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Improving State-of-the-art Compression
Techniques for Log Management Tools

Kundi Yao, Mohammed Sayagh, Weiyi Shang, and Ahmed E. Hassan

Abstract—Log data records important runtime information about the running of a software system for different purposes including
performance assurance, capacity planning, and anomaly detection. Log management tools such as ELK Stack and Splunk are widely
adopted to manage and leverage log data in order to assist DevOps in real-time log analytics and decision making. To enable fast
queries and to save storage space, such tools split log data into small blocks (e.g., 16KB), then index and compress each block
separately. Previous log compression studies focus on improving the compression of either large-sized log files or log streams, without
considering improving the compression of small log blocks (the actual compression need by modern log management tools). The
evaluation of four state-of-the-art compression approaches (e.g., Logzip, a variation of Logzip by pre-extracting log templates named
Logzip-E, LogArchive and Cowic) indicates that these approaches do not perform well on small log blocks. In fact, the compressed
blocks that are preprocessed using Logzip, Logzip-E, LogArchive or Cowic are even larger (on median 1.3 times, 1.5 times, 0.2 times
or 6.6 times) than the compressed blocks without any preprocessing. Hence, we propose an approach named LogBlock to preprocess
small log blocks before compressing them with a general compressor such as gzip, deflate and lz4, which are widely adopted by log
management tools. LogBlock reduces the repetitiveness of logs by preprocessing the log headers and rearranging the log content
leading to an improved compression ratio for a log file. Our evaluation on 16 log files shows that, for 16KB to 128KB block sizes, the
compressed blocks by LogBlock are on median 5% to 21% smaller than the same compressed blocks without preprocessing
(outperforming the state-of-the-art compression approaches). LogBlock achieves both a higher compression ratio (a median of 1.7 to
8.4 times, 1.9 to 10.0 times, 1.3 to 1.9 times and 6.2 to 11.4 times) and a faster compression speed (a median of 30.8 to 49.7 times,
42.6 to 53.8 times, 4.5 to 6.0 times and 2.5 to 4.0 times) than Logzip, Logzip-E, LogArchive and Cowic. LogBlock can help improve the
storage efficiency of log management tools.

Index Terms—Software log compression, Software logging, Log management tools.
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1 INTRODUCTION

Log data is generated by logging statements that developers
place into the source code to record run-time informa-
tion [1, 2]. Such information enables software operators
to understand the field operations of a software system.
Prior research leverages log data to support performance
assurance [3, 4], capacity planning [5, 6], anomaly detec-
tion [7, 8] and system failures diagnosis [9]. Such log data is
commonly preserved for a long period of time for historical
analysis and for legal compliance [10].

Large-scale software systems generate a large amount of
log data every day. Such overwhelming sizes of log data
make it difficult to analyze. Therefore, log management
tools are used to process, archive and analyze log data.
The usage of such tools to streamline and optimize DevOps
and quality assurance in the field is showcased in prior
research [11, 12, 13].

Due to its massive size, log data is often compressed
for storage. Compared to traditional log archiving that com-
presses the whole log file, log management tools split log
data into small blocks to achieve higher performance in pro-
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cessing and querying log messages. Log management tools
aggregate log information to support log retention, iterative
log analysis and visualization. For example, popular log
management tools such as ELK Stack [14] and Splunk [15]
split log data into blocks of size 16KB and 128KB (by
default) respectively [16, 17] (as shown in the examples of
Table 1). Log blocks are then indexed before being separately
compressed. Finally, for querying information from logs,
log management tools decompress only the appropriate
blocks. However, the cost of log management services is
enormous. For example, Splunk charges $1,800 per year
for each ingested Gigabyte of log data [18]. Therefore, an
efficient approach to storing small log blocks is essential for
reducing the cost of log management and storage.

TABLE 1: The block sizes that are used by popular log
management tools.

Log Management Tool Block size
ELK Stack [14] [19] 16KB/48KB/60KB

Splunk [15] 128KB
Sumo Logic [20] 64KB
Syslog Ng [21] 64KB

Nginx [22] 64KB
Rsyslog [23] 8KB

DataDog [24] 256KB
Sentry [25] 1000 characters

* The sources of the information about the block
sizes are attached in the replication package1.
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While log management tools compress small log blocks,
prior research efforts on log compression focus on the
compression of large files. General compressors, such as
gzip, lz4 and deflate, are designed for compressing general
data, which have different characteristics [26]. On top of
these general compressors, several approaches have been
proposed to preprocess log files in a way that they can better
benefit from existing general compressors [27, 28, 29, 30, 31].

Recently, Liu et al. [27] proposed Logzip, a log prepro-
cessing approach that regroups similar log lines into groups,
with each group summarized by a single log line template,
and each line is summarized using its associated template
and the varying parameters that distinguish the line from
the rest of the lines in its group. Similar approaches, such
as LogArchive [32] that groups similar log data into clusters
or Cowic [31] that compresses log data by columns with
pre-trained compression models, are also designed by the
intuition of identifying repetitive information from large log
data. To date, no studies have ever investigated improving
the compression of small blocks of log data (even though
this is the actual compression need by modern log man-
agement tools).

Our preliminary evaluation (c.f. Section 4) shows that
state-of-the-art log compression approaches (i.e., Logzip, a
variation of Logzip by pre-extracting log templates named
Logzip-E, LogArchive and Cowic) do not perform well on
small-sized log blocks. The actual compression ratios of
these approaches are even worse than general compressors
like gzip. On median, the sizes of the compressed blocks
that are preprocessed using Logzip, Logzip-E, LogArchive and
Cowic are 2.3 times, 2.5 times, 1.2 times and 7.6 times of
the sizes of the same blocks when they are compressed
without any preprocessing. Such compression approaches
usually look for patterns in log data. However, small log
blocks often do not have repetitive patterns so the pattern
matching approaches will end up introducing overhead to
the compressed data. Therefore, to improve the compression
of small log blocks (the actual need by modern log manage-
ment tools), we propose a preprocessing approach named
LogBlock based on the characteristics of small log blocks.

LogBlock consists of two main steps which are comple-
mented with four preprocessing heuristics: Extract identical
tokens, Delta encoding for numbers, Build dictionary for repetitive
tokens and Extract a common prefix string. Each of the heuris-
tics aims to replace long or repetitive tokens in log data with
shorter representations. We compare LogBlock against gen-
eral compressors and the state-of-the-art log preprocessing
approaches. Our evaluation results show that for the sizes
of log blocks that are typically used by log management
tools (16KB used by ELK Stack and 128KB used by Splunk),
LogBlock improves the compression ratio of small blocks by
a median of 5%, 9%, 15% and 21% for the blocks whose
sizes are 16KB, 32KB, 64KB, and 128KB, respectively. Logzip
does not outperform our approach at any block whose size
is lower than 256KB. Examining LogBlock’s preprocessing
heuristics, we observe that they increase the compression

1. Our replication package is available at: https://
queensuca-my.sharepoint.com/:f:/g/personal/18ky10_queensu_
ca/EqAMNUbIxBRMqFoo9qHytvgBAenixikDvSqRXxo0O8EjrA?e=
53Eg0U. We will open the access to this package on a GitHub repository
when the paper is accepted.

ratio as much as 6.4%, 48.5%, 22.2% and 9.7% for specific log
files. Practitioners can optimize the performance of LogBlock
by customizing the preprocessing heuristics according to
their specific log files.

In summary, our paper makes the following contribu-
tions:
? We highlight that current log compression efforts do

not satisfy the needs (aka the usage scenarios) of log
management tools.

? We propose and evaluate a new approach (LogBlock)
that outperforms general compressors and stat-of-the-
art log compression approaches.

Paper structure: Section 2 summarizes the background
and discusses the related work on improving log com-
pression and retrieving information from compressed logs.
Section 3 introduces the setup of the experiments in this
paper. Section 4 evaluates the compression performance of
the state-of-the-art log compression approaches on small log
blocks. Section 5 explains the design of LogBlock. Section 6
evaluates the compression performance of LogBlock on small
log blocks. Section 7 compares the compression performance
achieved by the state-of-the-art log compression approaches
and LogBlock on different block sizes. Section 8 discusses
the threats to the validity of our findings. Finally, Section 9
concludes the paper.

2 BACKGROUND AND RELATED WORK

Log lines are printed under pre-defined logging configu-
rations. Thus, many log lines share a similar structure. As
shown in Figure 1, each log line consists of fixed headers
(date, time and log level) and a free-form component (log
content) that is defined by developers.

2015-07-29  19:22:36,642 WARN Send worker leaving thread

2015-07-29  19:22:36,659 INFO   Received connection request /10.10.34.11:46173

2015-07-29  19:22:36,659 WARN Interrupted while waiting for message on queue

2015-07-29  19:22:40,083 INFO   Received connection request /10.10.34.12:48280

2015-07-29  19:22:43,421 WARN Send worker leaving thread

2015-07-29  19:22:43,536 WARN Connection broken for id 188978561024, my id = 1, error = 

2015-07-29  19:22:46,680 WARN Interrupted while waiting for message on queue

2015-07-29  19:22:50,025 WARN Interrupted while waiting for message on queue

Date Time Log Level Log Content

Fig. 1: A log snippet.

To support queries on log files, modern log manage-
ment tools splits log files into small blocks then compress
them. For instance, large-sized log files are split into small
blocks, indexed, then compressed separately by a general
compressor such as gzip. Thus, when querying a piece of
log information, log management tools, like ELK Stack [14]
and Splunk [15], only decompress the corresponding log
blocks according to the indexes. For example, ELK Stack
splits data into 16KB/60KB [33] (or 16KB/48KB [19]) blocks
then compresses each block separately, while Splunk divides
data into 128KB blocks.

Otten et al. [28] introduced the following common usage
scenarios of log compression where small log blocks are
needed:

• Collecting log data to a central location for analysis: only
selected and compressed log data in small blocks are
collected to minimize bandwidth usages.
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• Monitoring in real-time: small log blocks are compressed
to minimize data transfer time in order to support real-
time monitoring.

• Storing the log data compressed and later decompressing it
for analysis: log data is stored and compressed in small
blocks for fast decompression before analysis, without
the need for decompressing the entire log data.

In these scenarios, small log blocks are used for perfor-
mance reasons. Compared to traditional log compression
approaches, log management tools improve query efficiency
by splitting a log file into blocks and only decompressing
the needed blocks on demand. Thus, improving the com-
pression ratio of small log blocks is critical.

Unfortunately, prior research on compressing log
files [27, 28, 29, 30] does not study compressor performance
in the context of the above common log compression scenar-
ios (where the compression performance of small log blocks
is critical).

2.1 Compressing large log files
While several approaches [27, 28, 29, 30, 32, 34, 35, 36] are
proposed to preprocess and compress log files, they focus on
large files whereas modern log management tools compress
small blocks. We summarize the prior log compression
approaches into two categories, namely log transformation
and text replacement.

2.1.1 Log Transformation.
A first line of research considers transforming existing log
lines in a way to improve the size of the compressed logs.
This line of research leverages two main approaches for such
a transformation, namely log clustering and log transposing.
Log Clustering. Christensen et al. [32] cluster log lines into
different buckets according to their textual similarity, then
compress each bucket separately. Feng et al. [30] extract and
compress the dynamic variants of the log lines within each
bucket to further improve the compression ratio of a log file.
Log Transposing. Mell et al. [35] consider the log data as a
matrix where each log line is a row in the matrix, then the
matrix is transposed so that similar tokens are placed closer
to each other. This preprocessing approach achieves a 21%
improvement in the compression ratio of a log file.

2.1.2 Text Replacement.
Prior research replaces long and repetitive text in log files
with shorter representations. In particular, different text re-
placement approaches are used based on the local repetitive-
ness (delta encoding) and the global repetitiveness (token
and template replacement) of log data.
Delta Encoding. Balakrishnan et al. [29] propose a log
preprocessing approach that encodes the different charac-
ters between adjacent lines. Their approach improves the
compression ratio of supercomputer logs by 28.3%.
Token Replacement. Otten et al. [28] transform all times-
tamps and IP addresses in a log file to binary representa-
tions, then replace the static tokens in log files (i.e., static
words and phrases) with shorter representations. Their ap-
proach improves the compression ratio by 32%. Skibiński et
al. [34] extract the differences between adjacent log lines, use
a dictionary to replace global repetitive tokens (e.g., dates,

time, IP address). Their approach achieves 19.8% to 36.6%
improvement in the compression ratio.
Template Replacement. Log templates are the static infor-
mation of log content. Such templates are usually highly
repetitive in log files. For instance, Hätönen et al. [36]
find that the most frequent patterns (i.e., log templates) in
firewall or application logs cover more than 95.8% of the log
lines. Recently, Liu et al. [27] propose a log preprocessing ap-
proach (i.e., Logzip) that extracts log templates from log data
and replaces each template with a shorter representation
(e.g., a unique ID). Logzip improves the compression ratio
by 1.3 to 15.1 times compared to the compression without
any preprocessing. Logzip also outperforms two state-of-
the-art log compression approaches (i.e., Cowic [31] and
LogArchive [32]) in terms of compression ratio.

Our paper is different from the aforementioned research
works since we focus on small blocks (the most common
need for log management tools) rather than large log files.

2.2 Querying from compressed log data
Querying compressed log data is resource-intensive since
the compressed data needs to be decompressed [31]. There-
fore, to facilitate queries and to reduce unnecessary resource
usage (for decompression), several approaches [31, 37, 38]
have been proposed for querying compressed log data. Surti
et al. [37] propose LittleLog, a general-purpose approach
that supports log compression and querying. This approach
is implemented based on Succinct [39], a distributed data
store that enables queries on compressed data without
storing indexes. Their query speed is 97% faster than grep
occurrence count and 65% faster than grep line count. How-
ever, their compression ratio is much lower than general
compressors like gzip and bzip2. Aceto et al. [38] introduce
a lossy compression approach that transfers log lines into
numeric matrices. Their algorithm has a compression ratio
that is close to bzip2. Recently, Lin et al. [31] propose an
approach (i.e., Cowic) that separates log lines into columns
(e.g. timestamps, IP addresses) and processes each column
with different models, each of which is trained from a
fraction of log dataset. Cowic has a similar compression ratio
as gzip, but it is 3.6 to 71.1 times faster in query time when
data is in memory, and 30.4% to 246.8% faster when data is
on disk.

The aforementioned approaches focus on the fast query-
ing of logs while having a similar or lower compression
ratio than general compressors. We propose an approach
that achieves a higher compression ratio on small blocks
of log data while supporting the querying and analytics
mechanisms of state-of-the-art log management tools.

2.3 Software logging in binary format
Developers usually record logs through off-the-shelf logging
libraries such as Log4J2 [40] and LogBack [41]. A major cost
for using such libraries for logging in practice is the per-
formance overhead that relates to the execution time and re-
source consumption [42]. To minimize the logging overhead,
Yang et al. [43] propose NanoLog, a logging system with
low latency and high throughput. NanoLog extracts static
logging information at compilation phase and only logs
dynamic information in a binary format at runtime to save
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TABLE 2: Log files that are obtained from a publicly avail-
able benchmark (i.e., Loghub) [45].

System
Type

System Name Description Log Size

Standalone
applica-
tion

Proxifier Log data collected from Proxifier client 2.5MB

Server Apache Error logs collected from Apache web server 4.9MB
applications OpenSSH Log data collected from OpenSSH server 71MB

Mobile Andriod Log data collected from an instrumented Android device 184MB
systems HealthApp Log data from the Health app on Android device 23MB

Operating Windows An aggregated collection of Windows event logs 27GB
systems Linux System log collected from Linux system 2.3MB

Mac System log collected from Mac OS 17MB

Super- BGL A publicly available dataset from BlueGene/L supercom-
puter system

709MB

computers HPC Log data collected from high performance computing
cluster

32MB

Thunderbird Log data collected from the Thunderbird supercomputer
system

30GB

HDFS Log data generated from Hadoop Distributed File System 1.5GB
Hadoop Log data from Hadoop Mapreduce with deployment

failures
47MB

Distributed Spark An aggregated collection of Spark system logs 2.8GB
systems Zookeeper An aggregated collection of Zookeeper system logs 10MB

OpenStack Log data from OpenStack VMs with both normal and
abnormal logs

59MB

I/O bandwidth. The static and binary information is later on
recombined to generate human-readable log messages post
execution. Marron et al. [44] introduce Log++, a logging sys-
tem for JavaScript applications that copies semantic logging
formats then compresses and converts dynamic information
in an in-memory buffer during runtime.

The aforementioned approaches operate on the source
code to reduce the logging overhead. Although such ap-
proaches are shown to be effective, log management tools
process logs for applications for which they do not have ac-
cess to the source code nor the ability to directly manipulate
it. On the other hand, our paper proposes a log compression
approach that can be directly adopted by log management
tools without the need of manipulating the source code of
the application that generated the logs.

3 EXPERIMENTAL SETUP

In this section, we present the setup of our experiments,
including the selection of our studied log data and com-
pressors, together with our experimental environment.

3.1 Selected log files and compressors
Our evaluation considers 16 log files from a recent bench-
mark for log parsing [46]. These files range in size from
2.5MB to 30GB. The selected log files cover different types of
systems, including distributed systems, mobile systems, op-
erating systems, supercomputers, standalone applications,
and server applications, as detailed in Table 2. In addi-
tion, we use the gzip, lz4 and deflate compressors, which
are widely adopted by log management tools [16, 17], to
evaluate the compression of log files.

3.2 Experimental environment
We run our experiments on an Ubuntu v18.04 server with a
4-core Intel Core i5-4690 @ 3.50GHz CPU and 32GB memory.
This server is mounted with an SSD storage of 1.8TB. We
adopt the mentioned compressors in Section 3.1 to evalu-
ate the compression performance of each file in terms of
compression ratio and compression speed. We disable other

running processes on the server to avoid any influences due
to resource contention. We capture the preprocessing and
compression times for each file.

4 PRELIMINARY STUDY: THE PERFORMANCE
OF THE STATE-OF-THE-ART COMPRESSION
APPROACHES ON SMALL LOG BLOCKS.
Motivation: In this section, we investigate the performance
of Logzip, LogArchive and Cowic on the compression of small-
sized log blocks. Prior log compression approaches such as
Logzip [27], LogArchive [32] and Cowic [31] preprocess log
files before compressing them. Such approaches improve
the compression of large-sized log files or log streams. How-
ever, the performance of these approaches on compressing
small log blocks, which are used by log management tools,
has never been examined. Logzip compresses log files by
extracting repetitive templates and variables from the log
content and replacing them with indexes. LogArchive is a
bucketing based compression approach, which groups simi-
lar log data into buckets according to their content similarity
then compresses each bucket with a general compressor.
Finally, Cowic is a model-based compression approach for
streaming logs that compresses log entries using pre-trained
models. These three aforementioned approaches depend
heavily on the global repetitiveness of log data, while such
high repetitiveness may not occur in small log blocks. In
addition, we evaluate the compression performance of a
variation of Logzip, which we refer to as Logzip-E. Logzip-
E first extracts log templates from the original log file before
it is split into small blocks. Then, those templates are used
when compressing the blocks of log files. In other words,
we introduce an extra template extraction step in Logzip that
captures the global repetitiveness from the original log file.
The extracted templates are then stored and reused in the
future. The intuition behind Logzip-E is that the extracted
templates from small log blocks may not be accurate due
to their small sizes. The inaccurate templates may lead to a
low performance of Logzip, which can be further improved if
one has accurate templates from the logs. Therefore, Logzip-
E leverages the whole log file to extract templates, which are
later directly applied on each small log block.
Approach: To evaluate the performance of Logzip, Logzip-
E, LogArchive and Cowic on small blocks of a log file, we
followed the approach shown in Figure 3. Logzip-E first
extracts templates from the original log file then applies the
templates to match log lines in every log block. The added
template extraction step on the original log file ensures
that we are leveraging the global repetitiveness in a file.
The templates and their corresponding indexes are then
stored in a separate file for future usages. Before we begin
to preprocess log blocks, the template file is loaded for
template matching in each log block.

For each size (16KB, 32KB, 64KB, and 128KB), we ran-
domly extract 100 log blocks of the same size from each log
file. We compare compressing each of the extracted blocks
without any preprocessing against compressing the same
block by preprocessing it using Logzip, Logzip-E, LogArchive
or Cowic. When evaluating the performance of Logzip-E, we
do not include the parsing time and the pre-loading time
of the global templates since one may only need those
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Fig. 2: The relative compression ratio (in log-scale) between compression without and with preprocessing using Logzip,
Logzip-E, LogArchive or Cowic. Each box shows the distribution of relative compression ratio of 100 blocks from the same
log file using a specific block size (16KB, 32KB, 64KB and 128KB) and compressor (gzip, lz4 and deflate). The horizontal
red line at zero (log2 1) is the baseline that indicates the relative compression ratio without preprocessing. The actual
compression performance values can be found in Table 5 and Table 6.

steps once for each type of log files. Cowic pre-trains a
compression model with a portion of the log data [31]. When
evaluating the performance of Cowic, we use the whole
log block to train the compression model to avoid biased
results. We use the relative compression ratio for such a
comparison, as shown in Figure 3. The relative compression
ratio is the compression ratio of the preprocessed block
over the compression ratio of the original block. A relative
compression ratio higher than one indicates that the log
preprocessing approach has a better compression ratio than
compression without any preprocessing. Furthermore, the
higher the relative compression ratio for a log block is, the
better that block benefits from the preprocessing step. We
also perform a Wilcoxon rank-sum test [47] (↵ = 0.05) to ex-
amine whether the compression performance is statistically

different when leveraging the global and local repetitiveness
using Logzip-E and Logzip, respectively.

Our evaluation considers sizes as well as the compres-
sors that are used by modern log management tools. From
our initial investigation, we find that log management tools
usually set the block sizes between 16KB to 128KB. In
addition, dictionary-based compressors (e.g., lz4, deflate, and
gzip) are adopted by these tools. Therefore, we evaluate
the compression performance of the log preprocessing ap-
proaches using three different compressors: lz4, deflate, and
gzip on log blocks of size: 16KB, 32KB, 64KB, and 128KB.

To further understand the performance of log prepro-
cessing approaches on log blocks, we perform a Spearman
correlation analysis to investigate the association between
the characteristics of log blocks (i.e., number of templates
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Fig. 3: The followed steps for evaluating the compression
performance among Logzip, Logzip-E, LogArchive and Cowic
preprocessing and without preprocessing. The steps marked
in dashed lines are the extra steps needed in Logzip-E.

and number of parameters) and their relative compression
ratio. We use Spearman correlation because it does not have
a presumption on the normality of the studied data [48]. We
use four measures to describe the characteristics of each log
block, which are: the unique number of log templates, the
unique number of parameters (the parameters that are used
to distinguish a log line from the rest of similar lines that are
represented by the same template), the size of log templates,
and the size of parameters.
Result: Preprocessing the blocks of most log files using
Logzip makes the compressed size larger than compress-
ing the same blocks without any preprocessing. As shown
in Figure 2, the relative compression ratios of both Logzip
and Logzip-E are always below the baseline (compression
without any preprocessing) on all the 16KB log blocks. The
compression ratios of Logzip and Logzip-E are 4% to 98%
(with a median of 34%) and 4% to 99% (with a median
of 31%) of the compression ratio without preprocessing on
all 16KB log blocks. In addition, the compression ratios of
LogArchive and Cowic are 72% to 78% and 12% to 15% of the
compression ratio of directly using the general compressors
without preprocessing. In the prior work, the compression
ratio achieved by Logzip using gzip on five large-sized log
files ranged from 160% to 1,510% of the compression ratio
without preprocessing [27]. The compression ratio achieved
by LogArchive is improved by 30% on an Apache web
log compared to the compression ratio without preprocess-
ing [32]. Cowic has a comparable compression ratio (up to
4%) compared to gzip [31]. However, all of the compression
improvement in these approaches are achieved with large
log files. Therefore, the aforementioned results indicate that
although state-of-the-art log compression approaches im-
prove the compression ratio on large-sized log files, they
do not perform well on small-sized log blocks (the actual
compression use cases of modern log management tools).
Despite leveraging the global repetitiveness, Logzip-E

does not have a better compression performance for small

log blocks over Logzip. Logzip-E was expected to outper-
form Logzip in both compression ratio and compression
speed since the template extraction step is skipped and the
template data is stored externally, as shown in Figure 3.
However, we observe from Figure 2 that Logzip and Logzip-
E have a similar compression ratio across the different log
files. Furthermore, we do not observe statistically significant
differences between the compression performance of Logzip
and Logzip-E. The result indicates that template extraction
in small logs consumes only a negligible amount of time.
We examine the results and find that although the global
template from Logzip-E may contain more accurate log
templates (e.g., accurately identifying a parameter in logs)
than the local template to a log block that is obtained
using Logzip, such advantage does not result in a better
compression ratio. For example, the template specific pa-
rameters will be further split and stored in different files,
introducing additional overhead. Therefore, we consider the
original Logzip as a more optimal approach than Logzip-E
in compressing small log blocks. In particular, even with
a similar compression ratio and speed, Logzip-E requires
additional cost due to the extraction of log templates from
large-scale log data. More importantly, due to the ever-
changing nature of logs in large software systems [49],
these pre-extracted log templates are very likely to become
outdated and would require additional effort to maintain.
On the other hand, such additional cost and effort do not
demonstrate promising benefits in compression ratio and
speed over Logzip in our results.
The unique number of templates of a log block has a
moderate association with the relative compression ratio
using Logzip-E. We observe a negative moderate correlation
(-0.51, -0.43 and -0.56 correlation using gzip, lz4 and deflate
compressors) between the number of unique log templates
on a log block and its relative compression ratio achieved by
Logzip-E. This implies that blocks with a higher compression
ratio may be associated with a low number of unique
log templates. That indicates the existence of redundant
data, which can be summarized in a few templates. For
example, the HPC log blocks gain the highest compression
ratio increment among all log blocks. By manually checking
the HPC log blocks with the highest relative compression
ratio, we observe that there exists no log content (only with
the non-content parts, such as timestamps and log levels)
inside those log blocks. For the other log files, the log blocks
with the highest compression ratio contain fewer templates
than those with the lowest compression ratio. For instance,
the 32KB Windows log blocks with the highest relative
compression ratio contain 6, 5 and 10 templates, while the
blocks with the lowest relative compression ratio contain 23,
21 and 18 templates. Similarly, we observe that the majority
of the log blocks are classified into a large number of buckets
due to their insimilarity.

In Logzip, the extracted parameters will be stored in dif-
ferent files according to the associated log template, location
of the parameter and the location of a token inside the pa-
rameter. Thus, for complex log blocks with diverse log tem-
plates, the parameter information is saved into hundreds of
separate files, while the similarities within these files are not
leveraged by general compressors. Hence, Logzip does not
perform well on small log blocks. Similarly, for LogArchive,
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because of the low content repetitiveness in small log blocks,
the majority of the logs are split into more than five buckets.
Hence, LogArchive does not perform well when the general
compressors are used to compress multiple buckets with
small sizes. The need for additional storage for bucketing
indexes also introduces overhead to the compressed data.
Finally, for Cowic, the models learned from the small size of
log blocks may not perform well to predict the rest of the
logs, leading to a compression ratio that is worse than the
general compressors. In short, none of the studied existing
approaches perform well due to the characteristics of the
small log blocks.

On the other hand, we observe that the size of the
non-content part of a log block takes a median of 44.7%
and as much as 85.6% of the total size of our studied log
blocks. In prior log preprocessing studies [29, 31], log data
is treated as separate columns. However, these prior studies
are either applicable to log data with specific formats [29] or
focus on the compression of line-level log data [31], without
considering improving the compression of block-level log
data. Inspired by prior work, we propose a column-based
preprocessing approach that focuses on the non-content part
of log blocks.

: Summary

The state-of-the-art log compression approaches do
not perform well on small log blocks (the actual
compression scenarios in use by log management
tools). Leveraging the global repetitiveness may fur-
ther impair the compression performance of small
log blocks. This suggests the need for a more efficient
approach for preprocessing small blocks of log files.

5 LogBlock: OUR LOG PREPROCESSING AP-
PROACH

From our preliminary study, we observe that Logzip does not
perform well on compressing small log blocks. Hence, we
propose a log preprocessing approach named LogBlock that
specifically leverages the characteristics of small log blocks.

Unlike large-sized log files that have globally repetitive
log content (log templates occur repeatedly at different
locations throughout the whole file), the content part of
small log blocks is less repetitive. Introducing additional
pattern extraction or bucketing steps for less repetitive data
would introduce additional overhead (e.g., computing and
storage for the indexes) to the compressed result. Therefore,
we choose to focus only on preprocessing the repetitiveness
within the non-content part of logs.

From an initial investigation, we observe that within
the non-content part of log lines, there exist four types of
repetitiveness, which are identical tokens, similar numeric
tokens, repetitive tokens and tokens with a common prefix
string. Thus, our preprocessing approach intends to reduce
the redundant information from these four types of repeti-
tiveness.

• Identical tokens (T1): Since the log lines in small log
blocks are generated in a short period of time (e.g.,
within the same minute), columns (e.g., Year, Day,

Hour) are likely to contain the same information within
small log blocks. For example, the Year column in
Figure 6 has an identical token 2005.

• Similar numeric tokens (T2): Since logs in small log
blocks are printed in a short period of time, there
exist columns (e.g., timestamp) with non-identical but
similar tokens in a small log block. For example, as
shown in Figure 6, the tokens in the TimeStamp column
have a maximum of a single-digit difference.

• Repetitive tokens (T3): We observe columns in log
blocks that consist of repeating tokens. For instance,
the Log level component in Figure 6 contains only three
repeated unique tokens (INFO, WARN and ERROR).

• Tokens with a common prefix string (T4): Since logs
in small log blocks are printed in a short period of
time, we observe columns that contain tokens with the
same prefix string. For example, the Module column in
Figure 6 consists module names from the same parent
module (org.apache.hadoop.).

Step1: Split log

lines into

columns

Step2:

Transpose log

table

Step3: Apply log

preprocessing

heuristics

A log block
Preprocessed

log block

LogBlock preprocessing steps

Fig. 4: The log preprocessing steps of LogBlock.

Step1: Split log lines into columns. In prior research [27,
31], the different headers (e.g., Month, Day, Hour) of log
data are split into columns using a pre-defined log format.
The log format can be either manually defined by devel-
opers or automatically extracted from log configuration
files. For example, in Log4J2 [40], the format of a logging
statement can be specified as %d{yyyy-MM-dd}-%p-%c{1}-
%m%n. By parsing such a format, we can automatically
identify the column as Year, Month, Day, Log level, Logger
and Log Content. Similar tokens are grouped by columns to
facilitate further processing. In this step, for each log block,
we also split the log lines into columns. Figure 4 shows a
real example of five columns (Year, Timestamp, Log level,
Module, and Log content).

There may exist log lines that cannot be matched by a
pre-defined log format. For instance, a log line starts with
the content of a run-time exception, as shown in the example
of Figure 6 (line 8 and line 9). We concatenate the adjacent
unmatched lines together then append them to the content
of their preceding log line (line 7). Thus, each log block can
be regarded as a table where rows are formed by different
log lines.

Step2: Transpose log table. Data encoding algorithms
like LZ77 are based on a fix-sized sliding window. When
encoding a new token, such algorithms will search for this
token using a sliding window then refer the new token
to its previous occurrence. Transposing will gather similar
tokens which can be easily referable by the sliding window
encoder. Afterward, we transpose the table so that similar
information from the same column would be put closer to
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each other, as shown in Figure 5. The transposing approach
was used in the prior work to improve the compression of
certain kinds of log files (i.e., Windows security logs, HTTP
server log data) [35].

Line Year Log 
level Log content

1 2015 WARN Send worker leaving thread
2 2015 INFO Received connection request 1

3 2015 WARN Send worker leaving thread

4 2015 WARN Interrupted while waiting 
message

5 2015 INFO Received connection request 3

Line 1 2 3 4 5
Year 2015 2015 2015 2015 2015

Log level WARN INFO WARN WARN INFO

Log 
content

Send 
worker 
leaving 
thread

Received 
connecti
on 
request 1

Send 
worker 
leaving 
thread

Interrupte
d while 
waiting 
message

Received 
connection 
request 3

Transpose

Fig. 5: An example of transposing log table.

Step3: Apply preprocessing heuristics. We further im-
prove the compression ratio by applying four additional
preprocessing heuristics that we apply to the transposed log
table, as shown in Figure 6. Each type of repetitiveness will
be automatically detected and reduced through its corre-
sponding heuristic. Each of the preprocessing is associated
with an aforementioned type of repetitiveness in small log
blocks. We provide an illustrative example in Figure 6 to
show the result of applying these different heuristics during
the preprocessing of log blocks. We summarize our four
heuristics as follows:

• Extract identical tokens (H1): For the columns with
identical tokens (T1), we extract the identical tokens
from these columns and count the occurrences of these
tokens. For example, as shown in Figure 6, the columns
with identical tokens (e.g., 7 lines with 2005) are repre-
sented by the identical token (2005) and its occurrence
count (7). Although T1 and T3 in theory are similar, H1
is implemented without encoding to save the overhead
for dictionary and indexing.

• Delta encoding for numbers (H2): For those numeric
columns with similar tokens (T2), we adopt delta en-
coding by referring to the delta between the current
token and its prior token. The first token in each column
is retained. Thus, a token with long text is replaced with
a shorter representation.

• Build dictionary for repetitive tokens (H3): For the
columns that contain few repetitive tokens (T3), we
build a dictionary for each identical token and replace
the tokens with a shorter representation (corresponding
index from the dictionary), as shown in Figure 6.

• Extract a common prefix string (H4): For the columns
with a common prefix string (T4), we extract the prefix
string and only store the remaining part of each token.
In particular, we extract the common prefix string from
the list by comparing characters from the beginning
until different characters are observed. As shown in
Figure 6, the common prefix string org.apache.hadoop
is extracted from the column. This heuristic removes
redundant information from each token to make it
shorter.

All of the processed columns are output to a single file.
Finally, we compress each preprocessed log block using one
of the studied compressors (i.e., gzip, lz4 and deflate).

Modern log management tools usually process log data
by splitting log data or log streams into small blocks and in-
dexing them for future queries. When a query is performed,
the blocks that are identified by their indexes will be de-
compressed. LogBlock is based on lossless compression and
would not impact the way that each small block of log data
is indexed and searched. The compression process remains
a blackbox step for log querying. Therefore, LogBlock will
not influence the existing log query process.

6 EVALUATION

In this section, we first evaluate the performance of LogBlock
on compressing small blocks of log files compared to
Logzip, Logzip-E, LogArchive and Cowic (the state-of-the-art
approaches for compressing log files). Then we investigate
the impact of each preprocessing heuristic of LogBlock on the
compression of small log blocks.

We use the same experimental setup that we used to
evaluate Logzip, Logzip-E, LogArchive and Cowic (Preliminary
Study), which is summarized in Figure 3. We compare the
compression ratio between the blocks without any pre-
processing and the same blocks preprocessed by LogBlock.
Then for each of the preprocessing heuristic, we exclude
one heuristic from LogBlock at a time and compare the
compression performance between preprocessing with a
heuristic excluded and preprocessing with all heuristics, as
shown in Figure 7. Then we use the Wilcoxon rank-sum
test [47] (↵ = 0.05) to examine whether the compression
performance is statistically different before and after exclud-
ing each heuristic. The Wilcoxon rank-sum test is used to
determine whether two distributions of compression perfor-
mance metrics are statistically different from each other. We
choose the Wilcoxon rank-sum test because it does not have
any assumption on the distribution of the data. Note that
we use the same blocks as the preliminary study with sizes
of 16KB, 32KB, 64KB, 128KB. The compression performance
is evaluated using deflate, gzip and lz4 compressors.

6.1 Evaluate the compression performance of
LogBlock.
Our approach improves the compression ratio by a median
of 5%, 9%, 15% and 21% for 16KB, 32KB, 64KB, and
128KB blocks in comparison to compression without any
preprocessing. As shown in Figure 8, the compression ratios
are improved with the LogBlock preprocessing. The ELK
Stack log management tool splits logs into 16KB blocks then
compresses them using lz4. In particular, LogBlock improves
the relative compression ratio by a median of 6% when logs
are split into 16KB blocks then compressed using lz4 (default
setting of ELK Stack). On the other hand, Logzip, Logzip-E,
LogArchive and Cowic have a median of 67% to 38%, 71% to
44%, 28% to 10% and 88% to 85% lower relative compression
ratio than their compression without preprocessing on the
studied block sizes. To sum up, LogBlock has 1.7 to 8.4 times,
1.9 to 10.0 times, 1.3 to 1.9 times and 6.2 to 11.4 times
higher compression ratio than Logzip, Logzip-E, LogArchive
and Cowic on small log blocks.
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Year TimeStamp Log level Module Log content

1

2

3

4

5

6

7

8

9
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Fig. 6: An example of how LogBlock preprocesses log data.
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by excluding one

heuristic
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Compression

Speed

Relative Compression Ratio =

Compression Ratio of the block preprocessed by excluding one heuristic / Compression Ratio of the block preprocessed by all heuristics 

Relative Compression Speed = 

Compression Speed of the block preprocessed by excluding one heuristic / Compression Speed of the block preprocessed by all heuristics 

Fig. 7: The evaluation steps between LogBlock with all heuristics and LogBlock with one heuristic excluded. The relative
compression ratio (relative compression speed) is the compression ratio (compression speed) from compression with all
heuristics over compression with one heuristic excluded, respectively. Note that we measure the elapsed time for both
preprocessing and compressing when evaluating the compression speed.

LogBlock has a drastically higher compression speed than
the state-of-the-art log compression approaches. When
comparing the compression speed between LogBlock and
the state-of-the-art log compression approaches, LogBlock is
still 30.8 to 49.7 times faster than Logzip, 42.6 to 53.8 times
faster than Logzip-E, 4.5 to 6.0 times faster than LogArchive
and 5.0 to 19.3 times faster than Cowic in preprocessing and
compressing small-sized log blocks.

There exist a few cases where Logzip has a higher com-
pression ratio than LogBlock in certain blocks. We observe
that the majority of these blocks are from the Proxifier
log. After manually checking the top 10 blocks with the
largest differential in compression ratio, we observe that
these blocks contain fewer templates than other blocks of
the same log file for the same block size. For example, 128KB
Proxifier blocks contain 7.9 templates on average, while for
the blocks where Logzip outperforms, the blocks only have
3 or 4 templates.

6.2 The impact of each preprocessing heuristic of
LogBlock on the compression performance.
Delta encoding for numbers (H2) has the largest improve-
ment in relative compression ratio among all heuristics, as
shown in Table 3. H2 improves the compression ratio by
a median of 4.7%, 5.1% and 4.9% (and as much as 40.1%,
48.5% and 41.6%) with deflate, gzip and lz4. H2 effectively
improves the relative compression ratio for the HPC log, the

TABLE 3: The impact on the relative compression ratio
loss and compression speed increment from excluding each
preprocessing heuristic.

Exclude
Heuristic

Compressor Ratio Loss (%) Speed Increase (%)

H1
deflate 1.3 -12.0

gzip 1.5 -2.3
lz4 0.9 -5.0

H2
deflate 4.7 7.7

gzip 5.1 6.4
lz4 4.9 8.0

H3
deflate 1.7 4.6

gzip 1.7 5.5
lz4 2.5 6.3

H4
deflate 0.0 6.2

gzip 0.0 5.3
lz4 1.3 6.7

OpenSSH log and the BGL log, as shown in Table 3. From a
manual investigation, we observe that these log files usually
contain one or few columns with long numeric text, such
as timestamp and process id. Such columns are likely to be
similar in a small log block. Hence, this heuristic reduces the
amount of information by replacing long numeric text with
a digit. Besides, we observe that the relative compression
speed is decreased by a median of 7.7%, 6.4% and 8.0% with
deflate, gzip and lz4.
Extract unique tokens (H1) improves the relative com-
pression ratio by a median of 1.3%, 1.5% and 1.0% (and
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Fig. 8: The relative compression ratio (in log-scale) be-
tween compression without and with preprocessing using
LogBlock. Each box shows the distribution of relative com-
pression ratio of 100 randomly selected blocks from the
same log file using a specific block size (16KB, 32KB, 64KB
and 128KB) and compressor (gzip, lz4 and deflate). The hor-
izontal red line at zero (log2 1) is the baseline that indicates
the relative compression ratio without preprocessing. The
compression ratio values can be found in Table 5.

as much as 6.0%, 6.4% and 2.9%) with deflate, gzip and
lz4. In particular, as shown in Table 3, H1 has a higher
relative compression ratio increment (4.8%, 2.5% and 2.1%
by median) at BGL, Thunderbird and Spark log files. For
example, H1 improves the relative compression ratio for
the BGL log by 0.2% to 15.1%. On the other hand, we
observe that excluding H1 may sometimes even lead to a
better relative compression ratio (e.g., compressing 128KB
HPC log blocks using lz4.) By manually checking those log
blocks we observe that the columns can still be processed
by H2 if H1 is excluded. Thus, the increased compression
ratio is caused by processing such columns with a different
heuristic.

Extract unique tokens (H1) improves the relative com-
pression speed, as shown in Table 3. Adopting the H1
preprocessing heuristic improves the compression speed
by a median of 12.0%, 2.3% and 5.0% (and as much as
22.9%, 14.3% and 14.3%) with deflate, gzip and lz4. Since the
information in the columns of small log blocks is likely to
have no variance, preprocessing is likely to be faster than
compression algorithms on columns with unique tokens.
Build dictionary for repetitive tokens (H3) and Extract

a common prefix string (H4) improves the compression
ratio as much as 22.2% and 9.7% for certain log files,
respectively. For specific columns (e.g., log level, module,
as shown in Figure 6) in small log blocks, H3 and H4 reduce
the information by either replacing tokens with shorter
representations or reduce information from each token. We
observe that H3 and H4 effectively improve the relative com-
pression ratio of the Zookeeper and BGL logs respectively.
In particular, H3 and H4 improve the relative compression

ratio by a median of 14.5% and 3.4% at the cost of a median
of 2.9% and 5.3% slowdown in relative compression speed
on Zookeeper log and BGL log with lz4, respectively. From
a manual investigation, we observe that the Zookeeper log
contains three columns with repetitive tokens and the BGL
log contains three columns with common prefix strings.
Thus, the H3 and H4 preprocessing heuristics achieve a
better relative compression ratio at these files. Besides, the
relative compression speed is improved at 75% and 57%
of the log files using H3 and H4. This implies that these
preprocessing heuristics might not be applicable to all types
of log files.

: Summary

LogBlock improves the relative compression ratio
by a median of 5% to 21% comparing to general
compressors. When compared with state-of-the-art
log compression approaches, LogBlock outperforms
Logzip, Logzip-E, LogArchive and Cowic by a median
of 1.7 to 8.4 times, 1.9 to 10.0 times, 1.3 to 1.9 times
and 6.2 to 11.4 times in compression ratio, respec-
tively, and a median of 30.8 to 49.7 times, 42.6 to 53.8
times, 4.5 to 6.0 times and 2.5 to 4.0 times in compres-
sion speed at different block sizes. Delta encoding for
numbers (H2) and Extract unique tokens (H1) produce
the largest improvement in compression ratio and
compression speed respectively. Practitioners should
build their log preprocessing pipeline based on H1
and H2, then customize the other preprocessing
heuristics according to the characteristics of their
own log data.

7 DISCUSSION

In this section, we discuss the compression performance of
LogBlock and Logzip on different block sizes. Our evaluation
results show that LogBlock has a better compression perfor-
mance in small log blocks, while prior research [27] demon-
strates the superior compression performance of Logzip with
large logs. Therefore, we would like to investigate to what
extent does LogBlock outperform Logzip in compression ratio
when increasing the sizes of log blocks.
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Fig. 9: The evaluation steps of the compression performance
between LogBlock and Logzip. We evaluate the block size X
increasingly from 16KB to 32MB.
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We iteratively increase the log block sizes and compare
the performance of our approach to Logzip, as summarized
in Figure 9. Since we mainly focus on improving the com-
pression ratio on small-sized log files, we only evaluate
block sizes from 16KB up to 32MB. We stop increasing the
block size of a log file when Logzip statistically (Wilcoxon
rank-sum test: ↵ = 0.05) outperforms LogBlock in terms
of compression ratio. We also evaluate the compression
performance using the deflate, gzip, and lz4 compressors.

TABLE 4: The block sizes that Logzip begins to outperform
LogBlock in compression ratio.

File Compressor Chunk size
Android gzip 32M

BGL
gzip 16M
lz4 32M

HDFS
deflate 32M
gzip 32M
lz4 32M

HealthApp
gzip 2M
lz4 2M
deflate 4M

Mac
gzip 16M
lz4 16M

Proxifier
gzip 512K
lz4 512K

Spark
deflate 16M
gzip 1M

Windows
gzip 1M
lz4 256K
deflate 4M

* For the rest 30 combinations of log file and general
compressors that are not listed in the table, LogBlock
always has higher compression ratios than Logzip.

The block sizes at which Logzip outperforms LogBlock

in terms of compression ratio are not the sizes that are
adopted by popular log management tools. We observe
from Table 4 that Logzip begins to outperform LogBlock at
a median of 10MB, 9MB and 9MB block size with deflate,
gzip and lz4 compressors, respectively. However, none of
these block sizes is used by popular log management tools
(i.e., 16KB used by ELK Stack, 128KB used by Splunk). In
addition, we observe that the deflate compressor requires an
equal or larger block size than the gzip compressor when
Logzip begins to outperform LogBlock.
For specific log files, Logzip slightly increases the compres-
sion ratio with a drastic sacrifice of the compression speed.
For example, we observe that when preprocessing 512KB
Proxifier log blocks using Logzip with gzip, the compression
speed slows down by 21.5% with only 2.9% improvement
in compression ratio when compared to LogBlock. Similarly,
when preprocessing 256KB blocks of Windows log using
lz4, Logzip sacrifices 14.6% compression speed to achieve
merely 0.8% compression ratio improvement. Logzip has a
median of 14.7% higher compression ratio and a median
of 14.2% lower compression speed than LogBlock. When
Logzip starts to outperform LogBlock in compression ratio,
switching preprocessing approach from LogBlock to Logzip
could gain additional compression ratio but also lead to
a slowdown in compression speed. Thus, we suggest that
practitioners choose their log preprocessing approach ac-
cording to their log files and their desired block sizes.

: Summary

When evaluating the compression ratio of prepro-
cessed blocks, LogBlock outperforms Logzip for all
block sizes that are used by popular log management
tools. Logzip outperforms LogBlock when preprocess-
ing blocks with a median size of 9MB.

8 THREATS TO VALIDITY

External validity. In this paper, we evaluate the compression
performance of 16 log files from different software systems.
In particular, we use the block sizes (16KB, 32KB, 64KB, and
128KB) with specific compressors (gzip, lz4 and deflate) that
are commonly used in modern log management tools, while
our evaluation results are quite consistent across the studied
system, they may not generalize to other settings. However,
our proposed approach can be replicated by others for their
own settings.
Internal validity. An internal threat to validity considers
the evaluation approach, which might be impacted by the
characteristics of the evaluated log blocks. In fact, a block
might benefit more from LogBlock depending on its content.
To mitigate this risk, we consider in our evaluation a large
number of blocks (i.e., 100 blocks for each case study) that
are randomly sampled.

9 CONCLUSION

Modern log management tools split large-sized log data
into small blocks before compressing each block separately.
While a large body of research effort focuses on compressing
large log files, no prior research focuses on the compression
performance of small log blocks. In this paper, we first
evaluate the impact of four state-of-the-art log preprocessing
approaches (i.e., Logzip and its variation Logzip-E, LogArchive
and Cowic) on the compression of small log blocks. We
observe that these approaches do not perform well on small
log blocks with a median of 52.1%, 16.2% and 87.5% lower
compression ratio than compression without preprocessing.
Hence, we propose a log preprocessing approach (LogBlock)
that considers the characteristics of small log blocks. Eval-
uating LogBlock on 16 log files, we observe that LogBlock
improves the compression ratio by a median of 5%, 9%, 15%
and 21% on 16KB, 32KB, 64KB and 128KB log blocks, which
outperforms Logzip, Logzip-E, LogArchive and Cowic by 1.7 to
8.4 times, 1.9 to 10.0 times, 1.3 to 1.9 times and 6.2 to 11.4
times in compression ratio, 30.8 to 49.7 times, 42.6 to 53.8
times, 4.5 to 6.0 times and 2.5 to 4.0 times in compression
speed. Our approach can help improve the storage efficiency
of log management tools.
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