
Empirical Software Engineering (2021) 26:97
https://doi.org/10.1007/s10664-021-10004-6

Evaluating the impact of falsely detected performance
bug-inducing changes in JIT models

Sophia Quach1 ·Maxime Lamothe2 ·Bram Adams3 ·Yasutaka Kamei4 ·
Weiyi Shang1

Accepted: 14 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Performance bugs bear a heavy cost on both software developers and end-users. Tools to
reduce the occurrence, impact, and repair time of performance bugs, can therefore pro-
vide key assistance for software developers racing to fix these bugs. Classification models
that focus on identifying defect-prone commits, referred to as Just-In-Time (JIT) Quality
Assurance are known to be useful in allowing developers to review risky commits. These
commits can be reviewed while they are still fresh in developers’ minds, reducing the costs
of developing high-quality software. JIT models, however, leverage the SZZ approach to
identify whether or not a change is bug-inducing. The fixes to performance bugs may be
scattered across the source code, separated from their bug-inducing locations. The nature
of performance bugs may make SZZ a sub-optimal approach for identifying their bug-
inducing commits. Yet, prior studies that leverage or evaluate the SZZ approach do not
distinguish performance bugs from other bugs, leading to potential bias in the results. In
this paper, we conduct an empirical study on the JIT defect prediction for performance
bugs. We concentrate on SZZ’s ability to identify the bug-inducing commits of performance
bugs in two open-source projects, Cassandra, and Hadoop. We verify whether the bug-
inducing commits found by SZZ are truly bug-inducing commits by manually examining
these identified commits. Our manual examination includes cross referencing fix commits
and JIRA bug reports. We evaluate model performance for JIT models by using them to
identify bug-inducing code commits for performance related bugs. Our findings show that
JIT defect prediction classifies non-performance bug-inducing commits better than perfor-
mance bug-inducing commits, i.e., the SZZ approach does introduce errors when identifying
bug-inducing commits. However, we find that manually correcting these errors in the train-
ing data only slightly improves the models. In the absence of a large number of correctly
labelled performance bug-inducing commits, our findings show that combining all available
training data (i.e., truly performance bug-inducing commits, non-performance bug-inducing
commits, and non-bug-inducing commits) yields the best classification results.

Communicated by: Nachiappan Nagappan

� Sophia Quach
s quach@encs.concordia.ca

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10004-6&domain=pdf
http://orcid.org/0000-0001-5850-1375
mailto: s_quach@encs.concordia.ca

 97 Page 2 of 32 Empir Software Eng (2021) 26:97

Keywords Software engineering · Defect prediction bugs · Just-in-time · Performance

1 Introduction

Software bugs, and the techniques that software engineers develop to fix and prevent them,
are an important part of software engineering (Gyimothy et al. 2005; Hassan 2009; Kamei
et al. 2013). Bugs are costly to fix and increase maintenance effort (LaToza et al. 2006). In
a world that is ever more reliant on software, it appears more important than ever before
to have quality software and to be able to fix bugs in a timely manner when they do
appear. To this end, researchers have developed several approaches to identify prior bug-
introducing changes and help development teams avoid future bugs by learning from their
mistakes (Gyimothy et al. 2005; Hassan 2009; Kamei et al. 2013).

Defect prediction models are a well-known technique used by practitioners to identify
defect-prone files and packages during quality assurance. Once the defect-prone files or
packages have been identified, developers still need to spend time modifying and examining
code. This creates time-consuming and impractical tasks, especially for large software sys-
tems (Kamei et al. 2013). Just-In-Time Quality Assurance (JIT) provides an effort-reducing
way to focus on the bug-inducing changes and thus reduce the costs of developing high-
quality software. However, JIT quality assurance relies on the SZZ approach, and must
therefore grapple with the drawbacks of SZZ.

Indeed, the Just-In-Time training data is based off of results provided by SZZ, which
may include falsely identified past bug-inducing changes. These are then used to predict
future inducing changes, giving flawed predictions.

The SZZ approach is a technique that attempts to find the source-code commit that
first introduced a software bug (Kim et al. 2006; Śliwerski et al. 2005). However, the SZZ
approach, similarly to other bug localization techniques, is not perfect. Previous studies
show that the SZZ approach can mislabel some changes as bug introducing, even if they are
not (Kim et al. 2006). Mislabels include semantically equivalent changes, directory or file
renames, and initial code importing changes (Kamei et al. 2013). Although an evaluation
framework exists to evaluate the various implementations of the SZZ approach that attempt
to remedy these issues (da Costa et al. 2017), the SZZ evaluation framework and the exist-
ing SZZ approaches concentrate on mixed bugs or functional bugs, without verifying the
validity of the approach on non-functional bugs, or more specifically performance bugs.

Developers often spend more time fixing performance bugs than fixing non-performance
bugs (Zaman et al. 2011). Due to the unique nature of performance bugs, we suspect it
is possible for performance bugs to present differently in source code. Zaman et al. find
that more developers are assigned to fix performance bugs than functional bugs (Zaman
et al. 2011). Functional changes and their software fixes are mainly localized, while
non-functional bugs, such as performance bugs may be scattered and require fixes in
various parts of the software (Hamill and Goseva-Popstojanova 2014). Hamill and Goseva-
Popstojanova (Hamill and Goseva-Popstojanova 2014) found that a significant number of
software failures required fixes in multiple software components and/or multiple software
artifacts (i.e., 15% and 26%, respectively). For example, if a code change introduces a
performance issue, this performance issue may be fixed and improved in a different part
of the system, for example by changing configuration parameters. Meanwhile, functional
bugs can have a single concrete introducing commit that can be tracked down through
the SZZ approach (Śliwerski et al. 2005). Due to the scattered nature of non-functional

Empir Software Eng (2021) 26:97 Page 3 of 32 97

bugs, we suspect that the SZZ approach might perform worse on performance bugs than on
functional bugs.

Prior studies indiscriminately evaluate the SZZ approach on both functional and non-
functional bugs without distinction, while seeking a clear comparison between performance
bugs and non-performance bugs. We aim to know whether or not performance bugs are
well predicted by JIT defect prediction. In this paper, we conduct an empirical study on the
results of the SZZ approach used for JIT defect prediction, concentrating on the use of JIT
defect prediction to identify the inducing changes of performance related bugs in Cassandra
and Hadoop. For the purpose of our paper, we perform our evaluation of the SZZ approach
on a MA-SZZ implementation. We validate whether the bug-inducing changes found by
MA-SZZ are truly bug-inducing changes by manually examining these identified changes
in order to generate clean datasets. We conduct manual analysis to verify cross referenced
fix commits and JIRA issue reports and we evaluate the performance related data for JIT
models. Since manual analysis is time-consuming, we want to determine whether verified
data makes a significant difference in training a better model to classify performance bug-
inducing commits.

Additionally, if performance and non-performance bug-inducing commits have different
characteristics, a model only based on performance bugs can theoretically label performance
bug-inducing changes better. Because there is no verified ground truth for performance
bug-inducing commits, we further manually verify the commits identified through the SZZ
approach, through two reviewers. We then evaluate Just-In-Time models solely on the man-
ually verified performance commits identified by the reviewers, by using four different
combinations of training data. Of the model combinations, we include one where the train-
ing data is only comprised of manually labelled bug-inducing commits, to see whether we
need a separate model for predicting performance bugs. We seek to determine how different
training data influences the models’ power to predict performance bug-inducing commits.

We formulate our study into three research questions:

– RQ1: How well can JIT models predict performance bug-inducing commits?
We train a model with data from the SZZ approach and then test it on manually ver-

ified performance bug-inducing commits. Our findings show that JIT models perform
better on classifying non-performance commits than performance commits, with AUC
values of 0.842 to 0.869 for non-performance commits, and only 0.486 to 0.518 for
performance commits.

– RQ2: How does correcting falsely identified performance bug-inducing bugs impact
JIT models?

We find that manually vetting the results of the SZZ approach to produce JIT mod-
els generally does not impact the models’ classification power, and when it does, the
changes only have a small effect size (Cohen’s d = 0.437) on the classification power
of these models.

– RQ3: Does only using the correct performance inducing bugs as training data improve
the JIT models when predicting other performance inducing bugs?

Our findings show that only using correctly labelled performance bug-inducing
commits in the training data does not result in an optimal model. Indeed, using more
data appears to be the optimal solution. While ideally a large number of correctly
labelled performance bug-inducing commits would be available, in the absence of this
it is still preferable to use all commit data in the training data, i.e., truly performance
bug-inducing commits, non-performance bug-inducing commits, and non-bug-inducing
commits, in order to obtain the best classification results.

 97 Page 4 of 32 Empir Software Eng (2021) 26:97

The following are the primary contributions of this paper:

– To the best of our knowledge this is the first study to focus exclusively on performance
bug-inducing changes in the context of Just-In-Time defect prediction models.

– We manually verify the validity of the SZZ approach on performance bug-inducing
changes.

– We evaluate the results of the Just-In-Time model bug prediction before and after
our modifications after manually checking whether a commit that is labelled as
bug-inducing is truly bug-inducing.1

Paper organization The rest of the paper is organized as follows: Section 2 introduces
background concepts including the SZZ approach and Just-In-Time defect prediction.
Section 3 describes the design of our study. Section 4 presents our case study results
addressing our research questions. Section 5 presents the threats to the validity of our work.
Section 6 presents prior work related to the work presented in this paper. Finally, Section 7
concludes the paper.

2 Background

The following section describes the concepts that are necessary to understand our study.

2.1 SZZ

The first SZZ approach B-SZZ (the basic SZZ implementation) was defined by Śliwerski
et al. (2005), to identify the changes that introduce bugs. SZZ requires a code change
that fixes a bug found in the code as a base input, also known as bug-fixing changes.
Figure 1 shows an example of the SZZ approach, with a bug fix and a corresponding iden-
tified bug-inducing change. Since then, due to B-SZZ’s limitations, there have been several
improvements proposed: including the AG-SZZ implementation by Kim et al. (2006). da
Costa et al. (2017) later proposed the MA-SZZ implementation, which is built on top of
AG-SZZ. MA-SZZ improves upon AG-SZZ by removing potential bug-introducing changes
that are meta-changes. Meta-changes are source code independent changes, such as source
code management branch changes, source code merges, and changes to file properties such
as end-of-line changes (da Costa et al. 2017).

da Costa et al. (2017) find that B-SZZ has the lowest disagreement ratio in general (0%-
9%), followed by the MA-SZZ (0%-17%) (da Costa et al. 2017). The bugs analyzed by
MA-SZZ have the shortest time-span of bug-introducing changes, while B-SZZ has the
longest time-span of bug-introducing changes [7]. Costa et al. [7] also report that MA-SZZ
returns the second highest count of future bugs. We choose the MA-SZZ implementation
proposed by da Costa et al. (2017), as it is similar to B-SZZ with some improvements,
such as excluding style changes and including usage of an annotation graph (Kim et al.
2006), and the removal of meta-changes (da Costa et al. 2017). MA-SZZ is also used in
several studies including work on Just-In-Time defect prediction, to identify bug-inducing
changes (Kamei et al. 2013; McIntosh and Kamei 2018) as a ground truth for building the

1Our data files and scripts used are publicly available and can be found at: https://github.com/senseconcordia/
Perf-JIT-Models

https://github.com/senseconcordia/Perf-JIT-Models
https://github.com/senseconcordia/Perf-JIT-Models

Empir Software Eng (2021) 26:97 Page 5 of 32 97

Fig. 1 Overview of the SZZ approach. The SZZ approach first looks at the changes made in a bug-fixing
change (Step 1). It then uses git diff to localize the exact fix (Step 2). Finally, the deletions are traced back
to the origin of the deleted code (Step 3). The origin of the deleted code is a potential bug-inducing change

prediction models. Additionally, prior work in refactoring changes, such as RA-SZZ (Neto
et al. 2018), uses MA-SZZ by incorporating it with RefDiff to propose a refactoring aware
SZZ implementation (Neto et al. 2018). Although newer approaches introduce refactoring
awareness, we do not know how those interact with software performance. We therefore
err on the side of caution by using MA-SZZ, a more established and more commonly used
implementation of the SZZ approach.

Because the SZZ approach does not provide perfect precision and recall of bug-inducing
commits, it is important to understand the nature of its results. In an ideal scenario the
SZZ approach can indeed identify bug-inducing changes. In this ideal case, we consider the
results to be changes identified by the SZZ approach that are truly bug-inducing changes,
or true positives. These results can directly be used by developers to find the root cause of a
known bug. However, if the SZZ approach wrongly identifies changes that are not truly bug-
inducing changes as bug-inducing, we consider those to be false positives. False positives
can waste developer time by causing them to needlessly look at faultless code. Meanwhile,
false negatives are truly bug-inducing changes that were missed by the SZZ approach and
require different tools or manual investigation to find the root cause of a bug. As discussed
above, various modifications of the SZZ approach such as MA-SZZ, attempt to improve the
true positive rate and reduce the false positive and false negative rates.

2.2 Just-In-Time defect prediction

Defect prediction models are a well-known technique for identifying defect-prone files or
packages for practitioners to allocate quality assurance efforts. One underlying problem is
that once the critical files or packages have been identified, developers still need to spend
considerable time examining and modifying source code, which is time consuming and
impractical for large software systems.

Kamei et al. (2013) study prediction models that focus on identifying defect-prone soft-
ware at the change level, rather than file or package level, referred to as Just-In-Time Quality
Assurance, where developers can review and test these bug-inducing changes while they
are still fresh in their minds. Kamei et al. (2013) use a wide range of factors based on the

 97 Page 6 of 32 Empir Software Eng (2021) 26:97

characteristics of a software change, such as the number of added lines, and developer expe-
rience. They perform a large scale study on JIT models to see if they can predict whether
or not a change will lead to a defect (Kamei et al. 2013). To know whether or not a change
introduces a defect, Kamei et al. (2013) use the SZZ approach, linking each defect fix to
the source code change introducing the original defect by combining information from the
version archive with the bug tracking system. They find that using only 20 percent of the
effort it would take to inspect all changes, they can identify 35 percent of all defect-inducing
changes. Their findings indicate that JIT may provide an effort-reducing way to focus on
the most bug-inducing changes and thus reduce the costs of developing high-quality soft-
ware (Kamei et al. 2013). We build on this work by evaluating the JIT models specifically
on performance related bug-inducing changes rather than all bug-inducing changes.

JIT models identify bug-inducing code changes and are trained using techniques that
assume past bug inducing changes are similar to future ones. However, this assumption may
not hold, e.g., as system complexity tends to accrue, expertise may become more important
as systems age. McIntosh and Kamei (2018) study JIT models as systems evolve. Through a
longitudinal case study of open source systems, they find that fluctuations in the properties
of fix-inducing changes can impact the performance and interpretation of JIT models. They
find that the discriminatory power (AUC) and calibration (Brier) scores of JIT models drop
considerably one year after being trained. Our work focuses on studying JIT performance
related bug-inducing changes and how they can impact the performance of JIT models.

2.3 Performance Bugs

Jin et al. (2012) define a performance bug as a bug that causes a perceivable nega-
tive performance impact. For clarification between the distinction of performance and
non-performance bugs, we provide example code snippets of a performance bug and a
non-performance bug, in Figs. 2 and 3, respectively.

Performance bug in Fig. 2: The commit message for the changes shown is: Make repair
coordination less expensive by moving MerkleTrees off heap Removal of for loop in hash()
of MerkleTrees.java. This code snippet shows the code changes in the bug-fixing com-
mit 2117e2a. The for loop in the hash() function of MerkleTrees.java class is now less
expensive, by using a Javva entryset instead of a keyset in the modified for loop. The red
lines were initially added by the bug-inducing commit 0dd50a6, and were responsible for
the creation of the MerkleTrees.java class and the hash() method.

Non-performance bug in Fig. 3: The commit message for the changes shown is: fix
callback when repair request times out. This code snippet shows the code changes
in the bug-fixing commit 74c464a. The get() method callback now uses getMessage-
Count() instead of isDataPresent(). The red line was initially added in the bug-inducing
commit 71ccb7d.

To identify performance bugs, Ding et al. (Ding et al. 2020) use keywords as the heuris-
tics to identify performance issue reports. Ding et al. (Ding et al. 2020) start by using the
keywords that are used in prior research (Jin et al. 2012; Zaman et al. 2012). In order to avoid
missing performance issues, the list of keywords was expanded by using word embedding.
Ding et al. (2020) adopt a word2vec model trained over textual data from Stack Overflow
posts to identify the words that are semantically related to the existing list of keywords.
Examples of the uncommon words that are related to performance issues include ”sluggish”,

Empir Software Eng (2021) 26:97 Page 7 of 32 97

Fig. 2 Simplified example of code changes in a fix commit for a performance bug

and ”laggy”, which may not be used in previous research, but can help collect perfor-
mance issue reports. In order to ensure that there exists a performance improvement after
the issue fixes, Ding et al. (2020) only focus on the issue reports that have the type Bug and
are labeled as Resolved or Fixed. In total, Ding et al. (2020) find 121 performance-related
issue reports in Cassandra and 83 in Hadoop. We use this vetted performance-related data
in our paper.

3 Study Design

In this section, we present the design of our study.

3.1 Dataset

In order to conduct our study, we need a dataset of performance bugs. However, existing
datasets from prior studies on non-functional bugs (Ohira et al. 2015) may not be systemat-
ically shared, e.g., the root-causes of each non-functional bug may not be clearly indicated,
while such information is crucial in our study to verify the bug-inducing changes identified
by the SZZ approach. Additionally, while there are existing datasets that contain a source of
non-functional bugs (Radu and Nadi 2019), only a small number of the bugs are concerned
with performance. We therefore decided to create our own dataset using repositories highly
concerned with performance.

Fig. 3 Simplified example of code changes in a fix commit for a non-performance bug

 97 Page 8 of 32 Empir Software Eng (2021) 26:97

To create our dataset, we employ the manually analyzed bugs from Cassandra (Apache
2019) and Hadoop (Apache hadoop 2020) performance bugs found by Ding et al. (2020).
Hadoop is a free and open-source distributed system infrastructure providing processing in a
reliable and efficient manner developed by the Apache Foundation. Cassandra is a free and
open-source distributed NoSQL database management designed to handle large amounts of
data, also developed by the Apache Foundation (Syer et al. 2017). Hadoop and Cassandra
are chosen as our dataset because they are highly concerned with performance and have
been studied in prior research in mining performance data (Chen and Shang 2017; Chen
et al. 2014; Syer et al. 2017; Ding et al. 2020). Both repositories are open-source and also
have JIRA issue tracking systems for identifying fix commits.

3.2 Bug-fixing Commit Extraction

To extract metrics for the bug-inducing commits, we start from bug reports, in the JIRA
issue tracking systems. All of the closed bug-fixing reports identify the bug-fixing commit
that closed the bug report. We therefore use these bug-fixing commits as input data for our
study. If a bug report does not have a bug-fixing commit we ignore the bug-fix because
we cannot ascertain which piece of code fixed the bug, and therefore do not have enough
information to confidently study the bug. Figure 4 shows our approach to extract bug fix
commits.

3.3 Data preparation

Similarly to Kamei et al. (2013), we consider 13 factors grouped into four dimensions to
filter our data, as presented in Table 1; these factors and dimensions are derived from the
source control repository data of a project. The rationale and related work for each mea-
sure can be found in Kamei et al.’s (2013) work. The studied change metrics in Table 1
are grouped into four dimensions: diffusion properties, size properties, history properties,
and author experience properties. We excluded the purpose dimension because we use the
manually analyzed dataset from Ding et al. (2020) to identify the commits that are bug fix
commits.

We use commit metric data provided by Commit Guru (Rosen et al. 2015), a language-
agnostic analytics and classification tool in line with our work. Commit Guru (Rosen et al.
2015) is designed to be a prediction tool to identify and predict risky software commits,
although it does not focus specifically on performance bugs. Other prior work has also
used Commit Guru for building metric-based models (Catolino 2017; Catolino et al. 2019;

Fig. 4 An overview to extract fix commits given the JIRA issue ID: CASSANDRA-7245

Empir Software Eng (2021) 26:97 Page 9 of 32 97

Tabassum 2020; Kondo et al. 2020; Nayrolles and Hamou-Lhadj 2018). We use the tool
provided by Commit Guru (Rosen et al. 2015) to analyze the Cassandra and Hadoop repos-
itories. Although Commit Guru (Rosen et al. 2015) employs the SZZ approach, we use our
own implementation of MA-SZZ as an initial classification to determine whether a commit
induces a bug in the future. Commit Guru (Rosen et al. 2015) employs JIT models upon
analyzing each repository, while producing a downloadable CSV format file, where each
row represents metrics and information related to a commit.

Our SZZ approach lists the mappings of bug fixing commit and identified bug induc-
ing commits, along with which files contain the overlap of removed and added lines of
code, which is not provided by Commit Guru (Rosen et al. 2015). We also only consider
the identified bug-inducing commits dated prior to the bug report submission date to filter
out some false positives (da Costa et al. 2017). The metrics and information provided by
Commit Guru (Rosen et al. 2015) is presented in Table 1. We add an additional column:
contains bug to label bug-inducing commits, which takes a Boolean value. For all of the
models described in this paper, we use the metrics in Table 1 as the independent variables
to classify contains bug (i.e., whether a commit induces a bug), the dependent variable.

We check the data for metrics that are highly correlated by using the Spearman statis-
tic, ρ. The Spearman rank correlation estimates a rank-based measure of association and is
resilient to data that is not normally distributed, unlike other types of correlation (e.g., Pear-
son) (Correlation (pearson 2020). A hierarchical overview of the correlation amongst the
metrics is constructed using variable clustering analysis (McIntosh and Kamei 2018). We
remove metrics that are highly correlated where ρ > 0.75 (Kamei et al. 2013).

To remove redundant commit metrics, we fit preliminary models that explain each depen-
dent variable using the others, using the R2 value of these models to measure how well each
property is explained by the others. Similar to McIntosh et al. (McIntosh and Kamei 2018),
we use the redun function in the rms R package. This redun function iteratively drops the
metric that is the most well-explained by the other metrics until either one of two conditions
is satisfied:

– (1) no model achieves an R2 ≥ 0.9, or
– (2) removing a metric makes a previously dropped property no longer explainable, i.e.,

its preliminary model will no longer achieve an R2 ≥ 0.9

Similarly to Kamei et al. (2013), we perform a logarithmic transformation to remove the
effect of highly skewed change measures. A standard log transformation has been applied
to each measure listed in Table 1.

Unbalanced classification problems may cause problems to many learning algorithms.
We find 3,559 commits that are bug-inducing and 21,505 commits that are non-bug inducing
for Cassandra. We also find 6,632 commits that are bug-inducing and 23,569 commits that
are non-bug inducing for Hadoop. For Cassandra, there are over six times more commits
that are non-bug inducing than commits that are bug-inducing and over three times more
commits that are non-bug inducing than bug-inducing in the case of Hadoop.

We explore various methods to fix these data imbalances. We randomly upsample sam-
ples with replacement (i.e., replicating) of the minority class (i.e., bug-inducing) to make the
minority class be the same size as the majority class (i.e., non-bug inducing) (Tantithamtha-
vorn et al. 2020). We also randomly downsample (i.e., reduce) samples of the majority class
(i.e., non-bug-inducing) to make the number of majority modules be the same number as
the minority class (i.e., bug-inducing) (Tantithamthavorn et al. 2020).

 97 Page 10 of 32 Empir Software Eng (2021) 26:97

Table 1 Summary of change measures from Kamei et al.’s work (Kamei et al. 2013)

Dim. Name Definition

Diffusion NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

Entropy Distribution of modified code across each file

Size LA Lines of code added

LD Lines of code deleted

LT Lines of code in a file before the change

History NDEV The number of developers that changed the modified files

AGE The average time interval between the last and the current change

NUC The number of unique changes to the modified files

Experience EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

A prior study (Agrawal and Menzies 2018) found through a literature review that an
overwhelming majority of SE papers (85%) use SMOTE to fix data imbalance, precisely
when the data in the target class is overwhelmed by an over-abundance of information
about everything else, except the target. To account for the data imbalance in commits that
are bug-inducing and non bug-inducing in our models, we apply the R SMOTE function
on the training data. SMOTE is an algorithm for handling unbalanced classification prob-
lems (Dmwr 2020). The general idea of this method is to artificially generate new examples
of the minority class using the nearest neighbors of existing examples. Furthermore, the
majority class examples are also under-sampled. In our case, non-bug inducing commits are
under-sampled leading to a more balanced dataset (Dmwr 2020). For each case in the orig-
inal dataset belonging to the minority class, new examples of that class will be generated
by using the information from the k nearest neighbours of each example of the minor-
ity class (Dmwr 2020). We also use SMOTE to balance the number of performance and
non-performance related commits within our BALANCED model.

3.4 Model construction

In this paper, we build random forest models as our JIT classification models. Random
forests construct each tree by using a different bootstrap sample. Assuming that the number
of instances in the training set is N, a sample of these N cases is taken at random, with
replacement. The random forest classifier uses a bootstrap approach internally to get an
unbiased evaluation of the performance of a classifier. Contrary to standard decision trees,
where each decision node is split using the best split among all variables, random forests
split each node using the best subset among a randomly chosen subset of variables from each
of the constructed trees (Li et al. 2018). Random forests are robust against overfitting and
perform very well in terms of accuracy (Li et al. 2018), suited for predicting performance
related bug-inducing commits. Due to the imbalance of bug-inducing and non-bug inducing
commits in our data, it is suitable to use random forest trees to not overfit the models on non-
bug inducing commits. A study that compares 31 classifiers in software defect classification
suggests that Random Forest outperforms other classifiers (Ghotra et al. 2015).

Empir Software Eng (2021) 26:97 Page 11 of 32 97

We also explore alternative models that may be used other than a random forest
model: logistic regression modelling, support vector machine (SVM), and decision trees to
determine how different models perform.

3.5 Manual analysis

For some performance fix commits, there are several corresponding identified bug-inducing
commits (i.e., N:1). For example, commit 4722fe7 in Cassandra linked to the JIRA issue
CASSANDRA-7245: Out-of-Order keys with stress + CQL3. There are 16 identified bug-
inducing commits for the fix commit 4722fe7. Out of 218 studied bug fix commits,
we found that 126 of them have three or more identified bug-inducing commits. It seems
unlikely that so many commits can cause one specific bug in the system. Therefore, some of
these commits may be false positive bug-inducing commits (da Costa et al. 2017). Falsely
identified positive bug-inducing commits may occur because the SZZ approach still has
room for improvement (da Costa et al. 2017; Kim et al. 2006). Prior studies show that it
is unlikely that all of the modifications made in a bug-fixing change are actually related to
the bug-fix (e.g., it may contain an opportunistic refactoring) (da Costa et al. 2017; Kim
et al. 2006; Davies et al. 2014). Furthermore, fixes to non-functional bugs, including per-
formance bugs may be scattered across the source code and might be separate from their
bug-inducing locations in the source code, making it impossible for the SZZ approach to
locate bug-inducing commits by tracing back.

Because there is no verified ground truth for performance bug-inducing commits, we
further verify the 899 commits identified through the SZZ approach. We do this manually
to determine the reliability of the raw results obtained through the original dataset.

The steps performed in this paper for the manual analysis of bug-inducing commits are
as follows:

– Step 1A: The reviewers look at the description of a bug fix commit issue JIRA.
– Step 1B: The reviewers examine the code from the mentioned bug fix commit

corresponding to the JIRA issue.
– Step 1C: For each of the commits identified as bug-inducing commits by the SZZ

approach, the reviewers examine the code in the commit and determine if it induced the
bug identified in Step 1A based on their knowledge after studying the code.

Two reviewers perform this task separately and in parallel. Following the manual analy-
sis, the Cohen’s Kappa scores of the agreement of the two reviewers is calculated, ensuring
moderate levels of agreement. The reviewers later met together to discuss disagreements
until consensus was reached for all disagreements on whether an identified commit is
bug-inducing or not.

The above mentioned steps are individually completed by all reviewers for all bugs
remaining in the dataset. All reviewers must have the same classification (i.e., bug-inducing
or not bug-inducing) for a identified commit, otherwise this is marked as a disagreement.
All agreements and disagreements are recorded and used to calculate the Cohen’s Kappa
score, a robust statistic useful for either interrater or intrarater reliability testing (McHugh
2012). Cohen’s Kappa score is a standardized score, where 0 represents the amount of agree-
ment that can be expected from random chance, and 1 represents perfect agreement between
raters (McHugh 2012). Afterwards, the reviewers meet and discuss any of the disagreements
to reach a consensus for all identified bug-inducing commits.

 97 Page 12 of 32 Empir Software Eng (2021) 26:97

The disagreements are resolved as follows:

– Step 2A: The reviewers re-read the JIRA issue description, the bug fix, and the bug-
inducing commit in question.

– Step 2B: Each reviewer states the reason why they think the identified commit is bug-
inducing or not bug-inducing.

– Step 2C: The reviewers discuss until all two agree on a final decision.

4 Case Study Results

4.1 RQ1: Howwell can JIT models predict performance bug-inducing commits?

Motivation Because previous studies indiscriminately evaluate the SZZ approach on both
functional and non-functional bugs without distinction, we seek a clear comparison between
performance bugs and non-performance bugs. Zaman et al. found that developers spend
more time fixing performance bugs rather than fixing non-performance bugs (Zaman et al.
2011). Because performance bugs are a type of non-functional bug, an approach with a
purpose such JIT models using the SZZ approach would be useful in helping developers
locate where to fix a bug in the source code which can help fix future bugs that are similar
to prior identified bugs. In this RQ, we evaluate the JIT models on their ability to predict
bug-inducing commits identified by the SZZ approach.

Approach In order to evaluate the SZZ approach and the impact on JIT models with respect
to performance bugs, we must first obtain a source of known performance bugs. Further-
more, we must have enough information for each bug to accurately determine the root causes
for the bugs. We first find the corresponding bug fixing and bug-inducing changes for the
bugs using the SZZ approach on our chosen datasets. Figure 5 provides an overview of our
approach.

Using the JIRA issue IDs, we go through all commits in each subject repository, provided
by Commit Guru (Rosen et al. 2015). We do this to find linked commits that we assume
are fix commits for those issues. We do this by creating a script where for each commit, if
the commit message contains at least one of the JIRA performance issues from the list, we
choose these commits as our bug fixing commits. In order to find the bug-inducing commits,
we input the bug fixing commits into the SZZ approach, and we then identify the commits
that the approach outputs as bug-inducing commits.

We perform 10-fold cross validation and evaluate the data of the JIT models for per-
formance data and non-performance data on their recall, precision, F1, and AUC values.
Since for this RQ (RQ1) as well as RQ2 we perform 10-fold cross validation, every sin-
gle one of the commit instances are in the testing set exactly once. We evaluate all of the
non-performance and performance classifications independently as a means to compare the
models’ power to predict performance and non-performance bug-inducing commits.

We use a default threshold of 0.5 to classify whether a commit is bug-inducing or not,
where if the model-predicted probability of a bug-inducing commit is greater than 0.5, then
the commit is classified as defect inducing; otherwise, it is classified as non-bug induc-
ing (Kamei et al. 2013; Guo et al. 2010; Gyimothy et al. 2005). Once all testing instances
are evaluated, we then aggregate the results of all testing instances. We do this four times,
experimenting with four sampling strategies: original (i.e., without any additional sampling

Empir Software Eng (2021) 26:97 Page 13 of 32 97

Fig. 5 An overview of our approach to evaluate the impact of falsely identified performance bug inducing
changes in JIT defect prediction models

 97 Page 14 of 32 Empir Software Eng (2021) 26:97

strategy), downsampling (Tantithamthavorn et al. 2020), upsampling (Tantithamthavorn
et al. 2020), and SMOTE (Dmwr 2020). We also explore alternative models that may be
used other than a random forest model: logistic regression modelling, SVM, and decision
trees in combination with SMOTE as summarized in Table 3.

Upon performing the manual analysis described in Section 3, we found that there are 899
identified performance bug-inducing commits: 327 from Cassandra and 572 from Hadoop
shown in Fig. 5. The 899 performance bug-inducing commits were identified through the
SZZ approach, however, SZZ’s assumptions about bug introduction (where removed line
in a bug-fixing commit had introduced the bug) might not always be valid for performance
bugs. These bug-inducing commits may or may not be truly bug-inducing commits, some
of them may be false positives.

Since prior bug-inducing changes are the data that is fed into JIT defect prediction mod-
els to predict future bugs, it is important to determine whether or not the past changes
are correctly labelled as bug-inducing or not bug-inducing. In this RQ we evaluate the
performance of JIT models when using a manually verified dataset of performance bug-
inducing commits as the training data. We first evaluate the JIT models on the performance
related data output by the SZZ approach. However, because this data can contain errors
we then re-evaluate the results after a manual analysis of the test dataset. We consider true
positive detections in cases where our JIT models correctly identify non-performance and
performance bug-inducing commits.

Results We find 120 and 83 JIRA issues related to performance issues for Cassandra and
Hadoop respectively. For these issues, we find 179 and 80 commit fixes for Cassandra and
Hadoop respectively. Using the SZZ approach on those fixes, we find that there are 327 and
572 identified bug-inducing commits for Cassandra and Hadoop respectively, associated
with the 148 out of 179 and 70 out 80 commit fixes identified by the SZZ approach shown
in Fig. 5. For the remaining 41 bug fixes, there were no identified bug-inducing commits by
the SZZ approach because the bug fixes only contained either changes to non-Java files or
only additions.

Manual analysis: For some performance fix commits, there are several corresponding
identified bug-inducing commits. For example, the commit: 4722fe7 in Cassandra linked
to the JIRA issue CASSANDRA-7245, has 16 identified bug-inducing commits. Upon man-
ual analysis, only eight of the 16 identified bug-inducing commits were truly bug-inducing
changes. We show an example of a falsely identified bug-inducing commit: 84c0657 in
Fig. 6. The commit message is: RefCount native frames from netty to avoid corruption bugs
patch by tjake; reviewed by bes for CASSANDRA-7245 and the JIRA issue is Out-of-Order
keys with stress + CQL3. The removed line in the fix commit flags commit 84c0657 as
bug-inducing, as that line was introduced in a change in the commit history. The added
and removed lines are snippets of code changes that are unrelated to the bug fix commit
message and the JIRA issue description. Since the only code overlap that the fix commit
4722fe7 has with the identified inducing commit 84c0657 is the snippet removed shown
in Fig. 6 which is unrelated to the bug issue description, we rule it out as a false positive for
introducing a bug in the context of CASSANDRA-7245.

Fig. 6 Simplified example of code changes in a fix commit that are unrelated to the bug description

Empir Software Eng (2021) 26:97 Page 15 of 32 97

For the manual examination of the identified bug-inducing commits, there were a total
of 328 and 572 identified bug-inducing commits, and 141 and 92 disagreements from Cas-
sandra and Hadoop, respectively. To quantitatively evaluate how often the reviewers agreed
during manual evaluation, we use the Cohen’s Kappa score (McHugh 2012). The Cohen’s
Kappa score was 0.48 - a moderate level of agreement for Cassandra, and 0.43 - a mod-
erate level of agreement for Hadoop (McHugh 2012). Having a high Cohen’s Kappa score
reduces potential bias of a single reviewer by hanging multiple reviewers, which is benefi-
cial for producing reproducible results. The majority of the disagreements were due to either
one of the reviewers misinterpreting the code, or not being sure whether the identified com-
mit that contained a bug introduced the bug at the time or was a commit that retained a bug
from a prior bug-inducing commit. Because the agreement score only ranked as moderate,
each of the 233 disagreement was carefully re-examined and discussed until a consensus
was reached between all reviewers.

Upon discussion between the two reviewers, it was found that 129 out of the 327 Cassan-
dra commits and 244 out of the 572 Hadoop bug-inducing commits were manually verified
to be truly bug-inducing commits. There are therefore 198 and 328 falsely identified bug-
inducing commits from the SZZ approach for Cassandra and Hadoop, respectively. It should
be noted that some commits were identified as bug-inducing commits for more than one bug.
On the other hand, as mentioned earlier, for some performance fix commits, there are sev-
eral corresponding identified bug-inducing commits. If the manually verified bug-inducing
commit was a bug-inducing commit for more than one of the bugs (i.e., 1:N), we say it is
a bug-inducing commit because it introduced a bug at the time of the commit In particular,
192 commits out of the 899 identified bug-inducing commits in our dataset (21.4%) were
identified to induce more than one bug.

Our results upon performing 10-fold cross validation, on the JIT models are shown in
Table 2 in the Raw data column.

The results of using raw SZZ data as JIT model input (i.e., the RQ1 Raw data col-
umn of Table 2) shows that the JIT models have worse prediction results when predicting
non-performance bug inducing commits than the performance ones. However, this data is
unvetted and may contain errors. Similar to RQ1, we find that the AUC scores and F1
scores for using SMOTE outperform the other three sampling strategies (i.e., when no sam-
pling strategy is applied, downsampling, and upsampling) for both performance bugs and
non-performance bugs.

After establishing a manually vetted ground truth, we actually find that the models are
more accurate for non-performance commits rather than performance commits, shown by
the F1 scores and AUC values of Table 2, column RQ1 Verified data. We correct the testing
data used in RQ1, by using the ground truth of identified bug-inducing commits through
manual analysis and re-build the models, as shown in Table 2 in the column Verified data.
Note that both the RQ1 Raw data and RQ1 Verified data columns use the same model,
which we will call Unverified Data Model. After establishing a ground truth through our
manual analysis, rather than the initial one made up of the results directly provided by the
SZZ approach, we re-evaluate our models on the correctly classified performance commits.
Once again, we generally find that the AUC scores and F1 scores for using SMOTE out-
performs the other three sampling strategies (i.e., no sampling strategy, downsampling, and
upsampling), for performance and non-performance bugs.

The differing nature of performance bugs makes the SZZ approach a sub-optimal approach
for identifying bug-inducing changes for performance bugs. Upon establishing a manually

 97 Page 16 of 32 Empir Software Eng (2021) 26:97

Table 2 Comparison of results of bug-inducing commit classification based on verified and unverified
SZZ input data using 10-fold cross-validation, using four different sampling strategies in combination with
random forest

Original RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 48.9% 62.5% 49.2% 71.9% 42.6% 71.1%

Precision 100.0% 100.0% 43.0% 45.3% 43.2% 46.0%

F1 65.7% 76.9% 45.9% 55.6% 42.9% 55.8%

AUC 0.745 0.812 0.502 0.578 0.503 0.584

Non-performance bugs Recall 29.7% 45.3% 29.7.0% 45.3% 23.1% 42.4%

Precision 54.5% 64.3% 54.5% 64.3% 58.2% 65.6%

F1 38.5% 53.1% 38.5% 53.1% 33.1% 51.5%

AUC 0.631 0.682 0.631 0.682 0.604 0.673

Downsampling RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 48.8% 62.5% 48.4% 71.9% 42.2% 71.1%

Precision 100.0% 100.0% 42.4% 45.3% 42.6% 46.0%

F1 65.6% 76.9% 45.2% 55.6% 42.4% 55.8%

AUC 0.744 0.812 0.496 0.578 0.498 0.854

Non-performance bugs Recall 29.9% 45.5% 29.9% 45.5% 22.9% 42.6%

Precision 54.7% 64.4% 54.7% 64.4% 58.1% 65.6%

F1 38.7% 53.3% 38.7% 53.3% 32.9% 51.6%

AUC 0.633 0.683 0.633 0.683 0.603 0.674

Upsampling RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 49.3% 62.8% 49.2% 72.7% 42.2% 71.1%

Precision 100.0% 100.0% 42.7% 45.6% 42.6% 46.0%

F1 66.0% 77.1% 45.7% 56.0% 42.4% 55.8%

AUC 0.746 0.814 0.469 0.582 0.498 0.584

Non-performance bugs Recall 30.0% 45.4% 30.0% 45.4% 22.9% 42.6%

Precision 54.7% 64.4% 54.7% 64.4% 57.8% 65.6%

F1 38.7% 53.2% 38.7% 53.2% 32.8% 51.6%

AUC 0.633 0.683 0.633 0.683 0.603 0.673

vetted ground truth, we find that the models are more accurate for non-performance com-
mits rather than performance commits. Our training data contained raw data from the SZZ

Empir Software Eng (2021) 26:97 Page 17 of 32 97

Table 2 (continued)

SMOTE RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 87.7% 90.9% 91.4% 89.8% 90.6% 93.4%

Precision 100.0% 100.0% 73.8% 56.9% 86.7% 82.1%

F1 93.4% 95.2% 81.7% 69.7% 88.6% 87.4%

AUC 0.939 0.955 0.518 0.486 0.647 0.787

Non-performance bugs Recall 87.0% 86.2% 87.0% 86.2% 88.2% 86.7%

Precision 79.6% 86.7% 79.6% 86.7% 81.2% 87.0%

F1 83.1% 86.5% 83.1% 86.5% 84.6% 86.9%

AUC 0.842 0.869 0.842 0.869 0.845 0.869

approach in terms of labelled bug-inducing commits that included falsely labelled perfor-
mance bug-inducing commits. Since manual analysis is effort consuming, it will be valuable
to determine whether manually validated data makes a significant difference for training
models to classify performance bug-inducing commits, which we explore in RQ2.

4.2 RQ2: How does correcting falsely identified performance bug-inducing bugs
impact JIT models?

Motivation Just-In-Time models are used to identify bug-inducing code changes, and are
trained using techniques that assume past bug-inducing changes are similar to future bug-
inducing changes. In RQ1, our training data contained raw data from the SZZ approach in
terms of labelled bug-inducing commits. The trained model may be biased by the errors
introduced by the SZZ approach. Since manual analysis is time-consuming, in this RQ,
we want to determine whether verified data makes a significant difference in training a
better model to classify performance bug-inducing commits. In RQ1, we train the models
on unverified data, while in this RQ, we train the models on verified data, in terms of
performance related commits.

Approach In this RQ, we evaluate the JIT models on the performance related data output
by the SZZ approach, correctly labelled by reviewers through a manual analysis. Similar
to RQ1, we perform 10-fold cross validation on our training dataset, which now contains
a verified ground truth mix of non-performance related data as well as correctly identified
performance related bug-inducing commit instances. We call this the Verified Data Model.
We consider a true positive detection in cases where our JIT models correctly identify

 97 Page 18 of 32 Empir Software Eng (2021) 26:97

non-performance and performance bug-inducing commits. For each repository (i.e., Cas-
sandra and Hadoop), we create one model and evaluate non-performance and performance
classifications independently. Upon performing 10-fold cross validation after correcting
the performance commits manually, we find the recall, precision, F1, and AUC values of
performance commits and non-performance commits.

To obtain a fair comparison, we further evaluate the differences between the classifi-
cations made in RQ1’s Unverified Data Model and RQ2’s Verified Data Model. We can
do this because both the Unverified Data Models and Verified Data Models use the same
ground truth of correctly labelled bug-inducing commits through the manual analysis step
performed in RQ1. We compare the results shown in Table 2 in the columns Verified Data
of RQ1 and Verified Data of RQ2. We evaluate the AUC (Fawcett 2006) for performance
commits and non-performance commits for each project (i.e., Cassandra and Hadoop).
Furthermore, we use Wilcoxon’s signed-rank test (McDonald 2014) and Cohen’s d (Saw-
ilowsky 2009) to compare the differences in results using the model produced in RQ1 and
the one produced in RQ2.

Similar to RQ1, we explore alternative models that may be used other than a random
forest model: logistic regression modelling, SVM, and decision trees.

Results Similar to RQ1, we find that the AUC scores and F1 scores for using SMOTE out-
perform the other three sampling strategies (i.e., no sampling strategy, downsampling, and
upsampling) for both performance and non-performance bugs, shown in Table 2. Therefore,
we include SMOTE as a sampling strategy step for further model building.

The results are summarized in Table 3 in the Verified Data Model data column. Similarly
to RQ1, our threshold to classify whether a commit is bug-inducing or not is 0.5. We base
our results off the random forest model, as it outperforms the logistic regression modelling,
SVM, and decision trees models.

Performance bug-inducing commits: By using manually verified performance data in the
training data to build the models, we find that there is no statistical difference on the models’
classification power. We find that there are overlapping correctly identified bug-inducing
commits from both the Unverified Data Model and Verified Data Model. We find that for
performance bug-inducing commits, the Unverified Data Model and Verified Data Model
have the correct and same classification for 212 performance related commit instances in
Cassandra and 110 of the same performance related commit instances in Hadoop. As shown
in Fig. 7, in Cassandra, the Unverified Data Model was able to correctly classify 11 more
performance commit instances that the Verified Data Model was not able to classify, while
the Verified Data Model correctly classified 13 more performance commit instances that
the Unverified Data Model was not able to classify as summarized in Fig. 7. Additionally,
as shown in Fig. 7, in Hadoop, the Unverified Data Model was able to correctly classify 5
more performance commit instances that the Verified Data Model was not able to classify,
while the Verified Data Model correctly classified 9 more performance commit instances
that the Unverified Data Model was not able to classify. Therefore, based on the various non-
overlapping results of both models, we believe that having correctly identified performance
bug-inducing commits in the training data of JIT models can help correctly classify other
performance bug-inducing commits.

Non-performance bug-inducing commits: We find that for non-performance bug-
inducing commits, the models in Unverified Data and Verified Data have the correct and

Empir Software Eng (2021) 26:97 Page 19 of 32 97

Table 3 Comparison of results of bug-inducing commit classification based on verified and unverified SZZ
input data using 10-fold cross-validation, using four different models in combination with SMOTE

Random Forest RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 87.7% 90.9% 91.4% 89.8% 90.6% 93.4%

Precision 100.0% 100.0% 73.8% 56.9% 86.7% 82.1%

F1 93.4% 95.2% 81.7% 69.7% 88.6% 87.4%

AUC 0.939 0.955 0.518 0.486 0.647 0.787

Non-performance bugs Recall 87.0% 86.2% 87.0% 86.2% 88.2% 86.7%

Precision 79.6% 86.7% 79.6% 86.7% 81.2% 87.0%

F1 83.1% 86.5% 83.1% 86.5% 84.6% 86.9%

AUC 0.842 0.869 0.842 0.869 0.845 0.869

Logistic Regression RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 86.4% 88.0% 88.1% 89.1% 88.1% 91.4%

Precision 100.0% 100.0% 77.3% 57.3% 85.5% 69.0%

F1 92.7% 93.6% 82.4% 69.7% 86.8% 78.7%

AUC 0.932 0.940 0.503 0.507 0.490 0.547

Non-performance bugs Recall 79.6% 77.2% 79.6% 77.2% 82.6% 77.6%

Precision 85.4% 80.3% 85.4% 80.3% 72.9% 75.4%

F1 82.4% 78.7% 82.4% 78.7% 77.4% 76.5%

AUC 0.770 0.761 0.770 0.761 0.769 0.763

SVM RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 87.6% 89.7% 88.5% 91.4% 89.3% 93.4%

Precision 100.0% 100.0% 74.5% 57.6% 83.7% 68.3%

F1 93.4% 94.6% 80.9% 70.7% 86.4% 78.9%

AUC 0.938 0.948 0.502 0.523 0.513 0.562

Non-performance bugs Recall 83.5% 79.3% 83.5% 79.3% 84.3% 80.9%

Precision 85.6% 80.7% 85.6% 80.7% 73.9% 76.3%

F1 84.5% 80.0% 84.5% 80.0% 78.7% 78.5%

AUC 0.777 0.772 0.777 0.772 0.781 0.780

 97 Page 20 of 32 Empir Software Eng (2021) 26:97

Table 3 (continued)

Decision Trees RQ1 RQ2

Training data Raw data Raw data Verified data

Testing data Raw data Verified data Verified data

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 90.1% 87.8% 92.2% 90.6% 94.1% 94.5%

Precision 100.0% 100.0% 75.3% 54.2% 83.5% 62.4%

F1 94.8% 93.5% 82.9% 67.8% 88.4% 75.2%

AUC 0.950 0.939 0.521 0.516 0.541 0.533

Non-performance bugs Recall 86.2% 79.0% 86.2% 79.0% 88.3% 80.6%

Precision 84.2% 78.1% 84.2% 79.1% 72.6% 72.0%

F1 85.2% 78.5% 85.2% 78.5% 79.7% 76.0%

AUC 0.777 0.749 0.777 0.749 0.785 0.747

same classification for 2,374 non-performance bug-inducing commit instances in Cassan-
dra and 4,782 same classification for non-performance bug-inducing commit instances in
Hadoop. For Cassandra, the Unverified Data Model was able to correctly classify 196 more
non-performance bug-inducing commit instances that the Verified Data Model was not able
to classify, while the Verified Data Model correctly classified 242 more non-performance
bug-inducing commit instances that the Unverified Data Model was not able to classify.
For Hadoop, the Unverified Data Model was able to correctly classify 429 more non-
performance bug-inducing commit instances that the Verified Data Model was not able to
classify, while the Verified Data Model correctly classified 453 more non-performance bug-
inducing commit instances that the Unverified Data Model was not able to classify. The
results are summarized in Fig. 7.

For performance commits, the results of RQ2’s Verified Data Model are higher than those
for RQ1’s Unverified Data Model as shown by the AUC values in Table 2. When comparing
the results of both models for performance commits, although the results are statistically
different for Hadoop (p-value = 0.00051), the effect size is classified as small (Cohen’s
d = 0.437) (Sawilowsky 2009), additionally the results are not statistically different for

Table 4 Comparison of results of bug-inducing commit classification based on verified SZZ input data using
10-fold cross-validation with Random Forest, using three different classification thresholds: 0.4, 0.5, and 0.6

Threshold 0.4 0.5 0.6

Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance bugs Recall 93.4% 96.1% 90.6% 93.4% 86.3% 89.8%

Precision 89.1% 79.6% 86.7% 82.1% 90.5% 81.0%

F1 91.2% 87.1% 88.6% 87.4% 88.4% 85.2%

AUC 0.647 0.787 0.647 0.787 0.647 0.787

Non-performance bugs Recall 90.7% 92.3% 88.2% 86.7% 81.8% 79.6%

Precision 80.1% 83.3% 81.2% 87.0% 86.5% 89.9%

F1 85.1% 87.6% 84.6% 86.9% 84.1% 84.4%

AUC 0.845 0.869 0.845 0.869 0.845 0.869

Empir Software Eng (2021) 26:97 Page 21 of 32 97

Cassandra (p-value = 0.068). Similarly, as shown in Table 3, RQ2’s Verified Data Model
has higher AUC values than those for RQ1’s Unverified Data Model for the SVM and
Decision Trees models. The logistic regression model presents an AUC score for RQ1’s
Unverified Data Model that is statistically higher than RQ2’s Verified Data Model. However,
when comparing the results of both models for performance commits, we find that for both
Hadoop and Cassandra the results of the Logistic Regression, SVM, and Decision Trees
models are not statistically different (Table 4).

For non-performance commits, the results of the Verified Data Model are slightly higher
than those for the Unverified Data Model as shown by the AUC values in Table 2. However,
when comparing the results of Verified Data Model and Unverified Data Model for non-
performance commits, the results are not statistically different for both Cassandra (p-value
= 0.291) and Hadoop (p-value = 0.464). Similarly, as shown in Table 3, RQ2’s Verified
Data Model has higher AUC values than those for RQ1’s Unverified Data Model for the
Logistic Regression and SVM models. The AUC score for RQ1’s Unverified Data Model is
higher than that of RQ2’s Verified Data Model, when comparing the Decision Tree models.
We find that the results are significantly different for the Logistic Regression models for
Cassandra (p-value = 0.001) and the Decision Trees models for Hadoop (p-value = 0.003).
However, both effect sizes are classified as trivial: a Cohen’s d value of 0.068 for Cassandra,
and a Cohen’s d value of 0.004 for Hadoop.

These results indicate that manually verifying the results of SZZ to produce JIT models
generally does not impact the models’ classification power, and when it does (i.e., in the case
of Cassandra performance and Hadoop non-performance) the changes only have a negligi-
ble to small effect on the classification power of these models. However, the changes in the

Fig. 7 Top: Comparison of correctly classified performance bug-inducing commits, before and after
manual correction. Bottom: Comparison of correctly classified non-performance bug-inducing commits,
before and after manual correction

 97 Page 22 of 32 Empir Software Eng (2021) 26:97

models brought about by manual verification of performance commits do add new informa-
tion that was not present in the original, non-verified model as shown in Figs. 7 and 7. This
indicates that including correct performance bug-inducing commits in Just-In-Time train-
ing data can help with identifying other previously unidentified bug-inducing commits as
well as classifying non-bug inducing commits. Further insight into the classification power
could benefit future model building. We investigate this further in RQ3.

Upon comparing the four models, we choose to use random forest models in combina-
tion with SMOTE for building future models, as it ranks the highest in terms of F1 and
AUC scores for performance and non-performance bugs in both Hadoop and Cassandra,
depicted by Table 3. While we do select the random forest model due to its higher predictive
power, the overall trends uncovered are mostly model agnostic. The models present similar
patterns, where the AUC scores for non-performance bugs is always higher than those of
performance bugs.

We find that there is valuable knowledge present in non-performance bug-inducing
commits that was not present in our sample of truly performance bug-inducing commits.
Unfortunately, our truly performance bug-inducing commits sample is simply too small to
contain all of the project’s knowledge. We believe that performance bug localization would
strongly benefit from large datasets of performance bugs.

4.3 RQ3: Does only using the correct performance inducing bugs as training data
improve the JIT models when predicting other performance inducing bugs?

Motivation In RQ2, we find that including verified performance bug-inducing commits
in JIT training data can properly identify other bug-inducing commits as well as classify
non-bug inducing commits, indicating that including correctly performance bug-inducing
commits in Just-In-Time training data can help with identifying other bug-inducing com-
mits as well as classifying non-bug inducing commits. If performance and non-performance
bug-inducing commits have different characteristics, a model only based on performance
bugs can better label performance bug-inducing changes. In this RQ, we evaluate Just-In-
Time models solely on the manually verified performance commits identified by the two
reviewers in RQ1, by using four different combinations of training data shown in Fig. 5. Of
the model combinations, we include one where the training data is only comprised of manu-
ally labelled bug-inducing commits, to see whether we need a separate model for predicting
performance bugs. With the results of this RQ, we seek to determine how different training
data influences the models’ power to predict performance bug-inducing commits.

Approach We evaluate four JIT models with manually verified bug-inducing commits for
each subject system to find what combination of training data is best suited for predicting
performance related bug-inducing commits. We use ‘X’ to denote the variable number of
bug-inducing commits, shown in detail in Fig. 5, for each subject system to evaluate the
models below:

Empir Software Eng (2021) 26:97 Page 23 of 32 97

– Model PERF+NON-PERF: The training data is comprised of X-1 performance bug-
inducing commits, the non-performance bug-inducing commits, and both all non-bug-
inducing commits. The testing data is solely comprised of the one verified performance
bug-inducing commit excluded from the training data. This split is repeated X times,
and once all instances are evaluated. We then aggregate the results of all repetitions.

– Model NON-PERF: The training data is comprised of non-performance bug-inducing
commits, and all non-bug-inducing commits. The testing data is comprised of the X
verified performance bug-inducing commits.

– Model PERF: The training data is comprised of X-1 performance bug-inducing com-
mits, and all non-bug-inducing commits. The testing data is solely comprised of the one
verified performance bug-inducing commit excluded from the training data. Similarly
to Model PERF+NON-PERF the split is repeated X times, and all evaluation data is
aggregated.

– Model BALANCED: The training data is comprised of X-1 performance bug-inducing
commits, the non-performance bug-inducing commits, and all non-bug-inducing com-
mits. The testing data is solely comprised of the one verified performance bug-inducing
commit excluded from the training data. This split is repeated X times, and once all
instances are evaluated. We then aggregate the results of all repetitions. Our perfor-
mance bug-inducing commits sample is simply too small to contain all of the project’s
knowledge. Therefore, we produce this model to test the effect of a more balanced
dataset. Contrary to Model PERF+NON-PERF, an extra balancing step is done to
account for the imbalance in performance and non-performance related commits. We
use the balancing approach outlined in the data preparation section of this paper (i.e.,
Section 3.3).

For each of the four models described above, each of the performance bug-inducing
commits are tested on, exactly once.

Results Model PERF performs the worst, while Model PERF+NON-PERF per-
forms the best Moreover, the difference between Model PERF+NON-PERF and
Model PERF is that Model PERF+NON-PERF also trains on the non-performance
bug inducing commits in addition to all commits except one performance bug-
inducing commits and non-bug inducing commits. The single excluded perfor-
mance bug-inducing commit is the one that the JIT model predicts on. Sim-
ilarly to RQ1 and RQ2, our threshold to classify whether a commit is bug-
inducing or not is 0.5. Including the non-performance bug-inducing commits in the train-
ing data increased the classification of truly performance bug-inducing commits by 10.2%
in Cassandra and 12.5% in Hadoop, as shown in Table 5. This indicates that it is better for
JIT model classification to include all commit types, possibly due to the small size of the per-
formance bug data compared to non-performance bug data. The small performance bug
data sample is not providing sufficient predictive power. This difference in internal knowl-
edge is what allows Model PERF+NON-PERF to use information from non-performance
bug-inducing data, which seems to have overlapping knowledge in terms of similar
characteristics to performance bugs, helping with the classification of performance bugs.

The effect of truly performance bug-inducing commits (PB in Fig. 5) Although the
performance bug data alone may not be enough to accurately detect other performance bug-
inducing commits, as shown by Model PERF performing worse than Model PERF+NON-
PERF, it is still better to include them in the training data, as it still gives new information,

 97 Page 24 of 32 Empir Software Eng (2021) 26:97

Fig. 8 Comparison of Model PERF+NON-PERF, Model NON-PERF, and Model PERF of Cassandra (left)
and Hadoop (right) of correctly classified performance bug-inducing commits

show in Fig. 8. Excluding the non-performance commits has a larger effect than excluding
performance bug-inducing commits as shown in Table 5. This is likely because there are
many more non-performance bug-inducing commits than performance bug-inducing com-
mits. However, performance bug-inducing commits do contain unique knowledge that is
not contained within non-performance bug-inducing commits as shown in Fig. 8. By the
same logic, this explains why Model PERF+NON-PERF performs the best out of the four
models, since it contains both performance bug-inducing commits and non-performance
bug-inducing commits. More data included in the training data has positive results on the
models’ classification power. As a future work, we propose enlarging the amount of train-
ing instances of performance bug-inducing data to determine if this can further improve the
JIT models.

The results are summarized in Fig. 8. The data shows that there is knowledge present
in non-performance bug-inducing commits that was not present in our sample of truly
performance bug-inducing commits. This is likely due to the sheer size difference between
our non-performance bug-inducing commits and truly performance bug-inducing commits
samples. Our truly performance bug-inducing commits sample is simply too small to contain
all of the project’s knowledge. Including correct performance bug-inducing data is therefore
valuable to predict on other performance bug-inducing commits.

We therefore create a model called BALANCED, as shown in Table 5 where we use the
R SMOTE function (Dmwr 2020) as described in Section 3, to balance the non-performance
commits and the performance commits. As shown in Fig. 9, we find that for performance
related commits, Model PERF+NON-PERF and Model BALANCED have the correct and
same classification for 192 performance related commit instances in Cassandra and 94

Table 5 Evaluation results of
four JIT models with manually
verified performance
bug-inducing commits per
subject system. The amount of
true positive performance
bug-inducing commits classified
by each of the models is shown

Cassandra Hadoop

Model PERF+NON-PERF 210 110

Model NON-PERF 201 111

Model PERF 185 94

Model BALANCED 209 102

Total 244 128

Empir Software Eng (2021) 26:97 Page 25 of 32 97

Fig. 9 Comparison of Model PERF+NON-PERF and BALANCED of Cassandra (left) and Hadoop (right)
of correctly classified performance bug-inducing commits

of the same performance related commit instances in Hadoop. As shown in Fig. 9, bal-
anced datasets (BALANCED) and large datasets (PERF+NON-PERF) each yield good, and
slightly different results. Therefore, we suggest that JIT models aim for large and balanced
training datasets.

When limited to not having enough performance commit related data, we find that
using all commit data, i.e., truly performance bug-inducing commits, non-performance bug-
inducing commits, and non-bug-inducing commits in the training data, still gives the best
results. The rationale behind this result stems from the limited amount of performance bug-
inducing commit data in our case study. It appears that more data, no matter the bug-type, is
still superior to less data of a specific bug type (i.e., performance). Hence, in the absence of
sufficient performance regression data, a “blind” model with all the bug-inducing commits
still performs reasonably well.

Additionally, prior work shows that cross-prediction models (Fukushima et al. 2014),
where combining the data of several other projects to produce a larger pool of training data,
works well in JIT defect prediction, which can be explored in future work for performance-
related bugs. Leveraging other projects’ labelled performance data would be able to enlarge
the amount of training instances of performance bug-inducing data.

Our findings show that it is better for JIT model classification to include all commit
types, due to the small size of the performance bug data compared to non-performance bug
data. Moreover, our results for Model BALANCED, indicate that larger samples of correct
performance bug-inducing data are more valuable for predicting other performance bug-
inducing commits. For future work, we propose enlarging the amount of training instances
of performance bug-inducing data to determine if this can further improve the JIT models.

Compared to the amount of functional bugs, it is typical that the amount of perfor-
mance bugs are relatively small in software projects (Ding et al. 2020; Radu and Nadi 2019;
Jin et al. 2012; Nistor et al. 2013). Therefore, the lack of data to build JIT bug predic-
tion models for performance bugs may become a common challenge in practice. On the
other hand, research has shown that transfer learning techniques can be used to leverage
data from other projects in order to enlarge the training data for modeling and predic-
tion (Catolino et al. 2019). Therefore, future research may consider enlarging the amount
of training instances of performance bug-inducing data by transfer learning techniques to
further improve the JIT models.

 97 Page 26 of 32 Empir Software Eng (2021) 26:97

5 Threats to Validity

In this section we discuss the threats to the validity of our research.

External validity Threats to external validity are concerned with the extent to which we can
generalize our results. Although our study only focuses on 121 performance issues, the scale
of our study is comparable to prior research on performance issues (Zaman et al. 2012).
We attempt to mitigate these issues by establishing our benchmark of performance issues
based on an existing, manually verified dataset used in prior research (Ding et al. 2020).
Our findings might not be generalizable to other systems, therefore, for our future work, we
propose increasing the quantity of training instances of performance bug-inducing data.

Construct validity Threats to construct validity are concerned with the validity of our con-
clusions within the constraints of the dataset we used. Very few of the projects have an issue
tracking system, and so for many, looking for bug reports for that have keywords relating
to performance in the system was inapplicable. In order for us to mitigate the constraints of
drawing conclusions, the dataset we employed from prior work (Ding et al. 2020) contains
two Java projects: Cassandra and Hadoop, which are both highly concerned with perfor-
mance and have been studied in prior research in mining performance data (Chen and Shang
2017; Chen et al. 2014; Syer et al. 2017; Ding et al. 2020).

Internal validity Threats to internal validity are concerned with how our experiments were
designed. Our manual analysis of the candidate bug-inducing commits for known bug fixing
commits were subject to our own opinion and could therefore be biased by the opinion
of the experimenter. In order to mitigate the risk of bias, we included two other reviewers
in parallel, following with Cohen’s Kappa to measure agreement between the reviewers.
After reviewing separately, the reviewers later met together to discuss disagreements. These
measures taken allow for us to mitigate and measure the internal bias of our manual study.

While the existence of non-performance bug-inducing commits in the training data
may have an effect on classifying performance bug-inducing commits, it is also possible
that performance bug-inducing commits in the training data may have an effect on clas-
sifying non-performance bug-inducing commits. For the purpose of the paper, we focus
on the impact of having non-performance related data on classifying performance bugs.
We may focus on the effect that performance bug-inducing commits have on classifying
non-performance commits as a future work.

We use 0.5 as a threshold of probability to classify whether a commit is bug-inducing or
not. Since the choice of a threshold may bias our findings, we experiment with threshold
values of 0.4 and 0.6 in Table 4. We notice that from the threshold values of 0.5 to 0.6, the
precision and recall values cross each other, except for Hadoop performance bugs. Since we

Empir Software Eng (2021) 26:97 Page 27 of 32 97

value both precision and recall equally, we choose 0.5 by default. We find that when chang-
ing the threshold, the recall and precision values change slightly, however the conclusions
still hold, indicating that JIT performance bug prediction is not impacted substantially by
the threshold.

6 RelatedWork

6.1 Evaluation and improvement of SZZ

Kim et al. present algorithms to automatically and accurately identify bug-introducing
changes, they compare their algorithms to SZZ (Kim et al. 2006). They reduced the inci-
dence of false positives and false negatives by using a combination of annotation graphs
and ignoring non-semantic code changes and outlier fixes. They also manually inspected
the commits listed as bug fixing to determine if they were indeed changes that fixed a bug
in the code. In our paper, we evaluate our Cassandra and Hadoop datasets with the bug
inducing changes found by SZZ. Furthermore, we concentrate on the SZZ approach (Kim
et al. 2006), as it is used in JIT defect prediction.

Williams et al. revisit SZZ by outlining several improvements to the approach (Williams
and Spacco 2008). They replace annotation graphs with linear number maps to track unique
source code lines as they change over software evolution. Their enhanced approach uses
weights to map the evolution of a line. They also use DiffJ, a Java syntax-aware diff tool
to ignore comments and ignore cosmetic changes (Jpace). Furthermore, they verify how
often bug-inducing changes identified by the SZZ approach are truly bug-inducing changes.
In our paper, we want to verify whether the SZZ approach can provide true bug inducing
changes on Cassandra and Hadoop performance bugs and the impact on JIT models.

da Costa et al. (2017) introduced a framework to evaluate the results of SZZ implementa-
tions. They note that little effort has been made to evaluate SZZ’s results, despite its role as
the foundation of several research areas in software engineering (da Costa et al. 2017). The
framework evaluates the approach with three criteria: the earliest bug appearance, the future
impact of changes, and the realism of bug introduction (da Costa et al. 2017). The frame-
work is evaluated on five SZZ implementations using data from ten open source projects.
Their findings show that previous proposed improvements to SZZ approaches tend to inflate
the number of false positive bug-introducing changes. A single bug-introducing change
may be blamed for introducing hundreds of future bugs and SZZ implementations report
at least 46% of the bugs are caused by bug-inducing changes that are years apart from one
another (da Costa et al. 2017). Our study builds on the work from Costa et al. by evaluat-
ing the identified bug inducing changes from SZZ on non-functional bugs rather than on a
mixed dataset containing both functional and non-functional bugs.

6.2 Predicting performance bugs

Software quality research and practice concerns itself with a variety of different types of
bugs. Non-functional bugs, including performance and security bugs, can be particularly
costly bugs (Zaman et al. 2011). Tools can help reduce the cost overhead caused by these
bugs (Jin et al. 2012). In this study we focus on the applicability of the SZZ approach to
determine the root cause of these non-functional bugs.

Jin et al. (2012) have studied 109 real-world performance bugs from five software sys-
tems in order to better guide software practitioners. Their findings show that developers

 97 Page 28 of 32 Empir Software Eng (2021) 26:97

need tool support to automatically fix such types of performance issues (Jin et al. 2012).
They also find that performance issues of newer software versions can be inherited eas-
ily from previous versions. This study calls for further and more detailed research on
performance diagnosis, performance testing, and performance issue detection. Our study
contributes to furthering software performance research by evaluating a tool to help devel-
opers automatically locate buggy code in the software. In theory, the SZZ approach should
be able to locate at which point in time non-functional bugs, including performance issues,
are introduced from previous versions, given that the performance issue has been detected.

Zaman et al. (2011) conduct both qualitative and quantitative studies on 400 performance
and non-performance issues in Mozilla Firefox and Google Chrome, two open source web
browsers. The study aims to understand the difference between performance issues and
non-performance issues. Their findings show that developers spend more time fixing per-
formance issues rather than non-performance issues (Zaman et al. 2011). The study shows
the importance of identifying root causes for performance issues and evaluating the impact
of changes on performance issues. Our paper analyzes the performance bugs in Cassandra
and Hadoop, and the SZZ approach’s ability to determine the bug inducing changes and
concentrate on the impact of these changes on predictive models.

Nistor et al. (2013) studied software performance since performance is critical for how
users perceive the quality of software products. Performance bugs lead to poor user expe-
rience and low system throughput (Molyneaux 2009; Bryant and O’Hallaron 2015). Their
study includes how performance bugs are discovered, fixed, and compares the results with
those for non-performance bugs from three popular code bases: Eclipse JDT, Eclipse SWT
and Mozilla Firefox (Team ; Guindon). Their results include suggestions of techniques to
help developers reason about performance and suggest that better profiling techniques are
needed for discovering performance bugs. Our study on the evaluation of a SZZ approach
on performance bugs, can help determine whether it is reliable for developers to use refer-
ences to past inducing code from past performance bugs to locate and fix new bugs with the
help of a SZZ-implemented tool.

Intrinsic bugs are bugs where a bug-introducing change can be identified using the ver-
sion control system of a software, while extrinsic bugs are caused by external changes of a
software such as errors in internal APIs, compatibility changes or even changes in the spec-
ifications (Rodrıguez-Perez et al. 2020). Extrinsic bug introducing-changes cannot be ident
ified by the version control system of the software. Rodrıguez-Perez et al. (2020) study the
impact of extrinsic bugs in JIT models, by replicating Kamei et al.’s recent paper in which
they analyze the performance of JIT models (Kamei et al. 2013). Rodrıguez-Perez et al.
(2020) remove the extrinsic bugs from their data, as all bugs were previously considered to
be intrinsic. Findings from Rodrıguez-Perez et al. (2020) show that extrinsic bugs are of a
different nature than intrinsic bugs, and that extrinsic bugs are more similar to issues that
are not bugs rather than to intrinsic bugs. Our work also focuses on studying JIT models, but
we concentrate on performance related bug-inducing changes and how they can impact the
performance of JIT models. We investigate whether or not performance bugs in our dataset
are extrinsic bugs.

Tsakiltsidis et al. (2016) use four machine learning algorithms to build classifiers to
predict performance bugs on a real time system used in the mobile advertisement. Their
findings show that the best model is based on logistic regression, using lines of code
changed, file age and size as explanatory variables to predict performance bugs. They also
find that reducing the number of changes delivered on a commit can decrease the chance

Empir Software Eng (2021) 26:97 Page 29 of 32 97

of performance bug injection. While Tsakiltsidis et al. (2016) have a special goal to pre-
dict performance bugs, our study focuses on the prediction of performance bug-inducing
chances within a general JIT model.

Yang et al. use 14 code-change based metrics to build simple unsupervised and super-
vised models in effort-aware JIT defect prediction (Yang et al. 2016). They find that many
simple unsupervised models perform better than the state-of-the-art supervised models in
effort-aware JIT defect prediction. Their study used the data sets provided online by Kamei
et al. (2013), which employ the SZZ approach. Our study investigates the predictive power
of supervised models in effort-aware JIT defect prediction (Kamei et al. 2013) as well, how-
ever our labelling of defect-prone commits is done by employing the MA-SZZ approach.
We also manually correct the labelling of defect-prone commits, found by the MA-SZZ
approach, and compare the models.

Chen et al. (2020) propose an approach that automatically predicts whether a test would
manifest performance regressions given a code commit, using both traditional metrics and
performance-related metrics from the commit changes that are associated with each test. For
each commit, they build random forest classifiers that are trained from all prior commits to
predict in this commit whether each test would manifest performance regression (Chen et al.
2020). We also use traditional metrics from the commit changes to build classifiers trained
from prior commits to predict if a commit is bug-inducing or not, focusing on performance
bugs.

7 Conclusions

In this paper we present a study to highlight the nature of performance bugs, and its impact
on Just-In-Time defect prediction models. Due to their nature, these bugs may be scattered
across the source code and might be separate from their bug-inducing locations in the source
code. This scattering may cause unreliable data to be fed into Just-In-Time defect prediction
models. We conduct an empirical study on the results of the SZZ approach used for JIT
defect prediction, concentrating on the use of JIT defect prediction to identify the inducing
changes of the performance related bugs in Cassandra and Hadoop.

We find that in the data fed into the Just-In-Time models, for more than 57% of fix
commits, there are several commits identified as bug-inducing. As shown in prior studies,
it is unlikely that all bug fixing-changes are related to the bug-fix so we suspect some of
the identified bug-inducing changes are unlikely to be correct. This is likely due to nature
of performance bugs, which makes the SZZ approach a sub-optimal approach for identify-
ing bug-inducing changes for performance bugs. Through manual analysis of 899 identified
bug-inducing commits, we find that 372 of them are correctly identified, while the remain-
ing 528 do not contain bug-inducing changes accounting for 61.6%, which are fed into the
JIT models.

Although the SZZ approach does give incorrect results, due to the small number of per-
formance bugs in the population of total bugs, this has little impact on the overall predictive
power of the models. Our findings show that there is knowledge present in non-performance
bug-inducing commits which was not present in our sample of truly performance bug-
inducing commits. Our truly performance bug-inducing commits sample is simply too small
to contain all of the projects’ knowledge.

Our findings show that it is better for JIT model classification to include all commit types,
possibly due to the small size of the performance bug data compared to non-performance

 97 Page 30 of 32 Empir Software Eng (2021) 26:97

bug data. Moreover, including performance bug-inducing commits in the Just-In-Time mod-
els’ training data increases the percentages of correctly labelled performance bug-inducing
commits, indicating that correct performance bug-inducing data is valuable for predict-
ing on other performance bug-inducing commits. For future work, we propose enlarging
the amount of training instances of performance bug-inducing data by transfer learning
techniques in order to further improve the JIT models.

Acknowledgements This research was partially supported by JSPS KAKENHI Japan (Grant Numbers:
21H04877, JP18H03222) and JSPS International Joint Research Program with SNSF (Project “SENSOR”).

References

Agrawal A, Menzies T (2018) Is ”better data” better than ”better data miners”? on the benefits of tuning smote
for defect prediction. In: Proceedings of the 40th International Conference on Software Engineering,
ser. ICSE ’18. Association for Computing Machinery, New York, , pp 1050–1061. [Online]. Available:
https://doi.org/10.1145/3180155.3180197

Apache apache/cassandra (2019) [Online]. Available: https://github.com/apache/cassandra
Apache hadoop (2020) [Online]. Available: https://hadoop.apache.org/
Bryant RE, O’Hallaron DR (2015) Computer Systems: A Programmer’s Perspective, 3rd ed. Pearson
Catolino G (2017) Just-in-time bug prediction in mobile applications: The domain matters! pp 05
Catolino G, Di Nucci D, Ferrucci F (2019) Cross-project just-in-time bug prediction for mobile apps:

An empirical assessment. In: 2019 IEEE/ACM 6th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pp 99–110

Chen J, Shang W (2017) An exploratory study of performance regression introducing code changes. In: 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME), pp 341–352

Chen T.-H., Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P (2014) Detecting performance anti-patterns
for applications developed using object-relational mapping. In: Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. Association for Computing Machinery, New York,
pp 1001–1012. [Online]. Available: https://doi.org/10.1145/2568225.2568259

Chen J, Shang W, Shihab E (2020) Perfjit: Test-level just-in-time prediction for performance regression
introducing commits. IEEE Trans Softw Eng:1–1

Correlation (pearson kendall, spearman) (2020) [Online]. Available: https://www.statisticssolutions.com/
correlation-pearson-kendall-spearman/

da Costa DA, McIntosh S, Shang W, Kulesza U, Coelho R, Hassan AE (2017) A framework for evaluating the
results of the szz approach for identifying bug-introducing changes. IEEE Trans Softw Eng 43(7):641–
657

Davies S, Roper M, Wood M (2014) Comparing text-based and dependence-based approaches for determin-
ing the origins of bugs. J Softw Evol Process 26:01

Ding Z, Chen J, Shang W (2020) Towards the use of the readily available tests from the release pipeline as
performance tests. are we there yet? In: 42nd International Conference on Software Engineering, Seoul

Dmwr (2020) [Online]. Available: https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/
SMOTE

Fawcett T (2006) An introduction to roc analysis. Pattern Recogn Lett 27(8):861–874
Fukushima T, Kamei Y, McIntosh S, Yamashita K, Ubayashi N (2014) Studying just-in-time defect

prediction using cross-project models. Empir Softw Eng 21:05
Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the perfor-

mance of defect prediction models. In: Proceedings of the 37th International Conference on Software
Engineering - Vol 1, ser. ICSE ’15. IEEE Press, pp 789–800

Guindon C Swt: The standard widget toolkit. [Online]. Available: https://www.eclipse.org/swt/
Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and Predicting Which Bugs Get

Fixed: An Empirical Study of Microsoft Windows. Association for Computing Machinery, New York,
pp 495–504. [Online]. Available: https://doi.org/10.1145/1806799.1806871

Gyimothy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source software
for fault prediction. IEEE Trans Softw Eng 31(10):897–910

https://doi.org/10.1145/3180155.3180197
https://github.com/apache/cassandra
https://hadoop.apache.org/
https://doi.org/10.1145/2568225.2568259
https://www.statisticssolutions.com/correlation-pearson-kendall-spearma n/
https://www.statisticssolutions.com/correlation-pearson-kendall-spearma n/
https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/SMOT E
https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/SMOT E
https://www.eclipse.org/swt/
https://doi.org/10.1145/1806799.1806871

Empir Software Eng (2021) 26:97 Page 31 of 32 97

Hamill M, Goseva-Popstojanova K (2014) Exploring the missing link: An empirical study of software fixes.
Softw Test Verif Reliab 24(8):684–705. [Online]. Available: https://doi.org/10.1002/stvr.1518

Hassan AE (2009) Predicting faults using the complexity of code changes. In: 2009 IEEE 31st International
Conference on Software Engineering, pp. 78–88

Jin G, Song L, Shi X, Scherpelz J, Lu S (2012) Understanding and detecting real-world performance bugs.
SIGPLAN Not. 47(6):77–88

Jpace jpace/diffj [Online]. Available: https://github.com/jpace/diffj
Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical

study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773
Kim S, Zimmermann T, Pan K, Whitehead Jr. E. J. (2006) Automatic identification of bug-introducing

changes. In: 21st IEEE/ACM International Conference on Automated Software Engineering (ASE’06),
pp 81–90

Kondo M, German D, Mizuno O, Choi E (2020) The impact of context metrics on just-in-time defect
prediction. Empir Softw Eng 25:01

LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: A study of developer work habits. In:
Proceedings of the 28th International Conference on Software Engineering, ser. ICSE ’06. ACM, New
York, pp 492–501

Li H, Shang W, Zou Y, Hassan AE (2018) Towards just-in-time suggestions for log changes (journal-
first abstract). In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp 467–467

McDonald JH (2014) Handbook of biological statistics. sparky house publishing Baltimore. MD 3:186–189
McHugh M (2012) Interrater reliability: The kappa statistic, Biochemia medica : č,asopis Hrvatskoga društva

medicinskih biokemičara / HDMB, vol 22, pp 276–82, 10
McIntosh S., Kamei Y (2018) Are fix-inducing changes a moving target? a longitudinal case study of just-

in-time defect prediction. IEEE Trans Softw Eng 44(5):412–428
Molyneaux I (2009) The Art of Application Performance Testing: Help for Programmers and Quality

Assurance, 1st ed. O’Reilly Media, Inc.
Nayrolles M, Hamou-Lhadj A (2018) Clever: Combining code metrics with clone detection for just-in-time

fault prevention and resolution in large industrial projects, pp 03
Neto E, Costa D, Kulesza U (2018) The impact of refactoring changes on the szz algorithm: An empirical

study, pp 03
Nistor A, Jiang T, Tan L (2013) Discovering, reporting, and fixing performance bugs. in: 2013 10th working

conference on mining software repositories (MSR), pp 237–246
Ohira M, Kashiwa Y, Yamatani Y, Yoshiyuki H, Maeda Y, Limsettho N, Fujino K, Hata H, Ihara A,

Matsumoto K (2015)
Radu A, Nadi S (2019) A dataset of non-functional bugs. In: Proceedings of the 16th International Conference

on Mining Software Repositories, ser. MSR ’19. IEEE Press, Piscataway, pp 399–403
Rodrıguez-Perez G., Nagappan M, Robles G (2020) Watch out for extrinsic bugs! a case study of their

impact in just-in-time bug prediction models on the openstack project. IEEE Transactions on Software
Engineering

Rosen C, Grawi B, Shihab E (2015) Commit guru: Analytics and risk prediction of software commits. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2015. ACM, New York, pp 966–969. [Online]. Available: https://doi.org/10.1145/2786805.2803183

Sawilowsky SS (2009) New effect size rules of thumb. J Modern Appl Stat Methods 8(2):26
Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? SIGSOFT Softw Eng Notes

30(4):1–5
Syer MD, Shang W, Jiang ZM, Hassan AE (2017) Continuous validation of performance test workloads.

Autom Softw Engg 2(1):189–231. [Online]. Available: https://doi.org/10.1007/s10515-016-0196-8
Tabassum S (2020) An investigation of cross-project learning in online just-in-time software defect

prediction, pp 06
Tantithamthavorn C, Hassan AE, Matsumoto K (2020) The impact of class rebalancing techniques on the

performance and interpretation of defect prediction models. IEEE Trans Softw Eng 46(11):1200–1219
Team J Eclipse java development tools (jdt). [Online]. Available: https://www.eclipse.org/jdt/
Tsakiltsidis S, Miranskyy A, Mazzawi E (2016) On automatic detection of performance bugs. In: 2016 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW), pp 132–139
Williams C, Spacco J (2008) Szz revisited: Verifying when changes induce fixes. In: Proceedings of the 2008

Workshop on Defects in Large Software Systems, ser. DEFECTS ’08. ACM, New York, pp 32–36
Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect

prediction: Simple unsupervised models could be better than supervised models. In: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

https://doi.org/10.1002/stvr.1518
https://github.com/jpace/diffj
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1007/s10515-016-0196-8
https://www.eclipse.org/jdt/

 97 Page 32 of 32 Empir Software Eng (2021) 26:97

ser. FSE 2016. Association for Computing Machinery, New York, pp 157–168. [Online]. Available:
https://doi.org/10.1145/2950290.2950353

Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: A case study on firefox. In:
Proceedings of the 8th Working Conference on Mining Software Repositories, ser. MSR ’11. ACM, New
York, pp 93–102

Zaman S, Adams B, Hassan AE (2012) A qualitative study on performance bugs, 2012 9th IEEE Working
Conference on Mining Software Repositories (MSR), pp 199–208

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Sophia Quach1 ·Maxime Lamothe2 ·Bram Adams3 ·Yasutaka Kamei4 ·
Weiyi Shang1

Maxime Lamothe
max lam@encs.concordia.ca; maxime.lamothe@polymtl.ca

Bram Adams
bram@cs.queensu.ca

Yasutaka Kamei
kamei@ait.kyushu-u.ac.jp

Weiyi Shang
shang@encs.concordia.ca

1 Department of Computer Science and Software Engineering, Concordia University,
Montreal, QC, Canada

2 Department of Computer and Software Engineering, Polytechnique, Montreal, QC, Canada
3 Queen’s School of Computing, Queen’s University, Queen’s, Canada
4 Faculty of Information Science and Electrical Engineering, Kyushu University, Kyushu, Japan

https://doi.org/10.1145/2950290.2950353
http://orcid.org/0000-0001-5850-1375
mailto: max_lam@encs.concordia.ca
mailto: maxime.lamothe@polymtl.ca
mailto: bram@cs.queensu.ca
mailto: kamei@ait.kyushu-u.ac.jp
mailto: shang@encs.concordia.ca

	Evaluating the impact of falsely detected performance bug-inducing changes in JIT models
	Abstract
	Introduction
	Paper organization

	Background
	SZZ
	Just-In-Time defect prediction
	Performance Bugs
	Performance bug in Fig. 2:
	Non-performance bug in Fig. 3:

	Study Design
	Dataset
	Bug-fixing Commit Extraction
	Data preparation
	Model construction
	Manual analysis

	Case Study Results
	RQ1: How well can JIT models predict performance bug-inducing commits?
	Motivation
	Approach
	Results

	RQ2: How does correcting falsely identified performance bug-inducing bugs impact JIT models?
	Motivation
	Approach
	Results
	Performance bug-inducing commits:
	Non-performance bug-inducing commits:

	RQ3: Does only using the correct performance inducing bugs as training data improve the JIT models when predicting other performance inducing bugs?
	Motivation
	Approach
	Results

	Threats to Validity
	External validity
	Construct validity
	Internal validity

	Related Work
	Evaluation and improvement of SZZ
	Predicting performance bugs

	Conclusions
	References
	Affiliations

