tions in the object trajectory are shown in Figure 7, where two
scenarios for the key samples are selected from the tracker his-
tory. The sample selection scheme alleviates the problem of
including occluded samples for more effective model update
and thus, reduces the drifting problem. The proposed sample
selection scheme is based on the following criteria:

1. We measure the goodness of the key samples. A good key
sample is one at which the tracker bt does not intersect
with other trackers or nearby detections except the associ-
ated detection dt. We denote the set of good key samples
at time t by Kt

g .

2. We use the online trained SDC tracker to measure the simi-
larity between the current appearance model of the tracker,
bt, and the ith good key sample Kt

g,i ∈ Kt
g by

SDC(bt,K
t
g,i) = exp(−(εi+ − εi−)/σ2) (22)

where εi+ =
∥∥zit −A+α

i
+

∥∥2

2
, εi− =

∥∥zit −A−αi−
∥∥2

2
, and

αi+ and αi− are computed by using (12).

3. If SDC(bt,K
t
g,i) > s0 ≥ 0, where s0 is the SDC sim-

ilarity threshold, then this key sample is selected for the
model update. The final set of selected key samples, Kt

u,
which have high similarity with the SDC tracker, are used
to update the tracker appearance model (Section 3.2). It
should be observed that when s0 = 0, all the samples are
selected.

3.4. Data association
The similarity matrix S for data association measures the re-

lation between a tracker bt ∈ Bte and a detection dt ∈ Dt by

S(bt, dt) = G(bt, dt)O(bt, dt) (23)

Key sample

Time

S
p

a
c
e

Object trajectory

(a)

(b) (c)

Figure 7: (a) Key samples in the object trajectories and occlusion issues that
should be handled, (b and c) Examples for key samples selected from object
trajectories, using a sequence from the PETS09-S2L1 dataset.

where G(bt, dt) = GSGM (bt, dt) + GPGM (bt, dt) consid-
ers the appearance similarity between the tracker bt and de-
tection dt, and O(bt, dt) represents the overlap ratio between
the tracker and the detection to suppress confusing detections,
where the overlap ratio is based on the PASCAL VOC criterion
[41].

The association is computed online by using the Hungarian
algorithm to match a tracker to a detection in a way similar to
existing methods [1, 14]. The proposed data association scheme
iteratively finds the maximum in the matrix S, and associates
the tracker bt to a detection dt if S(bt, dt) is larger than a thresh-
old s1. The row and the column corresponding to S(bt, dt)
are removed. As the object detector is likely to miss some ob-
jects, using the similarity threshold, s1, can alleviate the tracker
to be updated with confusing nearby detections. Furthermore,
we select a number of key samples to update the appearance
model (Sections 3.3 and 3.2). We initialize new trackers with
non-associated detection windows if the maximum overlap with
other existing trackers is less than o1 to avoid creating multiple
trackers for the same target.

Re-detection module
A pre-trained object detector usually suffers from false pos-

itives and negatives, thereby causing trackers to drift. On the
other hand, a tracker does not perform well in the presence of
heavy occlusion or background clutters. To handle these chal-
lenging cases, we introduce the inactive or on-hold states before
tracker termination in case the tracker misses a high number of
detections.

Let the set of trackers on-hold be denoted as Bth. When
the tracker does not estimate the target location at an inactive
state, we adopt the PGM (Section 3.2) to measure the similar-
ity between the tracker on-hold bt ∈ Bth and the new candidate
location. When the tracker is in the inactive state bht , it still
can be reinitialized after checking the similarity with the new
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un-associated detection, dut by Sh(bht , d
u
t ) = GPGM (bht , d

u
t )

(where GPGM is computed by (21)). The inactive tracker is re-
activated if Sh(bht , d

u
t ) > s2, where s2 is a pre-defined thresh-

old. During the inactive state, the proposed tracker can re-
identify lost targets and discriminate among trackers using the
2DPCA feature space learned from selected key samples.

4. Experimental results

4.1. Datasets

We evaluate the tracking performance of the proposed algo-
rithm using seven challenging sequences, namely, the PETS09-
S2L1, PETS09-S2L2 [42], UCF Parking Lot (UCF-PL) dataset
[14], Soccer dataset [13], Town Center dataset [43], and Ur-
ban as well as Sunny sequences from LISA 2010 dataset [44],
and compare it with that of several state-of-the-art online MOT
methods.

The PETS09-S2L1 sequence consists of 799 frames of 768×
576 pixels recorded at 7 frames per second with medium crowd
density. The PETS09-S2L2 sequence consists of 442 frames
with the same resolution and frame rate as the PETS09-S2L1
sequence, but it contains heavy crowd density and illumination
changes. The target objects undergo scale changes, long-term
occlusion, and with similar appearance. The ground truth (GT)
data from [45, 46] and [47] are used for evaluating the tracking
results on PETS09-S2L1 and PETS09-S2L2, respectively. The
Soccer sequence consists of 155 frames of 960 × 544 pixels
recorded at 3 to 5 frames per second. The challenging fac-
tors of this sequence include heavy occlusion, sudden change
of motion direction of players, high similarity among players
of the same team, and scale changes. The GT data provided by
[13] are used for evaluation. On the PETS09-S2L1, PETS09-
S2L2 and Soccer sequences, the FPD detector [36] is used as
the baseline detector for the proposed tracking scheme.

The UCF-PL dataset consists of 998 frames of 1920× 1080
pixels recorded at 29 frames per second with medium crowd
density, long-term occlusion, and targets of similar appearance.
On this dataset, the detection results of the part-based pedes-
trian detector proposed in [14] are used for evaluation based on
the GT data provided by [48].

The Town Center dataset consists of 4500 frames of 1080 ×
1920 pixels recorded at 25 frames per second. The dataset
contains medium crowd density, heavy occlusion, and scale
changes. In [43], two categories of GT annotations are pro-
vided based on the full body and head regions of pedestrians.
On this dataset, the aggregated channel feature (ACF) detector
proposed by Dollár et al. [38] is used for performance evalu-
ation. In the case of the full body of pedestrians, it has been
observed that the ACF detector does not perform well on this
sequence as the false positive rate is high. To alleviate this
problem, the first 500 frames of this sequence are used to col-
lect hard-negative samples related to the background clutters,
and the ACF detector is re-trained using both the INRIA dataset
[49] and hard-negative samples. In case of tracking multiple
people based on the head regions, the positive training exam-
ples provided in [43] and negative samples collected from the

first 500 frames of this sequence are used to train the ACF de-
tector.

The Urban and Sunny sequences from the LISA 2010 dataset
[44] contain car images of 704×480 collected at 30 frames per
second from a camera mounted on a moving vehicle. The Ur-
ban sequence (300 frames) was captured from an urban area
with a low traffic density on a cloudy day, while the Sunny
sequence (300 frames) was captured from a highway with
medium traffic density on a sunny day. The challenging factors
of these sequences include the effect of camera vibration, illu-
mination changes, and the targets’ scale changes; the GT data
are provided by [44]. The pre-trained vehicle detector proposed
in [37] is used for evaluation on this dataset.

4.2. Qualitative results
In this section, we study the qualitative performance of the

proposed tracking scheme using the datasets mentioned above.
Figures 8 and 9 show some of the tracking results and videos
are available at https://youtu.be/lnAUnU596UE.

PETS09-S2L1. Figure 8(a) shows the sample tracking results
of the proposed scheme on the PETS09-S2L1 sequence. The
proposed method performs well despite several short-term oc-
clusions, scale and pose changes. Furthermore, it should be
mentioned that the pre-trained FPD detector [36] misses ob-
jects that are close to the camera or those located far from the
camera.

PETS09-S2L2. Figure 8(b) shows that non-occluded targets
are tracked well although targets with long-term occlusions or
located far from the camera are missed. Again, it should be
mentioned that the FPD detector [36] misses numerous detec-
tions in this sequence due to the high crowd density.

Soccer. This sequence contains soccer players with similar vi-
sual appearance and fast motion. The FPD detector [36] is not
trained to detect the soccer players at different poses. Never-
theless, the proposed scheme performs well with accurate short
tracklets, as shown in Figure 8(c).

UCF-PL. This sequence contains crowds of medium density,
with occlusions. Figure 8(d) shows some tracking results for the
proposed scheme using the detector in [14]. Despite the chal-
lenges of the sequence, the proposed tracking scheme maintains
long trajectories.

Town Center. The crowd density of this sequence is medium
with a number of long-term occlusions. Figures 8(e) and (f)
show sample tracking results corresponding to full body and
head, respectively. While it is difficult to track the full human
body due to heavy occlusions, or the head due to false positives,
the proposed method performs well.

LISA 2010. Figures 9(a) and (b) show the sample results of
our tracker using the detector in [37] on the Urban and Sunny
sequences. The Urban sequence contains only one vehicle, but
there is illumination change and the effect of camera vibrations.
The Sunny sequence contains, on average, three non-occluded
vehicles with different velocities. In spite of these challenges,
the proposed scheme tracks the vehicles very well in both cases.
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#81 #94 #137

(a)

(b)

(c)

(d)

(e)

(f)

#114 #226 #397

#28 #72 #116

#146 #235 #428

#103 #1968 #2169

#433 #1340 #2226

Figure 8: Sample tracking results for five sequences, the arrangement from top to bottom as (a) and (b) PETS09-S2L1, and PETS09-S2L2, respectively, (c) Soccer
sequence, (d) UCF-PL sequence, (e) Town Center dataset (body), and (f) Town Center dataset (head).
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(a)

(b)

#28 #98 #176 #183

Figure 9: Sample tracking results for LISA 2010 dataset, where (a) and (b) correspond to Urban and Sunny sequences, respectively.
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Figure 10: Performance of the proposed method on the PETS09-S2L1 sequence
for different values of the collaborative factor γ.

4.3. Quantitative results
We use the CLEAR MOT metrics [50] including multiple

object tracking accuracy (MOTA), multiple object tracking pre-
cision (MOTP), false negative rate (FNR), false positive rate
(FPR), and identity switches (IDSW) for evaluating the perfor-
mance of the proposed tracker. We use the overlap threshold
of 0.5 for all experiments. For this study, we set the various
parameters to be NP

s = 150, NΓ
s = 100, Np = N t

p,u = 10,
Nn = N t

n,u = 20, Ru = 10, λSDC = 0.02, λSGM = 0.01,
σ̂ = 104, ε0 = 0.8, µ = 0.6, σ̂ = 5× 106, s0 = 1.0, s1 = 2.5,
s2 = 0.7, and o1 = 0.2. For the multi-person tracking se-
quences, namely, PETS09-S2L1, PETS09-S2L2, UCF-PL, Soc-
cer, and Town Center (Body), we use m = 32, n = 16,
M = 84, m̂ = n̂ = 6 and Nk = 50. Further, for the multi-head
tracking sequence, namely, Town Center (Head), as well as the
multi-vehicle tracking sequences, namely, Urban and Sunny,
we use m = n = 16, M = 16, m̂ = n̂ = 6 and Nk = 16.

Effect of the collaborative factor. To measure the effect of
the proposed collaborative model, we changed the value of the
collaborative factor γ in the interval [0, 1] in increments of 0.2.
Figure 10 shows the performance of the proposed method with
different values of γ for the PETS09-S2L1 sequence. When
γ = 0, the likelihood function of the particle filter is based com-
pletely on the propagated particles, and the proposed method
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86.00%

88.00%

90.00%

92.00%

94.00%

1 5 10 15 20 25 30

M
O

T
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Number of retained key samples per tracker

Figure 11: MOTA vs. number of retained key samples for the proposed tracker
on the PETS09-S2L1 sequence.

does not perform well due to the degeneracy problem. When
γ = 1, the likelihood function is based on the associated de-
tections, and the tracker does not perform well due to false
positives and missed detections. The proposed method per-
forms best for this sequence when γ = 0.8, as can be seen
from Figure 10. It is worth noting that for high tracking per-
formance, the value of γ should be adjusted according to the
detector used. For detectors with high precision and recall (the
ones used in the PETS09-S2L1, UCF-PL, Town Center (Head),
Urban and Sunny sequences), the proposed tracker provides a
high MOTA value when γ is in the interval of [0.65, 0.85]. On
the other hand, when the detector has low precision and recall
(the ones used in the case of PETS09-S2L2, Soccer and Town
Center (Body) sequences), the proposed tracker provides a high
MOTA value when γ is in the interval of [0.5, 0.6].

Number of key samples. We analyze the effect of the num-
ber of key samples retained on MOTA using the PETS09-S2L1
sequence. The appearance model (SDC, SGM, and PGM) is
updated online at an update rate Ru of 10. Figure 11 shows the
performance of the proposed tracker when the number of key
samples retained is varied. We choose the number of retained
key samples to be 20 at which the highest MOTA performance
is exhibited, as seen from Figure 11.
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Figure 12: Performance of the proposed tracking scheme with respect to the
SDC similarity threshold, s0, using the PETS09-S2L1 sequence.

Key sample selection. To demonstrate the strength of the pro-
posed sample selection scheme, we examine the performance
of the proposed tracking scheme by varying the SDC similar-
ity threshold, s0, from 0 to 1.5 in increments of 0.1. Figure
12 shows the performance of the proposed scheme at differ-
ent SDC tracker similarity threshold values. When s0 = 1,
the proposed tracker exhibits the best performance in terms of
MOTA. If 0 ≤ s0 < 1, the performance is not as good in view
of the fact that only a few or none of the key samples are re-
jected, and hence, occluded samples are likely to be selected.
When s0 > 1.2, the proposed tracker performs worse than that
at s0 = 1, since a large number of key samples are rejected. As
such, we choose s0 = 1.0 for all the experiments.

Effect of tracker re-detection. We analyze the effect of using
the re-detection module on MOT tracking. Figure 13 shows that
the proposed method with tracker re-detection scheme achieves
slightly lower FNR and FPR than that obtained without us-
ing the tracker re-detection scheme, while maintaining approx-
imately the same performance in terms of MOTA and MOTP
values. The tracker re-detection scheme aims to reduce the
number of identity switches and maintains long trajectories,
without reducing the tracking performance.

Generative appearance models. We study the tracking perfor-
mance of the proposed method by using several types of gen-
erative models to solve the data association problem in (23).
These generative models are (1) SGM, as outlined in Section
3.2.2, which is based on local patch features (by substituting in
(23) by G = GSGM ); (2) 2DPCA generative model, as pro-
posed in Section 3.2.3, which is based on holistic features (by
substituting in (23) by G = GPGM ); (3) combination of SGM
and 2DPCA generative models as mentioned in Section 3.4; (4)
principal component analysis (PCA)2 generative model (instead
of using the 2DPCA generative model); and (5) combination of
SGM and PCA generative models.

The main differences between 2DPCA versus PCA are as fol-
lows. The covariance matrix in the case of 2DPCA can be com-
puted directly from the image samples in 2D matrices rather

2The function pcaApply from toolbox [51] has been used to calculate the
PCA.
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Figure 13: Performance of the proposed method with and without tracker re-
detection on the PETS09-S2L1 sequence.

than 1D vectors as in the case of PCA [35, 52]. The complexity
for computing the covariance matrix using a 2DPCA-based ap-
pearance model isO(mn2N), whereas the corresponding com-
plexity using a PCA-based appearance model is O(m2n2N),
when a set of N image samples, each of size m × n pixels, is
used. Further, it may be pointed out that 2DPCA encodes the
relationship among neighboring rows in a given set of image
samples [52]. Such a relationship should have a positive effect
on the tracking performance.

Table 2 shows the results on the seven sequences. Overall,
the proposed scheme with SGM in conjunction with 2DPCA
performs better than that by using SGM with PCA. In most se-
quences, the method of using SGM with 2DPCA or SGM with
PCA performs better than that using only SGM. On a machine
with 2.9 GHz CPU, the average tracking time per frame (over
all the seven sequences without counting the time for object de-
tection) for the proposed tracker with SGM and 2DPCA is 2.88
s whereas the corresponding time in the case of SGM and PCA
is 2.90 s. Hence, this improvement in the performance of the
proposed tracker is achieved without loss in speed.

4.4. Performance comparison
In this section, we evaluate the performance of the proposed

algorithm with two online MOT methods in [53, 54] using the
seven challenging sequences described in Section 4.1. Table 3
shows the performance of these two methods (using the original
source code) along with that of the proposed tracker in terms of
the various CLEAR MOT metrics. In addition, the performance
of the proposed scheme is compared with the reported results of
state-of-the-art online MOT methods [14, 23, 43, 55–58] using
the sequences considered in these papers.

On the PETS09-S2L1 and PETS09-S2L2 sequences, the pro-
posed scheme provides the second highest MOTA values. It
also offers the highest and second highest MOTP values on the
PETS09-S2L1 and PETS09-S2L2 sequences, respectively. This
can be attributed to the proposed update mechanism, and the
inactive or on-hold states of the tracker.

For the Soccer sequence, the proposed scheme performs bet-
ter than the methods in [53, 54] despite fast camera motion and
the presence of similar objects in the scenes. For the UCF-PL
sequence, the MOTA value of the proposed method is higher
than that of the methods in [14, 53, 54], using the same detector
as in [14]. On the other hand, the MOTP value of the proposed
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Table 2: Performance of the proposed scheme using different generative mod-
els.
Sequence Generative model MOTA MOTP FNR FPR IDSW

PETS09-S2L1

SGM 89.08% 79.89% 5.11% 5.42% 17
PCA 89.86% 79.97% 5.04% 4.76% 16
SGM + PCA 90.12% 80.55% 5.34% 4.30% 13
2DPCA 89.81% 79.82% 5.40% 4.41% 20
Proposed 92.13% 80.62% 3.19% 4.33% 14

PETS09-S2L2

SGM 36.43% 71.19% 39.38% 26.31% 263
PCA 45.69% 71.74% 35.92% 20.25% 218
SGM + PCA 44.35% 71.54% 36.04% 21.30% 237
2DPCA 46.06% 71.77% 36.59% 19.33% 221
Proposed 46.88% 71.66% 34.92% 19.43% 258

Soccer

SGM 67.36% 70.28% 16.72% 14.49% 45
PCA 70.33% 70.64% 18.85% 10.28% 38
SGM + PCA 70.21% 70.99% 18.20% 11.03% 36
2DPCA 71.13% 70.73% 17.00% 10.66% 49
Proposed 73.54% 70.77% 16.20% 9.45% 38

UCF-PL

SGM 82.30% 71.84% 10.77% 6.27% 16
PCA 82.14% 71.88% 10.44% 6.56% 21
SGM + PCA 83.29% 71.81% 10.64% 5.40% 16
2DPCA 81.89% 71.75% 11.47% 5.90% 18
Proposed 85.02% 71.89% 8.70% 5.65% 15

Town Center (Body)

SGM 69.41% 73.82% 17.08% 12.81% 444
PCA 70.19% 73.83% 18.18% 11.08% 351
SGM + PCA 69.83% 73.89% 19.29% 10.37% 320
2DPCA 71.24% 74.02% 18.02% 10.21% 337
Proposed 70.16% 73.93% 19.35% 9.95% 342

Town Center (Head)

SGM 70.32% 68.86% 14.96% 14.48% 164
PCA 72.15% 68.71% 14.25% 13.37% 163
SGM + PCA 69.37% 68.78% 15.62% 14.77% 166
2DPCA 70.43% 68.82% 15.06% 14.29% 158
Proposed 74.54% 69.15% 13.02% 12.21% 158

LISA10 Urban

SGM 100.00% 82.67% 0.00% 0.00% 0
PCA 100.00% 82.68% 0.00% 0.00% 0
SGM + PCA 100.00% 82.68% 0.00% 0.00% 0
2DPCA 100.00% 82.68% 0.00% 0.00% 0
Proposed 100.00% 82.68% 0.00% 0.00% 0

LISA10 Sunny

SGM 97.22% 78.28% 0.78% 1.98% 0
PCA 97.22% 78.28% 0.78% 1.98% 0
SGM + PCA 97.22% 78.28% 0.78% 1.98% 0
2DPCA 97.22% 78.28% 0.78% 1.98% 0
Proposed 97.22% 78.28% 0.78% 1.98% 0

Average

SGM 76.51% 74.60% 13.10% 10.22% -
PCA 78.45% 74.72% 12.93% 8.53% -
SGM + PCA 78.05% 74.81% 13.24% 8.64% -
2DPCA 78.47% 74.73% 13.04% 8.35% -
Proposed 79.94% 74.87% 12.02% 7.87% -

Note: The best and the second best results on each dataset are shown
in boldface and underscored, respectively. The proposed method is
SGM + 2DPCA.

technique is close to that of [14]. In addition, the proposed
method has lower values for FNR and FPR than the methods in
[14, 53, 54] do.

For the Town Center dataset, the proposed scheme is first
evaluated to track the full body of pedestrians. In this case, the
proposed scheme yields the second highest MOTP, FNR and
FPR values compared to the methods in [14, 23, 43, 53, 54].
Next, the proposed scheme is evaluated on tracking the heads
of pedestrians from the same dataset. The head regions in this
sequence are less occluded than the full body, although the head
detector has higher FPR than the full-body detector. As shown
in Table 3, the proposed method performs well against other ap-
proaches [43, 53, 54, 58] in terms of MOTA. For the Urban and
Sunny sequences from LISA 2010 dataset, the proposed scheme

Table 3: Performance measures of CLEAR MOT metrics.
Sequence Method MOTA MOTP FNR FPR IDSW

PETS09-S2L1

Proposed 92.13% 80.62% 3.19% 4.33% 14
Yoon et al. [53]∗ 66.64% 57.46% 17.99% 15.14% 34
Bao and Yoon [54]∗ 89.94% 79.34% 4.83% 4.73% 23
Zhang et al. [23] 93.27% 68.17% - - 19
Zhou et al. [55] 87.21% 58.47% - - -
Breitenstein et al. [56] 79.70% 56.30% - - -
Gerónimo et al. [57] 51.10% 75.00% 45.20% - 0

PETS09-S2L2

Proposed 46.88% 71.66% 34.92% 19.43% 258
Yoon et al. [53]∗ 26.85% 47.99% 51.27% 28.86% 218
Bao and Yoon [54]∗ 45.98% 71.77% 35.73% 19.06% 325
Zhang et al. [23] 66.72% 58.21% - - 215

Soccer
Proposed 73.54% 70.77% 16.20% 9.45% 38
Yoon et al. [53]∗ 29.99% 53.77% 52.89% 26.19% 10
Bao and Yoon [54]∗ 54.25% 69.26% 35.45% 12.64% 24

UCF-PL

Proposed 85.02% 71.89% 8.70% 5.65% 15
Yoon et al. [53]∗ 29.50% 45.33% 38.04% 33.95% 15
Bao and Yoon [54]∗ 82.84% 73.33% 10.31% 6.49% 15
Shu et al. [14] 79.30% 74.10% 18.30% 8.70% -

Town Center (Body)

Proposed 70.16% 73.93% 19.35% 9.95% 342
Yoon et al. [53]∗ 62.93% 48.66% 20.00% 17.14% 330
Bao and Yoon [54]∗ 79.07% 73.46% 11.19% 9.44% 307
Benfold and Reid [43] 61.30% 80.30% 21.00% 18.00% -
Zhang et al. [23] 73.61% 68.75% - - 421
Shu et al. [14] 72.90% 71.30% - - -

Town Center (Head)

Proposed 74.54% 69.15% 13.02% 12.21% 158
Yoon et al. [53]∗ 73.90% 70.16% 17.23% 9.49% 126
Bao and Yoon [54]∗ 70.65% 69.97% 16.31% 13.07% 320
Poiesi et al. [58] 54.60% 63.70% 23.80% 21.70% 285
Benfold and Reid [43] 45.40% 50.80% 29.00% 26.20% -

LISA10 Urban
Proposed 100.00% 82.68% 0.00% 0.00% 0
Yoon et al. [53]∗ 99.33% 81.98% 0.33% 0.33% 0
Bao and Yoon [54]∗ 98.33% 82.52% 1.67% 0.00% 0

LISA10 Sunny
Proposed 97.22% 78.28% 0.78% 1.98% 0
Yoon et al. [53]∗ 92.89% 77.20% 6.89% 0.24% 0
Bao and Yoon [54]∗ 97.00% 77.83% 2.67% 0.34% 0

Note: ∗ denotes the results obtained by utilizing the code provided
by the authors of the paper, where the detection results and GT
annotations that have been used with the proposed scheme are used.
The best and the second best results on each dataset are represented in
boldface and underscored, respectively.

provides a better performance than that provided by the meth-
ods in [53, 54] for tracking multiple vehicles on-road.

We note that the proposed scheme uses grayscale images as
features, whereas the methods in [14, 23, 56] are based on the
color or gradient information of the targets. In addition, the
proposed scheme does not require the detector confidence den-
sity or a gate function in the data association step as in [1, 56],
where the gate function provides higher weight for detections
located in the direction of motion of the target.

5. Conclusion

In this paper, we have presented a robust collaborative model
that enhances the interaction between a pre-trained object de-
tector and a number of single-object online trackers in the par-
ticle filter framework. The proposed scheme is based on in-
corporating the associated detections with the motion model, in
addition to the likelihood function providing different weights
for the propagated and the newly created particles sampled from

12



the associated detections, providing a reduction on the effect of
the detector errors on the tracking process. We have exploited
sparse representation and 2DPCA to construct diverse features
that maximize the appearance variation among the trackers.
Furthermore, we have presented a conservative sample selec-
tion scheme to update the appearance model of every tracker.
Experimental results on benchmark datasets have shown that
the proposed scheme outperforms state-of-the-art multi-object
tracking methods in most of the cases.
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