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Deep neural network (DNN) models typically have many hyperparameters that can be configured to achieve optimal performance
on a particular dataset. Practitioners usually tune the hyperparameters of their DNN models by training a number of trial models
with different configurations of the hyperparameters, to find the optimal hyperparameter configuration that maximizes the training
accuracy or minimizes the training loss. As such hyperparameter tuning usually focuses on the model accuracy or the loss function, it
is not clear and remains under-explored that how the process impacts other performance properties of DNN models, such as inference
latency and model size. On the other hand, standard DNN models are often large in size and computing-intensive, prohibiting them
from being directly deployed in resource-bounded environments such as mobile devices and Internet of Things (IoT) devices. To tackle
this problem, various model optimization techniques (e.g., pruning or quantization) are proposed to make DNN models smaller and
less computing-intensive so that they are better suited for resource-bounded environments. However, it is neither clear how the model
optimization techniques impact other performance properties of DNN models such as inference latency and battery consumption, nor
how the model optimization techniques impact the effect of hyperparameter tuning (i.e., the compounding effect). Therefore, in this
paper, we perform a comprehensive study on four representative and widely-adopted DNN models, i.e., CNN image classification,
Resnet-50, CNN text classification, and LSTM sentiment classification, to investigate how different DNN model hyperparameters affect
the standard DNN models, as well as how the hyperparameter tuning combined with model optimization affect the optimized DNN
models, in terms of various performance properties (e.g., inference latency or battery consumption). Our empirical results indicate
that tuning specific hyperparameters has heterogeneous impact on the performance of DNN models across different models and
different performance properties. In particular, although the top tuned DNN models usually have very similar accuracy, they may
have significantly different performance in terms of other aspects (e.g., inference latency). We also observe that model optimization
has a confounding effect on the impact of hyperparameters on DNN model performance. For example, two sets of hyperparameters
may result in standard models with similar performance but their performance may become significantly different after they are
optimized and deployed on the mobile device. Our findings highlight that practitioners can benefit from paying attention to a variety
of performance properties and the confounding effect of model optimization when tuning and optimizing their DNN models.
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1 INTRODUCTION

In recent years, deep neural network (DNN) has achieved extraordinary performance1 over traditional machine learning
models in solving many complex problems in various application domains, especially in natural language processing [85],
computer vision [51], and gaming [63]. Previous studies show that the effectiveness of intelligent systems often depends
on the performance of the DNN model within it. For instance, in autonomous driving, the DNN models are often used
to predict the future trajectories to help the autonomous vehicle make reasonable navigation decisions [60]. If the DNN
model cannot make predictions in an efficient manner on time, such results may lead to catastrophic field failures. Both
the financial and reputational impact of these issues would be detrimental to the success of intelligent systems.

In order to ensure the quality of services provided by the DNN model within the intelligent system, existing solutions
mainly focus on two perspectives, which are often applied in combination. The first one is called hyperparameter
tuning, which is to search for an optimal combination of model hyperparameters during the training stage of the DNN
model. To be specific, DNN models are similar to traditional software systems since they are also highly configurable
through providing a set of configuration options for hyperparameters (e.g., loss function or learning rate), and different
combinations of hyperparameters may lead to different DNN performance. Therefore, developers often launch a large
number of training jobs to systematically explore the best DNN model that is able to meet specific performance
requirements (e.g., fast prediction or low energy consumption). The other method, i.e., DNN model optimization, is
often performed during the deployment of the DNN-based system. For instance, compared with cloud environments,
mobile devices usually have limited computational power, storage, and energy capacity, making it unable to directly
deploy a large and complex DNN model on it. Thus, the main focus of the second technique is to compress and optimize
existing DNN models to a more compact and smaller model while trying to maintain the performance of the model. As
standard DNN models may contain several redundant parameters that can be eliminated, it is possible to prune DNN
models by removing such redundancies and shrink the model size while maintaining a similar level of accuracy.

Despite the advantages of the DNN hyperparameter tuning and model optimization methods, practitioners still
face numerous challenges when applying these techniques into practice. On one hand, there can be over 12 types
of commonly-used hyperparameters in practice [71], each of which contains a wide range of values, resulting in a
vast number of combinations of hyperparameters even just for a few types of hyperparameters. For experienced DNN
developers, one could determine what types of hyperparameters to tune and their corresponding range of values based
on their expertise and experience, while for developers who are unavailable from such knowledge, it is less likely that
they will obtain an optimal model configuration since they usually utilize intuition to guide their decisions or they
have to choose more hyperparameters and values to tune, making the entire DNN development process expensive and
time-consuming. On the other hand, existing optimization techniques mainly focus on shrinking the size of a standard
DNN model while keeping its testing accuracy. However, they ignore many other important performance properties,
such as inference latency and energy consumption. Changes in such properties may result in many severe problems,
making it essential to evaluate them before deployment. For example, suppose two standard DNN models 𝑀𝑎 and
𝑀𝑏 are obtained after hyperparameter tuning, among which𝑀𝑎 has slightly better performance than𝑀𝑏 , i.e., higher

1When referring to the general performance of the DNN models, we use the singular form of performance, and when referring to one or multiple specific
aspects of the performance (e.g., inference accuracy or inference latency) of the DNN models, we use performance property or performance properties.
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inference accuracy and lower inference latency. Then, they are optimized separately and two optimized DNN models
𝑂𝑀𝑎 and 𝑂𝑀𝑏 are generated, but this time, a different result may appear, i.e., 𝑂𝑀𝑏 with similar inference accuracy but
much lower inference latency than 𝑂𝑀𝑎 . In this case, if we simply choose𝑀𝑎 and only apply DNN model optimization
on it as it has slightly better performance in terms of the standard model, it may lead entire DNN based systems to
suffer from the poor effectiveness of inference. Using such models in the real world scenarios, e.g., in auto-driving
vehicles or DNN-based authentication systems, would cause severe field issues and even accidents. All these entail the
evaluation of various model performance properties besides model size and accuracy.

Due to the high similarity between DNN models and software systems in terms of high configurability, we regard
DNN models as software systems and adopt software engineering analysis techniques to study how tuning different
hyperparameters and applying optimization methods affect the performance properties of DNN models in terms of
various aspects. We focus on studying several commonly-used hyperparameters in practice and divide them into
three different dimensions, including architecture-related hyperparameters, layer-level model training decisions, and
optimizer hyperparameters. In terms of model optimization techniques, we apply pruning, quantization, and encoding,
as a three-step process, since in previous work [22, 37, 83], these techniques are proven to be quite effective and are
often utilized as a combination of optimization techniques. In our effort to provide a more comprehensive study on
the effects of tuning different hyperparameters on the standard DNN models for servers/clouds and the optimized
DNN models for mobile devices, we try to cover different representative perspectives of the DNN model performance
properties, including inference accuracy, inference latency, model size, number of floating-point operations, and battery
consumption.

In our study, we use four representative and widely-used DNN models as subject models covering different types
of neural networks (i.e., CNN (Convolutional Neural Networks) and RNN (Recurrent Neural Networks)) and various
task domains, e.g., image classification, text classification, and LSTM sentiment classification. For each DNN model,
we first train it by tuning all studied hyperparameters, then fix each hyperparameter in one dimension at a time, and
compare the resulting models with the ones from tuning all the hyperparameters. This is to understand the overall
impact of the single hyperparameter. Afterward, we update the list of the best 10 DNN models (based on accuracy)
after each hyperparameter tuning and optimize them (the best 10 DNN models) using various techniques, including
applying pruning, quantization, and encoding, as a three-step process. Finally, we evaluate all the optimized DNN
models for different properties, from which we analyze performance property changes between the standard model
and the optimized model and the overall impact of the single hyperparameter on the performance of optimized DNN
models. In particular, to understand the impact of tuning different hyperparameters on the performance of the standard
DNN models deployed on servers and optimized DNN models deployed on mobile devices, our study aims to answer
the following two research questions (RQs):
RQ1:What is the impact of tuning different hyperparameters on the performance of DNN models?

From our experimental results, we observe that hyperparameter tuning has a significant influence on the different
performance properties of the studied DNN models. By examining the impact of tuning different hyperparameters on
the DNN model performance in terms of different properties, we find that tuning specific hyperparameters can cause
different impacts on the performance of DNN models across models and performance properties. Our findings suggest
that practitioners can improve their choice of the tuned models by considering other performance properties while not
sacrificing the accuracy of the chosen model.
RQ2:What is the combined impact of hyperparameter tuning and model optimization on the performance of optimized

DNN models?
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By applying multiple model optimization techniques on the standard DNN models, we can observe that model opti-
mization may bring obvious differences between the standard DNN models and the optimized ones in terms of various
performance properties. Besides, model optimization has a confounding effect on the impact of hyperparameters
tuning on the model performance. Our findings imply the importance of considering the impact of subsequent model
optimization when building and tuning DNN models in the cloud/server environments.

The empirical study results of our work highlight the impact of various hyperparameters tuning on the performance
of both standard and optimized DNN models, and have the following key implications:

• As current hyperparameter tuning tools (e.g., Keras Tuner [66] or Hyperopt [12]) are mainly based on tuning for
one objective (e.g., accuracy or loss), practitioners need to take other specific performance properties into account
when conducting hyperparameter tuning and do not always choose the top-1 DNN model from hyperparameter
tuning as the final decision.

• The performance characteristics of standard DNN models for servers/clouds may be different from that of the
corresponding optimized DNN models for mobile platforms, thus practitioners need to be careful not to simply
transfer the hyperparameter configurations or the understanding of the impact of such hyperparameter settings
from one platform to another platform (e.g., tuning hyperparameters on the server and transferring them to
mobiles). Instead, one needs to consider performing hyperparameter tuning on the target devices for deployment.

• There exist interactions among multiple hyperparameters (especially the hyperparameters within the same
dimension). These different hyperparameters often influence each other and their impact varies across dif-
ferent DNN models and performance properties. Thus, for practitioners, specific considerations about what
hyperparameters to tune are required in the context of specific DNN models and performance requirements.

Our findings also provide insights for practitioners who are interested in DNN hyperparameter tuning and model
optimizing in order to achieve specific performance requirements.
Paper organization. Section 2 discusses the background and related work of our study. Section 3 outlines the setup of
our case study on four subject DNN models. Section 4 discusses the results by answering our two research questions.
Sections 5 discusses the implications based on the results. Section 6 presents the threats to the validity of our findings.
Finally, Section 7 concludes the paper.

2 BACKGROUND AND RELATEDWORK

In this section, we first introduce the background of our study, including the performance of DNN models, hyperparam-
eter tuning, and representative DNN model optimization techniques. Then, we discuss previous work relevant to this
paper along two directions, i.e., DNN performance and DNN optimization.

2.1 Background

2.1.1 Performance of DNNmodels. ADNNmodel is essentially a collection of mathematical functions that are structured
by deep learning frameworks (e.g., TensorFlow or PyTorch) as tensor-oriented computation graphs. Such DNN graphs
have many important quality attributes (i.e., non-functional properties) that can be used as measurements for the
algorithm, structure, and complexity of a DNN model. Although a DNN model can be evaluated from a variety of
perspectives, many performance properties may have a strong correlation with one or few of other ones, for instance,
the energy consumption of a DNN often has a linear relationship with the model efficiency that is defined as the
number of inference it can make per second. Therefore, in our study, we consider multiple representative properties,
Manuscript submitted to ACM
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i.e., inference accuracy and latency, model size, number of floating-point operations (FLOPs), and battery consumption,
as DNN model performance indicators.

2.1.2 DNN hyperparameter tuning. A typical DNN model often has two categories of parameters. The first type is
trainable parameters, which can only be learned by the training process, for instance, the weights of a neural network
are trainable parameters. The second type is hyperparameters, e.g., the number of units in a dense layer and the learning
rate, which need to be set before launching the training process [46]. Similar to the traditional software system, a DNN
model is often highly configurable by providing numerous configuration options for hyperparameters, and even for
small DNN models, tuning these hyperparameters can be computationally expensive. Nevertheless, hyperparameter
tuning is very important as an optimal combination of hyperparameters may lead to significant improvement in the
performance of a DNN model [86]. Therefore, in order to search for the optimal model configuration meeting specific
development requirements, practitioners often leverage open-source libraries (e.g., Hyperopt or Keras Tuner) and apply
a variety of hyperparameter search algorithms (e.g., bayesian optimization or random search) to automatically perform
large numbers of trials to train DNN models with a diversity of hyperparameter configurations.

In particular, depending on the mechanisms, the existing hyperparameter optimization tools can be divided into two
types: 1) fully automatic optimization tools and 2) semi-automatic optimization tools. There are multiple prevalent fully
automatic optimization libraries to cater to the demand for DNN hyperparameter tuning. For example, AutoKeras [45],
Auto-WEKA [49, 82], Auto-sklearn [32], and Google Cloud AutoML [15] are the implementations for automated machine
learning (AutoML) which automate the tasks covering the complete pipeline from the raw dataset to the deployable
DNN models. They also provide functions to automatically search for architecture and hyperparameters of DNN models
without the need for any expert knowledge about the DNN models and techniques. Whereas for the second type (i.e.,
semi-automatic optimization tools), for example, Keras Tuner [66], Hyperopt [12], and HpBandSter [30], developers
need first to construct the DNN model to be tuned and then configure the search scope of the hyperparameters, then the
tools can automate the process of selecting the right set of hyperparameters from the search scope for the DNN model.
Comparing to the first type (i.e., fully automatic optimization tools), the second type requires more effort in defining
the DNN model and the hyperparameter search scope, however, it is more flexible and has better capability to handle
various tasks and inputs, while the first type mainly focuses on processing text [15] and image [29] related tasks. In this
work, we opt to use Keras Tuner as the hyperparameter optimization tool to pick the optimal set of hyperparameter
combinations for DNN models since it provides full flexibility and convenient APIs to define the hyperparameter search
space. Besides, it is easy to leverage the included algorithms to find the best hyperparameter values. Keras Tuner comes
with built-in Bayesian Optimization, Hyperband, and Random Search algorithms, and also allows researchers and
practitioners to experiment with their own search algorithms.

2.1.3 DNN optimization. Over the past few years, deep learning has achieved great success in numerous application
areas, e.g., natural language processing (NLP) or computer vision (CV). However, existing DNN models are often
computationally expensive in many aspects, e.g., computational requirement and model size, which hindering the
deployment on resource-constrained devices (e.g., mobile devices or IoT devices). Therefore, many studies have
recently been conducted in optimizing DNN models without significantly decreasing the model performance (e.g.,
accuracy) [21]. In this paper, we briefly review the three most commonly adopted DNN model optimization techniques
in practice [6, 22, 37, 83, 89] and they are separately pruning, quantization, and encoding.
Pruning. Pruning in deep neural networks has been taken as an idea from synaptic pruning that happens in the human
brain. Synaptic pruning is a natural process that occurs between early childhood and adulthood, and during such
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process, axon and dendrite gradually decay and eventually die off resulting in synapse elimination. Inspired by such a
common biological phenomenon, a DNN model can also be pruned in a similar way. In deep learning, DNN model
pruning can be performed at different granularities to get a neural network with a smaller size. The first type is weight
pruning which removes redundant connections between two neurons present in the DNN architecture and it often
involves cutting out unimportant weights which are usually defined as weights with small absolute values. While the
second type is performed at the neuron level, i.e., neuron pruning, where an entire neuron or several neurons with all
the related weights in the neural network are deleted. In practice, DNN model pruning often requires to re-train or
fine-tune the neural network to regain the accuracy, since the model was actually trained for the original connections
and the model accuracy is probably to drop after removing some neurons or weights. We would like to point out that
dropout [76] seems to be partially similar to pruning since they both omit some neurons and their connections in the
DNN models. However, dropout and pruning have different purposes and mechanisms. Dropout is a regularization
technique used to prevent overfitting during the training phase. During dropout, neurons are randomly selected and
ignored, and those ignored neurons are temporarily removed on the forward pass, and their weights are not updated on
the backward pass. For pruning, it can also serve as a mechanism to avoid overfitting since it also removes a part of the
network, thereby reducing the complexity of the model and limiting the risk of overfitting. However, its main purpose
is to optimize the model in order to provide the model with more efficiency (i.e., faster inference and smaller model
size), and it can be conducted at both the model training phase and optimization phase. During pruning, unimportant
neurons or weights (i.e., providing little predictive power for the problem) determined by the algorithm are permanently
removed and only the important neurons and weights remain. Therefore, in our work, we only consider the pruning
in our DNN model optimization pipeline. Specifically, we opt to leverage the pruning approach implemented in the
TensorFlow Model Optimization Toolkit [4] which performs fine-grained magnitude-based weight level pruning to
optimize the standard DNN models to generate optimally-sized models.
Quantization. Neural network model quantization is based on a fundamental idea of replacing high precision floating
point format (e.g., 64-bit or 32-bit floating point) with low precision floating or even fixed point format (e.g., 16-bit
floating point or 8-bit fixed point integer) to reduce the number of bits required for storing the weights of neural
networks and consequently compress the standard DNN model. For example, if a DNN model with a 32-bit floating
point format is converted to the 8-bit fixed point integer format, the new DNN model can save up to 75% of the number
of bits for storing one weight comparing to the standard model. At present, there are mainly two forms of quantization,
the first kind involves bundling weights together by clustering them and thus using fewer distinct float values to
represent more weights, and the second quantization technique is converting high precision floating point weights to
low precision floating or fixed point representation by rounding them off. In addition, such quantization techniques can
be performed both during the time of training a DNN model and on an already-trained high precision floating point
DNN model.

In this study, we opt to use the post-training INT8 quantization which is the most commonly adopted quantization
strategy in practice [24, 78, 88]. In particular, the standard DNN model is trained in 32-bit floating point format, while
during inferencing, the most critically intensive parts are computed with 8 bits instead of floating points. Besides, we
directly utilize the TensorFlow official optimization libraries, i.e., the TensorFlow Model Optimization Toolkit [4], which
by default provides the implementation for various quantization methods.
Encoding. A trained DNN model is basically a file including the layers and weights in the DNN, which are often
exported or saved in a binary file format that can potentially be compressed. As an inseparable part of file compression
techniques, encoding plays a vital role in exploring the data file content to find redundancy and patterns that allow
Manuscript submitted to ACM
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for abbreviating the content in a way to take up less space yet maintain the ability to reconstruct a full version of the
standard when needed [92]. In general, encoding techniques are divided into two main categories. One is fixed-length
encoding, e.g., ASCII, where each character is stored in the same amount of space, and such methods are convenient
because the boundaries between characters are easily determined and the pattern used for each character is completely
fixed. Another type is variable-length encoding, e.g., Huffman encoding, where some characters may only require fewer
bits while other characters may require more bits. One major benefit of such an approach is that it requires less space
overall, since it considers the occurrence probability for each symbol and represents more common symbols with fewer
bits instead of full fixed-length bits.

As a typical example of variable-length encoding, Huffman encoding has been widely adopted in practice for DNN
model compression as it has several advantages [37]. First, it is a lossless data compression approach that can prevent
losing any important information when compressing a DNN model. Second, it uses an optimal prefix-free coding and
can take advantage of skewed or biased distributions of the DNN model’s effective weights to further compress a DNN
model by representing more common weights with fewer bits. Based on these benefits, Huffman encoding is adopted
after pruning and quantization in the experiments of our work to provide further compression of the DNN models.

2.2 Related work

2.2.1 Studies on performance of DNN. Several studies were conducted to gain a deep understanding and assure the
performance of deep learning models in terms of different aspects. To comprehend the performance of DNN models,
Li et al. [53] conducted a detailed quantitative characteristic study on the power behavior and energy efficiency of
various prevalent convolutional neural network (CNN) models during training and predicting time, which includes
fine-grained analysis comparing different neural network layer types under both CPU and GPU platforms. Canziani
et al. [19] performed a comprehensive study on analyzing the relationships among multiple important properties
in practical DNN applications, including accuracy, memory footprint, parameters, operations count, inference time,
and power consumption, providing insights into designing an efficient DNN model. Pei et al. [68] first proposed the
concept of neuron coverage and also generated thousands of counterexamples which can help practitioners build
robust DNN models. Prior research illustrates the importance of comprehending and ensuring the DNN performance in
practice. In comparison, this paper focuses on studying how tuning different hyperparameters impact various aspects
of performance in DNN models. Our work can be adopted in practice in tandem with the prior research on the topic of
comprehending DNN performance .

2.2.2 Studies on the impact of hyperparameter tuning. Given the importance of DNN performance, tuning hyperpa-
rameters is commonly-adopted in practice to ensure performance when constructing a DNN model. Wong et al. [86]
performed a case study on comparing the performance of machine learning models with and without tuning hyperpa-
rameters and their result shows the effectiveness of tuning hyperparameters for the assurance of model performance.
In order to assess the influence of hyperparameters, prior work [31, 42] proposes analysis techniques that identify the
hyperparameters that contribute most to the model performance improvement after tuning. Based on that, Hutter et
al. [43] propose a more general approach, which can quantify the relative importance of both single hyperparameters
and the interactions between hyperparameters by using random forest model predictions within a functional ANOVA
framework [34]. However, these works mainly focus on the limited performance properties (e.g., inference accuracy)
and device (e.g., server), while we study a variety of performance properties (e.g., inference accuracy, inference latency,
model size, FLOPs, and battery consumption) and conduct experiments on two different platforms (e.g., server and
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mobile devices). Our main focus is to generalize the implications and rules of thumb to different DNN models and help
to prioritize which hyperparameter choices in order to facilitate a better general understanding of hyperparameter
effects and better decision-making for future experiments. In addition, neural architecture search (NAS) that aims to
automatically design a DNN architecture to achieve optimal performance on a certain task has attracted a lot of attention
in the past few years. There are several prior studies [10, 17, 56, 72, 81] on studying NAS and DNN model performance,
however, compared to NAS that automatically design the whole model, our study focuses on the approach that gives
developers more freedom to design the DNN structures and only automate the process of tuning the hyperparameters
to acquire an optimal model. Such a way is more flexible and has the better capability to handle various tasks and
inputs (e.g., graph data) in different usage scenarios and contexts, while NAS mainly focuses on computer vision and
NLP related tasks [62, 70]. Thus, we would leave NAS as our direction for future work. Besides, traditional brute-force
grid search for hyperparameters is expensive as it often results in numerous combinations even for a small number of
hyperparameters[11]. Thus, to make the whole process affordable, several efficient alternative hyperparameter search
algorithms, e.g. random or Bayesian hyperparameter search techniques, were proposed in prior work [11, 13, 75].

2.2.3 Studies on optimization of DNN. Due to the complexity of the deep learning models and the required resources,
in recent years, extensive research has been conducted in order to investigate and design optimization techniques
to accelerate DNN model deployment and execution on mobile devices. Han et al. [37], Tung et al. [83], and Choi et
al. [22] conducted experiments combining pruning, quantization, and Huffman encoding into a three-stage pipeline
that significantly reduces the size of DNN models with minimal loss of accuracy. Li et al. [54], Pavlo et al. [64], Ayinde
and Zurada [8], and He et al. [40] proposed an acceleration approach to effectively prune filters with low weight
magnitudes and unimportant parameters in deep and/or wide CNN models, and thus improve the resource efficiency
(i.e., reduce DNN computation cost (FLOPs)), making it possible to deploy and execute the complex DNN models
on embedded sensors or mobile devices where computational and power resources may be limited. In addition to
the model size and energy efficiency, Kim et al. [47] also proposed a CNN compression scheme in order to obtain
significant reduction in wall-clock time used when executing DNN models on several mobile devices. Different from
prior work, we conduct a comprehensive study on multiple performance aspects of DNN models with a combination of
multiple optimization techniques (i.e., pruning, quantization, and encoding) and hyperparameter tuning applied and
compare their performance with the standard DNN models. Therefore, our empirical studies and findings in this paper
complement existing work in order to help practitioners gain better understanding of how the state-of-the-art model
optimization techniques and tuning different hyperparameters affect different DNN model performance properties.

3 EMPIRICAL STUDY SETUP

To study the impact of tuning different hyperparameters on the performance of standard DNN models and optimized
DNN models for mobile devices, we perform case studies on four prevalent DNN models in use as well as three large
and classical datasets2. In this section, we first present the design of our empirical study. Then the subject models and
the datasets used for each model are described. Afterwards, we introduce the hyperparameters and their ranges selected
in our study to tune the subject models, and the properties of the DNN models that we focus on in our work. Finally,
we present the hardware and platforms on which our experiments are performed.

2Our experimental setup, scripts and, results are shared online https://github.com/senseconcordia/TOSEM2021Data as a replication package
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Fig. 1. An overview of our empirical study

3.1 Study design

Figure 1 shows the overview of our empirical study, which contains three main phases: 1) development phases, 2)
deployment phase, and 3) monitoring phase. In the development phase, we select 4 widely-used DNN models covering
both CNN and RNN architectures, i.e., CNN image classification, Resnet-50, CNN text classification, and LSTM sentiment

classification, from the official TensorFlow website [2], as our empirical study subjects. We use 3 publicly available
datasets (i.e., MNIST, CIFAR-10, and IMDB reviews) for the training and testing of the subject DNN models. We also
utilize Keras Tuner to automatically train the DNN models using 100 combinations of hyperparameters from a large
hyperparameter search space for each of the four types of model. In the deployment phase, since our work focuses on
studying the impact of tuning different hyperparameters on the performance of DNN models deployed across various
hardware platforms, we have selected two popular platforms to deploy and evaluate the DNN model’s performance,
including the Linux server and the Android mobile device. In addition to deploying all 100 trained DNN models on
the server platform, we also have selected the best 10 DNN models (based on the training accuracy) and applied
various optimization techniques (i.e., pruning, quantization, and encoding) to make them suitable for deployment on the
mobile platform. After the deployment of these DNN models on the various platforms (i.e., server and mobile), in the
monitoring phase, we measure the performance properties of each DNN model, including inference accuracy, inference
latency, model size on the disk, and floating point operations (FLOPs). For the mobile platform, we also measure battery
consumption which is critical for mobile applications. It is worth noting that these three phases are repeated every time
we tune the varying hyperparameters in order to study the impact of hyperparameter tuning and model optimization
on the performance properties of DNN models.

3.2 Subject models and datasets

In our experiments, we choose four representative and widely-used DNN models as our subject models, namely CNN

image classification, Resnet-50, CNN text classification, and LSTM sentiment classification. All of them are from the official
TensorFlow website [2]. These subject models cover different types of neural networks, including CNN (Convolutional
Neural Networks), RNN (Recurrent Neural Networks) and various domains, including computer vision and natural
language processing. The details of each subject DNN model and corresponding datasets are shown in Table 1.

We use three classical datasets in the deep learning domain to perform our experiments: MNIST [52], CIFAR-10 [50],
and IMDB reviews [61]. For the text classification tasks (i.e., CNN text classification and LSTM sentiment classification),
the IMDB reviews dataset is adopted. IMDB reviews is a large movie review dataset for binary sentiment classification,
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including a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. For the image classification
tasks (i.e., CNN image classification and Resnet-50), we apply two different datasets including CIFAR-10 and MNIST in
our experiments. MNIST has 70,000 28 × 28 gray-scale images including 60,000 training and 10,000 testing samples
of handwritten digits and its output labels are the 10 numbers from 0 to 9. CIFAR-10 consists of 60,000 32 × 32 colour
images in 10 classes, with 6,000 images per class. There are 50,000 training images and 10,000 testing images. It is worth
noting that since Resnet-50 has a more complex structure comparing to CNN image classification (i.e., 50 layers in the
Resnet-50 model, while only 6 layers in the CNN image classification model), so Resnet-50 is likely to perform better on
more sophisticated images (i.e., classifying 10 classes of real-world objects in CIFAR-10) than CNN image classification.
While for CNN image classification with a less complicated and more compact structure, the relatively straightforward
classification workload (i.e., identifying the handwritten number from 0 to 9 in MNIST ) would be more appropriate. In
addition, due to the limitation of model energy consumption and mobile device’s battery capacity, for LSTM sentiment

classification, we use all the 25,000 training samples for training, while only apply the first 1,000 testing samples for
inference.

Table 1. Overview of our subject DNN models and datasets

Model Dataset # Training samples # Testing samples
CNN image classification MNIST 60,000 10,000

Resnet-50 CIFAR-10 50,000 10,000
CNN text classification IMDB reviews 25,000 25,000

LSTM sentiment classification IMDB reviews 25,000 1,000

3.3 Hyperparameters of DNN models

Hyperparameters are variables that we need to set before applying a machine learning algorithm to a dataset. In
general, there are no magic numbers that can work for all cases and the optimal values often depend on the specific
task and dataset [1]. To understand the impact of hyperparameter tuning on the performance of the DNN models
and optimized DNN models, we structure our experiments along with some commonly-used hyperparameters in
practice into three dimensions, including architecture-related hyperparameters, layer-level model training decisions,
and optimizer hyperparameters. The description and search space of each hyperparameter used in our subject DNN
models are shown in Table 2. It is worth noting that for the embedding dimensions hyperparameter which defines the
size of the vector space of which each word will be embedded, we only consider this hyperparameter in text classification
tasks (i.e., CNN text classification and LSTM sentiment classification). Although one could regard the dimension of the
input layer of the image classification tasks (i.e., CNN image classification and Resnet-50) as an embedding layer, altering
the input size of the images is not considered in our study as the size of the images are fixed. Hence, we consider the
embedding dimensions for image classification tasks as not applicable (i.e., marked as n/a). Regarding the kernel size
and the pooling method hyperparameters, since we do not have any kernels and pooling layers in the LSTM sentiment

classification model, the kernel size and pooling method hyperparameters would not be applicable (i.e., marked as n/a)
in this case.

We opt to use a popular hyperparameter tuning toolkit called Keras Tuner [66] to automatically search for the
optimal DNN hyperparameter combinations from the large hyperparameter search space covering over 11 types of
hyperparameters, each of which contains awide range of values. In order to adoptKeras Tuner to conduct hyperparameter
Manuscript submitted to ACM
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tuning, we first need to design the DNN model architecture for hyperparameter tuning and define the hyperparameter
search space. Then, a hyperparameter search algorithm (e.g., Bayesian optimization or random search) needs to be
selected to instantiate the hyperparameter tuner, and meanwhile, an objective of whether to minimize model loss
or maximize the model accuracy needs to be specified to optimize the DNN model. Afterwards, Keras Tuner will
automatically search for the optimal hyperparameters and train the DNN models. Finally, after hyperparameter tuning
is finished, a set of DNN models with various hyperparameter configurations and different performance properties (e.g.,
inference accuracy or model size) will be generated.

Search in such a large space (with the magnitude of 1010 resulting from configuring 11 types of hyperparameters
with multiple values) is challenging. Compared to naive grid search, random search is more efficient and allows trials in
a larger hyperparameter search space. Compared to Bayesian Optimization and Hyperband algorithms, random search
has less complex technicalities and can achieve comparable performance. In particular, as proven in prior research [11],
random search is able to find better models by effectively searching through a larger configuration space with the
same computational budget. For example, if the close-to-optimal region of hyperparameters occupies at only 5% of the
grid surface, then the probability that all of them miss the desired interval of 5% is (1 − 0.05)𝑛 , where n is the number
of trials. So the probability that at least one of them succeeds in hitting the interval is 1 − (1 − 0.05)𝑛 , which means
that random search with 100 trials will find that region with a 99% probability. Thus, we apply the random search
algorithm that is implemented in Keras Tuner to randomly sample 100 trials of hyperparameter combinations. It should
be noted that, during DNN model hyperparameter tuning, we first determine a conditional scope of the hyperparameter
values to make sure that there are no invalid hyperparameter values for each individual parameter. If there are invalid
combinations of hyperparameters when building the model, the generated model could be either invalid or introduce a
very poor performance (e.g., low accuracy). In such cases, our approach will continue to try other combinations until
reaching the desired number of valid combinations of hyperparameters. Besides, we only choose the best 10 DNN
models from the resulting 100 models for comparison and perform further optimization as these models achieve the
best performance on the objective metrics (e.g., accuracy or loss) and are more likely to be selected as the final model
than the rest of the models (cf. Section 4).

3.4 DNN model performance properties

In order to investigate the effects of tuning different hyperparameters on the standard DNN models for server or cloud
platforms and the optimized DNN models for mobile devices, we focus on the evaluation of the DNN models on different
representative perspectives, including inference accuracy, inference latency, model size, number of floating-point
operations, and battery consumption. In the following, we briefly introduce each of them and describe how we measure
them in our study.

Inference accuracy. The inference accuracy is a critical perspective of DNN model performance as it directly
determines the quality of predictions of the DNN model and those predictions further affect the scientific evidence for
making decisions. The higher the inference accuracy that one DNN model can achieve, the more promising that model
can be in practice. The DNN model inference accuracy can be measured by the number of correctly predicted data
samples divided by the total number of data samples in the testing dataset. It is worth noting that in our experiments,
the datasets are balanced to avoid any biases in the inference accuracy and reflect the real forecasting power of the
DNN model.

Inference latency. The inference latency directly determines the efficiency of the DNN models, which can be a
major concern in some applications. For example, in autonomous driving, the DNN models (e.g., LSTM) are commonly
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used to predict the future trajectories to help the autonomous vehicle make appropriate navigation decisions [60]. If the
DNN model cannot make predictions in a fast and efficient manner, such results may lead to unimaginable serious
consequences. When measuring the inference latency of a DNN model, in order to eliminate the impact of environment
noises, instead of recording the prediction latency for each individual testing sample once, we measure the inference
latency of the entire testing dataset for 30 times and take the median value.

Model size. The size of a DNN model is an important factor when deploying the DNN model in production since in
many cases the production resources are quite limited due to the production cost and environments. In particular, for
mobile devices in which resources are rather constrained, the model size becomes a major concern and DNN models
even need to be compressed before being deployed into the production environment. Thus, we measure the actual size
of a DNN model occupied on the disk in megabytes.

Floating point operations (FLOPs). FLOPs is commonly-used to measure the DNN model complexity and ef-
ficiency [8, 54, 64] and it can also help practitioners gain better understanding about the energy aspect of DNN
models [35, 47, 87]. FLOPs is easy to compute and can be done statically, which is independent of the underlying hard-
ware and software configurations. Therefore, we measure this property by simply calculating how many computations
a DNN model does.

Battery consumption. Energy and power are important when executing DNN models in mobile devices with the
limited battery capacity [79]. In our study, in addition to the FLOPs, we further measure the battery consumption of
the DNN models. Specifically, we implement a simple Android application that launches the DNN models to perform
inference and then utilize the Android dumpsys batterystats tool to extract the battery usage (in milliampere-hour, mAh)
of the Android application while the DNN models are performing inference. Before each run of our application, we first
reset the battery statistics, then record the battery consumption after the execution completes.

3.5 Hardware and platforms

Our work focuses on studying the impact of tuning different hyperparameters on the performance of DNN models
deployed across various hardware platforms. Thus, we first use the popular hyperparameter tuning toolkit called Keras

Tuner [66] to automatically search for the optimal model hyperparameters and train the models on the servers that
have strong computing power. Specifically, we observe that the model building time for training and tuning the studied
hyperparameters once (e.g., tuning all hyperparameters) and generating 100 DNN models for CNN image classification,
Resnet-50, CNN text classification, and LSTM sentiment classification are 1,380 minutes, 1,614 minutes, 326 minutes,
and 10,080 minutes respectively. We then deploy the trained DNN models and further optimized models on multiple
platforms including servers and mobile devices to evaluate the various performance aspects of these DNN models for
inference.

Server.Our experiments of tuning hyperparameters, optimizing DNNmodels, and inference on servers are performed
on a cluster consisting of two computing nodes, which both run the Scientific Linux release 7.8 (Nitrogen) operating
system with NVIDIA CUDA 10.2 and cuDNN 7.6 installed. Each computing node is equipped with a 72-core 2.5 GHz
Intel Xeon Gold 6248 CPU, 450 GB of RAM, and 8 NVIDIA Tesla V100 32G-GPU cards. The subject models are built
with the Keras [23] API using TensorFlow [5] (version 2.2.0) as the back-end platform.

Mobile. The experiments on the mobile devices are conducted on two Xiaomi Mi 9 Android phones. These smart-
phones have the same software and hardware configurations, which include one Snapdragon 855 Octa-core Max 2.84
GHz processor, 8 GB RAM , 3300 mAh battery, and run the MIUI 12 operating system based on Android 10. In order to
perform inference of DNN models on Android, we use the TensorFlow Optimization Toolkit to convert the standard
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TensorFlow models to the TensorFlow Lite format before deploying the models on Android devices and utilize the latest
version (current is 2.3.0) of the TensorFlow Lite library in our Android application as the back-end framework.

4 EMPIRICAL STUDY RESULTS

In this section, we present the empirical study results by answering two research questions (RQs).

4.1 RQ1: What is the impact of tuning different hyperparameters on the performance of DNN models?

4.1.1 Motivation. In order to search for the optimal DNN models to meet specific performance requirements in
deep learning development, practitioners often systematically explore diverse combinations of configurations (i.e.,
hyperparameters) of the DNN models using automatic hyperparameter tuning tools (e.g., Keras Tuner). However,
different usage scenarios of the DNN-based systems may need to satisfy different performance requirements, for
example, in auto-driving vehicles, DNN models are required to make predictions in a fast and efficient manner, while
in DNN-based authentication systems, inference accuracy would be a major concern. Besides, determining which
hyperparameters to tune for specific performance requirements is still challenging, since tuning a DNN model with
wrong types and ranges of hyperparameters may not achieve expected results, while putting too many types of
hyperparameters and/or a large range of values into tuning would make the whole deep learning development process
very expensive and may delay the entire release schedule of the software system, especially in a fast-paced release
cycle [33]. Therefore, in our first RQ, we would like to study how the DNN models are affected by tuning different
hyperparameters in terms of different aspects of performance.

4.1.2 Approach. To answer this RQ, we first apply hyperparameter tuning on our four subject DNN models, then we
deploy these DNN models on the server platform and measure different performance properties of each DNN model
when performing inference on the testing samples. Finally, we examine the performance differences between the models
that tune each hyperparameter and the models that do not have this hyperparameter tuned, to understand the overall
impact of that single hyperparameter on different DNN performance properties. The details of the subject DNN models
and their corresponding used datasets are summarized in Table 1 of Section 3.2. Below, we describe each step of our
evaluation approach for RQ1 in detail.

Tuning DNN model hyperparameters. For each DNN model, we perform hyperparameter tuning with several
commonly-used hyperparameters in practice which cover different dimensions, including architecture-related hyperpa-
rameters, layer-level model training decisions, and optimizer hyperparameters (cf. Section 3.3). In particular, when
experimenting with different combinations of hyperparameters, we resemble a more realistic situation where developers
tune the hyperparameters of DNN models: they usually choose a set of hyperparameters from different dimensions to
tune rather than tuning just one specific hyperparameter. Thus, in our work, we adopt a similar strategy of tuning
DNN model hyperparameters to study the impact of tuning different hyperparameters on the DNN model in terms of
different performance properties. Specifically, we first regard the performance properties of the DNN models resulting
from tuning all the hyperparameters as the baseline, and then compare the focused performance properties of the tuned
DNN models generated when fixing the hyperparameters in one dimension or fixing a single hyperparameter with
the baseline. To avoid the bias of subjectively choosing the hyperparameter values when fixing a hyperparameter or a
dimension of hyperparameters, we opt to use the hyperparameter values adopted in the official examples [2], which
are the hyperparameter values chosen by the developers and experts of these models. If the official example does not
provide a specific value for the hyperparameter, the default value in the DNN framework API code is used. In this case,
Manuscript submitted to ACM
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our work would provide insights for developers about how not tuning one specific hyperparameter or one dimension
of hyperparameters impact the DNN model’s different performance properties and help them understand the overall
impact of each dimension and each single hyperparameter, and hence, would provide guidance for their hyperparameter
tuning tasks and save them time and effort on these tasks. It is noteworthy that we respectively call the DNN models
resulting from tuning all the hyperparameters, from fixing each dimension of hyperparameters and each hyperparameter
at a time while tuning all other hyperparameters, as tuning-all, fix-one-dimension, and fix-one-hyperparameter in the rest
of this paper. Notably, when tuning the hyperparameters of each DNN model, we apply the random search algorithm to
randomly sample 100 trials of hyperparameter combinations and measure the corresponding model performance (cf.
Section 3.3).

Measuring DNN model performance. After each hyperparameter tuning (i.e., tuning-all, fix-one-dimension, and
fix-one-hyperparameter), we generate 100 DNN models with different combinations of hyperparameters. Subsequently,
we deploy these models on the server and measure the performance properties of each DNN model, i.e., inference
accuracy, inference latency, model size on the disk, and FLOPs. It is also worth noting that, to minimize the noise from
the system warm-up and cool-down periods, for each DNN model, we repeat the model inference on the testing dataset
30 times and take the median value of all measured inference latency results as the final performance property of that
model.

To gain an overall understanding of the impact of tuning different hyperparameters on the performance of a DNN
model, we calculate and compare the distribution of different performance properties of the DNN model generated
from tuning all studied hyperparameters. Due to the fact that different performance properties have different scales, we
do not directly compare the distribution of these performance properties. Instead, we leverage the following approach
to scale the performance properties3:

𝑃𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑃𝑥

𝑀𝑖𝑛(𝑃)
where P is the performance property vector (i.e., measured after tuning all hyperparameters for each of the subject
DNN models and it has the size of 100) that needs to be scaled, Px is the 𝑥𝑡ℎ value in the P vector, and Min(P) is the
minimum value of the P vector. It should be noted that we manually checked the measured performance properties in
our experiments, and all the values are above zero, thus, there is no problem of division by zero. We choose this scaling
approach as compared to other scaling approaches (e.g., min-max scaling [73]), it not only preserves the range and the
linear relationship in the original data, but also provides better readability for visualization. For example, the inference
accuracy of best-10 DNN models may be very similar, the min-max scaling would group them together, leading to
poor readability, whereas our scaling approach can provide a better visualization for these small differences in the
performance properties. In addition to measuring the performance distribution of all generated DNN models after
tuning all hyperparameters (i.e., 100 models), we also select and compare the different performance properties of the
best 10 models (based on the training time accuracy), since these models achieve the best performance on the objective
metrics (e.g., accuracy or mean squared error) and are more likely to be selected as the final model than the rest of the
models.

Comparing the performance properties of the fix-one-dimension and fix-one-hyperparameter models
with the tuning-all models. In order to further understand the impact of each dimension of hyperparameters
and each hyperparameter on the DNN model performance in terms of different properties, we set the generated DNN

3Please note that this scaling approach only applies to the comparison between different DNN performance properties (i.e., Figure 2, Figure 3, and
Figure 6).
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models from tuning all the hyperparameters (i.e., the tuning-all models) as the baseline, and compare the performance
of the DNN models resulted from tuning all but one dimension of hyperparameters (i.e., the fix-one-dimension models)
and tuning all but one hyperparameter (i.e., the fix-one-hyperparameter models) with the baseline. We select the best
10 models from the resulting models (i.e., 100 models) after each hyperparameter tuning, since they often achieve
similar performance on objective metrics (e.g., accuracy or loss) and are more likely to be selected as the final model
than the rest of the models. Our intuition is that: if the fix-one-dimension or fix-one-hyperparameter DNN models have
significantly different performance on specific properties compared to the tuning-all models, then the fixed dimension
or hyperparameter has a significant impact on the performance properties. We first calculate the best model relative
difference from the two different DNN model groups. It is calculated by the performance property of the best model
from the group of DNN models that are obtained from fix-one-dimension or fix-one-hyperparameter minus the best
model’s performance property from the group that contains the DNN models generated by tuning-all, normalized by
the latter. Such a relative difference can be interpreted as how not tuning one specific hyperparameter or one specific
dimension of hyperparameters impacts the resulting best model of the hyperparameter tuning process. For example, in
terms of inference accuracy, if this value is negative, it means if we choose not to tune this specific hyperparameter or
specific dimension of hyperparameters, the target performance property of the best model will not be as good as when
we tune it/them. While regarding other studied performance properties (i.e., inference latency, model size, FLOPs, and
battery consumption), if this value is negative, it means that not tuning the target hyperparameter or target dimension
of hyperparameters would achieve a better target performance than tuning it/them.

In order to examine whether such performance differences between the fix-one-dimension or fix-one-hyperparameter

models and the tuning-all DNN models are introduced by chance, and to understand the scale of these differences, we
compare the two performance property distributions of the best-10 DNN models from each group using statistical tests
and effect sizes, similar to previous studies [20, 55]

• Statistical test. In order to evaluate the impact of tuning one hyperparameter or one dimension of hyperparam-
eters on DNN model performance, we use the Mann-Whitney U test [65] as it is non-parametric and it does not
assume a normal distribution of the compared data, to determine whether there exists a statistically significant
difference (i.e., p-value < 0.05) between the performance properties (e.g., inference accuracy or inference latency)
from models generated from fixing one hyperparameter or fixing one dimension of hyperparameters and the
ones when tuning all studied hyperparameters. In particular, each comparison group consists of 10 values for the
corresponding best 10 models, and for inference latency, each value is the median from the 30 times of repetition.
It is worth noting that, in practice, Bonferroni correction [16] is usually used together with the statistical test
(i.e., Mann-Whitney U test) to counteract the problem of multiple comparisons: while a given p-value may be
appropriate for each individual comparison, it is not for the set of all comparisons. In this correction approach,
the p-value threshold needs to be lowered to account for the number of comparisons being performed and thus,
to avoid spurious positives. However, our approach of studying the impact of tuning different hyperparameters
on the performance properties of DNN models only involves comparison of the performance properties from two
different groups once at a time, i.e., DNN models generated from fix-one-dimension or fix-one-hyperparameter

(e.g., fixing learning rate) and the ones built from tuning-all. Therefore, our study does not apply multiple
comparisons where several dependent or independent statistical tests are being performed simultaneously and
correspondingly, Bonferroni correction is not applicable in our empirical case study.
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(d) LSTM sentiment classification

Fig. 2. (Scaled) performance properties distribution of standard 100 DNN models
Note: For each subject model, all the performance properties are normalized by the minimum value of the corresponding property in order to visually
compare the distributions among each other.

• Effect size. Reporting only the statistical significance may lead to misleading results, i.e., if the sample size is
very large, the p-value can be very small even if the difference is trivial. Therefore, we apply Cliff’s Delta [25] to
quantify the effect size of the difference between the specific performance properties of the models generated
from fixing one hyperparameter or fixing one dimension of hyperparameters and the ones when tuning all
studied hyperparameters.

4.1.3 Results. Hyperparameter tuning has a significant influence on the performance of the studied DNN
models. Figure 2 shows the distributions of the scaled performance properties (i.e., inference accuracy, inference latency,
model size, and FLOPs) of our subject DNN models (i.e., CNN image classification, Resnet-50, CNN text classification,
and LSTM sentiment classification) after tuning all the studied hyperparameters. We find that the performance of
generated DNN models is spread over a considerably wide range in terms of different aspects, which demonstrates the
significant impact of hyperparameter tuning on the DNN model performance. In particular, as shown in Figure 2(b),
tuning hyperparameters on the Resnet-50 model achieves the largest differences in the scaled performance property
values between the first and third quartiles in both model size and FLOPs (i.e., a difference of 112.62 in model size and a
difference of 279.78 in FLOPs); while for inference accuracy and inference latency, CNN image classification and LSTM

sentiment classification respectively reach the largest differences in the scaled performance property values between the
first and third quartile, with the difference values as much as 2.56 (i.e., for the LSTM sentiment classification model). Our
work confirms prior work’s finding that hyperparameter tuning has a significant impact on the accuracy property of
the DNN models [86]. As the tuned hyperparameters (e.g., architecture-related hyperparameters) directly control the
structure and complexity of the tuned DNN models, they also have significant impacts on the other properties (e.g.,
inference latency) of the tuned DNN models.

Manuscript submitted to ACM



18 Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma

Inference
accuracy

0
2
4
6
8

10

Inference
latency

0
2
4
6
8

10

Model size
0
2
4
6
8

10

FLOPs
0
2
4
6
8

10

(a) CNN image classification

Inference
accuracy

0

20

40

60

Inference
latency

0

20

40

60

Model size
0

20

40

60

FLOPs
0

20

40

60

(b) Resnet-50

Inference
accuracy

0

10

20

30

40

Inference
latency

0

10

20

30

40

Model size
0

10

20

30

40

FLOPs
0

10

20

30

40

(c) CNN text classification

Inference
accuracy

0
2
4
6
8

10

Inference
latency

0
2
4
6
8

10

Model size
0
2
4
6
8

10

FLOPs
0
2
4
6
8

10

(d) LSTM sentiment classification

Fig. 3. (Scaled) performance properties distribution of standard best-10 DNN models
Note: For each subject model, all the performance properties are normalized by the minimum value of the corresponding property in order to visually
compare the distributions among each other.

The top DNNmodels resulted from tuning hyperparameters have very similar accuracy, while other perfor-
mance properties can differ significantly. For each of our four subject models, we present the scaled performance
properties distributions of the best 10 DNN models resulted from tuning all the studied hyperparameters in terms of
training time accuracy in Figure 3. The results show that, for all our subject models, while there are only small variances
in inference accuracy among these top DNN models, the other performance properties (e.g., inference latency or model
size) may spread over a comparatively wide range. Specifically, as shown in Figure 5(c), the CNN text classification model

achieves a distribution of inference accuracy with a first quartile of 1.01 and a third quartile of 1.02, while it achieves a
distribution of inference latency with a first quartile of 1.06 and a significantly higher third quartile of 1.93. Such a
finding can by explained by the reason that existing DNN hyperparameter tuning tools (e.g., Keras Tuner) usually only
support accuracy-oriented search objectives (e.g., accuracy or loss). Thus, the highly ranked models (i.e., ranked by the
search objective) from the tuning results tend to provide similar accuracy. However, the subtle difference in accuracy
may hide significantly larger differences in other performance properties. Therefore, based on this finding, we would
suggest that although accuracy is a vital factor when constructing DNN models, practitioners should not always choose
the DNN model with the best accuracy, as other DNN models (with different hyperparameter configurations) showing
slightly weaker accuracy may have significantly better improvements in terms of other performance properties (e.g.,
faster inference speed).
The impact of tuning different combinations of hyperparameters on different DNN model performance
properties. Table 3 shows the detailed results of comparing the performance distributions of our studied DNN models
obtained from two groups: the first group contains the DNN models generated by tuning all hyperparameters and
the second group of DNN models is obtained from fixing one hyperparameter or one dimension of hyperparameters
while tuning all other hyperparameters. For each model, we present the results on four performance properties, i.e.,
inference accuracy, inference latency, model size, and FLOPs. The sub-columns "Best model relative difference" show
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the relative difference of the best models from the two different groups and the "p-value/Effect size" sub-columns show
the statistical significance or the effect size of the difference between the performance properties of all the DNN models
from those two groups. It is noted that if there exists a statistically significant difference (i.e., p-value < 0.05), we present
the magnitude of the difference (i.e., effect size), otherwise we show the p-value.
1) The same hyperparameter or same dimension of hyperparameters can cause different impact on the
performance of different DNN models. As shown in Table 3, we observe that even for the same performance
property of the different DNN models, the resulting model performance can be affected differently by tuning the same
hyperparameters or the same dimension of hyperparameters. For example, in terms of inference accuracy, there exist
hyperparameters in all three dimensions that introduce the significant impact (i.e., large effect size) for CNN image

classification, Resnet-50, and CNN text classification. However, the inference accuracy of the LSTM sentiment classification

model is only influenced by the optimizer hyperparameters. Moreover, in terms of inference latency, for CNN image

classification and Resnet-50, all three dimensions of hyperparameters lead to significant impact, while for CNN text

classification and LSTM sentiment classification, only optimizer and layer-level hyperparameter cause notable effect,
respectively. Although the impact may not be significant when fixing all hyperparameters in the target dimension,
it does have a significant influence when fixing specific hyperparameters in that dimension. The reason behind this
finding would be that as different DNN models have different structures, they may have different sensitivity to the same
hyperparameters. For example, a more complex model may be more sensitive to the dropout ratio which controls the
overfitting of the models, thus the dropout ratio hyperparameter has a larger impact on the CNN image classification
(large effect size for inference latency) and Resnet-50 (large effect size for inference accuracy and latency) models. Hence,
such a finding would imply that the impression of the impact of certain hyperparameters on DNN model performance
learned from one model may not be directly applicable to a different model.
2) The same hyperparameter or same dimension of hyperparameters may have different impact on differ-
ent performance properties of the same DNN model. For instance, as shown in Table 3, architecture-related
hyperparameters lead to remarkable impact on the inference accuracy, model size, and FLOPs of the CNN text classifica-

tion model, yet not on the inference latency. For the Resnet-50 model, the hyperparameter "Pooling method" causes
significant impact on all other performance properties except for the inference accuracy. Such a finding would be
explained by the reason that the different performance properties of a DNN model can be mutually conflicting (e.g., a
complex model may have a better accuracy but with bigger size and longer inference latency), thus they can be impacted
by the same hyperparameters in different ways, for example, compared to learning rate, number of filters/units that
control the structure of the network is more likely to have a significant impact on model size and FLOPs than inference
accuracy. Therefore, based on this finding, we would suggest that practitioners should not just consider one DNN model
performance property when choosing the hyperparameters to tune.
3) Tuning the same hyperparameter or same dimension of hyperparameters lead to the similar impact on
model size and FLOPs. As illustrated in Table 3, we can clearly see that, for all our four subject DNN models, the
model size and FLOPs are almost equally influenced by the architecture-related hyperparameters, for instance, fixing
the value of "Number of filters/units" for LSTM sentiment classificationmodel leads to similar impact between model size
and FLOPs in both best model relative difference (i.e., 0.015 and 0.018 for model size and FLOPs respectively) and effect
size (i.e., both are large). In addition, for Resnet-50, those two performance properties (i.e., model size and FLOPs) are
also significantly impacted by layer-level model training decisions (i.e., pooling method) and optimizer hyperparameters
(i.e., loss function and the number of epochs). By further investigating the reason behind such a result, we find that
a DNN model is essentially a collection of mathematical functions that are structured by deep learning frameworks
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(e.g., TensorFlow or PyTorch) as tensor-oriented computation graphs. A larger model size usually indicates that the
network has a relatively more complex structure and/or more compute nodes in the graphs, and thus requires more
computations in the DNN model, i.e., higher FLOPs. Therefore, to some extent, there is a relationship between the
model size and FLOPs, and tuning the same hyperparameter or same dimension of hyperparameters would have a
similar impact on these two performance properties. Such a result also agrees with a recent study [14] that performs
benchmark analysis of some existing DNN models proposed in the state-of-the-art for image recognition.

: Summary of RQ1

While tuning the hyperparameters has a significant impact on the performance of all the studied DNN models,
the impact of tuning specific hyperparameters varies across different DNN models. In addition, we observe
that, although the top tuned DNN models have very similar accuracy, they may have significantly different
performance in terms of other aspects (e.g., inference latency). Thus, practitioners should not always choose
the best tuned model, but instead consider other performance properties while choosing the most appropriate
model from the tuning results.

4.2 RQ2: What is the combined impact of hyperparameter tuning and model optimization on the
performance of optimized DNN models?

4.2.1 Motivation. RQ1 shows that tuning different hyperparameters of DNN models can impact the model performance
in terms of different aspects. However, the standard DNN models generated by hyperparameter tuning process may not
be suitable for direct deployment in production due to various environment restrictions, e.g., processing, memory, power
consumption, ormodel storage space. Instead, theymay need to be optimized for deployment and execution in a particular
production environment, especially on resource-bounded mobile devices. However, tuning the hyperparameters may
have different impact on the standard and the optimized models in terms of various performance properties. Thus, the
goal of this RQ is to assess the combined influence of tuning different hyperparameters and model optimization on the
performance of optimized DNN models for mobile devices.

4.2.2 Approach. In order to understand how the performance of optimized DNN models is affected by tuning different
hyperparameters, we perform pruning, quantization, and encoding on themodels resulted from different hyperparameter
tuning trials (i.e., tuning-all, fix-one-dimension, and fix-one-hyperparameter). Then, we compare the focused performance
properties of the optimized models that are resulted from these different hyperparameter tuning trials.

Optimizing standard DNN model. In order to better study the impact of tuning different hyperparameters on
models with different DNN model optimization techniques applied, for each of the subject DNN models, we carry
out the optimization process in three steps, including pruning, quantization, and encoding, then obtain the optimized
models (with all three model optimization techniques applied together) that are suitable for deployment and execution
on mobile devices. In particular, we first prune the standard model generated from hyperparameter tuning by using the
TensorFlow Model Optimization Toolkit, in which the pruning is performed to the whole model (i.e., all layers in the
model). We opt to prune the DNN models with 80% sparsity (i.e., 80% zeros in weights) to get the optimal result. We
would like to note that our choice of sparsity (i.e., 80% sparsity) is inspired by the official tutorial about pruning in
TensorFlow Keras [3]. From the result of the tutorial, we observe that by applying pruning on DNN models with such
Manuscript submitted to ACM
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configuration, one can create a significantly smaller and sparser DNN model, while with minimal accuracy difference.
However, our experiments and results have no restriction on the pruning configurations and practitioners can apply their
preferred choice of sparsity to the pruning process in the DNN optimization pipeline. Then, we convert the precision of
weights from 32-bit floats to 8-bit integers in post-training model quantization, which is the commonly-used approach
in practice. By default, our used deep learning back-end framework, i.e., TensorFlow, supports such quantization
operations, except for the LSTM layer, therefore, we skip quantization step on the pruned LSTM models. Afterwards,
we use the TensorFlow Optimization Toolkit to convert the standard TensorFlow models to the TensorFlow Lite format
before deploying the models on mobile devices. Finally, we apply Huffman and LZ77 encoding to further compress the
DNN models, i.e., reduce the model size.

Measuring the performance of optimized DNN models. After applying DNN model optimization techniques,
for each standard DNN model, we generate the corresponding optimized model with all three optimization methods
(i.e., pruning, quantization, and encoding) applied in order to fully study the effects of tuning different hyperparameters
on the DNN models with different aspects of optimizations. Therefore, we first deploy the optimized DNN models
on the mobile devices, and then measure the performance properties of each optimized DNN model when it is under
prediction workload. In particular, for model size, we calculate it for both unencoded and encoded models. Similar to
RQ1, we perform inference on the testing dataset 30 times and keep the median inference latency result to reduce the
noise caused by system warm-up and cool-down.

After completing the measurement of the performance properties for all optimized DNN models, we follow the same
process of calculating and comparing the different performance properties’ distributions as in RQ1 (cf. Section 4.1.2) for
each of our subject DNN models, to understand the impact of tuning different hyperparameters on the performance of
the optimized DNN models.

Comparing the performance property distributions between standard and optimized DNN models. To
evaluate whether the optimized DNN models perform differently from the corresponding standard models, we compare
the distributions of different DNN models’ performance properties in the standard form and optimized form. Our
intuition is that if the set of DNN models have different distributions in performance properties before and after
optimization, this may be an indicator that model optimization will cause changes in the performance characteristics
of the DNN model. For example, if the standard DNN models have similar inference speed on the server side, after
applying multiple optimization techniques on these models, they may have significantly different inference speed
on mobile devices. In particular, we select the best 10 standard models from tuning all selected hyperparameters and
the corresponding optimized models. Then, for each of the performance properties, we calculate the largest absolute
relative deviation (LARD) of these two distributions as in the following:

𝐿𝐴𝑅𝐷𝑃 =

����𝐵𝑒𝑠𝑡 (𝑃) −𝑊𝑜𝑟𝑠𝑡 (𝑃)
𝑊𝑜𝑟𝑠𝑡 (𝑃)

����
where P is the performance property vector (i.e., measured from the best 10 DNN models generated by tuning all
hyperparameters for each of the subject DNN models or their corresponding optimized ones and it has the size of 10),
Best(P) and Worst(P) are the best value and worst value of the P vector, respectively. Specifically, for the inference
latency, model size, and battery consumption of a DNN model, the lower the values are, the better performance they
indicate; while for inference accuracy, the higher values mean better performance. It should be noted that the purpose
of the LARD metric is not to show the performance difference between a standard DNN model and its optimized
counterpart. Rather, we compare the LARD metric between the standard models and the optimized ones to understand
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whether the optimization leads to larger differences among the performance of the models. We choose the LARD metric
to measure the performance characteristics (i.e., the variance of the distributions) of DNN models as classical metrics
(i.e., standard deviation or mean absolute deviation) that measure the variability or dispersion of a set of values are not
suitable for the comparison between two performance datasets obtained from different platforms (i.e., standard DNN
model on servers and optimized DNN model on mobile devices) with different scales, while LARD can preserve the
range of a set of performance properties while reducing such bias.

In addition, to understand the distribution of the changes between standard DNN models and optimized DNN
models with respect to various performance properties, for each of the DNN models, we measure the relative difference
of performance properties (e.g., inference accuracy, inference latency) between the standard DNN model and the
corresponding optimized one. It is calculated by the performance property of the optimized DNN model minus the
performance property of the corresponding standard model, normalized by the latter. Besides, we also visualize the
distribution of these relative performance property changes between standard and optimized DNN models using box
plots.

In order to have a more comprehensive understanding of the difference between the distributions of different DNN
models’ performance properties in the standard form and optimized form, we perform further investigations and
comparisons on the distributions of pairwise performance property differences between optimized models and standard
models. In particular, for a pair of standard DNN models,𝑚1 and𝑚2, and the corresponding optimized ones,𝑚′

1 and
𝑚′

2, we compute the relative difference for each of the performance properties (e.g., inference latency) between𝑚1 and
𝑚2, normalized by𝑚2, and the corresponding difference between𝑚′

1 and𝑚
′
2, normalized by𝑚′

2. Then, we compare
these two differences. Such a comparison can be expressed in the following formula:

Δ𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 =
𝑚′

1 −𝑚′
2

𝑚′
2

− 𝑚1 −𝑚2
𝑚2

We then repeat this process for all the combinations of the best-10 DNN models and the corresponding optimized ones,
which leads to a total of 45 model pairs (i.e., 10𝐶2, which means the number of combinations when choosing two objects
from the set of 10 objects). We also visualize the distributions of such differences using a density plot. In addition, we
utilize the Kolmogorov-Smirnov test [77] to determine if there exists a statistically significant difference (i.e., p-value <
0.05) between the distributions of the pairwise model performance property differences of the standard DNN models
and optimized DNN models. We choose the Kolmogorov-Smirnov test since it does not enforce any assumptions on the
distributions of the data.

Comparing the performance properties of the optimized fix-one-dimension and fix-one-hyperparameter
models with the optimized tuning-all models. Similar to RQ1, we first set the performance of the optimized DNN
models from tuning all the hyperparameters as the baseline, and then apply the same statistical analysis, including
calculating best model relative difference, statistical testing and measuring effect size, to compare each focused
performance property of the optimized DNN models generated when fixing the hyperparameters in one dimension or
fixing one single hyperparameter at a time with the baseline, to study the impact of tuning different hyperparameters
on the optimized DNN model in terms of different performance properties.

4.2.3 Results. DNN model optimization can lead to significantly different performance distributions be-
tween the standard DNN models and the optimized ones. Table 4 summarizes the comparison results of perfor-
mance properties between the standard and the optimized DNN models for our four subject models. We find that after
applying optimization techniques on the standard DNN models, the LARD for inference accuracy would be slightly
Manuscript submitted to ACM
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different with the deviation ranging from 0.02 to 0.11, except for the CNN image classification model which achieves the
same LARD between the standard and optimized models. After further investigation of the distributions of inference
accuracy, we suspect the reason being that the accuracy distributions are considerably concentrated, i.e., with the
standard deviation of ≪0.001, in both the distributions of the standard and optimized models. For inference latency, we
observe that there are notable differences in the distributions between the standard and the optimized DNN models. In
particular, the Resnet-50 model achieves the largest deviation in terms of LARD, with the value of 0.74 and 10.53 for
standard models and optimized models, respectively. Such noteworthy difference can be interpreted as that even a set
of DNN models have similar inference speed on the server or cloud platforms, they may have significant variance in
inference latency on mobile devices. We also notice mild differences in the distributions of model sizes between the
standard and the optimized DNN models. Particularly, the standard and optimized LSTM sentiment classification DNN
models have quite close model size distributions, with a slight difference of LARD at only 0.24 (i.e., in terms of model
size, the relative difference between the best and worst performance of the standard models are similar to the relative
difference between the best and worst performance of the optimized models). Such results can be interpreted by the
fact that we only apply standard conversion (transform a TensorFlow model to TensorFlow Lite model) on the pruned
LSTM models to make them compatible for deployment on mobile devices, but without quantizing these LSTM models
(cf. Section 4.2.2).

Figure 4 shows the distributions of the performance property changes between the standard DNN models and the
optimized DNN models. We observe that the DNN model optimization introduces a significant impact on both inference
latency and model size, while with relatively minor influence on inference accuracy. In particular, all of our four subject
DNN models present remarkable differences in inference latency between the standard DNN models and the optimized
ones, with a median relative difference4 from 5.47 times (i.e., 547.03%) (in CNN test classification) to 83.54 times (i.e.,
8,353.57%) (in LSTM sentiment classification). Regarding the model size, DNN optimization has a strong ability to reduce
the standard model size. For example, considering the relative changes of the model size in Resnet-50 models, the DNN
model can be compressed by 91.16% or more compared to the standard model size. However, in terms of inference
accuracy, although the DNN model optimization would bring some variation (often degradation) in the inference
accuracy (i.e., the median value of the relative changes in inference latency for four subject DNN models are below 0),
such variance is relatively small. Specifically, the median relative differences are -0.29%, -1.17%, -0.63%, and -1.16% for
CNN image classification, Resnet-50, CNN text classification, and LSTM sentiment classification, respectively.

Figure 5 summarizes the distributions of the pairwise model performance property differences of the standard DNN
models and optimized DNN models. Similar to Figure 4, from Figure 5 we observe that, the standard and optimized DNN
models show relatively similar distributions of inference accuracy differences (i.e., the pairwise difference between
the relative differences of two standard models and two optimized models (i.e., Δ𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 ) has distributions with most
values gathering around 0). Yet, we still observe more than 10% (25% for the Resnet-50 model) differences between 1)
the relative difference of two standard models and 2) the relative difference between the optimized counterparts of
the two models. Furthermore, the distributions of other properties (i.e., inference latency and model size) can be more
different between standard models and optimized ones (i.e., the pairwise difference distributions (i.e., Δ𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 ) have
longer tails, reaching up to 1,000% difference for the inference latency of the Resnet-50 model). In addition, from the
statistical test result (shown in Table 5), we find that all of our four subject DNN models (i.e., CNN image classification,
Resnet-50, CNN text classification, and LSTM sentiment classification) have statistically significant differences (i.e., p-value

4Median relative difference is calculated as the median value of the differences of performance properties between each pair of optimized models and
standard models normalized by standard models.
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(a) CNN image classification (b) Resnet-50

(c) CNN text classification (d) LSTM sentiment classification

Fig. 4. Performance property relative difference distributions between optimized models and standard models normalized by standard
models (best-10 models)

< 0.05) between the distributions of the pairwise model performance property differences of the standard DNN models
and optimized DNN models. Such a result further supports our finding that DNN model optimization would lead to
significantly different performance distributions between the standard DNN models and the optimized ones.

These findings can be explained by the reason that different DNN models, even different layers, would have different
sensitivity to the optimization process. For example, since the number of parameters of convolution layers is intuitively
less than the fully connected layers, convolution layers are more likely to be sensitive to pruning [38, 54]. Therefore,
in terms of two DNN models with different combinations of hyperparameters, when they undergo the same model
optimization configuration, there may be different degrees of optimization (especially pruning) on them, resulting in
different distributions of the performance properties before and after optimization. Thus, based on these findings, we
would suggest that practitioners need to pay attention to the significant performance differences between the optimized
DNN models derived from the standard models with very similar performance.

Table 4. Results of comparing the LARD metric between standard DNN models (on servers) and optimized DNN models (on mobile
devices) performance properties. A larger LARD metric indicates a larger variation of the performance properties.

Property
CNN image

Resnet-50
CNN text LSTM sentiment

classification classification classification
Standard Optimized Standard Optimized Standard Optimized Standard Optimized

Inference accuracy 0.01 0.01 0.03 0.14 0.02 0.11 0.05 0.03
Inference latency 0.30 5.01 0.74 10.53 2.28 8.62 3.40 7.74

Model size 5.93 6.61 44.26 41.62 28.63 30.09 7.35 7.11
Note: Since there is no readily available tool support to calculate the FLOPs of optimized DNN models on mobile devices, we do not report the results
of comparing the LARD metric in the FLOPs between standard DNN models and optimized DNN models.

Although the accuracy of the top DNN models after optimization is very similar, other performance prop-
erties still differ significantly. For each subject model, the distributions of various scaled performance properties
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(a) CNN image classification (b) Resnet-50

(c) CNN text classification (d) LSTM sentiment classification

Fig. 5. Distribution of the difference between each pair of models’ performance property differences before and after model optimiza-
tion

Table 5. Statistical test results of the comparing the distributions of the pairwise performance property differences between optimized
models and standard models.

Property
CNN image

Resnet-50
CNN text LSTM sentiment

classification classification classification
Inference accuracy ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
Inference latency 0.001 0.001 0.043 0.002

Model size ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001

(i.e., inference accuracy, inference latency, unencoded and encoded model size, and battery consumption) of the best
10 DNN models from tuning all studied hyperparameters after model optimization are summarized in Figure 6. We
observe a similar result as in RQ1, which is that, for all our subject models, after applying DNN model optimization
methods on the top models, although the models show similar accuracy, they may still have very different performance
in terms of other properties (e.g., inference latency or model size). It is worth noting that in addition to the performance
properties that are also mentioned in the standard DNN models (cf. Section 4.1), the variance in battery consumption is
also remarkable, particularly for the CNN text classification model, which has a battery consumption distribution with
the first quartile of only 1.50 but a significantly high third quartile of 5.06. The reason behind this finding would be that
the state-of-the-art DNN model optimization techniques (e.g., pruning) often aim to optimize the DNN models (i.e.,
meet computational requirements and reduce model size) for the deployment on resource-constrained devices (e.g.,
mobile devices or IoT devices), while trying to remain the accuracy of the model. Thus, the optimized DNN models tend
to provide very similar accuracy, while other performance properties may have large differences. Therefore, this finding
would imply that practitioners should not always choose the optimized DNN model with the best accuracy, since other
optimized DNN models (derived from standard model with different hyperparameter configurations) showing slightly
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(c) CNN text classification
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Fig. 6. (Scaled) Performance properties distribution of optimized best-10 DNN models on mobile devices
Note: For each subject model, all the performance properties are normalized by the minimum value of the corresponding property in order to visually
compare the distributions among each other.

weaker accuracy may have significantly better improvements in terms of other performance properties (e.g., lower
battery consumption).
The impact of tuning different combinations of hyperparameters on different optimized DNN model per-
formance properties. Similar to Table 3 in RQ1 (cf. Section 4.1), Table 6 shows the detailed results of comparing the
performance of optimized DNN models obtained from tuning all studied hyperparameters with the optimized models
from fixing one hyperparameter or fixing one dimension of hyperparameters while tuning all other hyperparameters.
1) The impact of tuning different combinations of hyperparameters on the performance properties of the
optimized DNN models can be different from that of the standard models. By comparing Table 3 and Table 6,
we find that, although the dimensions of hyperparameters that lead to significant differences for inference accuracy are
almost identical for both the standard and optimized DNN models for all subject models, the specific hyperparameters
that make a difference may be different. For example, while the inference accuracy of the standard Resnet-50 models
is impacted by "Number of epochs" ; as for optimized models, the inference accuracy is significantly influenced by
the "Loss function" hyperparameter from the same dimension (i.e., optimizer hyperparameters). In terms of inference
latency, the effect of tuning hyperparameters on the standard DNN models and on the optimized ones differ notably. In
particular, tuning all three dimensions of hyperparameters have an impact on the inference latency of the standard CNN
image classification models, while after optimization, only architecture-related hyperparameters cause a significant
impact. The different impacts of the hyperparameters on the optimized DNN models and the standard models can
be explained by the reason that the impact of the hyperparameter tuning process and the impact of the optimization
process are not completely independent. For example, a more complex model resulting from the hyperparameter tuning
process may lead to a higher pruning ratio while maintaining similar performance. In addition, the impact of tuning
hyperparameters on the encoded and unencoded model size is the same and it remains the same as for the standard
models. For instance, before optimizing the LSTM sentiment classificationmodel, only one hyperparameter, i.e., "Number
of filters/units", leads to a notable impact on the model size, and such impact persists after optimization. After encoding
the optimized model, it is still only the "Number of filters/units" that obviously affect the size of the model. Therefore,
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based on such a finding, we would suggest that future research should consider the impact of hyperparameter tuning
on the performance of optimized DNN models and integrate the model optimization into the hyperparameter tuning
process.
2) Tuning hyperparameters can cause diverse effects on the battery consumption of different optimized
DNN models.With respect to the mobile-specific performance property, i.e., battery consumption, we observe that
except for LSTM sentiment classification models, our subject DNN models (i.e., CNN image classification, Resnet-50, and
CNN text classification) can be significantly impacted by the tuning of the architecture-related hyperparameters. Besides,
the optimizer hyperparameters cause notable effects on both the Resnet-50 model and LSTM sentiment classification

models while causing an insignificant effect on the CNN text classification and CNN image classification models. The
layer-level model training decision hyperparameters only introduce observable impact on Resnet-50 models. By further
investigating the reason behind this result, we find that the battery consumption is mostly impacted by the architecture-
related and optimizer-related hyperparameters since these hyperparameters have a significant impact on the complexity
of the models (as they significantly impact the FLOPs performance property); a more complex model tends to be more
battery-consuming.
3) The impact of tuning hyperparameters on the battery consumption and inference latency cannot bemea-
sured without running the models on the target devices. Regarding the performance properties that cannot be
measured without running the optimized DNN models on the target device (i.e., battery consumption and inference
latency), they can be quite difficult to be integrated into an optimization process. As shown in Table 6, for these perfor-
mance properties, we find that there exist differences between the hyperparameters influencing battery consumption,
inference latency and the hyperparameters influencing other properties. For instance, both layer-level model training
decisions and optimizer hyperparameters lead to notable impact on the inference accuracy on CNN image classification

model, but not on the inference latency, and for LSTM sentiment classification model, the hyperparameter "Optimizer"
causes significant impact on the battery consumption, but makes no remarkable difference on both unencoded and
encoded mode size. Such a finding can be explained by the reason that current hyperparameter tuning techniques (e.g.,
Keras Tuner) are not able to support objective functions involving performance properties collected from a separate
platform, e.g., collecting the runtime performance property (e.g., battery consumption or inference latency) from mobile
devices and dynamically feedback to the server-side, thus the impact of tuning hyperparameters on these performance
properties may not be considered during the tuning process. Thus, based on this finding, it would be suggested that
practitioners need to watch for the impact of the hyperparameters on the battery consumption and inference latency
that may not be available without actually running the model on a target device. Our findings also advocate the need
for future research on whether to follow a two-step approach (i.e., hyperparameter tuning first and then optimization)
or a one-step approach (i.e., hyperparameter tuning and optimization of DNN in the same loop).
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: Summary of RQ2

We observe that optimization techniques (e.g., pruning) can lead to significantly different performance distribu-
tions between the standard DNN models and the optimized ones. For example, for two standard DNN models
with similar inference latency on the server, their corresponding optimized models deployed on the mobile
device may have very different inference latency. In addition, tuning the hyperparameters may have different
impact on the optimized models than on the standard models. Practitioners should consider the impact of
model optimization on the performance of optimized models when building and tuning their models in the
cloud/server environments. Our findings also advocate the need for future research on whether to follow
a two-step approach (i.e., hyperparameter tuning first and then optimization) or a one-step approach (i.e.,
hyperparameter tuning and optimization of DNN in the same loop).

5 DISCUSSION

In this section, we discuss the implications of our empirical study results.

5.1 Do not always choose the top-1 DNN model from hyperparameter tuning as the final decision

After submitting many DNN model training jobs with different combinations of hyperparameters, we can acquire a list
of generated DNN models prioritized by the target metrics, e.g., accuracy or mean squared error, depending on the
target use scenarios of the DNN model. From such a list of models, practitioners often adopt the top-1 DNN model as it
has the optimal hyperparameters that yield the best model performance. However, after our comprehensive analysis of
the performance of the resulting DNN models, we realize that, compared to other models, although the top-1 DNN
model has the best accuracy, it is likely to achieve comparatively worse performance in terms of other aspects. Instead,
other candidate models with slightly worse accuracy may outperform the top-1 model in terms of other performance
properties. For example, from the results of tuning all the chosen hyperparameters for the CNN text classification models,
the top-1 model achieves an inference accuracy and an average inference latency of 0.87 and 2,639.26 ms, respectively;
the second-best model, while having a trivial degradation in inference accuracy (i.e., 0.86), achieves a significantly faster
inference speed (i.e., 967.74 ms). By examining the details of these two DNN models, we find that, compared to the
second-best model, the top-1 model has a much more complex model structure (i.e., higher embedding dimensions and
more filters) to provide a modest improvement in inference accuracy, but it also causes the model size to be larger and
the inference speed to be notably slower.

Therefore, our empirical study results imply that, as current hyperparameter tuning tools (e.g., Keras Tuner or
Hyperopt) are mainly based on tuning for one objective (e.g., accuracy or loss), the most accurate DNN model (i.e.,
top-1) resulting from hyperparameter tuning is not necessarily the most appropriate model. Practitioners should take
into account the trade-off between inference accuracy and other important performance properties (e.g., inference
latency or mode size) in the specific usage scenarios and context. On the other hand, practitioners can also take into
account the multi-objective hyperparameter optimization that achieves an optimal trade-off between various different
and even mutually conflicting objectives. For example, in addition to improving the inference accuracy, the objectives
regarding inference latency, model size, FLOPs, and/or battery consumption may also be incorporated when choosing
the appropriate DNN model in the specific usage scenarios and context (e.g., autonomous vehicles, embedded systems,
or mobile phones). There exists much prior work in this field and they propose approaches based on various techniques
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such as scalarization [7, 41, 67, 90, 94], Pareto front approximation [28, 48, 58, 80], and decomposition [44, 57, 93] to
achieve an optimal trade-off between the individual objectives.

5.2 Differences of performance characteristics between standard DNN models for servers/clouds and
optimized DNN models for mobile platforms

During the DNN development process, practitioners may face the requirement to deploy a DNN model trained from
powerful servers or cloud platforms to resource-constrained mobile devices, e.g., in Android or IOS devices. Due to the
fact that a standard DNN model often involves many redundant operations making it complex in structure and large in
size, various model optimization methods are adopted to optimize the standard DNN model. However, we find that
there exist significant differences between the standard and optimized DNN models in terms of various performance
properties. For example, before optimizing the best-10 CNN image classification models, the difference in inference
latency between these models is not quite significant: the model with the highest inference speed is only 30% faster
than the one with the lowest speed. In comparison, after the optimization, the distribution of inference latency becomes
highly dispersed: the relative difference of inference speed between the fastest and slowest optimized DNN models
increases dramatically to 501% (cf. Table 4).

Hence, the results imply that the performance characteristics (e.g., distribution of inference latency) of standard
DNN models for server/cloud platforms may be impacted by the model optimization techniques, thus practitioners
need to be careful not to simply transfer the hyperparameter configurations or the understanding of the impact of
such hyperparameter settings from one platform to another platform (e.g., tuning hyperparameters on the server and
transferring them to mobiles). Instead, one needs to consider performing hyperparameter tuning on the target devices
for deployment.

5.3 The impact of hyperparameter tuning on performance properties varies across different DNN
models

From our empirical study results, we observe that by comparing the performance property distributions of the DNN
model generated from tuning and not tuning one hyperparameter or one dimension of hyperparameters, the impact
of that hyperparameter or that dimension of hyperparameters on our studied performance properties is not always
consistent among various DNN models. For example, in terms of inference latency, tuning the "Dropout ratio" hyperpa-
rameter or not leads to significant impact on the CNN image classification and Resnet-50 models, while having trivial
effects on the CNN text classification and LSTM sentiment classification models. The only exception is that, regardless of
different DNN models, the "Kernel size" hyperparameter always introduces a notable effect on inference accuracy.

In addition to taking the impact of not tuning a specific hyperparameter into account, we also consider how
the interactions among multiple hyperparameters influence the performance properties. In particular, our studied
hyperparameters are structured into three dimensions, including architecture-related hyperparameters, layer-level model
training decisions, and optimizer hyperparameters. By fixing the value of all hyperparameters within each dimension
and comparing the result to fixing each specific hyperparameter in that dimension, we observe the interactions among
multiple hyperparameters. For example, from the investigation results of the overall impact of tuning hyperparameters
on the performance of standard best-10 DNN models (cf., Table 3), we find that for the CNN image classification model,
when the values of each hyperparameter in optimizer hyperparameters are fixed, there is no significant effect on
inference latency, but when the values of all hyperparameters are fixed, there is a significant effect observed. We also
observe such interactions among hyperparameters from the result of optimized standard best-10 DNN models (cf.,
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Table 6), for example, for Resnet-50, fixing the value of the pooling method causes significant impacts on inference
latency, battery consumption, and model size (both unencoded and encoded), while fixing the entire dimensions of
hyperparameters (i.e., the layer-level model training decisions), there is no such significant impact on these performance
properties.

Our results imply that the impact of a hyperparameter on a certain aspect of a DNN model’s performance is
not homogeneous across different models and is not independent of other hyperparameters. Instead, there exist
interactions among multiple hyperparameters (especially the hyperparameters within the same dimension). These
different hyperparameters often influence each other and their impact is related to the structure of the specific DNN
models. Practitioners should perform a specific analysis of particular DNN models and performance requirements as
the best practices.

6 THREATS TO VALIDITY

This section discusses the threats to the validity of our study.
Construct validity. One potential threat to the construct validity is the DNNmodel performance properties used in our
experiments. Considering other performance properties, e.g., memory utilization or the number of trained parameters,
would benefit our study. However, in order to reduce this threat, we utilize the widely-used and representative properties
in practice and literature [10, 34, 47, 53, 86, 87], to evaluate the different performance perspectives of the DNN models.
We would also like to note that model size, latency, and FLOPs may be inter-correlated. In fact, we calculated Pearson’s
correlation for each subject model between these three performance properties, i.e., model size, FLOPs, and inference
latency. According to our result, the performance properties are not always correlated, and their correlations can be
as low as 0.03. The results can be explained by the fact that these properties provide different and complementary
perspectives of DNN performance. For example, although the inference latency of a DNN model would be impacted
by FLOPs and model size, it is also affected by the number of memory accesses and other factors. The results prove
that these performance properties are not redundant to each other. In addition, the Resnet-50 model has different
blocks; however, during hyperparameter tuning, we opt to regard these different blocks uniformly, which would be
a potential threat to the construct validity. The reason for this decision is that Resnet-50 has 5 different blocks and a
total of 48 layers of convolution and 2 layers of pooling; if we treat each of these layers independently, the result for
Resnet-50 is not suitable for horizontal comparison with other models. Besides, our studied hyperparameters include
over 11 types of commonly-used hyperparameters in practice, each of which contains a wide range of values, and
they already comprise a large hyperparameter search space with a magnitude of 1010. Thus, we choose to treat each
block of Resnet-50 uniformly. However, more investigations and studies on an even larger search scope (e.g., consider
each block of a DNN model independently) are in our ongoing future work. Moreover, we perform the post-training
model quantization on the DNN models to convert the precision of weights from 32-bit floats to 8-bit integers. Such
optimization operations are by default supported by our used deep learning back-end framework, i.e., TensorFlow,
except for the LSTM layer, thus, we do not consider the quantization step on the pruned LSTM models as it is not
supported. Due to the lack of readily available techniques for the quantization of LSTM, we could not estimate the
impact of skipping this quantization step for LSTM. Therefore, we would leave the investigation of such impacts to our
future work.
Internal validity. Our study uses the approach of fixing one hyperparameter or fixing one dimension of hyperparame-
ters at a time to understand the impact of tuning different hyperparameters on the performance of the standard and
optimized DNN models. However, the choice of the fixed values for the studied hyperparameters or the dimension
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of hyperparameters may affect our results. To mitigate this threat, when a hyperparameter needs to be fixed, we use
the value adopted in the official example model building code and if the example does not specify the hyperparameter
value, we use the default value in the DNN framework API. In addition, when measuring the performance of the DNN
models, we perform inference on the testing dataset 30 times and keep the median inference latency result to reduce
the noise caused by system warm-up and cool-down. Taking all these measures down to a single value would be a
threat to our results. On the other hand, we find that these performance property distributions are rather concentrated,
i.e., with an average relative standard deviation (RSD) of 8.03%, and according to prior studies [26, 74], such a small
RSD may imply that the performance property distributions are considered low-variance and it would be reasonable to
take the median value of all measured results as the final performance property of that model to minimize the noise
from the system warm-up and cool-down periods.
External validity. Our study is performed on two DNN models for image classification (i.e., CNN image classification

and Resnet-50) and two for text classification (i.e., CNN text classification and LSTM sentiment classification). However,
our study cannot cover all state-of-the-art DNN models (e.g., BERT [27]) and our results may not generalize to them.
Under the constraint of computing resources, we consider the four representative DNN models that cover different
types of neural networks, including CNN (Convolutional Neural Networks) and RNN (Recurrent Neural Networks)
that are widely used in practice [9, 18, 39, 59, 69, 84, 91]. Our results indicate that these DNN models can achieve high
accuracy (i.e., the best tuned models of these DNN models achieve 0.77 to 0.99 accuracy). Nevertheless, future work
that considers more other DNN models and datasets can benefit our study. In addition, all our studied DNN models
are implemented with the TensorFlow deep learning framework, since it is both the most in-demand framework and
the fastest growing in recent years [36]. However, different choices of deep learning frameworks may lead to different
results. In future work, we will perform experiments on other mainstream deep learning frameworks R2.5 (e.g., PyTorch,
Caffe, or MXNet) and other datasets.

7 CONCLUSIONS

We noticed that DNN model hyperparameter tuning and optimization techniques are widely adopted by practitioners to
ensure the quality of services provided by DNN models. However, how the tuning of different hyperparameters affects a
DNN model and its optimized counterpart in terms of various performance properties remains an under-explored area.
Improper hyperparameters can lead to sub-optimal models falling to meet desired performance requirements. In this
paper, we perform an empirical study of the effect of tuning different DNNmodel hyperparameters on the standard DNN
models and the DNNmodels that are optimized by pruning, quantization, and encoding, in terms of various performance
properties (i.e., inference accuracy, inference latency, model size, FLOPs, and battery consumption). We observe that
tuning specific hyperparameters can cause different impact on the performance of DNN models across models and
performance properties. Further, model optimization has a confounding effect on the impact of hyperparameters tuning
on the model performance. Our findings highlight that practitioners can benefit from paying attention to a variety
of performance properties and the confounding effect of model optimization when tuning and optimizing their DNN
models. For example, practitioners can improve their choice of the tuned models by choosing one from the top tuned
models that has similar accuracy with the most accurate model while possessing significantly better performance in
terms of other properties.

This paper provides the following contributions:
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• To our best knowledge, this is the first work that comprehensively investigates the relationship between tuning
different DNN model hyperparameters and its effect on different performance properties of the standard DNN
models and the optimized DNN models.

• We perform comprehensive experiments, tuning up to 11 types of hyperparameters and evaluating the perfor-
mance of four state-of-the-art DNN models on two platforms (i.e., server and mobile devices) in terms of five
performance properties.

• Our results and findings provide insights and guidelines for practitioners who are interested in DNN hyperpa-
rameter tuning and DNN model optimization to achieve specific performance requirements, and advocate the
need for future research on whether to follow a two-step approach (i.e., hyperparameter tuning first and then
optimization) or a one-step approach (i.e., hyperparameter tuning and optimization of DNN in the same loop).
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