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Abstract
Code clones are created when a developer duplicates a code fragment to reuse existing
functionalities. Mitigating clones by refactoring them helps ease the long-term maintenance
of large software systems. However, refactoring can introduce an additional cost. Prior work
also suggest that refactoring all clones can be counterproductive since clones may live in
a system for a short duration. Hence, it is beneficial to determine in advance whether a
newly-introduced clone will be short-lived or long-lived to plan the most effective use of
resources. In this work, we perform an empirical study on six open source Java systems to
better understand the life expectancy of clones. We find that a large number of clones (i.e.,
30% to 87%) lived in the systems for a short duration. Moreover, we find that although
short-lived clones were changed more frequently than long-lived clones throughout their
lifetime, short-lived clones were consistently changed with their siblings less often than
long-lived clones. Furthermore, we build random forest classifiers in order to determine the
life expectancy of a newly-introduced clone (i.e., whether a clone will be short-lived or long-
lived). Our empirical results show that our random forest classifiers can determine the life
expectancy of a newly-introduced clone with an average AUC of 0.63 to 0.92. We also find
that the churn made to the methods containing a newly-introduced clone, the complexity
and size of the methods containing the newly-introduced clone are highly influential in
determining whether the newly-introduced clone will be short-lived. Furthermore, the size
of a newly-introduced clone shares a positive relationship with the likelihood that the newly-
introduced clone will be short-lived. Our results suggest that, to improve the efficiency of
clone management efforts, practitioners can leverage our classifiers and insights in order
to determine whether a newly-introduced clone will be short-lived or long-lived to plan the
most effective use of their clone management resources in advance.
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1 Introduction

Code clones are created when a developer duplicates a code fragment to reuse existing
functionalities. Prior studies show that a sizable portion of the code in a system consists of
such duplicate code fragments (e.g., 29% of JDK (Johnson 1993) and 22.7% of Linux (Li
et al. 2006)). Clones can become a problem within large software systems when developers
perform inconsistent changes to these clones (Baker 1995). For example, a bug fix to a
clone might need to be repetitively applied to all siblings. Hence, a presence of clones may
significantly increase the maintenance cost of software systems.

Mitigating clones by refactoring them will benefit practitioners for future mainte-
nance (Fowler and Beck 1999). A recent study shows that refactoring often occurs in GitHub
projects, i.e., 2,241 refactoring instances were detected in 285 of the studied GitHub projects
(Silva et al. 2016). Moreover, Silva et al. (2016) reported that one of the popular reasons for
refactoring is to reduce code repetitiveness (i.e., code clones). For instance, one developer
in the study of Silva et al. (2016) argued that “The reason for me to do the refactoring was:
Don’t repeat yourself (DRY)”.

On the other hand, refactoring all clones can be counterproductive (Cordy 2003; Kapser
and Godfrey 2006; 2008; Kim et al. 2012; Wang and Godfrey 2014). For instance, recent
work finds that some patterns of clones are not considered harmful and refactoring them is
unnecessary and counter productive (Kapser and Godfrey 2008). Kim et al. (2012) report
that refactoring in general is considered by developers at Microsoft as a task with substantial
cost and risks. Wang and Godfrey (2014) also argue that clones should be prioritized for
refactoring based on the benefits, costs and potential risks.

To better manage clones, Kim et al. (2005) use clone genealogies to understand the clone
evolution of clones. They suggest that refactoring all clones may not be worthwhile since
37% to 41% of clones in their studied systems only lived for a short-duration, and many
of the long-lived clones cannot be removed using standard refactoring techniques. Such
findings indicate that it is important to determine in advance whether a clone will be short-
lived or long-lived to manage clones more efficiently. Hence, we perform an empirical study
on six open source Java systems (i.e., Ant, Camel, Jackrabbit, Maven, Pig, and Tomcat) to
address the following two preliminary questions:

(PQ1) How long do clones live in a software system?
We find that 30% to 87% of clones in the studied systems lived for a short duration.
In particular, these clones disappeared within two to nine released versions which
account for less than 17% of all the released versions.

(PQ2) Howwere short-lived and long-lived clones changed throughout their lifetime?
We find that many of the long-lived clones (25% to 37%) were consistently changed
with their siblings, while a smaller proportion of short-lived clones (9% to 19%)
were consistently changed with their siblings. This result suggests that short-lived
clones may not require change consistency as much as long-lived clones do.

The findings of our preliminary study suggest that the maintenance effort that is associ-
ated with such short-lived clones is relatively smaller than the effort for long-lived clones,
supporting our intuition that avoiding refactoring of short-lived clones will be beneficial
for the clone management efforts. Hence, we build random forest classifiers in order to
determine the life expectancy of a newly-introduced clone (i.e., whether a clone will be
short-lived or long-lived). Leveraging our classifiers, practitioners can plan the most effec-
tive use of their resources. Moreover, we analyze our classifiers in order to identify the



Empirical Software Engineering

characteristics that influence the life expectancy of a clone. Knowledge of such influen-
tial characteristics can help practitioners chart better clone management plans. Hence, we
address the following research questions:

(RQ1) How well can we determine whether an introduced clone will be short-lived
versus long-lived?

Our random forest classifiers achieve an average AUC of 0.63 to 0.92.
Practitioners can leverage our classifiers to determine the life expectancy of a
newly-introduced clone in order to plan for efficient clone management.

(RQ2) What are the most influential characteristics for determining the life
expectancy of an introduced clone?

We find that the performed development activity that was made to the method
containing a newly-introduced clone during the version in which the clone is
introduced is highly influential in determining the life expectancy of a clone. For
example, we find that the more added lines into the method containing a clone dur-
ing the development cycle of the version in which the clone is introduced, the more
likely the clone will be short-lived. In other words, clones, that are introduced in
versions with a large amount of churn, are more likely to be short-lived. We also
find that the size and complexity of the method containing a newly-introduced
clone shares a positive relationship with the likelihood of the clone being short-
lived. Furthermore, the size of a newly-introduced clone also shares a positive
relationship with the likelihood that the clone will be short-lived. The immediate
refactoring of clones with these characteristics may not be beneficial since such
clones will disappear within a short period of time.

1.1 Paper Organization

The remainder of the paper is organized as follows. Section 2 describes our case study
design. Section 3 discusses our preliminary study to understand clone genealogies. Section 4
motivates our research questions and discusses the results of our study. Section 5 surveys
related work, while Section 6 discusses the threats to the validity of our study. Section 7
draws conclusions.

2 Case Study Design

In this work, we define a clone as a group of duplicate code fragments that are nearly-
identical in terms of their structure and/or semantics. Each of these duplicate code fragment

Table 1 An overview of the studied systems

System Age (Yrs) #Released Versions LOC #Classes #Methods #Commits

Ant 17 22 138,388 1,705 12,727 11,373

Camel 10 35 615,118 17,280 62,840 25,897

Jackrabbit 13 66 342,116 3,971 27,492 8,209

Maven 14 36 80,149 899 6,575 10,264

Pig 8 15 252,925 2,536 16,111 2,852

Tomcat 11 43 317,506 3,328 27,629 15,416
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is defined as a clone sibling. These clone siblings can be introduced by copying one piece
of existing code into another one, or the clone siblings are introduced into the source code at
the same time. We consider the “birth” of a clone as the time when we start to detect a group
of duplicate code fragments. Such a birth of clones can be due to either when a sibling of
the clone is introduced, or when a group of duplicate code fragments is created all at once.

Below, we describe our studied systems, data preparation process and model construction
approach in our study of clone genealogies and the life expectancy of clones.

2.1 Studied Systems

We perform our empirical study on six well-known open source Java systems of the Apache
software foundation, i.e., Ant, Camel, Jackrabbit, Maven, Pig, and Tomcat.1 Table 1 shows
an overview of our six studied systems. Each of these systems are Java systems has an
approximate age of 8 to 17 years.2 Moreover, these systems have many released versions
from the main branch (excluding release candidates).

Ant is a command-line tool for automating the software build process of Java code
bases.3 Camel is a tool that provides a Java object-based implementation of the Enterprise
Integration Patterns using an application programming interface to configure routing and
mediation rules.4 Jackrabbit is a hierarchical content store with support for structured and
unstructured content of Java Technology API.5 Maven is an advanced build automation tool
for Java code bases.6 Pig is a platform for complex MapReduced transformations that are
used to analyze large data sets.7 Tomcat is a web container for Java Servlet, JavaServer
Pages (JSP), Java EL, and WebSocket, and provides a Java HTTP web server environment
in which Java code can run.8

2.2 Data Preparation

In this section, we describe our data preparation process. Figure 1 provides an overview of
our data preparation process which consists of four steps. Below, we describe each step in
detail.

2.2.1 (DP1) Extract Sequentially Developed Versions

Similar to prior work (Lague et al. 1997; Bettenburg et al. 2009; Göde and Koschke 2011),
we study the clone genealogies at the released versions of our studied systems in order to
examine the life expectancy of clones in a long term. We mine the official Git repositories
of Ant, Camel, and Maven. For Jackrabbit, Pig, and Tomcat, we mine the Git repositories
that are a mirror Version Control System (VCS) containing full version histories (including

1Tomcat6.0, 7.0, and 8.0 are asynchronously developed in different repositories. We select Tomcat8.0 for this
study since it is a long lived version.
2The version control systems of the systems were accessed on April, 2017
3http://ant.apache.org/
4http://camel.apache.org/
5http://jackrabbit.apache.org/jcr/index.html
6https://maven.apache.org/
7https://pig.apache.org
8http://tomcat.apache.org/index.html

http://ant.apache.org/
http://camel.apache.org/
http://jackrabbit.apache.org/jcr/index.html
https://maven.apache.org/
https://pig.apache.org
http://tomcat.apache.org/index.html
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Fig. 1 An overview of our data preparation process

branches and tags) from the respective source trees of the official Subversion repositories
of these systems.9

Since we extract clone genealogies based on the list of released versions, we need to
ensure that those released versions are sequentially developed. It is possible that some of
the released versions were asynchronously developed on an isolated branch in the VCS of
the system (e.g., maintenance versions). For example, Fig. 2 shows that Camel v2.17.1 to
v2.17.4 are asynchronously developed on an isolated branch in the VCS. Then, a clone that
is introduced in v2.17.4 will be misidentified as short-lived since the development history
of v2.17.x has discontinued. Therefore, for this example, we only consider the clones that
are introduced in the released versions in the main branch (i.e., Camel v2.16.0, v2.17.0, and
v2.18.1 to v2.18.3).

To extract the released versions that were sequentially developed, we use the git log
command on the most recently released version of each studied system10 in order to retrieve
a full list of commits that (1) occurred on the same branch as the recent version or (2) that
originated on other branches, but have been merged into the same branch as the recent ver-
sion. Then, we use the git name-rev command to identify the corresponding tags of the
released versions of each commit. In this study, we do not consider release candidates (e.g.,
Maven 3.0-RC) as a released version since such release candidates are trial versions which
are available for a short duration and their code is likely to change for the final released
version. Therefore, we consider the commits that are associated with release candidates as
a part of the development history of the following version of these release candidates.

2.2.2 (DP2) Extract Clone Genealogies

To extract the studied clone genealogies, we perform an incremental clone detection on
the methods across all versions using iClones (Göde and Koschke 2009). Unlike traditional
genealogy extractors that compare clones in each version with the first version, the incre-
mental detection algorithm of iClones provides a more comprehensive version-by-version
view of the evolution of clones. Broadly speaking, the incremental detection algorithm of
iClones performs two main steps. First, it extracts clones in each version of the studied
systems using generalized suffix trees and Baker’s pdup algorithm (Baker 1997). Then,
iClones uses the change history between two consecutive versions (i.e., the current version
n and the previous version n − 1) to generate a clone genealogy. We configure iClones in
the incremental mode to create clone genealogies. Similar to prior work (Kim et al. 2005),

9A list of Git repositories of Apache projects is available at https://git.apache.org/
10The most recent version of our studied systems are Ant v1.10.0, Camel v2.18.3, Jackrabbit v2.14.0, Maven
v3.5.0, Pig v0.16.0, and Tomcat v8.0.43

https://git.apache.org/
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Fig. 2 An example of released versions that are asynchronously developed on an isolated branch in the VCS
of Camel

we configure iClones to remove syntactic templates, i.e., code comments, array initializa-
tion, import, and package statements by setting the option of transformers as ‘all’.
In addition, we configure iClones to detect all three types of clones, i.e., Type-1 (exact
clone), Type-2 (parameter-substituted clone), and Type-3 (near-miss clone) by setting the
mapping option as ‘bazrafshan’ (Göde and Koschke 2009). We also configure iClones to
consider late change propagation (Thummalapenta et al. 2010; Barbour et al. 2011) when
identifying a changing consistency in clone genealogies. Broadly speaking, iClones keeps
all the dead clone genealogies in memory as “ghost fragments”, in order to identify late
change propagation (Göde 2011). This setting allows us to ensure that the changing consis-
tency in clone genealogies will be correctly identified even in the cases where a developer
might at a later time resynchronize changes after forgetting apply a consistent change to
all clone siblings. For all other configuration options, we use the default setting of the
tool. For example, the minimum length of identical token sequences that are used to merge
near-miss clones (minblock) is set to 20 and the minimum length of clones measured in
tokens (minclone) is set to 100. These settings allow iClones to detect less false positive
clones (Göde and Koschke 2011).

2.2.3 (DP3) Identify the Life Expectancy of a Clone

We measure the life expectancy of a clone (i.e., the clone genealogy length) by counting the
number of versions across which a clone genealogy spans. Similar to prior work (Kim et al.
2005), we study only the life expectancy of volatile clones (i.e., clones that disappeared
before the last studied version). This is because we cannot determine the life expectancy of
non-volatile clones as these clones still live in the system.

Once we measure the life expectancy, we identify the short-lived and long-lived clones.
There can be various definitions of short-lived clones. For example, a short-lived clone
can be defined in a more domain-oriented or project-specific fashion based on the internal
knowledge of a system or based on the interest of a project team (e.g., choosing one ver-
sion as a short-lived clone, or using the number of days or commits to determine the life
expectancy of clones). To ease the replication of our work, we opt to identify short-lived
clones using an automated rule. Therefore, we use the K-means clustering technique to par-
tition the clones based on the number of versions in which a clone lived. The K-means
clustering technique is widely used to partition instances in a dataset of interest (Khan-
chouch et al. 2015; Wagstaff et al. 2001). Moreover, we also use the NbClust function of
the NbClust R package (Charrad et al. 2014) to determine the optimal number of clusters.
In particular, we set the method option in the NbClust function as ‘kmeans’ in order
to use the the K-means clustering technique for partitioning clones while determining the
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optimal number of clusters. For each studied system, we apply the K-means clustering tech-
nique by providing the life expectancy of clones (i.e., the number of versions across which
a clone genealogy spans) as an input to the NbClust function. We then consider the clones
in the cluster with the clone genealogies that have the shortest lifetime as short-lived clones,
while the clones in the remaining clusters are considered as long-lived clones.

2.2.4 (DP4) Calculate Code and Clone Metrics

The life expectancy of a clone can be correlated to many factors. However, some factors
are not quantifiable, e.g., a clone is short lived due to refactoring. In this work, we opt to
examine the relationship between the measurable factors and the life expectancy of a newly-
introduced clone. Therefore, we derive clone, product, and process focused metrics. Since
one clone can have multiple clone siblings, we first compute metrics for each sibling of a
clone. Then, we abstract the metrics of the clone siblings to the clone level by calculating
an average and difference between the respective metrics of the siblings of each clone. For
a clone C, the average and the difference of its siblings for a metric M are calculated as
follow:

Avg M(C) =
∑

s∈S(C)M(s)

|S(C)| (1)

Diff M(C) = max({abs(M(s1) − M(s2))|s1, s2 ∈ S(C)}) (2)

where S(C) is the set of siblings of the clone C, and M(s) is the value of the metric M

for the clone sibling s.
Table 2 describes our 38 metrics for the clone, product, and process dimensions. We

describe below each dimension and the motivation of our metrics.

CloneDimension Clone metrics measure the characteristics of a clone when it was injected
into the source code. In particular, we count how many siblings does a clone have at
the version in which the clone is introduced (i.e., SiblingCount), measure the size of a
clone (i.e., CloneLineCount and TokenCount), the difference between clone siblings (i.e.,
DirectoryDistance and EditDistance), and also identify the clone type (i.e., CloneType).
CloneLineCount and TokenCount are calculated at the clone sibling level. We abstract these
metrics to the clone level using Eqs. 1 and 2. On the other hand, DirectoryDistance and
EditDistance measure the difference between a pair of clone siblings. Hence, we abstract
these metrics to the clone level by calculating an average using Eq. 1 and by calculating a
maximum distance of those pairs of clone siblings using the following equation.

Max Dist(C) = max({(Dist(s1, s2)|s1, s2 ∈ S(C)}) (3)

Product Dimension Product metrics measure the code characteristics of the method that
contains the clone at the version during which the clone is introduced. We use the
Understand tool11 to compute the product metrics for methods that contain clones. The
Understand tool is a reverse engineering tool that is specifically designed to extract prod-
uct metrics from the source code of software systems. Similar to the clone metrics, we first
compute the product metrics at the clone sibling level. Then, we abstract these metrics to
the clone level by calculating an average and a difference of the metrics using Eqs. 1 and 2.

11https://scitools.com/

https://scitools.com/
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We measure the code characteristics of the method that contains a clone in terms of size and
complexity. Below, we describe each category in the product dimension.

– Size: Our intuition is that the size of the methods that contain the clone may influence
its life expectancy. For example, refactoring smaller methods that contain clones might
take less effort and have a reduced risk compared to the large methods that contain clones.

– Relative Size: Although we considered the size of each method, similarly-sized methods
may contain clones with different size. Moreover, prior work reports that small clones
in a method tend to have a lower number of faults per line than large clones (Monden
et al. 2002). Therefore, we normalize the size of each method by the size of the cloned
code that it contains.

– Complexity: Complexity metrics measure the complexity of the method that contains
the clone. Prior studies showed that code complexity is one of the most common char-
acteristics of clones (Kim et al. 2004; Kapser and Godfrey 2006; Saini et al. 2016). It
is possible that such duplicated complex code will be short-lived as it will be modified
afterwards. Therefore, we measure the complexity of the method that contains the clone
in order to better understand whether the complexity of methods containing the clone
can be linked to the life expectancy of a clone.

Process Dimension Process metrics capture the development activity of the method con-
taining a clone before the release of the version in which that clone is introduced. Our
intuition is that the development characteristics of the method that contains the clone (e.g.,
amount of code churn in a method) can influence the life expectancy of a clone. For exam-
ple, clones in methods that are frequently changed in the past are less likely to live in the
system for a long duration.

To extract the development activity of each method that contains a clone, we use Kenja12

which is a maintained version of Historage (Hata et al. 2011). Kenja tracks the evolution
of software systems at the method level. Similar to the other dimensions, we compute the
process metrics at the clone sibling level (i.e., for each code fragment in the clone) and
abstract these metrics to the clone level (i.e., a group of duplicate code fragments) using
Eqs. 1 and 2. We measure the development characteristics in terms of change, human factor,
and quality. Below, we describe each category of process metrics.

– Change: Change metrics measure the frequency and amount of churn that are made to
the methods that contain the clone. Prior work reports that many of the methods with
clones are less maintainable due to the high churn frequency of the methods (Monden
et al. 2002). Therefore, we investigate whether the frequency of churn of a method can
be linked to the life expectancy of a clone.

– Human Factor: Human factor metrics measure the number of developers and the num-
ber of major developers (i.e., owners) who modified the method that contains the clone.
Zhang et al. (2012) find that developers duplicate code due to the lack of ownership
(e.g., a code cannot be changed because it is owned by different developers or teams).
Göde (2010) find that the number of developers who are involved in a system shares
a relationship with the likelihood that clones will be removed. Therefore, we com-
pute the human factor metrics in order to determine whether a lack of code ownership
(e.g., many involved developers or few major developers) has an impact on the life
expectancy of a clone.

12https://github.com/niyaton/kenja

https://github.com/niyaton/kenja
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– Quality: We measure the quality of the methods that contain clones by counting the
number of commits that fix bugs, add new features, and improve these methods. Baxter
et al. (1998) report that new code is more likely to contain clones than old code. More-
over, Monden et al. (2002) report that to reduce the risk of fault injection, developers
tend to clone trusted code snippet rather than writing code from scratch. Therefore,
we want to determine whether the number of commits for various purposes (i.e., fix-
ing bugs, adding new feature, and improving code) can have an impact on the life
expectancy of a clone. We identify the purpose of a commit using a keyword-based
approach. A commit where its description contains the “fix”, “bug”, or “defect” words
is identified as bug fixing, while a commit where its description contains the “add” or
“new” words is identified as adding a new feature. The remaining commits are iden-
tified as improving code. A similar approach was used to identify commits in prior
studies (Kim et al. 2008; Hassan 2008; Thongtanunam et al. 2017; Mockus and Votta
2000).

2.3 Model Construction

We build a classifier using the random forest technique (Breiman 2001) to determine the
life expectancy of a newly-introduced clone and the characteristics that can influence the
life expectancy. To help practitioners practically plan their clone management activities, we
build a binary classifier to identify whether a newly-introduced clone will be short-lived or
long-lived instead of determining the length of the clone lifespan. We use our clone, product
and process metrics as inputs for the classifier. Figure 3 provides an overview of the three
steps in our model construction approach. We describe each step in our approach below.

2.3.1 (MC1) Analyze Correlation

Prior to building a classifier, we check the correlation between the studied variables. Highly-
correlated variables may interfere with the model analysis and lead to the reporting of

(MC3) Build a 
random forest 

classier

Measure model 
performance

(MC2) Generate 
bootstrap sample

Metrics & clone 
genealogies 

datasets

Training 
dataset

Testing 
dataset

RQ1 
Results

Measure variable 
importance

RQ2 
ResultsOut-of-Sample Bootstrap Validation 

(Repeat 1,000 times)

(MC1) Analyze 
correlation 

Fig. 3 An overview of our model construction and analysis approaches
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spurious influences for some of the studied characteristics (Jiarpakdee et al. 2018; Nicode-
mus et al. 2010; Harrell FE 2002; Tantithamthavorn and Hassan 2018). Hence, we compute
the pairwise correlation between the input variables using the Spearman rank correlation
test (ρ). For a pair of variables with high correlation (|ρ| > 0.7), we remove one of the
two variables when building the classifier. To ease the interpretation, we keep the more
straightforward variable among the highly correlated variables. For example, if the cor-
relation between LineCodeCount and CyclomaticModified is greater than 0.7, we would
keep LineCodeCount and remove CyclomaticModified since LineCodeCount is simpler to
compute and interpret.

2.3.2 (MC2) Generate Bootstrap Sample

To validate our classifiers, we use the out-of-sample bootstrap validation technique (Efron
1983), which leverages aspects of statistical inference (Efron and Tibshirani 1994). Prior
work also shows that the bootstrap technique provides less biased performance estimates
than the commonly-used validation techniques, e.g., 10-fold cross validation (Efron 1983;
Harrell FE 2002; Tantithamthavorn et al. 2017).

Broadly speaking, the out-of-sample bootstrap technique first generates a bootstrap sam-
ple that has the same population size as the original dataset. A bootstrap sample is a dataset
sampled with replacement from the original dataset. On average, 36.8% of the data points
will not appear in the bootstrap sample, since it is sampled with replacement (Efron 1983).
Then, we use the bootstrap sample as our training dataset and the remaining data points
that do not appear in the bootstrap sample as our testing dataset. In this work, we do not
re-balance nor re-sample the training data since prior studies report that such practices can
have an impact on the results of variable importance (Jiarpakdee et al. 2018; Tantithamtha-
vorn et al. 2018). Finally, the out-of-sample bootstrap process is repeated 1,000 times, and
the average out-of-sample performance is reported as the performance estimate.

2.3.3 (MC3) Build a Random Forest Classifier

We build a random forest classifier using the set of metrics that remain from our correlation
analysis. The random forest technique is known to have a good overall accuracy and to be
robust to outliers as well as noisy data. A random forest classifier generates a large number
of decision trees with tree voting for the class of the life expectancy (either short-lived or
long-lived) for a given clone. Then, the most popular voted class of the life expectancy for
a given clone is the outcome of the random forest classifier for that clone (Breiman 2001).
In this study, we use the random forest implementation provided by the randomForest
R package (Breiman and Cutler 2015).

3 Preliminary Study on Clone Genealogies

In this section, we perform a preliminary study in order to better understand the clone
genealogies in our studied systems. A clone genealogy tracks the life expectancy and the
evolution of a clone along with its sibling. To perform our preliminary study, we use the
clone genealogies data and clone data that we prepared according to our data preparation
process (See Section 2.2). Below, we discuss our study and present empirical observations
with respect to two preliminary questions.
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Table 3 An overview of the studied clone genealogies in the studied systems

System Total Clones Clone Type Clone Genealogy Length

Type-1 Type-2 Type-3 Min Median Max

Ant 165 25% 14% 61% 1 1 14

Camel 1,145 36% 24% 40% 1 3 25

Jackrabbit 647 40% 18% 42% 1 2 56

Maven 74 38% 24% 38% 1 5 20

Pig 3,837 29% 24% 48% 1 5 14

Tomcat 182 29% 19% 52% 1 9 38

3.1 PQ1: How long do clones live in a software system?

To better understand the life expectancy of clones in our studied systems, we examine the
length of clone genealogies. Table 3 presents a statistical summary of the length of the stud-
ied clone genealogies. We find that clones lived in the studied systems for a median of one
(Ant) to nine (Tomcat) versions. Then, for each studied system, we examine the number
of clones that are identified as short-lived and long-lived clones when using the K-means
clustering technique where the optimal number of clusters is automatically determined by
the NbClust function (Charrad et al. 2014) (see DP3 in Section 2.2). In particular, the
NbClust function determines the optimal number of clusters based on six clustering perfor-
mance indices, i.e., the index of KL (Krzanowski and Lai 1988), CH (Caliński and Harabasz
1974), Cubic Clustering Criterion (CCC) (WS 1983), Scott (Scott and Symons 1971), and
Marriott (Marriott 1971). The larger the value of these indices, the better the clustering per-
formance. Table 4 shows the optimal number of clusters that is automatically determined
by the NbClust function and the values of these six indices. Figure 4 shows the number of
clones in each cluster partitioned by the K-means clustering technique.

We also further examine the evolution of clone genealogies. In particular, we examine
the number of siblings of a clone at the time of its introduction. Similar to prior work (Kim
et al. 2005), we identify two evolution patterns of clones: (1) add, i.e., the number of clone
siblings expand, and (2) subtract, i.e., the number of clone siblings decreases.

Table 4 Clustering performance of the K-means technique, where the optimal number of clusters are
automatically determined by NbClust

Optimal Clustering Performance Index

#clusters KL CH Hartigan CCC Scott Marriot

Ant 6 3.74 1606.43 -72.08 10.99 799.30 1127.80

Camel 2 0.33 2232.45 749.02 23.24 2378.61 25479.19

Jackrabbit 3 0.82 1726.89 212.75 55.78 6019.94 257637.8

Maven 6 146.00 743.95 25.50 11.12 411.27 1020.37

Pig 6 6.20 18012.14 539.32 66.63 19414.53 28774.21

Tomcat 3 8.69 500.88 170.84 10.26 575.82 14282.93
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Fig. 4 The number of clones in each cluster where the x-axis shows a range of clone life expectancy (i.e., the
number of versions across which a clone genealogy spans) and a centroid of the cluster shown in parenthesis

Observation 1: 30-87% of the clones are short-lived clones. Table 5 shows the results of
identifying clone life expectancy when using the K-means clustering technique. The longest
genealogy length of the short-lived clones ranges from two (Ant, Maven, and Pig) to nine
(Jackrabbit) versions, which account for only 5%( 2

36 in Maven) to 17%( 6
35 in Camel) of the

studied versions.
Table 5 shows that 106 out of the 165 clones (64%) in Ant are identified as short-lived

clones. We also find that many of the clones in the other four systems are short-lived, i.e., the
proportion of short-lived clones ranges from 30% (Maven) to 87% (Jackrabbit). Moreover,
Table 5 shows that 84 out of the 165 clones (51%) in Ant lived for one version. We also find
a relatively large proportion of clones that lived for one version for Camel (26%), Jackrabbit
(36%), Maven (22%), and Pig (23%).

In addition, we further examine the proportion of short-lived clones at the package level
for the studied systems. We find that in Camel, 74% of the short-lived clones appear in the

Table 5 The number of short-lived and long-lived clones that are identified using the K-means clustering
technique

System Length of the longest #Short-lived clones #Long-lived clones #Clones that

genealogy of short- lived for

lived clones 1 version

Ant 2 106 (64%) 59 (36%) 84 (51%)

Camel 6 828 (72%) 317 (28%) 299 (26%)

Jackrabbit 9 561 (87%) 86 (13%) 230 (36%)

Maven 2 22 (30%) 52 (70%) 16 (22%)

Pig 2 1,176 (31%) 2,661 (69%) 864 (23%)

Tomcat 7 83 (46%) 99 (54%) 3 (2%)
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Camel component Java packages. We also find that in Jackrabbit, 50% and 43% of the short-
lived clones appear in the Jackrabbit Core and API Java packages, respectively. One possible
explanation is that these Java packages are evolving as we find that these Java packages
have more code changes than other packages. However, for the other studied systems, the
short-lived clones tend to be distributed across all Java packages.

We find that 80-93% of the clones are introduced into the source code with one sibling. In
particular, 151 out of the 165 clones (92%) in Ant are introduced into the source code with
one sibling. We also find a large proportion of clones that are introduced with one sibling
for the other studied systems, i.e., 80%( 911

1145 ) in Camel, 85%(553647 ) in Jackrabbit, 93%(6974 ),
and 90%(163182 ) in Tomcat. Furthermore, we observe that there is no association between the
length of a clone genealogy and the number of siblings. In other words, the number of clones
that are introduced with one sibling account for a similar proportion in each group of life
expectancy. For example, in Ant, we find that 90% of short-lived clones and 93% of long-
lived clones are introduced with one sibling. We observe a similar proportion of the number
of clones that are introduced with one sibling in the other studied systems, i.e. 81%-100% of
short-lived clones and 76%-93% of long-lived clones. This result suggests that developers
often make a single copy of an original code and introduce it as a clone into the source
code.

We also find that few clones have a change (either add or subtract patterns) in the number
of sibling across their lifetime. In particular, none of the clones in Maven have a change
in the number of sibling across their lifetime. We find a small proportion of clones that
have a change in the number of siblings for the other studied systems, i.e., 1% ( 1

165 ) in
Ant, 7% ( 82

1145 ) in Camel, 2% (1174 ) in Jackrabbit, and 2% ( 3
182 ) in Tomcat. Moreover, we

observe that most of these clones have only a single change in the number of siblings across
their lifetime. For example, 64 out of the 82 clones in Camel and 9 out of the 11 clones
in Jackrabbit have only a single change with either an add or subtract pattern. Similarly,
the number of siblings changes only once for the one clone in Ant and the three clones in
Tomcat that have a change in the number of siblings. These results suggest that once clones
are injected into the source code, the clones tend to remain a constant number of siblings
throughout their lifetime.

3.2 PQ2: Howwere Short-lived and Long-lived Clones Changed Throughout their
Lifetime?

We address this preliminary question in order to better understand the development activity
of short-lived and long-lived clones after they are introduced into the systems. Therefore,
we determine how often clones change consistently with their siblings. Similar to prior
work (Kim et al. 2005), we identify that a clone genealogy includes a consistently changing
pattern if the clone genealogy includes at least one “consistent change” pattern, i.e., all
clone siblings in the current version have changed consistently from the previous version.
We use iClones to identify the consistent change pattern while considering the possibility
of late change propagation. We then count the number of clone genealogies that include a
consistently changing pattern for short-lived and long-lived clones.

In addition, we observe the change frequency of short-lived clones and long-lived clones
during their lifetime. Note that we did not distinguish between consistent and inconsistent
changes when we analyzed the difference in change frequency between short-lived and
long-lived clones. We count the number of changes that impacted the methods containing
a clone and the ones that occurred in the development cycles of the versions in which the
clone was alive. We only observe the changes that occurred in the development cycles of
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Table 6 A proportion of clone genealogies that include consistently changing pattern

Ant Camel Jackrabbit Maven Pig Tomcat

Short-lived clones 10% 16% 15% 14% 9% 19%

Long-lived clones 31% 37% 26% 25% 25% 35%

the versions in which the clone was alive. Since the number of changes can be related with
the clone life expectancy (i.e., the longer the lifetime of a clone in the system, the more
the changes will occur), we normalize the number of changes by the number of versions in
which the clone has lived (i.e., #Changes

#V ersions
). To determine the difference in change frequency

between short-lived and long-lived clones, we measure the effect size, i.e., the magnitude
of the difference using Cliff’s δ (Macbeth et al. 2011). Cliff’s δ is considered as trivial for
|δ| < 0.147, small for 0.147 ≤ |δ| < 0.33, medium for 0.33 ≤ |δ| < 0.474, and large
for |δ| ≥ 0.474 (Romano et al. 2006). We also use Mann-Whitney U tests to determine the
statistical significance of the difference (α = 0.05).

Observation 2: Consistent changes appear in the genealogies of long-lived clones 1.7
to 3 times more often than the genealogies of short-lived clones. Table 6 shows that only
9% to 19% of the genealogies of short-lived clones include a consistently changing pattern.
On the other hand, 25% to 37% of the genealogies of long-lived clones include a consis-
tently changing pattern. In other words, the proportion of containing consistent changes in
short-lived clones is 1.7 ( 26%15% in Jackrabbit) to 3 ( 31%10% in Ant) times more than the propor-
tion in long-lived clones. This result indicates that while many of long-lived clones were
consistently updated, there is a smaller number of short-lived clones that were consistently
updated, suggesting that the associated maintenance effort with short-lived clones is smaller
than the associated maintenance effort with long-lived clones.

Figure 5 shows distributions of change frequency in the short-lived and long-lived clones.
Table 7 shows that there is a large difference in the change frequency between short-lived
and long-lived clones for all of the six studied systems. The Mann-Whitney U tests also

Fig. 5 The distributions of change frequency in the six studied systems
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Table 7 A statistical summary and the effect size (i.e., the magnitude of the difference) of the change
frequency between short-lived and long-lived clones

System Change Frequency Stat. Significance

Short-lived (Med.±SD) Long-lived (Med.±SD) Effect Size

Ant 2.00±2.23 0.32±0.78 Large ∗ ∗ ∗∗
Camel 1.00±1.36 0.18±0.21 Large ∗ ∗ ∗∗
Jackrabbit 0.67±0.75 0.09±0.09 Large ∗ ∗ ∗∗
Maven 2.00±18.70 0.20±0.57 Large ∗ ∗ ∗∗
Pig 2.00±0.94 0.25±0.33 Large ∗ ∗ ∗∗
Tomcat 0.33±0.59 0.11±0.13 Large ∗ ∗ ∗∗

Statistical significance: ◦p ≥ 0.05, ∗p < 0.05, ∗∗p < 0.01, ∗ ∗ ∗p < 0.005, and ∗ ∗ ∗∗p < 0.001

confirm that the differences are statistically significant. Moreover, short-lived clones have
a larger median of change frequency than long-lived clones do, indicating that short-lived
clones were changed more often than long-lived clones did during their lifetime. One pos-
sible interpretation is that code fragments in short-lived clones are evolving while code
fragments in long-lived clones tend to be stable code. The results of the co-change consis-
tency and change frequency analysis suggest that although short-lived clones were changed
more often than long-lived clones, short-lived clones did not require co-change consistency
as much as long-lived clones did. These findings also support our intuition that avoiding
refactoring of short-lived clones will be beneficial for the clone management efforts.

Findings: 30-87% of the clones are short-lived clones. Moreover, only 9-19% of the
short-lived clones were consistently changed, while 25-37% of the long-lived clones were
consistently changed. (Observations 1 and 2)
Implication: Many clones lived in the studied systems for a short duration. However,
the maintenance effort that is associated with such short-lived clones is smaller than the
maintenance effort associated with long-lived clones.

4 Case Study Results

In this section, we present the results of our case study with respect to our two research
questions. For each research question, we present our (a) motivation, (b) approach, and (c)
results, then followed by our general conclusion.

4.1 RQ1: HowWell can we DetermineWhether an Introduced Clone
will be Short-lived Versus Long-lived?

4.1.1 (RQ1-a) Motivation

Our preliminary study shows that 30% to 87% of the clones lived for a short duration. Fur-
thermore, we also find that only 9-19% of the short-lived clones were consistently changed
throughout their lifetime, suggesting that the maintenance effort that is associated with such
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Table 8 The studied variables that remain after our correlation analysis (MC-1)

Category Variable Ant Camel Jackrabbit Maven Pig Tomcat

Clone SiblingCount • • • • • •
Avg CloneLineCount • • • • • •
Diff CloneLineCount • • • • • •
Avg TokenCount •
Diff TokenCount • • • • • •
Max DirectoryDistance • • • • • •
Max EditDistance • • • •
CloneType • • • • • •

Size Diff LineCount • • • • • •
Avg LineCodeCount • • • • • •
Diff LineCodeCount •
Diff LineCodeDeclCount • • • • •
Avg LineCodeExeCount • • •
Diff LineCodeExeCount •

Relative Size Avg RatioLineCount • • •
Diff RatioLineCount • •

Complexity Diff FanOut • • • •
Avg FanIn •
Diff FanIn • • • • •
Avg Cyclomatic • • • • • •
Diff Cyclomatic • • • •
Avg CyclomaticModified • • •
Diff Essential • • • • •
Avg MaxNesting • • • • •
Diff MaxNesting • •
Avg CommentLineCount • • • • • •
Diff CommentLineCount • • • •
Avg RatioCommentToCode • • •

Change Avg Churn •
Diff Churn • • •
Avg LineAdded • • • • • •
Diff LineDeleted • • • • •
Diff CommitCount • • • •

Human factor Avg DeveloperCount •
Diff DeveloperCount • • • • •
Avg MajorDeveloperCount •

Quality Diff FixCommitCount • • • • •
Diff NewFeatureCommitCount • • • • • •
Avg ImproveCommitCount • • • •
Diff ImproveCommitCount • • •

The bullet symbol (•) indicates that the variable is used in the model
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short-lived clones is relatively smaller than the effort for long-lived clones. Hence, immedi-
ate refactoring of short-lived clones may not be beneficial for the clone management efforts.
On the other hand, it is worthwhile to manage long-lived clones by either refactoring them or
tracking them using efficient bookkeeping techniques to reduce maintenance efforts. Hence,
to help practitioners efficiently manage these clones, we build a classifier to determine the
life expectancy of a newly-introduced clone.

4.1.2 (RQ1-b) Approach

We build a random forest classifier to determine whether a newly-introduced clone will be
a short-lived or a long-lived clone. Table 5 shows the number of short-lived and long-lived
clones. We then build a classifier as described in Section 2.3. Table 8 shows the variables
that we use to build our classifiers once we remove the highly-correlated variables.

To answer our RQ1, we measure the Area Under the receiver operating characteristic
Curve (AUC). The AUC is commonly used to evaluate the degree of discrimination achieved
by the classifier. The AUC captures an area below the curve of the true positive rate (i.e.,
the proportion of short-lived clones that are correctly classified) against false positive rate
(i.e., the proportion of long-lived clones that are misclassified). The value of AUC ranges
between 0 (worst) and 1 (best). An AUC greater than 0.5 indicates that our classifiers out-
perform a random classifier. We compute the AUC using the auc function of the pROC R
package (Robin et al. 2014). As described in our MC2 in Section 2.3, we run 1,000 iterations
of the out-of-sample bootstrap technique to validate our results. Hence, for each iteration,
we build a random forest classifier using a bootstrap sample. Then, we measure the AUC of
the bootstrap classifier. Below, we present and discuss the results of our classifiers.

4.1.3 (RQ1-c) Results

Observation 3: Our random forest classifiers achieve an average AUC of 0.63 to 0.92.
Table 9 shows that our random forest classifiers achieve an average AUC of 0.65, 0.80,
0.78, 0.73, 0.92, and 0.63 for Ant, Camel, Jackrabbit, Maven, Pig, and Tomcat, respectively.
These results indicate that our random forest classifiers can determine the life expectancy
of a newly-introduced clone, and perform better than a random guessing. The lower AUC
value of the Ant, Maven, and Tomcat classifiers may be in part due to the small number of
clones in these systems. In Ant, Maven, and Tomcat, there are 165, 74, and 182 clones that
were introduced. On the other hand, there are 1145, 647, and 3837 clones in Camel, Jackrab-
bit, and Pig, respectively. Table 9 also shows that our random forest classifiers achieve an
average true positive rate of 0.31(Maven)-0.98(Jackrabbit). This result indicates that 31%
to 98% of the short-lived clones can be identified by our random forest classifiers. On the
other hand, the false positive rate of 0.07(Pig)-0.89(Jackrabbit) indicates that 7% to 89%
of long-lived clones are misclassified as short-lived clones. The high false positive rate in

Table 9 An average of AUC, true positive rate, and false positive rate of our six classifiers

Ant Camel Jackrabbit Maven Pig Tomcat

AUC 0.65 0.80 0.78 0.73 0.92 0.63

True positive rate 0.83 0.95 0.98 0.31 0.70 0.49

False positive rate 0.65 0.58 0.89 0.12 0.07 0.32
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Jackrabbit may be in part due to the small number of long-lived clones, i.e., there is only
13% ( 86

647 ) of clones in Jackrabbit are long-lived clones.
Figure 6 shows the distributions of AUC estimates of our random forest classifiers when

using the out-of-sample bootstrap validation technique. The narrower the distribution of the
boxplot is, the more stable the performance that a classifier determines the life expectancy
of a newly-introduced clones on the testing data. The standard deviation of 0.01 to 0.10 for
our six classifiers suggests that our classifiers achieve stable performance in determining
the life expectancy of a newly-introduced clone.

Result: Our random forest classifiers achieve an average AUC of 0.63 to 0.92.
(Observation 3)
Implication: We can determine the life expectancy of a newly-introduced clone using our
clone, product, and process metrics.

4.2 RQ2: What are themost influential characteristics for determining
the life expectancy of an introduced clone?

4.2.1 (RQ2-a) Motivation

The results of our RQ1 show that we can use metrics of the clone, product, and process
dimensions to determine the life expectancy of a newly-introduced clone (i.e., short-lived
and long-lived). In addition to determining the life expectancy, it would be beneficial for
charting clone management plans to examine the influence of the characteristics of a clone
(i.e., clone metrics), the methods containing the clone at its introduction (i.e., product met-
rics), and the development activity of those methods before the clone is introduced (i.e.,
process metrics) on the life expectancy of a clone. Therefore, in this RQ2, we set out to
analyze our random forest classifiers to investigate the characteristics that influence the life
expectancy of a newly-introduced clone.

Fig. 6 AUC estimates of our random forest classifiers when using the out-of-sample bootstrap validation
technique
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4.2.2 (RQ2-b) Approach

To answer our RQ2, we measure (1) the influence of our metrics and (2) the direction of the
relationships between our metrics and the life expectancy of a newly-introduced clone. We
describe each measurement below.

The Influence of Metrics To evaluate the influence of each metric on our random forest
classifiers, we leverage an approach for estimating variable importance in the random clas-
sification technique (Breiman 2001; Liaw and Wiener 2002). The approach computes the
Mean Decrease Accuracy (MDA) for each metric. Broadly speaking, we evaluate the influ-
ence of each metric by permuting the corresponding value of one metric while keeping
the values of all other metrics unchanged. Then, we compute an MDA value, i.e., an aver-
age decrease in prediction accuracy of the classifier. The larger the MDA of the metric
with the permuted value is, the more influential the metric to the classifier is. To measure
the influence of metrics, we use the importance function of the R randomForest
package.

In each of the 1,000 iterations of the out-of-sample bootstrap technique, we measure
the MDA for each metric in the classifier that was built using the bootstrap sample. To
find a statistically distinct rank of our metrics, we perform a Scott-Knott test (Scott and
Knott 1974). The Scott-Knott test performs the hierarchical clustering to partition the set
of importance means of the metrics into statistically distinct groups. In this study, we use
the enhanced Scott-Knott ESD of Tantithamthavorn et al. (2017), i.e., a Scott-Knott test
that considers the magnitude of the difference (i.e., effect size) in addition to the statistical
significance between groups. To do so, we use the sk esd function of the ScottKnottESD
package (Tantithamthavorn 2017).

The Direction of the Relationships In addition to quantifying the importance of the met-
rics, we examine the direction of the relationship between each metric and the likelihood of
a newly-introduced clone being short-lived. To do so, we measure the correlation between
each metric and the response (i.e., 1 if a newly-introduced clone is short-lived, and 0 other-
wise) using a Spearman rank correlation (ρ). A positive Spearman rank correlation indicates
that the metric shares a positive relationship with the likelihood of a newly-introduced clone
being short-lived, whereas a negative correlation indicates an inverse relationship.

4.2.3 (RQ2-c) Results

Table 10 shows the average MDA for the 5 most influential characteristics and the direction
(i.e., the sign of ρ) of their relationships with the likelihood that a newly-introduced clone
being short-lived. We now discuss our results below.

Observation 4: Change metrics of the process dimension are highly influential in
determining the life expectancy of a newly-introduced clone. Table 10 shows that the
Avg LineAdded metric has the largest MDA value in the Jackrabbit, Maven, and Tom-
cat classifiers. This metric is also in the second rank of the most influential metrics
in the Camel and Pig classifiers. Table 10 also shows that the Avg LineAdded metric
shares a positive relationship with the likelihood that a newly-introduced clone will be
short-lived in Camel, Jackrabbit, Maven, and Tomcat. This result indicates that a newly-
introduced clone tends to be short-lived if a large fragment of code that was added
into the method containing that clone during the development cycle of the version in
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which that clone is introduced. For example, we observe that during the development
cycle of Jackrabbit v2.2.0, 160 lines of the testMatchesWildcardAll() method
were added into the GlobPatternTest.java file, and 24 lines of these 160 lines
are duplicate of each other. Then, during the development cycle of Jackrabbit v2.3.0,
the testMatchesWildcardAll() method was modified with 71 added lines and 28
deleted lines, and those 24 duplicate lines become dissimilar. Moreover, we observe that
in the Jackrabbit dataset, 78% of the methods that were added with more than 37 lines
during the version in which the clones are introduced (i.e., the methods of clones with
Avg LineAdded above the third quartile of the data) will be modified within the next two
versions. On the other hand, only 44% of the methods that were added with less than 14
lines during the version in which the clones are introduced (i.e., the methods of clones with
Avg LineAdded below the first quartile of the data) will be modified within the next two
versions. These findings suggest that in Camel, Jackrabbit, Maven, and Tomcat, immediate
refactoring of a clone may not be necessary if the clone is introduced in methods that were
changed with large churn since such methods will be soon modified and the clone is likely
to disappear.

We also observe that several change metrics are highly influential metrics in our clas-
sifiers. For instance, the Avg Churn metric is one of the 5 most influential metrics in Ant
and this metric shares an inverse relationship with the likelihood of an introduced clone
being short-lived. The Diff LineDeleted metric also shares an inverse relationship with the
likelihood in Pig. These findings also consistent with the results in our preliminary study,
i.e., the short-lived clones were changed frequently than long-lived clones did during the
their lifetime (see Figure 5), suggesting that code fragments in short-lived clones are still
evolving.

Observation 5: Size and complexity metrics of the product dimension are highly influ-
ential in determining the life expectancy of a newly-introduced clone. Table 10 shows
that the Avg LineCodeCount metric has the largest MDA value in the Camel classifier. This
Avg LineCodeCount metric is also one of the 5 most influential metrics in the Ant, Jackrab-
bit, Maven, Pig, and Tomcat classifiers. Table 10 also shows that the Avg LineCodeCount
metric shares a positive relationship with the likelihood that a newly-introduced clone will
be short-lived in Camel, Maven, Pig, and Tomcat. This result indicates that the larger
the methods that contain a clone, the more likely the clone will be short-lived. One pos-
sible interpretation for this result is that the source code in those large methods is still
evolving. We also find a Spearman rank correlation of 0.31-0.42 between the average size
of the methods containing a clone at the version in which the clone is introduced (i.e.,
Avg LineCodeCount) and the number of commits that are made to those methods during
the clone lifetime in Camel, Maven, and Tomcat. This finding suggests that a clone that is
introduced in large methods may live in the system for a short duration since those methods
are still actively evolving.

In addition to the Avg LineCodeCount metric, Table 10 shows that the Avg Cyclomatric
metric has the largest MDA value in the Maven and Tomcat classifiers. The
Avg Cyclomatric metric is also one of the 5 most influential metrics in the Ant,
Camel, Jackrabbit, and Pig classifiers. Table 10 shows that the Avg Cyclomatric met-
ric shares a positive relationship with the likelihood that a newly-introduced clone
will be short-lived in Ant, Camel, Maven, and Tomcat. We also check the correla-
tion between Avg LineCodeCount and Avg Cyclomatric metrics since they often correlate
with each other. However, we find that Avg Cyclomatric shares a weak to medium cor-
relation with Avg LineCodeCount (i.e., the |ρ| value ranges from 0.08 to 0.46). One
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possible explanation for the high influence of Avg Cyclomatric metric on our ran-
dom forest classifiers is that developers may start creating a new method by reusing
complex source code (Kim et al. 2004; Kapser and Godfrey 2006), then that new
method is modified afterward and the source code becomes dissimilar. For example, we
observe that during the development cycle of Tomcat v8.0.4, a developer copied the
actionInternal(ActionCode,Object)method in the Http11AprProcessor
class and paste it into the Http11Nio2Processor class. The average Cyclomatric com-
plexity of the actionInternal(ActionCode,Object)method in these two classes
(i.e., Avg Cyclomatric) is 57, which is above the third quartile of the data. Then, during the
development cycle of Tomcat v8.0.6, the actionInternal(ActionCode,Object)
method of the Http11Nio2Processor class was modified, and the action-
Internal(ActionCode,Object) method in the Http11Nio2Processor bec-
ome dissimilar from the original method in the Http11AprProcessor class. This find-
ing suggests that although developers reuse complex source code by copy-and-paste, the
duplicate code fragments are likely to become dissimilar within a short period of time.

Observation 6: Large clones are more likely to be short-lived than smaller clones.
Table 10 shows that the Avg CloneLineCount metric is one of the 5 most influential
metrics for our classifiers and it shares a positive relationship with the likelihood of a
newly-introduced clone being short-lived. One possible reason for this result is that a
large method was duplicated in order to make the system work with different versions of
third-party systems. For example, we observe that during the development cycle of Camel
2.14.0, 473 lines of the camel-test-spring3 component was duplicated from the
camel-test-spring component in order to make Camel work with a third-party sys-
tem named Spring versions 3 and 4, respectively. These duplicate components lived in
Camel for six versions. Then, the camel-test-spring3 component was removed since
Spring version 3 is no longer supported. This finding suggests that although a large clone is
introduced, it may not require a co-change consistency with its sibling. Then, such a large
clone is more likely to disappear within a short period of time.

Although we observe several influential metrics that can be used as an indicator of short-
lived clones, these observations may be limited Java systems. Lopes et al. (2017) shows
that Java has the smallest amount of code duplication. With other programming languages,
managing short-lived clones may be even more beneficial (as there may be more short-lived
clones to manage). Lopes et al. (2017) also point out that the characteristics of clones in
different language can be different. The software metrics that are associated with the life
expectancy of clones may also be different in the other systems. Our exact findings may not
be generalized to other systems, however our proposed methodology does generalize.

Findings: Change metrics (e.g., the number of added lines into the method containing a
clone before the release of the version in which the clone is introduced) of the process
dimension are highly influential in determining the likelihood of a newly-introduced clone
being short-lived. The size and complexity metrics in the product dimension and the size
of the clone are influential in determining the life expectancy of a newly-introduced clone.
(Observations 4-6)
Implication: These highly influential metrics can be used as indicators of the clone life
expectancy.
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5 RelatedWork

In order to discuss the related work on code clones, we group them into: (1) understanding
code clones and (2) clone management support.

5.1 Understanding Code Clones

Several studies investigate the presence of clones in large software systems (Ducasse et al.
1999; Kamiya et al. 2002; Lopes et al. 2017). For example, Lopes et al. (2017) find that Java
systems tend to contain a small amount of code duplication while JavaScript systems tend to
contain a large amount of code duplication. Koschke and Bazrafshan (2016) report that 80%
of the C and C++ projects have at least one Type-2 clone. On the other hand, in this paper, we
investigate a different phenomenon of clones, i.e., how long did clones survive in systems
and we find that many of the clones (30-80%) are short-lived clones (Observation 1).

Due to a sizable presence of clones in large software systems, several studies investi-
gate how clones are introduced. Kim et al. (2004) find that due to the limitations posed by
a programming language, developers often clone code (e.g., lack of multiple inheritance or
“enum” construct in Java leads to cloned code). Al-Ekram et al. (2005) report that there
is a large number of clones that are introduced accidentally, due to precise protocols that
have to be strictly followed for libraries or API interaction. Zhang et al. (2012) show that
33% to 48% of developers clone code due to technical reasons (e.g., following an exist-
ing solution, or due to complexity in reusing code), while 24% to 48% of developers clone
code due to organizational reasons (e.g., time limitation of code delivery, or code ownership
issues). Moreover, they find that 43% of developers introduce clones for learning and exper-
imentation purposes. Such clones are temporarily added into the source code then removed
afterwards. Saini et al. (2016) investigate whether cloned methods are different from non-
cloned methods in terms of quality (i.e., complexity, modularity, and documentation). They
report that 30% of the studied Maven projects contained cloned methods where the values of
quality metrics are significantly different from the non-cloned methods. Zibran et al. (2013)
also report that majority of the volatile clones in ArgoUML, JabRef, ZABBIX, Conky, and
ZedGraph were removed within the initial five to ten releases. Moreover, they find that the
size of clones is not associated with the clone removal practice. Saha et al. (2010) examine
clone genealogies and volatile clones. They find that on average, 4-75% of the clones in
ArgoUML, Linux Kernel, and iTextSharp disappear within five releases. Interestingly, they
find that the dead genealogies are removed in a very short period of time, i.e., there exists
short-lived clones which we further study in this paper. Yet, the factors that may relate to
the phenomenon of short-lived clones have not been investigated in the study of Saha et al.
(2010). Complementary to the findings of these prior studies, we find that clones in com-
plex methods and in methods that were changed in releases with large amount of churn are
more likely to be short-lived (Observations 4 and 5).

Since a clone is involved with multiple code fragments (i.e., clone siblings), Inconsistent
changes may occur when a developer is unaware of all the siblings of a clone. To better
understand clones, prior work studies inconsistent changes of clones (i.e., a code change
that is applied to a clone but not applied to all its siblings). Barbour et al. (2011) perform an
empirical study on the late propagation of changes, i.e., a situation that a clone undergoes
inconsistent co-changes then its siblings were resynchronized afterward, in the ArgoUML
and Ant open source systems. They find two types of late propagation that are the most
prone to faults, i.e., (1) no change propagation and (2) simultaneous propagation, i.e., clone
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siblings undergo an inconsistent change followed by a consistent change that modifies both
clone siblings. On the other hand, Göde and Koschke (2011) study the evolution of clones
in three open source systems. They find that 35% to 63% of clones are never co-changed.
In our preliminary study, we find that the consistent change pattern appears in short-lived
clones less often than in long-lived clones (Observation 2). Furthermore, Bettenburg et al.
(2012) find that only 1% to 3% of the inconsistent changes introduced post-release software
defects in Apache Mina, jEdit, and ArgoUML. Xie et al. (2014) examine how changes to
clone genealogies can affect the risk of having faults in clones. In particular, they focused at
clone migration (i.e., the location of a clone is changed in a version across which the clone
genealogy spans) and mutation (i.e., the type of a clone is changed in a version across which
the clone genealogy spans). On the other hand, our study examines a different aspect of
clone genealogy, i.e., the life expectancy of clones and the factors that may influence their
life expectancy.

5.2 CloneManagement Support

To prevent clones, prior work proposes approaches to identify the introduction of newly-
introduced clones into the source code or soon after clones are introduced into the source
code. Hou et al. (2009) proposed a proactive copy-and-paste support tool by observing all
possible development activities that can lead to a clone throughout its life cycle. Zhang
et al. (2013) proposed CCEvents (Code Cloning Events) that provides timely code cloning
notifications by continuous monitoring of the code base. However, such a proactive clone
management is considered as an ideal way to deal with clones (Roy et al. 2014). On the
other hand, researchers have developed tools to detect clones in large software systems. A
recent survey by Rattan et al. (2013) shows that over 70 clone detection tools are available
for various programming languages. Despite the success of detecting code clones, manag-
ing clones in large and evolving software systems remains challenging due to the sizable
presence of clones.

In clone management, refactoring all clones can be a task with substantial cost and effort.
Several studies have been performed to better understand characteristics of clones. Kim et al.
(2005) proposed a clone genealogy extractor to investigate clone evolution structurally and
semantically and find that refactoring may not be required for volatile clones (i.e., short-
lived clones). Moreover, they find that the proposed techniques in literature for refactoring
are ineffective for many long-lived clones where the clone siblings are consistently chang-
ing. Prior work identified several cloning patterns that are often used (Kapser and Godfrey
2006; 2008). From their observations, they suggest that refactoring may not be the best
solution for all cloning patterns. Consistent to prior work, our preliminary study shows that
many of clones lived in the systems for a short duration (Observation 1).

Prior work proposed various approaches to aid in clone management. Göde (2010) per-
formed a case study to understand the characteristics of clones that encourage developers
to refactor them out. They find that the number of developers who are involved in a system
shares an inverse relationship with the likelihood that clones will be removed. Dang et al.
(2012) developed a Microsoft Visual Studio 2012 plug-in to help developers inspect clones
within a development environment. Duala-Ekoko and Robillard (2007) proposed Clone-
Tracker for bookkeeping and monitoring clones in evolving software systems. Yun et al.
(2014) developed a tool to help developer identify the differences among clone siblings.
Wang and Godfrey (2014) propose an approach to recommend clones that should be refac-
tored based on the benefit, cost, and risks of refactoring existing clones. In this work, we
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built random forest classifiers which can determine the life expectancy of clones at the time
of clone introduction into a software system (Observation 3). Our classifiers can comple-
ment the tools of prior work to help practitioners better allocate their resource towards the
managing of long-lived clones.

6 Threats to Validity

In this section, we discuss the limitations and the threats to the validity of our findings.

6.1 Construct Validity

Threats to construct validity describe concerns regarding the validity of our case study
design and measurement. In this work, the studied clone genealogies are extracted from
iClones. Using different tools or techniques may produce different set of clone genealogies.
For example, gCad is one of the tools that can also extract a clone genealogy (Saha et al.
2011). However, the study of Saha et al. (2011) shows that both tools have similar perfor-
mance. Moreover, prior studies advocate that iClones has a better performance in detecting
clones compared to many other available clone detection tools (e.g., Deckard, NiCad) (Sva-
jlenko and Roy 2014). Moreover, the findings of our preliminary study arrive at similar
findings as the study of Kim et al. (2005) who use a different clone detection technique.
Nevertheless, validating the performance of iClones with other approaches to extract clone
genealogies may further strengthen our findings.

Parameter settings may play an important role in detecting clones of iClones. Ragkhitwet-
sagul et al. (2017) also find that the performance of clone detection tools can vary based
on the parameter settings and the data set. Hence, using an optimal parameter settings may
allow iClones to detect more clones with less false positive in the studied systems. However,
every technique and tool turned out to be extremely sensitive to its own con- figurations con-
sisting of several parameter settings and a similarity threshold. Moreover, for some tools the
optimal configurations turned out to be very different to the default configuration, showing
one cannot just reuse (default) configurations.

We use the the K-means clustering technique for partitioning our clones based on the
number versions in which a clone lives. Although our approach of using the NbClust func-
tion and the K-means clustering technique in this study is widely used to determine the most
appropriate number of clusters for a dataset of interest (Khanchouch et al. 2015; Wagstaff
et al. 2001), a different clustering technique may yield different results. Finally, we wish to
reiterate that there are many ways to define the concept of short-lived clones. Our work sim-
ply proposes one possible and reasonable definition. Nevertheless, we expect that practitioners
would customize this definition based on the peculiarities of their project and system.

The selection of classification techniques may have an impact on our results. Although we
use the random forest technique which is known to have a good overall accuracy, different
classification techniques may yield a better classification performance. Hence, we check for
this threat by building classifiers using the logistic regression and Support Vector Machine
(SVM) techniques in addition to the random forest technique.We find that our random forest
classifiers achieve a higher AUC value than the logistic regression and SVM classifiers. In
particular, the random forest classifiers achieve AUC values that are 12-38% higher than the
logistic regression classifiers and that are 2-16% higher than the SVM classifiers.

We assume that a clone and all its siblings lived in the systems for the same duration.
However, there are likely cases during the clone lifetime where a clone may change the
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number of its siblings. Then, the life expectancy of the siblings of the clone can be miscal-
culated. To mitigate this concern, we check for the number of siblings of a clone at the time
of its introduction and count how many times the number of sibling changes for each clone.
We find that 80% (Camel) to 93% (Maven) of the clones are introduced into the source code
with one sibling. Moreover, only 0% (Maven) to 7% (Camel) of the clones have a change
in the number of sibling across the lifetime of any of their clones. These results suggest that
once clones are injected into the source code, the clones tend to maintain a constant number
of siblings throughout their lifetime. Therefore, it is unlikely that a clone and its all siblings
lived in the systems for different duration.

We extract the released versions that are sequentially developed using the git log
command. It is possible that the Git history was modified (i.e., the reference of commits
were changed) by the git rebase command. However, in this work, we did not find any
changing commit references in the repositories of our studied systems when we use the git
reflog command to check for the rewriting of history. Nevertheless, future studies should
be aware of such a practice of rewriting history in the VCSs.

6.2 Internal Validity

The internal threat to validity is concerned with our ability to draw conclusions based on the
relation between the outcome and the set of software metrics that are used as independent
variables. Although we use a selected set of metrics from three different dimensions (i.e.,
clone, product, and process metrics), the addition of other metrics may improve the perfor-
mance of the classifier. Nonetheless, our random forest classifiers achieve an average AUC
0.63-0.92, which is better than random guessing. Moreover, our metrics (which are derived
and motivated from prior studies) help us understand the impact that prior findings can also
have on the life expectancy of a clone.

Our random forest classifiers can correctly determine the life expectancy of a clone (i.e.,
short-lived or long-lived) using a set of software metrics. Yet, the observed relationship
in our classifiers does not represent the causal effects of these metrics on the likelihood
of a clone to be short-lived or long-lived. The real causes of short-lived clones are hard
to determine using an automated clone detection technique. Therefore, future studies are
needed to verify the causal effect of our observations.

The life expectancy of a clone can be correlated to many factors other than the metrics
that we used. Clones might be short lived due to various reasons such as (1) the clone
is refactored, (2) the method containing a clone is removed, and (3) the difference in the
code changes applied on the siblings of a clone. We further check whether clones are short-
lived due to refactoring or not. We use a tool by Tsantalis et al. (2018) to identify commits
that refactor cloned methods during the development cycle of the version during which the
clone disappears. We first run the tool on all commits that impact methods containing short-
lived clones. Then, we collect the commits that are identified as refactoring changes by the
tool. Finally, for these commits, we manually examine each of them to check whether the
detected refactoring actually caused any short-lived clones to disappear. We find that 6%,
3%, 18%, 24%, and 7% of short-lived clones disappear due to refactoring in Ant, Camel,
Jackrabbit, Maven, Pig, and Tomcat, respectively. A relatively large proportion in Pig is in
part due to the refactoring of clones in test files, i.e., one commit made an abstract test class
and removed 71 clones in the test files.13

13The commit hash is a760df0b20425eef2820b2526baa617c81358ce4.
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Prior work noted the varying life expectancy of a clone (Saha et al. 2010; Zibran et al.
2013). We believe this is an interesting and intricate phenomenon that is worthy of a deeper
investigation. However, the notion of life expectancy can be further divided in order to
reveal other interesting phenomena around clones. For example, long-lived clones can be
classified into: (1) long-lived clones that change and (2) long-lived clones that never change
throughout their lifetime. Developers might be interested to refactor or monitor only the
long-lived clones that change. In particular, the changing long-lived clones that often co-
change with their siblings as such clones are the most costly to maintain.

6.3 External Validity

External threats are concerned with our ability to generalize our findings. The influence
of the studied metrics on our classifiers may vary across the project characteristics. In this
work, we make an observation for the category of software metrics that share the common
rank of the variable importance, i.e., the category of software metrics that appears as the 5
most influential metrics. However, some projects may not have the exact same metrics that
are highly influential. Nevertheless, we believe that these observations are still of value to
inform practitioners what kind of software metrics can be used as an indicator of short-lived
clones.

We focus our study on six long-lived and popular open source Java systems. The num-
ber of studied systems may limit the generalizability of our results. However, the goal of
this work is not to define a wide ranging theory that holds for every system. Instead, the
main contribution of our work is to show that in some systems, clones can be short-lived
and that we can determine such clones using machine learning classifiers. Our proposed
approach can be used and customized for each system based on the needs and expecta-
tions of the developers of these systems (for instance, the definition of short-lived will vary
between systems and projects). Nevertheless, we provide our replication package to aid
future work.14

7 Conclusion

To manage clones, refactoring is the state-of-the-art method to “fix” clones in order to
reduce the maintenance cost of a software system. We briefly highlight the key observations
for the studied systems (i.e., Ant, Camel, Jackrabbit, Maven, Pig, and Tomcat). However,
refactoring all clones may not be either productive (Kim et al. 2005). Our preliminary study
shows that:

– 30% to 87% of clones lived for a short duration when we use the K-mean clustering
technique to determine the life expectancy of clones (i.e., short-lived versus long-lived)
(Observation 1).

– 25% to 37% of the long-lived clones were consistently changed with their siblings,
while there is a smaller proportion of short-lived clones (9% to 19%) that were
consistently changed with their siblings (Observation 2).

Instead of managing and monitoring all clones, it will be beneficial for practitioners to
determine in advance whether a newly-introduced clone will be short-lived or long-lived to

14https://github.com/SAILResearch/clone-life-expectancy

https://github.com/SAILResearch/clone-life-expectancy


Empirical Software Engineering

plan the most effective use of the resources. Hence, we build random forest classifiers using
a set of selected software metrics in order to determine the life expectancy of a clone at
the version when the clone is introduced. Our case study results of the five studied systems
show that:

– Our random forest classifiers achieve an average AUC of 0.63 to 0.92, suggesting that
our classifiers can be used to determine the life expectancy of a newly-introduced clone.
(Observation 3)

– The number of lines that were added into the methods containing clones of the process
dimension, the size and complexity of the methods containing clones of the product
dimension, and the size of a newly-introduced clone share a positive relationship with
the likelihood of a newly-introduced being short-lived. These results suggest that imme-
diate refactoring of a newly-introduced clone with these characteristics may not be
necessary (Observations 4-6).

Our study sheds light into the life expectancy of clones. Practitioners can leverage our
classifiers to determine whether a newly-introduced clone will be short-lived or long-lived
to plan the most effective use of their resources in advance. Moreover, our work provides a
good insight of the software metrics that can be used as an indicator of the life expectancy
of a clone in a software system. Yet, the goal of this work is not to define a wide ranging
theory that holds for every system, every type of clone detection tools, and every definition
of “short-lived” clones. The findings may vary as one changes some of the experimental
settings (e.g., using different systems or clone detection tools). Instead, our key contribution
is to highlight that for some definition of “short-lived” clones, we can flag such clones
which are not worthwhile to immediately refactor. We expect the definition of “short-lived”
clones to vary from project to project based on the need of the project and expertise of the
team. Nevertheless, our approach would be still of value to teams in helping them reduce
and prioritize their clone management and maintenance efforts. To facilitate future work,
we provide online access to our patch data and example R scripts for model our construction
and analysis approaches.15
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Göde N, Koschke R (2011) Frequency and risks of changes to clones. In: Proceeding of the 33rd international

conference on software engineering (ICSE), pp 311–320
Harrell FE Jr (2002) Regression modeling strategies: with application to linear models, logistic regression,

and survival analysis, 1st edn. Springer, New York
Hassan AE (2008) Automated classification of change messages in open source projects. In: Proceedings of

the 23rd symposium on applied computing (SAC), pp 837–841
Hata H, Mizuno O, Kikuno T (2011) Historage: fine-grained version control system for java. In: Proceedings

of the 12th international workshop principles on software evolution and the 7th annual ERCIMworkshop
on software evolution (IWPSE-EVOL), pp 96–100

Hou D, Jablonski P, Jacob F (2009) CnP: towards an environment for the proactive management of copy-and-
paste programming. In: Proceedings of the 17th international conference on program comprehension
(ICPC), pp 238–242

Jiarpakdee J, Tantithamthavorn C, Hassan AE (2018) The impact of correlated metrics on defect models.
arXiv:1801.10271

Johnson JH (1993) Identifying redundancy in source code using fingerprints. In: Proceedings of the
conference of the centre for Advanced studies on collaborative research (CASCON), pp 171–183

Kamiya T, Kusumoto S, Inoue K (2002) CCFInder: a multilinguistic token-based code clone detection system
for large scale source code. Trans Softw Eng (TSE) 28(28):654–670

Kapser C, Godfrey MW (2006) “Cloning considered harmful” considered harmful. In: Proceedings of the
13th working conference on reverse engineering (WCRE), pp 19–28

Kapser CJ, Godfrey MW (2008) “Cloning considered harmful” considered harmful: Patterns of cloning in
software. Empir Softw Eng 13(6):645–692

Khanchouch I, Charrad M, LimamM (2015) An improved multi-SOM algorithm for determining the optimal
number of clusters. J Future Comput Commun 4(3):198–202

KimM, Bergman L, Lau T, Notkin D (2004) An ethnographic study of copy and paste programming practices
in OOPL. In: Proceedings of the international symposium of empirical software engineering (ISESE),
pp 83–92

Kim M, Sazawal V, Notkin D, Murphy G (2005) An empirical study of code clone genealogies. In: Proceed-
ings of the 10th joint meeting of the European software engineering conference and the international
symposium on the foundations of software engineering (ESEC/FSE), pp 187–196

https://www.stat.berkeley.edu/~breiman/RandomForests/
https://www.stat.berkeley.edu/~breiman/RandomForests/
http://arXiv.org/abs/1801.10271


Empirical Software Engineering

KimM, Zimmermann T, Nagappan N (2012) A field study of refactoring challenges and benefit. In: Proceed-
ings of the 20th international symposium on the foundations of software engineering (FSE), p Article
No. 50

Kim S, Whitehead J Jr, Zhang Y (2008) Classifying software changes: clean or buggy? Trans Softw Eng
(TSE) 34(2):181–196

Koschke R, Bazrafshan S (2016) Software-clone rates in open-source programs written in C or C++. In:
Proceedings of the 23rd international conference on software analysis, evolution, and reengineering
(SANER), pp 1–7

Krzanowski WJ, Lai YT (1988) A criterion for determining the number of groups in a data set using sum-of-
squares clustering. J Biometrics 44(1):23–34

Lague B, Proulx D, Merlo EM, Mayrand J, Hudepohl J (1997) Assessing the benefits of incorporating func-
tion clone detection in a development process. In: Proceedings international conference on software
maintenance (ICSM), pp 314–321

Li Z, Lu S,Myagmar S, Zhou Y (2006) CP- miner: finding copy-paste and related bugs in large-scale software
code. Trans Softw Eng 32(3):176–192

Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22
Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek J (2017) DéjàVu: A map of
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