
Studying the Prevalence of Exception Handling
Anti-Patterns

Guilherme Bicalho de Pádua
Department of Computer Science and Software Engineering

Concordia University - Montreal, QC, Canada
Email: g bicalh@encs.concordia.ca

Weiyi Shang
Department of Computer Science and Software Engineering

Concordia University - Montreal, QC, Canada
Email: shang@encs.concordia.ca

Abstract—Modern programming languages, such as Java and
C#, typically provide features that handle exceptions. These
features separate error-handling code from regular source code
and are proven to enhance the practice of software reliability,
comprehension, and maintenance. Having acknowledged the
advantages of exception handling features, the misuse of them
can still cause catastrophic software failures, such as application
crash. Prior studies suggested anti-patterns of exception han-
dling; while little knowledge was shared about the prevalence of
these anti-patterns. In this paper, we investigate the prevalence
of exception-handling anti-patterns. We collected a thorough list
of exception anti-patterns from 16 open-source Java and C#
libraries and applications using an automated exception flow
analysis tool. We found that although exception handling anti-
patterns widely exist in all of our subjects, only a few anti-
patterns (e.g. Unhandled Exceptions, Catch Generic, Unreachable
Handler, Over-catch, and Destructive Wrapping) can be commonly
identified. On the other hand, we find that the prevalence of anti-
patterns illustrates differences between C# and Java. Our results
call for further in-depth analyses on the exception handling
practices across different languages.

I. INTRODUCTION

Exception handling features, such as throw statements and
try-catch-finally blocks, are widely used in modern program-
ming languages. These features separate error-handling code
from regular code and are proven to enhance the practice
of software reliability, comprehension, and maintenance [1],
[2]. On the other hand, the misuse of exception handling
features can cause catastrophic failures [3]. A prior study
shows that two-thirds of the studied system crashes were due
to exceptions [4]. Barbosa et al. [5] illustrate the importance of
the quality of exception handling code. Similar findings were
also discussed in a prior survey [6].

To improve the quality of exception handling, prior research
has reported a slew of anti-patterns on exception handling.
These anti-patterns describe the problematic exception han-
dling source code that may exist in the entire life cycle of
exceptions, i.e., the propagation of the exception, the flow of
the exception and the handling of the exception. Although
these anti-patterns are discussed in prior research [7], the
prevalence of these anti-patterns is not studied in-depth.

In this paper, we investigate the prevalence of exception
handling anti-patterns in 16 open-source Java and C# applica-
tions and libraries. We find that all of the studied subjects have
exception handling anti-patterns detected in their source code.

Whereas only five anti-patterns (Unhandled Exceptions, Catch
Generic, Unreachable Handler, Over-catch, and Destructive
Wrapping) are prevalently observed, i.e., in median detected
in over 20% of the catch blocks or throws statements in the
subject systems. We observe that these anti-patterns are often
associated with multiple flows of exception, leading to bigger
impact and more challenging resolution of such anti-patterns.
By further investigation, we find that programming languages
(e.g., Java or C#) may have a relationship to the existence of
anti-patterns, while we do not observe such relationship with
the type of projects (e.g., application or library).

Our results imply that, despite the prior research on ex-
ception handling, there is still lacking a deep understanding
of the practice of exception handling. More in-depth analyses
are needed to ensure the quality and usefulness of exception
handling in practice.

The rest of the paper is organized as follows: Section II
presents the background of exception handling features and
their anti-patterns. Section III presents our case study of
exception handling anti-patterns. Finally, Section IV concludes
the paper and discusses potential future research directions
based on our early researching findings.

II. BACKGROUND AND RELATED WORK

A. Anti-patterns of exception handling

There are different actions and their respective programming
mechanisms involved in exception handling: 1) defining an
exception using a type declaration, 2) raising an exception
using a throw statement, 3) propagating an exception in a
method by not handling it or using a throws statement and
4) handling an exception using a catch block. According
to the implementation of the above actions, there can be
different anti-patterns. In this paper, we focus on the actions of
propagation and handling of exceptions from the perspective
of the explicit mechanisms (i.e. try-catch and throws). In
particular, there exist three categories of related anti-patterns
(see Table I): 1.Flow anti-patterns are in the intersection of
propagation (i.e. methods in the try block and its thrown
exceptions) and handling actions (i.e. the catch block con-
tent) [3], [8], [9], [7]. 2.Handler anti-patterns are only in
the handling actions and are not related to the propagated
exceptions [2], [3], [8], [9], [10]. 3.Throws anti-patterns are



related to propagation issues, and they are specifically related
to throws statement [9], [10].

B. Empirical studies on exception handling
Prior research studied exception handling based on source

code and issue tracking systems. Cabral and Marques [11]
studied exception handling practices from 32 projects in both
Java and .Net without considering the flow of exceptions or
anti-patterns. Sena et al. [7] investigated 656 Java libraries for
exceptions flow characteristics, handler actions, and handler
strategies. Their study considered a smaller set of anti-patterns
that were only evaluated manually in the sampled code of a
sample of libraries. Sinha et al. [9] leveraged exception flow
analyses to study the existence of 11 anti-patterns in four Java
systems, without studying their prevalence. To understand the
impact of anti-patterns, prior studies [2], [6], [5] classified
exception-handling related bugs by mining software issue
tracking. This paper is the first work to study the prevalence
of exception handling anti-patterns extensively.

III. CASE STUDY
A. Subject projects

Table II depicts the studied subject projects. All subject
projects are open source projects obtained from GitHub. We
selected subject projects (see Table II) by considering their
number of stargazers and contributors.

B. Detecting exception handling anti-patterns
We detected all the exception handling anti-patterns pre-

sented in Table I. In particular, we leverage Eclipse JDT
and .NET Compiler Platform (“Roslyn”) to parse the Java
and C# source code, respectively. To precisely detect these
anti-patterns, we not only parse the try-catch blocks but also
analyze the flow of the exceptions. Our exception flow analysis
collects the possible exceptions from four different sources:
documentation in the code syntax, documentation for third
party and system libraries, explicit throw statements, and
binding information of exceptions (not available for C#).1

C. The prevalence of exception handling anti-patterns
Our goal is to put in perspective the existence of exception

handling anti-patterns. We collected source code information
from a diverse set of subject projects in different programming
languages. The knowledge of the prevalence of anti-patterns
would help developers improve exception handling practices.

In total, we detected 17 exception handling anti-patterns
from the perspective of the catch block, i.e., whether each
catch block contains an anti-pattern. We also detected two
exception handling anti-patterns from the perspective of the
throws statements. Throws statements are used to indicate the
propagation of exceptions explicitly. Since this feature is not
available in C#, we only detect throws level anti-patterns in
the Java projects.
All anti-patterns are detected at least once in subject
projects, while only a small amount of anti-patterns are

1Source code, binaries and Tableau visualizations with raw data are
available online at https://guipadua.github.io/icpc2017.

prevalent. As shown in Tables III and IV, all anti-patterns
exist in our subject projects. In fact, the least found anti-
pattern, Incomplete Implementation, can still be found in
six projects. This finding implies that prior research indeed
captures anti-patterns that correspond to the smell in practice.
The existence of all anti-patterns shows the lack of awareness
to the importance of quality exception handling code.

On the other hand, we find that only a small number of anti-
patterns are prevalent. In particular, only five anti-patterns, i.e.,
Unhandled Exceptions, Catch Generic, Unreachable Handler,
Over-catch and Destructive Wrapping, are detected in over
20% (40.8%, 31.9%, 28.0%, 24.6%, 22.3%, respectively) of
the catch blocks or throws statements in median. On the other
hand, all other anti-patterns are rather rare in the source code.
Yuan et al. [3] claimed that three exception handling anti-
patterns (Over-catch and Abort, Catch and Do Nothing and
Incomplete Implementation) could cause catastrophic system
failure, while we find that all these three anti-patterns are
rarely detected. There are only 12 Incomplete Implementation
anti-pattern instances detected in all the studied projects.
Another surprising finding is that the most widely detected
anti-pattern is Unhandled exceptions. This anti-pattern has
been known as the common root-cause of system crashes [2],
and prior research has proposed techniques to help identify all
possible exceptions [12], [9]. However, our results imply that
developers still overlook the importance of this anti-pattern
and it may lead to potential crash at system run-time.
D. The amount of exception flows

The anti-patterns can be related to a single, multiple, or no
exception flow at all (e.g. Unreachable Handler). We aim to
study the number of flows affected by those anti-patterns. The
larger the quantity of flows, the larger the impact of those
anti-patterns.
Multiple flows are impacted by each anti-pattern. Table V
depicts the quantity of affected flows for the flow-based anti-
patterns. For Unhandled Exceptions and Unreachable Handler,
83% (C#) and 67% (Java) of the affected catch blocks have
multiple impacted (uncaught) flows, with a maximum of 37
flows. For Over-catch and Over-catch and Abort, 84% (C#)
and 60% (Java) of the affected catch blocks have multiple
impacted (over-caught) flows, with a maximum of 43 flows.
E. Discussion

In this subsection, we aim to understand the existence of
anti-patterns from different perspectives.
Programming languages. The prevalence of exception han-
dling anti-patterns can vary between Java and C# (see Ta-
ble III). Figure 1 presents examples of anti-patterns that have
a large difference in prevalence between Java and C#. The
box plots represent the distribution of percentages of catch
blocks that contain anti-patterns in each project. For example,
the median value of Destructive Wrapping in Java (31.6%) is
almost 18 times bigger than in C# (1.8%). Another example is
Catch Generic, in which the minimum value (45.0%, median:
74.3%) in C# is 33% higher than the maximum value (33.8%,
median: 17.6%) in Java. The reason of such differences can



TABLE I
LIST OF THE DETECTED ANTI-PATTERNS.

Group Anti-pattern Short Description Group Anti-pattern Short Description

Flow

Over-catch The handler catches multiple different lower-level exceptions [8], [7].

Handler

Incomplete Implementation The handler only contains TODO or FIXME comments [3].

Over-catch and Abort Besides over-catching, the handler aborts the system [3]. Log and Return Null Besides being a dummy handler, the handler return null [10].

Unhandled Exceptions The handler does not catch all possible exceptions [9]. Log and Throw The handler logs some information and propagates the exception [10].

Unreachable Handler The handler does not catch any possible exception [9]. Multi-Line Log The handler divides log information into multiple log messages [10].

Handler

Catch and Do Nothing The handler is empty [3], [2], [9]. Nested Try The handler and its try block is enclosed in another try block [2].

Catch and Return Null The handler contains return null [10], [2]. Relying on getCause() The handler contains a call to getCause() [10].

Catch Generic The handler catches a generic exception type (e.g. Exception) [10], [9], [8]. Throw within Finally The handler is followed by a finally block that propagates exceptions [10].

Destructive Wrapping The handler propagates the exception as a new exception [10]

Throws

Throws Generic The throws propagates a generic exception type (e.g. Exception) [10].

Dummy Handler The handler only display or log some information [2]. Throws Kitchen Sink The throws propagates multiple exceptions [10].

Ignoring InterruptedException The handler catches InterruptedException and ignores it [10].

TABLE II
OVERVIEW OF THE SELECTED SUBJECT PROJECTS.

Project Release Version Type # Throws # Catch # Method (K) KLOC

C#

Glimpse 1.8.6 App. - 57 1 31

Google API v1.15.0 Lib. - 30 16 628

OpenRA release-20160508 App. - 143 7 125

ShareX v11.1.0 App. - 341 7 177

SharpDevelop 5.0.0 App. - 1060 41 923

SignalR 2.2.1 Lib. - 105 2 38

Umbraco-CMS release-7.5.0 App. - 615 15 362

Java

Apache ANT rel/1.9.7 App. 1,622 1139 11 158

Eclipse JDT Core I20160803-2000 Lib. 1,686 1655 25 383

Elasticsearch v2.4.0 App. 1,782 408 12 108

Guava v19.0 Lib. 509 317 10 79

Hadoop Common rel/release-2.6.4 Lib. 4,495 1144 14 147

Hadoop HDFS rel/release-2.6.4 App. 1,538 586 4 44

Hadoop MapReduce rel/release-2.6.4 App. 1,221 367 6 57

Hadoop YARN rel/release-2.6.4 Lib. 4,146 1529 29 257

Spring Framework v4.3.2.RELEASE Lib. 5,856 2301 30 349

Total 22,855 9,446 141 1,582

0.00% 10.00% 20.00% 30.00% 40.00%
Value

C# App
Lib

Java App
Lib

(a) Destructive Wrapping

0.00% 20.00% 40.00% 60.00% 80.00%
Value

C# App
Lib

Java App
Lib

(b) Catch Generic
Fig. 1. Examples of differences between Java and C# and between appli-
cations and libraries. Differences between Java and C# are significant based
on Wilcoxon Rank Sum test (p-value <0.05). Based on the same test, all
differences between applications and libraries are not statistically significant.

be the nature of different exception handling strategies in
C# and Java. Java forces that certain kinds of exception
(i.e. Checked exceptions) are handled or explicitly propagated
before compilation while C# does not. To support that, popular
Java IDEs suggest the exceptions that should be handled. For
example, if a developer adds a function call to read a file, the
IDE will propose that the non-generic exception IOException
should be handled or propagated.
Types of projects. Library and application projects may
have different exception handling practice, where, intuitively,
libraries would propagate exceptions and applications handle
exceptions. We examine whether such difference impacts
the prevalence of exception handling anti-patterns. Figure 1
presents examples of anti-patterns that have a substantial dif-

ference in prevalence between libraries and applications. The
differences are not statistically significant (p-value >0.05). We
can see that the variance of each distribution is high, which
implies that the results may be due to the nature of each project
instead of the project type, i.e., library or application.
Generic and non-generic catch blocks. Generic exceptions
is an anti-pattern by itself, while some other anti-patterns, e.g.,
Dummy Handler, may be related to Generic catch blocks. We
identified that there exists a significant difference (Wilcoxon
Rank Sum test, p-value <0.05) between generic and non-
generic catch regarding anti-patterns. Generic catch is a sign
of developers’ lack of knowledge on the possible exception(s),
which explains the reason why developer may not know how
to handle the exception but only log the exception instead
(Dummy Handler). On the other hand, since generic catch may
cover all possible exceptions from a try block, the chance of
having Unhandled exception anti-pattern is smaller. Yet, such
exception handling may mix critical issues with minor issues
by only superficial handling strategies (like Dummy Handler),
which may cause catastrophic failures of the software.
Runtime and non-runtime exceptions. Software is expected
to recover more from non-runtime exceptions than runtime
exceptions [13]. We compare anti-patterns detected with run-
time and non-runtime exceptions in non-generic catch blocks,
since generic exceptions are typically non-runtime. We find
significant differences (Wilcoxon Rank Sum test, p-value
<0.05) for Destructive Wrapping, Incomplete Implementation
and Throw within Finally, only in Java projects. In all of those,
the percentage of affected catch blocks is lower for runtime
exceptions. Java does not force developers to handle runtime
exceptions. Therefore, they are handled only if developers
well understand the runtime exceptions, leading to fewer anti-
patterns.

F. Threats to validity

External validity. Our findings may not generalize for other
software, other programming languages or commercial soft-
ware. Internal validity. Our study may not cover all possible
anti-patterns. We selected anti-patterns based on the current
research in the subject. Some anti-patterns that either 1) are
out of the scope of exception handling (yet still mentioned in
related work), 2) require heuristic to detect or 3) are not well
explained in details in related work, are not included. Missing
necessary documentation may also impact the identification
of anti-patterns. Construct validity. The results in our study



TABLE III
PERCENTAGE OF AFFECTED CATCH PER PROJECT PER ANTI-PATTERN.

Project

Flow Handler

# Catch
Over- Over-catch Unhandled Unreachable Catch Catch Catch Destructive Dummy Ignoring Incomplete Log Log Multi-Line Nested Relying Throw
catch and Exceptions Handler and Do and Return Generic Wrapping Handler Interrupted Implementation and Return and Log Try on within

Abort Nothing Null Exception Null Throw getCause() Finally

C#

Glimpse 33.33% 0.00% 12.28% 63.16% 7.02% 7.02% 75.44% 1.75% 21.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.51% 0.00% 57

Google API 40.00% 0.00% 43.33% 60.00% 10.00% 0.00% 56.67% 20.00% 10.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.67% 0.00% 30

OpenRA 23.08% 0.70% 14.69% 58.74% 23.08% 19.58% 76.22% 1.40% 12.59% 0.00% 0.00% 14.69% 0.00% 3.50% 0.00% 0.00% 0.00% 143

ShareX 65.10% 0.00% 8.50% 24.63% 11.14% 1.47% 90.62% 1.47% 30.79% 0.00% 0.00% 0.59% 0.29% 1.76% 1.17% 0.29% 1.47% 341

Sharp D. 32.17% 0.09% 40.38% 45.75% 18.30% 10.00% 45.75% 4.15% 13.40% 0.00% 0.38% 3.30% 0.09% 11.79% 8.96% 0.66% 0.66% 1,060

SignalR 17.14% 0.95% 10.48% 74.29% 6.67% 9.52% 80.00% 0.00% 13.33% 0.00% 0.00% 3.81% 0.95% 4.76% 0.00% 0.00% 0.95% 105

Umbraco 43.09% 0.00% 16.10% 36.10% 10.57% 6.67% 84.23% 4.72% 17.07% 0.00% 0.16% 1.46% 0.16% 1.79% 1.46% 1.14% 0.00% 615

Java

Apache ANT 31.26% 0.09% 69.80% 6.94% 11.76% 3.34% 17.56% 37.14% 5.09% 2.81% 0.26% 0.53% 0.26% 1.67% 5.79% 0.35% 14.05% 1,139

E. JDT Core 11.72% 0.24% 69.06% 11.78% 31.24% 11.18% 3.14% 4.71% 7.25% 1.09% 0.06% 0.48% 0.06% 0.06% 2.36% 0.18% 8.22% 1,655

Elasticsearch 24.26% 0.00% 24.51% 24.51% 10.54% 4.17% 33.82% 31.62% 8.09% 3.43% 0.00% 0.98% 0.00% 1.23% 4.41% 0.98% 3.19% 408

Guava 19.87% 0.00% 27.44% 37.22% 4.73% 10.09% 26.50% 24.61% 5.05% 7.89% 0.32% 0.95% 0.00% 0.32% 0.95% 6.94% 10.73% 317

H. Common 25.00% 0.44% 53.41% 16.26% 4.90% 3.85% 18.97% 29.55% 9.70% 4.98% 0.00% 1.66% 0.44% 1.14% 4.02% 1.49% 18.71% 1,144

H. HDFS 12.46% 0.17% 41.30% 30.55% 3.24% 1.37% 2.22% 34.13% 5.29% 11.43% 0.00% 1.02% 0.68% 1.88% 1.19% 0.85% 4.44% 586

H. MapReduce 15.80% 0.00% 49.32% 16.08% 3.00% 7.08% 13.35% 41.69% 8.17% 14.99% 0.00% 3.54% 0.54% 1.09% 3.27% 0.82% 30.25% 367

H. YARN 15.57% 0.39% 43.75% 20.01% 2.55% 6.80% 12.69% 30.80% 10.01% 4.91% 0.13% 1.70% 0.26% 1.64% 2.62% 1.05% 35.71% 1,529

Spring 28.55% 0.00% 48.46% 25.51% 7.95% 3.00% 29.99% 40.03% 7.82% 0.74% 0.00% 1.56% 0.04% 0.91% 2.17% 1.78% 4.82% 2,301

TABLE IV
PERCENTAGE OF AFFECTED THROWS PER PROJECT PER ANTI-PATTERN.

Apache E. JDT Elastic Guava Hadoop Hadoop Hadoop Hadoop Spring
ANT Core search Common HDFS MapReduce YARN

Throws Kitchen Sink 6.54% 2.19% 0.34% 11.79% 10.23% 10.86% 3.77% 9.62% 8.21%

Throws Generic 1.85% 1.42% 7.13% 7.86% 3.07% 0.59% 4.50% 9.19% 14.05%

# Throws 1,622 1,686 1,782 509 4,495 1,538 1,221 4,146 5,856

TABLE V
DISTRIBUTION OF AFFECTED CATCH BLOCKS ACCORDING TO FLOW

ANTI-PATTERNS AND THE QUANTITY OF AFFECTED FLOWS.
Quantity of Affected Flows

Affected Anti-patterns Language 1 2 3 4 5 >5

Unhandled Exceptions C# 17% 18% 13% 11% 7% 34%

and Unreachable Handler Java 33% 16% 11% 8% 5% 28%

Over-catch and C# 16% 16% 12% 10% 6% 31%

Over-catch and Abort Java 40% 17% 12% 7% 6% 19%

are based on catch blocks and throws statements. There may
be other ways to measure the exception handling anti-patterns
and their prevalence.

IV. CONCLUSION

In this paper, we perform an empirical study using auto-
matically detected 19 exception handling anti-patterns in 16
open source projects. We find that although all studied projects
contain exception handling anti-patterns and every anti-pattern
is detected in the source code, there exist only a small number
of anti-patterns that are prevalent. These anti-patterns are
often associated with multiple exception flows, making them
more impactful and more difficult to address. With further
investigation on the prevalence of anti-patterns, we find that
the choice of programming languages may have a relationship
to the introduction of anti-patterns. Our results suggest the
need of in-depth study on exception handling practices. In
particular, more user studies are required to further understand
the choices of exception handling code and the introduction
of exception handling anti-patterns. More importantly, future
work should consider the impact of such exception handling

code to assist in better resolution of exception handling anti-
patterns and issues. REFERENCES

[1] P. M. Melliar-Smith and B. Randell, “Software Reliability: The Role
of Programmed Exception Handling,” Reliable Computer Systems, pp.
143–153, 1985.

[2] C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh, and I.-L. Wu, “Exception handling
refactorings: Directed by goals and driven by bug fixing,” Journal of
Systems and Software, vol. 82, no. 2, pp. 333–345, feb 2009.

[3] D. Yuan, Y. Luo, and X. Zhuang, “Simple Testing Can Prevent Most
Critical Failures,” 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), 2014.

[4] F. Cristian, “Exception Handling and Software Fault Tolerance,” Com-
puters, IEEE Transactions on, vol. C-31, no. 6, pp. 531–540, 1982.

[5] E. A. Barbosa, A. Garcia, and S. D. J. Barbosa, “Categorizing Faults
in Exception Handling: A Study of Open Source Projects,” in 2014
Brazilian Symposium on Software Engineering, no. September. IEEE,
sep 2014, pp. 11–20.

[6] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” Journal of Systems and
Software, vol. 106, pp. 82–101, aug 2015.

[7] D. Sena, R. Coelho, U. Kulesza, and R. Bonifácio, “Understanding the
exception handling strategies of Java libraries,” in Proceedings of the
13th International Workshop on Mining Software Repositories - MSR
’16, 2016, pp. 212–222.

[8] R. Miller and A. Tripathi, “Issues with exception handling in object-
oriented systems,” ECOOP’97 Object-Oriented Programming, vol.
1241, pp. 85–103, 1997.

[9] S. Sinha, A. Orso, and M. Harrold, “Automated support for development,
maintenance, and testing in the presence of implicit flow control,” in
Proceedings. 26th International Conference on Software Engineering,
no. September, 2004, pp. 336–345.

[10] T. McCune, “Exception handling antipatterns.” [Online]. Available:
https://community.oracle.com/docs/DOC-983543, accessed 2017-02-28

[11] B. Cabral and P. Marques, “Exception Handling: A Field Study in Java
and .NET,” in ECOOP 2007 Object-Oriented Programming, vol. 4609,
Berlin, Heidelberg, 2007, pp. 151–175.

[12] M. P. Robillard and G. C. Murphy, “Analyzing Exception Flow in Java
Programs,” in Proceedings of the 7th European Software Engineering
Conference Held Jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 1999, pp. 322–
337.

[13] “Chapter 11. Exceptions - Java SE Specification.” [Online].
Available: http://docs.oracle.com/javase/specs/jls/se8/html/jls-11.html,
accessed 2017-03-29


