
Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09687-9

Studying the characteristics of logging practices in mobile
apps: a case study on F-Droid

Yi Zeng1 · Jinfu Chen1 ·Weiyi Shang1 · Tse-Hsun (Peter) Chen1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Logging is a common practice in software engineering. Prior research has investigated the
characteristics of logging practices in system software (e.g., web servers or databases) as
well as desktop applications. However, despite the popularity of mobile apps, little is known
about their logging practices. In this paper, we sought to study logging practices in mobile
apps. In particular, we conduct a case study on 1,444 open source Android apps in the F-
Droid repository. Through a quantitative study, we find that although mobile app logging
is less pervasive than server and desktop applications, logging is leveraged in almost all
studied apps. However, we find that there exist considerable differences between the log-
ging practices of mobile apps and the logging practices in server and desktop applications
observed by prior studies. In order to further understand such differences, we conduct a fire-
house email interview and a qualitative annotation on the rationale of using logs in mobile
app development. By comparing the logging level of each logging statement with devel-
opers’ rationale of using the logs, we find that all too often (35.4%), the chosen logging
level and the rationale are inconsistent. Such inconsistency may prevent the useful runtime
information to be recorded or may generate unnecessary logs that may cause performance
overhead. Finally, to understand the magnitude of such performance overhead, we conduct
a performance evaluation between generating all the logs and not generating any logs in
eight mobile apps. In general, we observe a statistically significant performance overhead
based on various performance metrics (response time, CPU and battery consumption). In
addition, we find that if the performance overhead of logging is significantly observed in
an app, disabling the unnecessary logs indeed provides a statistically significant perfor-
mance improvement. Our results show the need for a systematic guidance and automated
tool support to assist in mobile logging practices.

Keywords Software logs · Logging practices · Logging performance · Mining software
repositories

Communicated by: David Lo, Meiyappan Nagappan, Fabio Palomba, and Sebastiano Panichella

� Yi Zeng
ze yi@encs.concordia.ca

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09687-9&domain=pdf
http://orcid.org/0000-0001-7814-9524
mailto: ze_yi@encs.concordia.ca

Empirical Software Engineering

1 Introduction

Logging is a common practice and has been widely adopted in software engineering.
Log messages, which are generated at runtime by logging statements that developers
inserted into the source code, present rich details about the runtime behavior of software
applications.

The importance of logs has been widely identified (Kernighan and Pike 1999) and are
excessively studied for server and desktop applications (Yuan et al. 2012a; Chen and Jiang
2017; Shang et al. 2015). The valuable information in logs is leveraged in various software
development and operation activities including bug fixing (Xu et al. 2009), test results anal-
yses (Malik et al. 2013), anomaly detection (Tan et al. 2008), and system monitoring (Yuan
et al. 2012c; Boulon et al. 2008). The vast application and usefulness of the logs have
motivated server and desktop application developers to embed a large number of logging
statements in their source code. For example, the PostgreSQL 8.4.7 database server contains
6,052 logging statements in its code base (Yuan et al. 2012a).

The benefit of logging has not only been exploited by server and desktop application
development but also been embraced by mobile app development (Android 2017). Prior
studies (Yuan et al. 2012a; Shang et al. 2011, 2014a) found that making optimal logging
decisions is very challenging. Due to the limited resources on mobile devices, intuitively,
making optimal logging decisions may be even more challenging for mobile app develop-
ment. For example, logging too much may cause additional performance overhead, which
may lead to both slow response of the mobile apps and additional battery consumption.

However, to the best of our knowledge, there exists only little research that studies log-
ging practices in mobile apps. In particular, prior research (Chowdhury et al. 2017) on
mobile logging focuses on the energy of logging instead of the characteristics of the logging
practice. Hence, in this paper, we study the logging practices in Android apps. We analyze
the logging characteristics of Android apps from F-Droid (2017), the software repository
for free and open source real-world Android apps. In addition, we perform both firehouse
email interview and qualitative annotation on the rationale of mobile logging. Finally, we
conduct a case study to measure the performance overhead of mobile logging. In particular,
we aim to answer the following three research questions.

RQ1 What are the characteristics of mobile logging practices?
Although we confirm that logging is widely used in mobile app development, we

observe that mobile app logging practices are different from those of server and desktop
applications. In particular, logging in mobile apps is less pervasive than server and desk-
top applications, while the majority of logging statements are in debug and error levels.
In addition, the logging statements in mobile apps are much less maintained and much
more likely to be deleted than server and desktop applications.

RQ2 What are the rationales of mobile logging?
We find eight rationales of mobile logging, includingDebug, Anomaly detection, Assist in

development, Bookkeeping, Performance, Change for consistency, Customize logging
library, From third-party library. While the majority of the mobile logging are forDebug
and Anomaly detection purposes, developers often (35.4%) choose a logging level that is
not consistent with the rationale. Such inconsistent logging levels may lead to potential
performance overhead, security issues and missing important runtime information.

RQ3 How large can the performance impact of mobile logging be?
In our case study, we perform an experiment by comparing the app performance

between enabling and disabling logging. In general, we find that logging can cause

Empirical Software Engineering

statistically significant performance overhead on Android apps. We also perform a fur-
ther experiment to examine the impact when only disabling unnecessary logs (e.g.,
debugging logs that are generated in released versions). We find that when the overall
logging overhead can be statistically significant, disabling the unnecessary logs provides
statistically significant performance improvement on mobile apps, comparing to enabling
all logs. However, when the overall logging overhead is not significantly observed,
disabling unnecessary logs would not significantly improve performance.

Our results show the distinct logging practices of mobile apps from the widely-studied
server and desktop applications. However, the logging infrastructure of mobile apps is not
optimized in such a scenario. Making it worse, the developers of mobile apps may not
beware of the negative impact of sub-optimal logging decisions. Our results advocate the
need for automated and specially designed approaches and tooling support for logging
decisions of mobile app development.

Paper Organization The remainder of the paper is organized as follows. Section 2
describes our case study setup. Section 3 presents the results of our mobile logging practices
case study. Section 4 discusses the implications of our results. Section 5 discusses threats to
the validity of our findings. Section 6 surveys work on software logs that has been done in
the recent years. Finally, Section 7 draws conclusions.

2 Case Study Setup

In this section, we present the background of Android logging and our case study setup,
including the subject selection process, and the methodology of data extraction.

2.1 Android Logging

In order to ease the use of logs in practice, Android has a default logging library to print
logs and the Logcat tool to view logs (Android 2017). Figure 1 shows an example of log-
ging statement from the Android’s official website (Android 2017). Every Android logging
statement has an associated tag and verbosity level. Developers record the logged event
using static texts and variable values related to the event. The tag of a log message is a
short string usually indicating the component from which the message originates (Android
2017). The verbosity level indicates the importance of the log. There are five general ver-
bosity levels: verbose, debug, info, warn, error which can be specified by calling Log.v,
Log.d, Log.i, Log.w, Log.e, respectively. It should be noted that since Java is the official pro-
gramming language for writing Android apps, the Java standard output statements such as
System.out.println can also be used in Android log printing code. The printed messages are
by default redirected to Logcat and generated as Log.i (StackOverflow 2017).

Fig. 1 A logging statement example from the Android official website

Empirical Software Engineering

Table 1 An overview of the studied F-Droid apps

Metric Mean Min 25th quartile Median 75th quartile Max

SLOC 9,818 717 1,710 3,760 9,324 324,156

Commits 661 2 44 125 416 83,337

Files 434 17 86 166 412 24,058

Authors 13 1 2 4 10 771

2.2 Subject Apps

In our study, we study apps from the F-Droid repository (F-Droid 2017), which is a software
repository that hosts a large number of mature and popular Android apps that are free and
open source. Many apps in F-Droid are actively maintained and are also published in Google
Play Store and used by many users. For example, the application WordPress1 is available
on both F-Droid and Google Play Store, is actively updated and has been installed over five
million times as of July 20th, 2018.

F-Droid repository contains, in total, around 2,300 Android apps2 on GitHub. At the
time when we collect the apps (December 13th, 2017), we find that there exist 1,925 apps
that are still reachable with available source code in the repositories. Among them, some
repositories only contain little or even no Android code, or the Android code is written in
programming languages other than Java. These apps with no or few Java source code will
show close to zero log density and close to zero logging maintenance activities, which will
bias (potentially lower the results) our results when studying all F-Droid apps as a whole.We
find that 25% of the apps that have the lowest source lines of code in Java only contributes
less than 1% of the entire amount of source code in F-Droid (132,979 out of 14,295,880
of all F-Droid apps). Since such apps are not suitable for our study, we discard these apps.
Table 1 shows an overview of our studied apps.

2.3 Data Gathering

Figure 2 presents an overview of our case study workflow.
To analyze code structures, we use srcML3 to parse the apps’ source code. The tool

converts source code into the srcML format, which is a document-oriented XML format
that explicitly embeds structural information directly into the source code. The syntactic
structures from Abstract Syntax Tree (AST) are wrapped with tags and can be queried using
XPath expressions. Logging code includes log printing code and log object initialization
code. With the syntactic structure extracted by srcML, we can accurately extract the log
printing code.

Similar to prior research (Chen and Jiang 2017; Shang et al. 2015), we analyze the state-
ments extracted by srcML to identify logging statements. We first check whether the caller
object is associated with logging libraries. Then, we check whether the called method is
related to a logging level (e.g., verbose and info). In order to minimize the falsely iden-
tified logging statements, we remove the ones that have their caller containing “log”, yet

1https://play.google.com/store/apps/details?id=org.wordpress.android
2https://f-droid.org/wiki/page/Repository Maintenance
3http://www.srcml.org/

https://play.google.com/store/apps/details?id=org.wordpress.android
https://f-droid.org/wiki/page/Repository_Maintenance
http://www.srcml.org/

Empirical Software Engineering

Identifying
logging
statements

srcML

Version
control

repository
(Git)

XML
Syntactic
Structure

Logging
staetements

diff

Added

Deleted

Modified

RQ1: Logging
characteristics

Firehouse
interview

RQ3:Performance
evaluation

Actor

XML
Syntactic
Structure

Source code
in commit 1

Source code
in commit n

srcML Logging
statements

Identifying
logging
statements

Qualitative
annotation

RQ2: Rationale
 of mobile logging

tests in
mobile apps

all logging statements
in mobile apps

unnecessary
logging statements

... ...

...

Fig. 2 An overview of our case study workflow

are not logging statements (e.g., “dialog” and “login”). We manually sample 384 pieces
of logging code, which corresponds to a 95% of confidence level with a 5% confidence
interval (Yamane 1973). The accuracy of our technique is 99%. The details of our logging
statement identification script are available in our replication package.4

3 Case Study Results

In this section, we answer our three research questions. For each research question, we
present the motivation for the question, the approach that we use to answer the question and
the results we get.

3.1 RQ1: What are the Characteristics of Mobile Logging Practices?

3.1.1 Motivation

Prior research studies logging characteristics in open source server and desktop applica-
tions (Yuan et al. 2012a; Chen and Jiang 2017; Shang et al. 2015). The findings from
prior studies advocate that logging is widely leveraged in practice, yet the logging prac-
tices require more systematic assistance and guidance. Based on those findings, follow-up
research proposed various techniques in order to support logging decisions (Yuan et al.
2012b, c; Fu et al. 2014; Zhu et al. 2015; Zhao et al. 2017) (see Section 6). However, none
of the prior case studies are conducted on mobile apps. Intuitively, due to the nature of
mobile apps, developers may not follow the same logging characteristics (e.g., mobile apps
have limited computing resources and are often UI-driven). The different characteristics
of logging practices may introduce new challenges and opportunities for researchers and

4https://bitbucket.org/sense concordia/mobilelogreplication

https://bitbucket.org/sense_concordia/mobilelogreplication

Empirical Software Engineering

practitioners. Therefore, in this research question, we would like to study the characteristics
of logging practices in mobile apps.

3.1.2 Approach

We study three dimensions of the characteristics of logging practices that are studied by
prior research (Yuan et al. 2012a; Chen and Jiang 2017; Shang et al. 2015; Kabinna et al.
2016b):

– The number and density of logging statements. We measure the density of logging
statement in the latest version (at the time of the study) of the source code of each
mobile app. The density of the logging statement can serve as an indicator of how many
logs are leveraged by developers. Such information may imply the importance of logs
for mobile apps. In particular, we measure the number of lines of code per logging
statement (LOC per log). For the studied apps, we first calculate the total source lines
of code (SLOC) using cloc5 and the number of logging statements (NL) using srcML.
We then calculate number of lines of code per logging statement as SLOC

NL
. Such a

measurement is also used in a prior research (Yuan et al. 2012a).
– The verbosity levels of logging statements. Verbosity level can be used as a proxy to

understand the purpose of the logging statements (Li et al. 2017a). Verbosity level also
directly decides whether the log will be generated during the runtime of mobile apps,
leading to possible energy consumption – a particularly important aspect of mobile
apps (Chowdhury et al. 2017). We study the distribution of the verbosity levels of log-
ging statements. During the data gathering process, we find that developers use Android
default logging library, third-party logging libraries or custom logging classes. There-
fore, the log verbosity level name may not exactly match to that of the Android default
logging library. Nevertheless, developers sometimes choose a meaningful naming con-
vention such as “printdebug” and “log fatal” as verbosity levels. Thus, we further
manually categorize the custom verbosity levels into five levels, i.e., verbose, debug,
info, warn and error, as suggested in the Android official document (Developer 2017).
Note that although the Android default logging library has the assert level (when call-
ing the method Log.wtf()), it is not a typical logging level that is used in other libraries.
Especially considering the assert level will introduce bias to our results. As the Android
document mentions (Android 2017), when using the assert level by calling Log.wtf()
(refers to “What a Terrible Failure”), it means that the program runs into a condition
which should never happen and may (depending on the system configuration) send an
error report and terminate the program immediately with an error dialog. Therefore, we
categorize the logging statements of the assert level into the error level. The detailed
categorization can be found in our replication package.

– The maintenance activities of logging statements. Adding logging statements into
the source code may indicate that developers acknowledge the usefulness of logs. Well
maintained logging statements with modifications may indicate that they are up-to-date
and leveraged in practice. Deletions of logging statements may indicate that the logs
are leveraged on a temporary basis. Such information is valuable for us to understand
how logs are used by mobile app developers.

5https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

Empirical Software Engineering

We first conduct a quantitative study on the maintenance activities of logging state-
ments. We analyze the development history of each app and identify the addition and
deletion of logging statements. In addition, we track each logging statement and iden-
tify the modifications to each logging statement (e.g., adding a variable into a logging
statement) similar to a prior research (Kabinna et al. 2016b). We do not consider chang-
ing the white spaces in the logging statements as modifying logging statements. We use
the added, deleted and modified logging statements in each commit as log churn.

Some mobile apps may undergo more development activities than others. The log-
ging statements in such apps intuitively may be added, deleted or modified more
often than others. Therefore, we also measure the code churn rate of each mobile
apps. In particular, for each commit of a mobile app, we use git diff to calculate the
total code churn of the commit. Then, we calculate code churn rate of one commit
as CodeChurn

SLOC
(Nagappan and Ball 2005). Likewise, we calculate log churn rate as

LogChurn
NL

.
Finally, we focus on the modifications of logging statements, since modification on

the logging statements is an indicator that the logging statements are still leveraged
by developers. Prior studies present different types of modifications to logging state-
ments (Yuan et al. 2012a; Chen and Jiang 2017). We study the distribution of those
types in mobile apps.

We study the three above-mentioned characteristics of log maintenance on all 1,444 F-
Droid apps as a whole to understand the general phenomenon of logging practices in F-
Droid.

3.1.3 Results

We present the results based on all of the 1,444 F-Droid apps. In addition, we discuss the
similarities and differences between our findings and the findings of prior studies on server
and desktop applications. The comparison is summarized in Table 3 with respect to different
items. We describe each item as below:

– LOC per log measures the lines of code per logging statement of the studied projects.
It can be interpreted as the proxy of the pervasiveness of logging practices.

– Major logging level describes the most common logging level that developers use
when inserting a logging statement. It can reflect the severity of an event or purpose of
a logging statement to an extent.

– Log churn / code churn is the value of log churn divided by code churn. It measures
the relative maintenance effort between logging statements and source codes.

– Log deletion is the value of number of deleted log statements divided by the total
number of log changes in a software’s evolution history. It measures how often log
statements get deleted during software evolution.

– Commits with log changes is the ratio of code commitswhich contain changes to logging
statements. It measures how often developers commit log changes to the source code.

– Log level changes is the ratio of log changes which are related to the log level modifi-
cation. It examines how often developers reconsider the severity of an event or purpose
of a logging statement.

– Error-level-related log changes examines deeper to specifically study the logging
statements which change log level between error and non-error levels. The item
investigates the developers’ reconsideration about whether an event is an error or not.

Empirical Software Engineering

– Variable-related log changes measures the percentage of log changes which add,
delete or modify the variables. It examines developers’ considerations with respect to
dynamic information.

Finding 1: Logging is commonly used in mobile apps but less pervasive than server
and desktop applications.

We find that 88.6% (1,280) of the studied F-Droid apps have at least one logging state-
ment in their source code. This shows that logging is still a common practice in mobile
app development. For the apps that contain logging statements, the mean LOC per log is
479, with the values ranging from 11 to 22,144 (Table 2). With the same measurement, the
average LOC per log is 30 for four C++ applications (Yuan et al. 2012a), 51 for 21 Java
applications (Chen and Jiang 2017) and 58 for four C# applications (Zhu et al. 2015), as
found in prior studies on server and desktop applications. Such results show that logging
is a less pervasive practice in mobile app development than server and desktop application
development (Table 3).

Finding 2: The majority of the logging statements in mobile apps are in debug and
error levels, while info level logging statements are the majority in server and desktop
applications.

Table 4 shows the logging level distribution for all 1,444 F-Droid apps. More than half
of the logging statements in F-Droid apps are in debug and error levels. The distribution
implies that developers often leverage logs to debug and record runtime errors of mobile
apps. Such a distribution is considerably different from prior findings on server software (Li
et al. 2017a), where most logging statements have the info level.

Finding 3: Logging statements in mobile apps are less maintained compared to server
and desktop applications but are more often to be deleted.

For all F-Droid apps, the mean log churn rate (7.5%) is 0.7 times the churn rate of the
entire code (11%). Only around 10% (95,306 out of 951,023) of the commits contain addi-
tion, deletion or modification of logging statements. Compared to the findings of a prior
study (Yuan et al. 2012a), where the log churn rate is 1.8 times of the entire code churn rate
and 18% of the commits contains addition, deletion or modification of logging statements,
the results show that mobile developers do not maintain logging statements as frequent as
server and desktop application developers.

Table 2 Distribution of F-Droid apps with logging statements

Metric Mean Min 25th quartile Median 75th quartile Max

NL 85 1 10 31 90 1,734

LOC per log 479 11 71 145 373 22,144

Churn rate 11% 0.03% 3% 6.4% 13.6% 315%

Log churn rate 7.5% 0.03% 1.8% 4% 8.8% 253%

Empirical Software Engineering

Ta
bl
e
3

Su
m
m
ar
iz
in
g
th
e
co
m
pa
ri
so
n
be
tw
ee
n
pr
ev
io
us

st
ud
ie
s
on

se
rv
er
/d
es
kt
op

ap
pl
ic
at
io
ns

an
d
th
is
st
ud
y

It
em

s
N
ot
es

In
Ja
va

m
ob
ile

ap
ps
,

fr
om

th
is
pa
pe
r

In
C
/C
+
+
se
rv
er

ap
pl
ic
at
io
ns
,f
ro
m

Y
ua
n
et
al
.(
20
12
a)

In
Ja
va

de
sk
to
p

ap
pl
ic
at
io
ns
,

fr
om

C
he
n
an
d

Ji
an
g
(2
01
7)

In
C
#
ap
pl
ic
at
io
ns
,

fr
om

Z
hu

et
al
.

(2
01
5)

In
Ja
va

se
rv
er

ap
pl
ic
at
io
ns
,f
ro
m

L
ie
ta
l.
(2
01
7a
)

L
O
C
pe
r
lo
g

L
og
gi
ng

pr
ac
tic
es

in
m
ob
ile

ap
ps

ar
e
le
ss

pe
rv
as
iv
e
th
an

se
rv
er

an
d
de
sk
to
p
ap
pl
ic
at
io
ns
.

av
er
ag
e
47
9,

m
ed
ia
n
14
5

av
er
ag
e
30

av
er
ag
e
51

av
er
ag
e
58

M
aj
or

lo
gg
in
g
le
ve
l

M
ob
ile

de
ve
lo
pe
rs
m
ai
nl
y
us
e

lo
gs

fo
rd

eb
ug
gi
ng

an
d
an
om

al
y

de
te
ct
io
n
pu
rp
os
es
.

de
bu
g(
34
%
)
an
d
er
ro
r(
27
%
)

de
bu
g(
24
%

to
47
%
)

an
d
in
fo
(1
1%

to
35
%
)

L
og

ch
ur
n/

co
de

ch
ur
n

L
og
s
ar
e
le
ss

m
ai
nt
ai
ne
d
in

m
ob
ile

ap
ps

w
he
n
co
m
pa
re
d
to

se
rv
er

an
d
de
sk
to
p
ap
pl
ic
at
io
ns
.

av
er
ag
e
0.
68
,m

ed
ia
n
0.
6

av
er
ag
e
1.
8

av
er
ag
e
1.
8

L
og

de
le
tio

n
C
om

pa
re
d

to
se
rv
er

ap
pl
ic
a-

tio
ns
,m

ob
ile

lo
gs

ar
e
m
or
e

of
te
n
to

be
de
le
te
d.

32
%

2%
26
%

C
om

m
its

w
ith

lo
g

ch
an
ge
s

M
ob
ile

de
ve
lo
pe
rs
ch
an
ge

lo
gs

le
ss

of
te
n
th
an

se
rv
er

an
d
de
sk
-

to
p
de
ve
lo
pe
rs
.

10
%

18
%

21
%

L
og

le
ve
lc
ha
ng
es

T
he

lo
gg
in
g
le
ve
li
n
m
ob
ile

ap
ps

ar
e
m
or
e
st
ab
le
th
an

se
rv
er

an
d
de
sk
to
p
ap
pl
ic
at
io
ns
.

10
.8
%

26
%

21
%

E
rr
or
-l
ev
el
-r
el
at
ed

lo
g
ch
an
ge
s

T
he

lo
g
le
ve
lc
ha
ng
es

th
at

in
cl
ud
e
at
le
as
to

ne
er
ro
r
ev
en
t

in
m
ob
ile

ap
ps

ar
e
le
ss

th
an

C
/C
+
+
se
rv
er

ap
pl
ic
at
io
ns

bu
t

m
or
e
th
an

Ja
va

se
rv
er

an
d
de
sk
-

to
p
ap
pl
ic
at
io
ns
.

40
.9
%

72
%

20
%

V
ar
ia
bl
e-
re
la
te
d

lo
g
ch
an
ge
s

Si
m
ila
r
to

th
e
pr
ev
io
us

st
ud
ie
s,

th
e
m
aj
or
ity

of
m
ob
ile

ap
p
lo
g

ch
an
ge
s
ar
e
re
la
te
d
to

va
ri
ab
le
s,

ye
tt
he

pr
op
or
tio

n
is
hi
gh
er

in
m
ob
ile

ap
ps
.

45
.6
%

27
%

18
%

Empirical Software Engineering

Table 4 Logging level distribution of F-Droid apps

Verbose Debug Info Warn Error Total

7,296 (6.8%) 36,351 (34%) 24,010 (22.4%) 10,456 (9.8%) 28,917 (27%) 107,030

On the other hand, as Table 5 shows, deleting logging statement accounts for 32.1% of
all changes to logging statements. The percentage of deleting logging statement is much
higher than the results of the prior study (only 2% for deletion) (Yuan et al. 2012a).

Finding 4: Text and variables of logging statements in mobile apps are modified more
often. Comparing with server and desktop applications, verbosity levels are modified
less often.

Table 6 shows the distribution of the types of log modification. Note that since differ-
ent types of modification can happen together in one commit, the sum of all values may
be greater than one. SIM refers to Method Invocation that has String as return type (e.g.,
“Log.d(TAG, user.getUserName());”) as defined by a prior research (Chen and Jiang 2017).
Among the 64,456 log modifications, 11,171 (17.3%) of them only change the whites-
pace format, without changing the communicated information of the logs. This may be due
to automated refactoring tools in IDEs (e.g., Android Studio, the Android recommended
IDE) change code indentation automatically when code changes, or developers change it
manually.

Verbosity Level Modification 10.8% of the total logging statement modification is modi-
fying the verbosity levels. A prior study shows that practitioners have a hard time choosing
levels and changes between two consecutive levels are common (e.g., between warn and
error) (Li et al. 2017a). However, such a one-level mistake may result less impact than a
mistake that is across highest to the lowest levels or vice versa. Therefore, we further focus
on error and non-error logging level (see Table 7) since as studied in prior research (Yuan
et al. 2012a), this may indicate that the misjudged criticality of the logged event by devel-
opers at the first place. 40.9% of the verbosity level modifications are between error level
and non-error level, showing that developers might misunderstand the critical impact of
an event at the first place. Compared to our results, the results of a prior study for server
applications (Yuan et al. 2012a) have a much higher verbosity level modifications (26%)
and error-level-related modifications (72%). On the other hand, a recent study (Chen and
Jiang 2017) on Java applications has slightly closer results to ours with 21% verbosity
level modifications and 20% error-level-related modifications. However, even if the logging
verbosity level is stable, it does not guarantee that the level is correct (cf. RQ2). Further in-
depth studies are needed to understand the rationale of updating verbosity levels in different
subjects.

Table 5 Number of logging statements changes in F-Droid apps

Added Deleted Modified

287,362(55.5%) 165,915(32.1%) 64,456(12.4%)

Empirical Software Engineering

Table 6 Distributions of the different types of log modification

Log
modification

Whitespace
format

Logging
library

Verbosity Text Variable SIM

64,456 11,171
(17.3%)

10,193
(15.8%)

6,954
(10.8%)

25,320
(39.3%)

29,363
(45.6%)

9,716
(15.1%)

SIM refers to String Invocation Method (Chen and Jiang 2017)

Text-Related Log Modifications The static text is often (39.3%) changed in log modifica-
tions. Such a finding is similar to the prior studies (45% for C/C++ applications in the study
by Yuan et al. 2012a, 44% for Java server and desktop applications in the study by Chen
and Jiang et al. 2017). The finding implies that changing static text in logging statements is
a common practice among developers of server, desktop and mobile applications. However,
few prior studies aim to assist in suggesting static text in logging statements, except for the
recent study by Pinjia et al. (2018). Yet, the recent study also illustrates the challenges of
generating text in logging statements. Further studies that assist in suggesting the static text
in logging statements can be helpful for logging decisions.

Variable-Related LogModifications Variable changes account for the majority (45.6%) of
all log modifications. Compared to server applications, which have 27% variable-related log
modifications (Yuan et al. 2012a), mobile apps developers change variables in the logging
statements more often. Our results motivate the need for further study for researchers and
practitioners to find the most relevant variables to support logging decisions.

Logging Library Modifications 15.8% of the logging statement modifications are related
to changing the logging library. For example, in Quran,6 as developer described in the com-
mit message: “Switch to Timber instead of Log.”, one of the logging statements changed
from “Log.d(TAG, “got cursor of data”)” to “Timber.d(“got cursor of data”)”. The devel-
oper replaced Android default logging library with Timber7 to print log messages. Although
Android provides a default logging library for logging, we find that developers still have
concerns about the logging library. We further study from and to which logging libraries do
developers switch. Among all (10,193) these logging library modifications, 68.9% (7,025)
of them change from Android default logging library or Java standard output library (e.g.,
System.out.println) to a third-party logging library (e.g., Timber). 23% (2,342) of them
change between third-party libraries. We look into the source code of these third-party log-
ging libraries, and find that they provide extra features which are not provided by the default
library. Examples of the extra features include writing logs to files, logging level printing
control, and supporting richer output format. For example, in an example from Quran,8

developers clearly discuss the features that the Timber logging library provides and explain
the benefits of changing to the Timber logging library. Only 8.1% (826) of the logging
library modifications change from third-party libraries to the default logging library. The
logging library modification may be due to the need of more advanced features in logging
libraries, which motivates further development of logging libraries that are optimized for
mobile apps.

6https://github.com/ahmedre/quran android/commit/70991626d4cab1542a0e2069d69e752ed2828bea
7https://github.com/JakeWharton/timber
8https://github.com/ahmedre/quran android/commit/ff00a294aab44c0b995edced93e1e16d1f3ff086

https://github.com/ahmedre/quran_android/commit/70991626d4cab1542a0e2069d69e752ed2828bea
https://github.com/JakeWharton/timber
https://github.com/ahmedre/quran_android/commit/ff00a294aab44c0b995edced93e1e16d1f3ff086

Empirical Software Engineering

Table 7 Number of error and non-error logging level modifications

Error related Between non-error Total

Error to non-error Non-error to error Total

1,740 1,107 2,847 (40.9%) 4,107 (59.1%) 6,954

In order to further support developers who may use logging statements during mobile
app development, we aim to find out the rationale of leveraging logs in mobile development
by performing qualitative studies on the logging statements in the next research question.

3.2 RQ2: What are the Rationales of Mobile Logging?

3.2.1 Motivation

In RQ1, we find a discrepancy between the logging practices of mobile apps and the logging
practices of server and desktop applications as studied in prior research (Yuan et al. 2012a;
Chen and Jiang 2017). In order to further understand the cause of such a discrepancy, we
would like to understand the rationale of having these logging statements in mobile apps.
The particular rationale of using logs in mobile apps may shed light on why there exist such
discrepancies. The rationale of mobile app logging can guide researchers and practitioners
in designing optimal logging infrastructures especially for mobile apps.

3.2.2 Approach

We follow a two-step qualitative study to investigate the rationale of mobile logging. First,
we conduct a “firehouse email interview” (Murphy-Hill et al. 2015) with the developers who
recently added logging statements into the source code. We complement the email interview
with our qualitative annotation on the logging rationales as the second step.

Firehouse Email Interview First, we weekly monitor the F-Droid apps to identify whether
there are newly added logging statements. An email is sent out when we observed a newly
added logging statement. We assume developers have a clear memory of the most recently
added logging statement. In addition, since the most recently added logging statement
indicates the relatively most recent stage of the project, developers would have an under-
standing of the apps at the stage. Therefore, by considering the most recently added logging
statement, developers are clearer about the rationale and hence more likely to respond to
our query. In other words, we can increase the chance to get more responses with higher
quality (Murphy-Hill et al. 2015).

In order to avoid putting extra overhead to the practitioners, we do not inquiry multiple
questions to the developers of the same app during each time we identify recently added
logs. If there exist multiple newly added logging statements in the same app, we randomly
chose one for an email interview.

With the identified recently-added logging statements, we ask their authors (i.e., develop-
ers who made the change) about the rationale of adding these logging statements by sending
emails. Since there might be many logging statements that are added in one project, to avoid
making a burden for developers to answer, we select only one logging statement from each
project. In particular, we send an email to the developer. In each email, we describe the

Empirical Software Engineering

identified added logging statement and provide a GitHub URL for the commit where the
logging statement is included. We ask developers the following question:

“Why did you add the logging statement in this situation?”
After the developers reply with their answers, we make the interpretation based on their

answers. The first author follow an iterative approach by starting to put the rationale of
logging statements into categories. If there exists a new category, the first author starts the
categorization again, until there is no new category.

Qualitative Annotation Second, we perform a qualitative annotation to examine the ratio-
nale of mobile logging. From all the added logging statements in all the studied F-Droid
apps, we randomly sampled 384 logging statements, corresponding to a 95% of confidence
level with a 5% confidence interval. We examine the logging statement itself, the comment
and code related to the log (e.g. variables, operation logic, etc), the commit message, and the
issue report if it is mentioned in the commit messages, to determine the rationale why devel-
opers added the logging statement. The source code and code comment that are associated
with the logging statements help us better understand the context of the logging statement.
The commit messages and the issue reports provide us with the intention of the code change
in each commit.

Because we analyze the rationale without asking the opinion of the developers who actu-
ally performed the logging, the interpretation of the motivation can be considered subjective
and biased by the opinions and perspectives of the authors. To mitigate the bias, the first and
the third authors of this paper study the logging code independently. If there exists any dis-
agreement, a discussion is held with the second author in order to come to a consensus. The
operation is iterated until the final consensus is established with no new types of rationale
is identified.

After we categorize the rationale of logging, we further inspect whether developers use
consistent logging level to print log messages. Specifically, we examine whether the logging
level agrees with the rationale. For example, if a logging statement is for debugging pur-
poses, while the logging level is error, the misleading logging level may become a burden
for log analysis. In addition, even with a mobile logging library (e.g., Logger9) that controls
the output of logs using verbosity level, such redundant logs will still be generated during
runtime of the apps. On the other hand, if a logging statement is for anomaly detection pur-
poses, while the logging level is debug, the valuable information may be lost. In RQ1, we
find that only 10.8% of logging statement modifications are related to logging levels, yet,
the logging levels are still often inconsistent.

3.2.3 Results

Finding 5: We identify eight different rationales of adding logging statements in
mobile apps. The majority of the logging statements are for Debug and Anomaly
detection purposes.

In the firehouse email interview, we sent out 189 emails and received 63 response during
the study period (145 days from Feb 27th to July 21st, 2018), achieving a response rate of
33.3%. Each response corresponds to a distinct logging statement, commit, developer and

9https://github.com/orhanobut/logger

https://github.com/orhanobut/logger

Empirical Software Engineering

Table 8 Rationales of logging statements

Rationale Firehouse email interview Qualitative annotation

Instances Percentage # Instances Percentage

Anomaly detection 14 22.2% 107 27.8%

Assist in development 1 1.6% 11 2.9%

Bookkeeping 2 3.2% 68 17.7%

Debug 41 65% 180 46.9%

Performance 1 1.6% 7 1.8%

Change for consistency 4 6.3% 0 0%

Customize logging library 0 0% 5 1.3%

From third-party library 0 0% 3 0.8%

False positive 0 0% 3 0.8%

project. The achieved response rate is higher than a typical 5% rate found in questionnaire-
based software engineering surveys (Shull et al. 2007). This can be due to the nature of
firehouse email interview (Murphy-Hill et al. 2015) and our approach of selecting the log-
ging statements. Namely, developers provide their response shortly after adding a logging
and developers may still have fresh memory regarding the rationale.

After analyzing the rationale of adding logging statements based on developers’
responses, we find that the rationales can be classified into six categories: Debug, Anomaly
detection, Bookkeeping, Assist in Development Performance and Change for consistency.
Table 8 presents the distribution of these rationales.

In addition, we also find the rationale of logging statements from our qualitative annota-
tion. Besides the rationales that are observed from developers’ responses, we also find two
more categories, i.e., Customize logging library and From third-party library.

Below, we discuss the rationales of logging statements that are observed by our study.

Debug The majority of the logging statements are for debugging purposes. Developers
mainly use logging statements to help locate the bugs. Typically, developers print the vari-
ables (e.g., URL, file path, etc), the stack trace, or a string that indicates the runtime stage
in the logging statements.

– An example from qualitative annotation. Developers ofDelta Wallet10 inserted a log-
ging statement “Log.d(TAG, “[dispatchKeyEvent] returning ” + result)” to trace the
execution path and return value in order to check if menuKeyLongPress event is trig-
gered in order to fix a bug. Besides variables that developers define in their apps, some
device-related information is also logged, such as touch point offset, GPS coordination,
and accelerometer data.

– An example from email interview. A developer described the rationale of the logging
statement Log.w(“setNumberPickerTextCol”, e) in Nextcloud News Reader11 as:

“I added this log statement for debugging purposes only. There was no “good” way
to set the text color of the number picker widget in android. So I had to use reflection
to access the corresponding attributes. By using reflection, several exceptions might be

10https://github.com/HashEngineering/dash-wallet/commit/2a96b0d3799a3208e2642905f110a344b5a2d7a3
11https://github.com/owncloud/News-Android-App/commit/a768e55207e11d44d27caf27ea9178f3bd37db62

https://github.com/HashEngineering/dash-wallet/commit/2a96b0d3799a3208e2642905f110a344b5a2d7a3
https://github.com/owncloud/News-Android-App/commit/a768e55207e11d44d27caf27ea9178f3bd37db62

Empirical Software Engineering

thrown. That’s why I put the logging statement there. Since changing the color of the
Number Picker is not required anymore, the corresponding logging statement has been
removed.”

Anomaly Detection We found logging statements from the both firehouse email inter-
view and qualitative annotation, that are added to detect anomaly. Developers use logging
statements to record the unexpected exceptions during runtime.

– An example from qualitative annotation. When dealing with bitmap, BlackLight12

developers recorded “Log.w(TAG, “Unsupported EXIF orientation: ” + orientation-
Attr)” to detect anomaly when there is an unsupported EXIF orientation.

– An example from email interview. A developer described the rationale of inserting
logging statement Log.e(TAG, “Error opening category”) in CityZen13 as :

“I replaced an e.printStackTace() statement with a proper log statement, because
using printStackTrace in Android apps is an anti-pattern. Simply for proper exception
handling / system design: At the point within the code where an exception is handled
(not re-thrown or substituted/wrapper by another exception) it should also be logged in
any case because if you later have to analyse bug/issues and the only thing you have
gotten from the reporters the log file you’ll want to see this information to understand
what happened.”

When developers cannot reproduce a problem, they print the relevant log messages
and save the logs into a log file. The log file can be uploaded and sent to developers for
further analysis. Unlike server applications, mobile apps are installed on users’ phones,
so it is not easy to get the logs from users’ phones to perform anomaly analysis. Further
research should investigate the logging practices to help detect anomalies in mobile
apps.

Bookkeeping Only a small number of the logging statement changes are to help developers
better understand the runtime behaviour of mobile apps.

– An example from qualitative annotation. In the app SysLog, developers used “Log.d(
“Loading settings”)”14 to record the app is loading settings at runtime.

– An example from email interview. A logging statement appendLog(context, TAG,
“request to nominatim in less than 1.4s - nextAlowedRequestTimestamp=” + nex-
tAlowedRequestTimestamp + “, now=” + now); is added into Your local weather,15

where the developer described the rationale as below:
“The reason for this particular log message is to inform a developer that the request

has been thrown away because of frequency of requests.”
In this situation, the developer uses the logging statement to notify that a request

would be dropped when there are too many requests.

Assist in Development Only a very small number of logging statements are added to assist
developers in developing the mobile apps.

12https://github.com/PaperAirplane-Dev-Team/BlackLight/commit/b0ab5187f83c6688facd4acbae80357933
6e9397
13https://github.com/CityZenApp/Android-Development/commit/7a8a6d980e404b5b5a727bca103788670c
14db13
14https://github.com/Tortel/SysLog/commit/8f5e4b7e6461f1d714c119e2bb33be555258c72c/
15https://github.com/thuryn/your-local-weather/commit/6e7be714f500071c0bfc368b0352c92782325ccd

https://github.com/PaperAirplane-Dev-Team/BlackLight/commit/b0ab5187f83c6688facd4acbae803579336e9397
https://github.com/PaperAirplane-Dev-Team/BlackLight/commit/b0ab5187f83c6688facd4acbae803579336e9397
https://github.com/CityZenApp/Android-Development/commit/7a8a6d980e404b5b5a727bca103788670c14db13
https://github.com/CityZenApp/Android-Development/commit/7a8a6d980e404b5b5a727bca103788670c14db13
https://github.com/Tortel/SysLog/commit/8f5e4b7e6461f1d714c119e2bb33be555258c72c/
https://github.com/thuryn/your-local-weather/commit/6e7be714f500071c0bfc368b0352c92782325ccd

Empirical Software Engineering

– An example from email interview. A developer describes the rationale of logging
statement Logger.debug(this, “Moving receipt from position to position ”, realFromPo-
sition, realToPosition)) in Smart Receipts,16 as below:

“This is a part of code for adapter that matches RecyclerView which shows to the
user all his receipts. This RecyclerView presents two types of items: receipt and sub-
header with a date. Also, this RecyclerView supports drag&drop gesture that allows
reordering receipts manually (just receipt items must be draggable, subheaders must
be not). So this logs was very helpful during the development process to fixate the fact
of reordering and clearly see which receipt was moved to which position.”

The developer used logging statement to print the variable value at runtime to assist
the development process. In addition, developers print the log messages which show
the method’s name to investigate the runtime execution of the applications. The ratio-
nale indicates that logging statements provide valuable information for the ease of app
development.

Performance Logging statement are added to help in the performance measurement.

– An example from email interview. The rationale of a logging statement Log.i(
“NimbleDroidV1” “Scenario.begin ” + BuildConfig.FLAVOR + “ ” + ses-
sion.getUrl().getValue() + “ load”) in Firefox Focus,17 is described as below:

“The log statement was added to use NimbleDroid (www.nimbledroid.com) perfor-
mance measurement solution. This log would enable us to measure the time taken to
load a webpage on each commit to master, and warn us when a performance regression
is detected.”

The developers used a third-party library called NimbleDroid to measure the perfor-
mance, and they printed the log messages to measure the time taken to check whether
there is a performance regression. The response from the developers shows the per-
formance concern of the mobile app and the value of logging to assist in performance
analysis.

Change for Consistency There exist logging statements added just to follow the existing
logging practices rather than an explicit intention.

– An example from email interview. One of the developers briefly say “Following
existing code format.” about the logging statement Timber.i(“NoteEditor:: Reposition
button pressed”) in AnkiDroid.18

Customize Logging Library We find that logging statement changes may be due to the
use of the customized logging libraries to provide extra logging support. Instead of using
Android default logging library or importing a third-party library, in some apps, developers
build their own customized logging library based on wrapping the Android default logging
library.

16https://github.com/wbaumann/SmartReceiptsLibrary/commit/c0676d4c5ed01e3e86e53ce52a9183a3c33b
acb1
17https://github.com/mozilla-mobile/focus-android/commit/301818afa33216d9a6421c11908813331a468c9c
18https://github.com/ankidroid/Anki-Android/commit/161ef99ab324eb427bc92586e524e42f68886284

www.nimbledroid.com
https://github.com/wbaumann/SmartReceiptsLibrary/commit/c0676d4c5ed01e3e86e53ce52a9183a3c33bacb1
https://github.com/wbaumann/SmartReceiptsLibrary/commit/c0676d4c5ed01e3e86e53ce52a9183a3c33bacb1
https://github.com/mozilla-mobile/focus-android/commit/301818afa33216d9a6421c11908813331a468c9c
https://github.com/ankidroid/Anki-Android/commit/161ef99ab324eb427bc92586e524e42f68886284

Empirical Software Engineering

Fig. 3 Code examples of customized logging library

– An example from qualitative annotation. In Tri-Valley-Buses,19 the developer added
logging level control to determine whether a log should be printed to complement the
default logging library (see Fig. 3a). In Authorizer,20 the developer added the extra
logging support that saves logs to files (see Fig. 3b). Both logging statements do not
have any particular rationale, but act as a general wrapper for the default logging library.
This indicates that Android default logging library does not provide all the features that
developers need, while third-party logging libraries might introduce extra dependency
and increase the maintenance effort which developers would like to avoid.

From Third-Party Library We find logging statements that come from third-party libraries.
In some apps, developers directly copy the source code from somewhere else, instead of
referencing to a complied library. Such copied code may include some logging statements.

Finding 6: Developers often choose logging levels that are inconsistent to their
rationale.

We find that on one hand, 45 (11.7%) of the logging statements use verbose or debug
level for anomaly detection or bookkeeping purposes, which may mask important informa-
tion. On the other hand, 91 (23.7%) of the logging statements use info, warn, error level for

19https://github.com/whirish/Tri-Valley-Buses/blob/db63698e25b263e9c57f649da555f41814088f52/
platforms/android/CordovaLib/src/org/apache/cordova/LOG.java
20https://github.com/tejado/Authorizer/blob/68ed954d9965f4ec594a01d06a0be7e26f1fdb82/lib-owncloud/
src/main/java/com/owncloud/android/lib/common/utils/Log OC.java

https://github.com/whirish/Tri-Valley-Buses/blob/db63698e25b263e9c57f649da555f41814088f52/platforms/android/CordovaLib/src/org/apache/cordova/LOG.java
https://github.com/whirish/Tri-Valley-Buses/blob/db63698e25b263e9c57f649da555f41814088f52/platforms/android/CordovaLib/src/org/apache/cordova/LOG.java
https://github.com/tejado/Authorizer/blob/68ed954d9965f4ec594a01d06a0be7e26f1fdb82/lib-owncloud/src/main/java/com/owncloud/android/lib/common/utils/Log_OC.java
https://github.com/tejado/Authorizer/blob/68ed954d9965f4ec594a01d06a0be7e26f1fdb82/lib-owncloud/src/main/java/com/owncloud/android/lib/common/utils/Log_OC.java

Empirical Software Engineering

Table 9 An overview of the eight subject apps

App # Commits NL SLOC LOC per log # Files # Authors Development history

OsmAnd 44,290 841 276,677 329 5,947 771 (2017-12-09, 2010-04-25)

WordPress 25,932 934 103,009 110 1,855 101 (2017-11-23, 2009-09-10)

c:geo 10,975 608 77,992 128 2,927 123 (2017-12-02, 2011-07-11)

Nextcloud 9,227 780 52,715 68 1,261 108 (2017-12-12, 2011-08-19)

AnkiDroid 8,666 572 50,049 87 1,781 172 (2017-12-12, 2009-06-03)

K-9 Mail 7,438 701 92,797 132 1,565 238 (2017-11-27, 2008-10-27)

OpenKeychain 6,580 564 75,541 134 2,672 112 (2017-12-07, 2010-03-28)

AntennaPod 4,015 802 46,856 58 1,255 93 (2017-10-24, 2011-12-23)

debugging purposes, producing fine-grained but redundant information that should not be
logged in an app’s released version. Such inconsistent logging levels may cause the expo-
sure of unnecessary information, leading to performance overhead. Therefore, developers
should consider ensuring the consistency between logging levels and their rationale. In addi-
tion, this result motivates the leverage of automated techniques in suggesting appropriate
logging levels (Hassani et al. 2018; Li et al. 2017a).

3.3 RQ3: How Large Can the Performance Impact of Mobile Logging Be?

3.3.1 Motivation

Our previous research question shows that 23.7% of logging statements produce unneces-
sary information such as the debugging and tracing information with high verbosity levels
(see RQ2). Such unnecessary information is not expected in app’s released version. The
unnecessary logging information cannot be simply ignored since they consume extra system
resources (e.g. CPU and battery), and it may bring significant performance impact to the
apps (Chowdhury et al. 2017). For example, inMandelbrot Maps,21 the developer removed
logging statements as the commit message indicated: “Also removed logging that was hap-
pening every time the pin moved at all, which made it a fair bit less laggy”. Therefore,
in this research question, we would like to examine what the performance impact of such
unnecessary logging can have in Android apps.

3.3.2 Approach

We conduct our case study on eight selected apps based on the following criteria:

1. Well maintained: the apps have the highest number of commits.
2. With logging practices: the apps contain more than 500 logging statements.
3. With log-related test files: the apps have test files which produce logs output, in this

way we can conduct the experiment on logging performance overhead.

Specifically, we first sort the F-Droid apps in descending order of their number of com-
mits, then select eight apps which satisfy the last two criteria described above. Table 9

21https://github.com/withad/Mandelbrot-Maps-on-Android/commit/2bf86fc239ea063950ebc8039ba8084b0
4a6bad1

https://github.com/withad/Mandelbrot-Maps-on-Android/commit/2bf86fc239ea063950ebc8039ba8084b04a6bad1
https://github.com/withad/Mandelbrot-Maps-on-Android/commit/2bf86fc239ea063950ebc8039ba8084b04a6bad1

Empirical Software Engineering

presents an overview of these eight apps. All of the eight apps are actively maintained with
six to nine years of development history, and contain a considerable number of logging
statements, with the lines of code per logging statement ranging from 58 to 329.

We study the eight selected Android apps to examine the performance impact of unnec-
essary logging. Similar to prior research (Chen and Shang 2017; Chen et al. 2014, 2016),
we leverage the tests of these apps to exercise the apps and measure the performance of the
apps during test execution. We first identify all the logging statements that will be executed
for each test of each app. We then identify the unnecessary logs, i.e., the logging state-
ments that generate unexpected debugging information in a released version (with a high
logging level). We look into each logging statement that gets called during test execution
and determine the rationale behind the code. Unnecessary logging statements with purposes
such asDebugging, Assist development and Performance are commented out, while keeping
logging statements for Anomaly detection and Bookkeeping.

For each test, we measure the performance with all the logging enabled of the released
version of the apps; disabling all logging statements in the apps and enabling only the
necessary logs. We use both physical level performance metrics, i.e., CPU and battery con-
sumption, and domain level performance metrics, i.e., response time, as measurements of
performance impact. In order to minimize the impact of performance monitoring itself, we
do not monitor all performance metrics at the same time. We redo all our experiments with
only measuring one performance metric at a time. Since the frequency of logging may serve
as an indicator of performance overhead, we also measure the frequency of logs generated
in each test.

First, we select tests for our experiments. Since we would like to examine the perfor-
mance impact of unnecessary logging, tests that do not generate any logs are irrelevant. We
run each test of these selected apps and check if there is any log generated. The tests that do
not generate any logs are not selected for our experiments. Furthermore, in order to reduce
the environmental noise when performing these experiments, we first run all tests once and
monitor their network access. With the monitoring data, we do not select the tests which
would send network requests to eliminate the negative effect of network fluctuation. We
identify both local unit tests and instrumented tests in our experiments. Finally, since these
tests may not reflect the usage of end-users using the apps, the first author of the paper uses
the app as an end user while being monitored by the Espresso test automation framework.22

Based on the recorded monitoring data, we created Espresso tests.

Local Unit Tests The local unit tests are the ones that can run with a unit testing framework
like JUnit23 and can run with little or no dependencies on Android system environment.
Thus, we execute the local unit tests on a Linux machine (4-core Intel i5-4690 CPU, 8GB
memory with Debian 9). During test executions, we use a performance monitoring tool
named psutil24 to collect the performance metrics of the test running processes.

Instrumented Tests The instrumented test can take the advantage of the Android frame-
work and supporting APIs. Therefore, such tests run on physical devices or emulators. We

22https://developer.android.com/training/testing/espresso/
23https://junit.org/junit5/
24https://github.com/giampaolo/psutil

https://developer.android.com/training/testing/espresso/
https://junit.org/junit5/
https://github.com/giampaolo/psutil

Empirical Software Engineering

conduct the instrumented tests on a physical Android device, i.e., a Google Pixel 2 XL cell-
phone (Android 8.1.0). We target at the application process and inspect the response time,
CPU usage and battery consumption during test executions. The CPU usage is extracted
by inspecting the /proc/stat (for device) and /proc/[pid]/stat (for process) files.25 Android’s
kernel is derived from Linux thus we can leverage the same technique to evaluate the CPU
usage. We do not use Android dumpsys cpuinfo26 tool to perform the data collection since it
gets the information from /proc/stat and experiences delay. To get a precise result, we man-
ually make each test wait for 15 seconds before and after execution, while the inspection
tool starts collecting data at the first 10 seconds and stops at the last 10 seconds. In this way,
we can capture the precise CPU usage that the test consumes. For battery consumption, we
use Android dumpsys batterystats tool to extract the usage for every specific application.
The battery consumption is estimated in milliampere-hour (mAh). Before running each test,
we reset the battery data, then we record the battery consumption after each test finishes.

Espresso Tests In order to generate Espresso tests, the first author performs interactions
with the mobile apps while being recorded by the Espresso testing framework. After-
ward, the recorded actions are transformed into testing scripts. Since some apps, such as
Nextcloud, require internet connections during runtime, we pre-fetch the content from the
internet and save the data in the testing device to avoid the noise from the actual internet
connection. The Espresso tests are also conducted on the same physical device as the instru-
mented tests with the same performance monitoring infrastructure. Our generated Espresso
tests are included in our replication package.

Noise and uncertainty always exist when measuring performance (Mytkowicz et al.
2009a). For example, given the same workload, an application can consume different CPU
usage in two different executions. To mitigate the impact of noise, we adopted the approach
of repeated measurement as used in prior studies (Chen and Shang 2017; Chen et al. 2014).
In particular, we repeat the performance evaluation 30 times independently in each round.

Since some tests finish in a very short period of time, (e.g., 15ms for Nextcloud’s unit
tests), there is no enough time for our tool to collect system resources’ consumption details.
To resolve this issue, we manually add an iteration loop for these test code to make them run
longer (around one minute) to enable our tool to collect data. Because our goal is to compare
the system resources’ consumption between enabling logging and disabling logging, and
test gets run the same times in the comparison, the modification of code would not change
the results.

With the performance evaluation data, we perform a statistically rigorous approach to
measure the performance impact. Specifically, we use the Wilcoxon Rank Sum test (Moore
et al. 2012) to check whether there exist statistically significant differences in system per-
formance between: 1) logging enabled and disabled; 2) logging enabled and removing
unnecessary logging. If there exists statistically significant difference (p � 0.05), we use
Cliff’s δ (1993) to calculate the effect sizes of such differences. Cliff’s δ ranges from −1
to +1, where a 0 value indicates two identical distributions. A positive value indicates that

25http://man7.org/linux/man-pages/man5/proc.5.html
26https://developer.android.com/studio/command-line/dumpsys

http://man7.org/linux/man-pages/man5/proc.5.html
https://developer.android.com/studio/command-line/dumpsys

Empirical Software Engineering

values in the first sample tend to be greater than those in the second sample, while a nega-
tive value indicates the opposite. The strength of the effects and the corresponding range of
Cliff’s δ values are defined as follows (Romano et al. 2006):

effect size =

⎧
⎪⎪⎨

⎪⎪⎩

trivial ifCliff ′s δ � 0.147
small if 0.147 < Cliff ′s δ � 0.33
medium if 0.33 < Cliff ′s δ � 0.474
large if 0.474 < Cliff ′s δ � 1

3.3.3 Results

Tables 10, 11 and 12 shows our experimental results on the performance impact of generat-
ing logs in mobile apps. Apps that do not have corresponding tests are not presented in the
tables.

Finding 7: There can be a statistically significant performance overhead when gen-
erating logs in mobile apps, especially for end-user impacting measurements such as
response time and battery consumption.

We find that there can be a statistically significant performance overhead, with large
effect sizes, in terms of response time and battery consumption when enabling logging in
mobile apps (see Tables 10, 11 and 12). The maximum performance overhead is observed in
the instrumented test #1 in K-9 Mail, where the response time and battery consumption with
logging enabled is around three times of that without logging. Response time and battery
consumption are two important performance measures that can directly impact end-users.
Therefore, such finding demonstrates the importance of making optimal logging decisions
in order to improve the user experience of mobile apps.

On the other hand, the performance overhead in other physical metrics is not conclusive.
When we examine the CPU cycles and CPU percentage of the apps, although many of the
differences are statistically significant, some of the effect sizes are trivial. Such finding
shows that the CPUmay not be the bottleneck of producing logs. Since the CPU is idle when
producing logs, the CPU percentage is often statistically significantly lower with logging
enabled. However, this lower CPU percentage is not a positive phenomenon since it shows
that the CPU is blocked and cannot contribute to providing calculation power while the
response time and battery consumption are sacrificed in such a case. This finding implies
the need of more advanced logging libraries for mobile apps, which may avoid blocking
the CPU when producing logs as fast as possible. For example, the async logging feature is
typically used in server and desktop logging libraries like Log4j2,27 while not supported by
either the Android default logging library nor the popular third-party libraries like Timber.28

OpenKeychain is the only app that shows almost no statistically significant performance
overhead of logging in their local unit tests (see Table 10). In order to understand this result,
we manually investigate the source code and local unit tests in OpenKeychain. We find that
OpenKeychain leverages a special testing framework called Robolectric29 in each of their
local unit test. Each test needs to initialize the Robolectric testing environment, which makes

27https://logging.apache.org/log4j/2.x/
28https://github.com/JakeWharton/timber
29http://robolectric.org/

https://logging.apache.org/log4j/2.x/
https://github.com/JakeWharton/timber
http://robolectric.org/

Empirical Software Engineering

Ta
bl
e
10

Pe
rf
or
m
an
ce

im
pa
ct
fr
om

lo
ca
lu

ni
tt
es
ts
be
tw
ee
n
en
ab
lin

g
an
d
di
sa
bl
in
g
lo
gg
in
g

L
oc
al
un
it
te
st
s

A
pp

Te
st

L
og
s
pe
r
se
co
nd

St
ag
e

R
es
po
ns
e
tim

e
C
PU

tim
e

C
PU

pe
rc
en
ta
ge

M
ed
ia
n

M
ed
ia
n
di
ff

E
ff
ec
ts
iz
es

M
ed
ia
n

M
ed
ia
n
di
ff

E
ff
ec
ts
iz
es

M
ed
ia
n

M
ed
ia
n
di
ff

E
ff
ec
ts
iz
es

O
sm

an
d

1
4.
07

W
ith

L
og

15
.0
s

+
2.
0s

+l
ar
ge

17
.6
s

+3
.2
s

+
la
rg
e

24
.5
0%

−2
6.
73
%

-l
ar
ge

W
ith

ou
tL

og
13
.0
s

14
.4
s

51
.2
3%

2
8.
00

W
ith

L
og

18
.0
s

+1
1.
0s

+l
ar
ge

22
.9
s

+3
.1
s

+
la
rg
e

38
.0
5%

+0
.0
8%

N
/A

W
ith

ou
tL

og
7.
0s

19
.8
s

37
.9
7%

N
ex
tc
lo
ud

1
12
0.
00

W
ith

L
og

20
.0
s

+1
2.
0s

+l
ar
ge

17
.4
s

+1
2.
6s

+
la
rg
e

40
.6
1%

+1
0.
45
%

+
la
rg
e

W
ith

ou
tL

og
8.
0s

4.
8s

30
.1
6%

K
-9

M
ai
l

1
42
.3
8

W
ith

L
og

12
.2
s

+
0.
2s

+
m
ed
iu
m

14
.3
s

+0
.5
s

+
la
rg
e

70
.3
6%

+2
.6
7%

la
rg
e

W
ith

ou
tL

og
12
.0
s

13
.8
s

67
.6
9%

2
7.
12

W
ith

L
og

11
.1
s

+0
.1
s

+m
ed
iu
m

11
.7
s

−0
.3
s

N
/A

71
.8
9%

−0
.5
6%

N
/A

W
ith

ou
tL

og
11
.0
s

12
.0
s

72
.4
5%

O
pe
nK

ey
ch
ai
n

1
2.
45

W
ith

L
og

24
.1
s

−0
.1
s

N
/A

18
.4
s

+0
.2
s

N
/A

57
.8
2%

−1
.3
8%

N
/A

W
ith

ou
tL

og
24
.2
s

18
.2
s

59
.2
0%

2
1.
09

W
ith

L
og

22
.9
s

−0
.6
s

N
/A

18
.6
s

+0
.1
s

N
/A

59
.4
4%

+0
.6
0%

N
/A

W
ith

ou
tL

og
23
.5
s

18
.5
s

58
.8
4%

3
11
.5
7

W
ith

L
og

36
.2
s

−0
.2
s

N
/A

20
.9
s

+0
.2
s

N
/A

27
.8
5%

+1
.8
0%

+
m
ed
iu
m

W
ith

ou
tL

og
36
.4
s

20
.7
s

26
.0
5%

4
0.
70

W
ith

L
og

25
.8
s

-0
.2
s

N
/A

18
.9
s

+0
.5
s

N
/A

57
.3
3%

+2
.3
3%

N
/A

W
ith

ou
tL

og
26
.0
s

18
.4
s

55
.0
0%

5
0.
34

W
ith

L
og

23
.3
s

−0
.4
s

N
/A

18
.8
s

+0
.1
s

N
/A

61
.5
8%

+0
.3
8%

N
/A

W
ith

ou
tL

og
23
.7
s

18
.7
s

61
.2
0%

6
0.
25

W
ith

L
og

24
.3
s

−0
.3
s

N
/A

19
.2
s

+0
.2
s

N
/A

59
.7
2%

+1
.5
4%

N
/A

W
ith

ou
tL

og
24
.6
s

19
.0
s

58
.1
8%

N
/A

in
ef
fe
ct
si
ze
s
m
ea
ns

th
at
th
e
di
ff
er
en
ce

is
st
at
is
tic
al
ly

in
si
gn
if
ic
an
t

Empirical Software Engineering

Ta
bl
e
11

Pe
rf
or
m
an
ce

im
pa
ct
fr
om

in
st
ru
m
en
te
d
te
st
s
be
tw
ee
n
en
ab
lin

g
an
d
di
sa
bl
in
g
lo
gg
in
g

In
st
ru
m
en
te
d
te
st
s

A
pp

Te
st

L
og
s
pe
r

se
co
nd

St
ag
e

R
es
po
ns
e
tim

e
C
PU

cy
cl
es

C
PU

pe
rc
en
ta
ge

B
at
te
ry

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

W
or
dP

re
ss

1
84
9.
07

W
ith

L
og

74
.1
s

+5
.4
s

+l
ar
ge

10
,8
47

+1
,0
74

+l
ar
ge

16
.5
4%

−0
.7
7%

–l
ar
ge

6.
24

+1
.1
3

+l
ar
ge

W
ith

ou
tL

og
68
.7
s

9,
77
3

17
.3
1%

5.
11

2
12
65
.3
0

W
ith

L
og

62
.3
s

+2
.4
s

+l
ar
ge

8,
77
2

–7
9

N
/A

16
.2
2%

−0
.3
2%

–l
ar
ge

5.
06

+0
.8
4

+l
ar
ge

W
ith

ou
tL

og
59
.9
s

8,
85
1

16
.5
4%

4.
22

c:
ge
o

1
43
.4
2

W
ith

L
og

70
.4
s

+2
.9
s

+l
ar
ge

4,
39
6

–2
5

N
/A

8.
93
%

−0
.0
5%

–l
ar
ge

1.
28

+0
.0
6

+l
ar
ge

W
ith

ou
tL

og
67
.5
s

4,
42
1

8.
98
%

1.
22

2
59
.4
7

W
ith

L
og

70
.7
s

+3
.6
s

+l
ar
ge

5,
54
5

+3
8

N
/A

10
.5
7%

−0
.2
7%

–l
ar
ge

1.
94

+0
.0
9

+l
ar
ge

W
ith

ou
tL

og
67
.1
s

5,
50
7

10
.8
4%

1.
85

3
71
.7
5

W
ith

L
og

62
.5
s

+3
.5
s

+l
ar
ge

4,
54
7

33
9

+l
ar
ge

9.
68
%

+0
.2
0%

+l
ar
ge

1.
39

+0
.0
7

+l
ar
ge

W
ith

ou
tL

og
59
.0
s

4,
20
8

9.
48
%

1.
32

4
61
.9
2

W
ith

L
og

67
.2
s

+
3.
8s

+
la
rg
e

4,
51
5

–2
3

N
/A

9.
32
%

−0
.1
5%

–l
ar
ge

1.
66

+0
.2
8

+l
ar
ge

W
ith

ou
tL

og
63
.4
s

4,
53
8

9.
47
%

1.
38

5
59
.3
4

W
ith

L
og

65
.7
s

+5
.4
s

+l
ar
ge

5,
01
0

+1
,2
53

+l
ar
ge

8.
60
%

+0
.7
4%

+l
ar
ge

2.
48

+0
.6
1

+l
ar
ge

W
ith

ou
tL

og
60
.3
s

3,
75
7

7.
86
%

1.
87

6
74
.0
0

W
ith

L
og

72
.3
s

+4
.2
s

+l
ar
ge

8,
46
5

0
N
/A

15
.7
2%

+0
.0
1%

N
/A

5.
23

+0
.4
4

+l
ar
ge

W
ith

ou
tL

og
68
.1
s

8,
46
5

15
.7
1%

4.
79

7
29
4.
61

W
ith

L
og

75
.6
s

+5
.7
s

+l
ar
ge

9,
70
7

+6
64

+l
ar
ge

18
.4
0%

+0
.4
7%

+l
ar
ge

5.
85

+0
.3
3

+l
ar
ge

W
ith

ou
tL

og
62
.9
s

9,
04
3

17
.9
3%

5.
52

8
13
7.
46

W
ith

L
og

61
.2
s

+3
2.
5s

+l
ar
ge

8,
71
0

+4
,6
32

+l
ar
ge

17
.1
7%

−0
.1
7%

–m
ed
iu
m

5.
66

+2
.7
9

+l
ar
ge

W
ith

ou
tL

og
28
.7
s

4,
07
8

17
.3
4%

2.
87

A
nk
iD
ro
id

1
4.
01

W
ith

L
og

53
.6
s

+0
.6
s

+m
ed
iu
m

3,
12
0

+1
04

+l
ar
ge

7.
63
%

+0
.1
3%

+l
ar
ge

1.
04

+0
.0
3

+l
ar
ge

W
ith

ou
tL

og
53
.0
s

3,
01
6

7.
50
%

1.
01

Empirical Software Engineering

Ta
bl
e
11

(c
on
tin

ue
d)

In
st
ru
m
en
te
d
te
st
s

A
pp

Te
st

L
og
s
pe
r

se
co
nd

St
ag
e

R
es
po
ns
e
tim

e
C
PU

cy
cl
es

C
PU

pe
rc
en
ta
ge

B
at
te
ry

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

2
0.
17

W
ith

L
og

57
.9
s

+0
.7
s

+m
ed
iu
m

3,
04
6

+2
8

N
/A

6.
99
%

+0
.0
2%

N
/A

0.
99

−0
.0
1

N
/A

W
ith

ou
tL

og
57
.2
s

3,
01
8

6.
97
%

1.
00

3
28
.2
3

W
ith

L
og

68
.4
s

+2
.4
s

+l
ar
ge

4,
68
8

+2
55

+l
ar
ge

8.
39
%

–0
.0
2%

N
/A

1.
63

+0
.0
9

+l
ar
ge

W
ith

ou
tL

og
66
.0
s

4,
43
3

8.
41
%

1.
54

K
-9

M
ai
l

1
1.
23

W
ith

L
og

66
.4
s

+4
4.
3s

+l
ar
ge

8,
50
6

+5
,6
47

+l
ar
ge

15
.9
9%

−0
.3
1%

−l
ar
ge

5.
26

+3
.5
6

+l
ar
ge

W
ith

ou
tL

og
22
.1
s

2,
85
9

16
.3
0%

1.
70

A
nt
en
na
Po

d
1

47
.7
9

W
ith

L
og

67
.1
s

+2
.1
s

+l
ar
ge

7,
71
7

+1
84

+l
ar
ge

11
.9
9%

−0
.2
2%

−l
ar
ge

3.
90

+0
.1
8

+l
ar
ge

W
ith

ou
tL

og
65
.0
s

7,
53
3

12
.2
1%

3.
72

2
27
.6
8

W
ith

L
og

73
.4
s

+9
.6
s

+l
ar
ge

35
5

+2
2

+l
ar
ge

0.
69
%

+0
.0
4%

+l
ar
ge

0.
25

+0
.1
5

+l
ar
ge

W
ith

ou
tL

og
63
.8
s

33
3

0.
65
%

0.
10

3
6.
03

W
ith

L
og

56
.7
s

+0
.1
s

+m
ed
iu
m

22
4

+6
4

+l
ar
ge

2.
06
%

+0
.1
3%

N
/A

0.
09
1

+0
.0
04

+l
ar
ge

W
ith

ou
tL

og
56
.6
s

16
0

1.
93
%

0.
08
7

4
11
4.
66

W
ith

L
og

65
.3
s

+3
.3
s

+l
ar
ge

4,
18
8

+7
87

+l
ar
ge

6.
75
%

+0
.5
5%

+l
ar
ge

1.
33

+0
.0
4

+l
ar
ge

W
ith

ou
tL

og
62
.0
s

3,
40
1

6.
20
%

1.
29

5
10
9.
53

W
ith

L
og

63
.1
s

+4
.3
s

+l
ar
ge

4,
15
6

+1
,0
36

+l
ar
ge

8.
47
%

+0
.6
9%

+l
ar
ge

1.
24

+0
.0
7

+l
ar
ge

W
ith

ou
tL

og
58
.8
s

3,
12
0

7.
78
%

1.
17

6
12
9.
39

W
ith

L
og

68
.0
s

+8
.3
s

+l
ar
ge

4,
59
1

+6
84

+l
ar
ge

8.
50
%

+0
.3
0%

+l
ar
ge

1.
39

+0
.1
4

+l
ar
ge

W
ith

ou
tL

og
59
.7
s

3,
90
7

8.
20
%

1.
25

7
18
9.
27

W
ith

L
og

66
.6
s

+5
.4
s

+l
ar
ge

4,
24
7

+6
63

+l
ar
ge

8.
56
%

+0
.2
8%

+l
ar
ge

1.
34

+0
.0
7

+l
ar
ge

W
ith

ou
tL

og
61
.2
s

3,
58
4

8.
28
%

1.
27

8
16
5.
01

W
ith

L
og

62
.2
s

+4
.5
s

+l
ar
ge

4,
30
2

+9
42

+l
ar
ge

9.
20
%

+0
.7
2%

+l
ar
ge

1.
39

+0
.1
0

+l
ar
ge

W
ith

ou
tL

og
57
.7
s

3,
36
0

8.
48
%

1.
29

N
/A

in
ef
fe
ct
si
ze
s
m
ea
ns

th
at
th
e
di
ff
er
en
ce

is
st
at
is
tic
al
ly

in
si
gn
if
ic
an
t

Empirical Software Engineering

Ta
bl
e
12

Pe
rf
or
m
an
ce

im
pa
ct
fr
om

E
sp
re
ss
o
te
st
s
be
tw
ee
n
en
ab
lin

g
an
d
di
sa
bl
in
g
lo
gg
in
g

E
sp
re
ss
o
te
st
s

A
pp

Te
st

L
og
s
pe
r

se
co
nd

St
ag
e

R
es
po
ns
e
tim

e
C
PU

cy
cl
es

C
PU

pe
rc
en
ta
ge

B
at
te
ry

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n

M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

O
sm

A
nd

1
1.
22

W
ith

L
og

81
.4
s

0
N
/A

1,
48
6

0
N
/A

2.
11
%

0
N
/A

1.
18

+0
.0
1

N
/A

W
ith

ou
tL

og
81
.4
s

1,
48
6

2.
11
%

1.
17

W
or
dp
re
ss

1
1.
62

W
ith

L
og

55
.7
s

+0
.1
s

+m
ed
iu
m

82
3

–3
N
/A

1.
73
%

0
N
/A

0.
00
1

0
N
/A

W
ith

ou
tL

og
55
.6
s

82
6

1.
73
%

0.
00
1

c:
ge
o

1
1.
17

W
ith

L
og

76
.7
s

+0
.2
s

+m
ed
iu
m

1,
90
9

+2
57

+l
ar
ge

2.
90
%

+0
.4
%

+l
ar
ge

1.
17

+0
.0
2

+l
ar
ge

W
ith

ou
tL

og
76
.5
s

1,
65
2

2.
50
%

1.
15

N
ex
tc
lo
ud

1
9.
90

W
ith

L
og

67
.3
s

0
N
/A

1,
51
6

+7
+m

ed
iu
m

2.
94
%

0
N
/A

0.
75

+0
.0
1

N
/A

W
ith

ou
tL

og
67
.3
s

1,
50
9

2.
94
%

0.
74

A
nk
iD
ro
id

1
11
.4
3

W
ith

L
og

86
.8
s

0
N
/A

1,
75
8

+3
5

+l
ar
ge

2.
51
%

+0
.0
5%

+l
ar
ge

0.
02
4

+0
.0
01

+s
m
al
l

W
ith

ou
tL

og
86
.8
s

1,
72
3

2.
46
%

0.
02
3

K
-9

M
ai
l

1
0.
23

W
ith

L
og

10
4.
8s

+0
.1
s

N
/A

1,
59
5

+1
N
/A

1.
88
%

0
N
/A

0.
88

0
N
/A

W
ith

ou
tL

og
10
4.
7s

1,
59
4

1.
88
%

0.
88

O
pe
nK

ey
ch
ai
n

1
3.
18

W
ith

L
og

94
.3
s

0
N
/A

1,
81
2

–2
0

N
/A

2.
57
%

+0
.0
9%

N
/A

0.
37

0
N
/A

W
ith

ou
tL

og
94
.3
s

1,
83
2

2.
48
%

0.
37

A
nt
en
na
Po

d
1

10
.3
7

W
ith

L
og

92
.5
s

–0
.1
s

N
/A

1,
88
5

+1
8

+l
ar
ge

2.
56
%

+0
.0
3%

+l
ar
ge

0.
67

0
N
/A

W
ith

ou
tL

og
92
.6
s

1,
86
7

2.
53
%

0.
67

2
52
.1
3

W
ith

L
og

75
.5
s

+0
.1
s

N
/A

1,
93
5

+1
9

+l
ar
ge

3.
21
%

0
N
/A

0.
74

0
N
/A

W
ith

ou
tL

og
75
.4
s

1,
91
6

3.
21
%

0.
74

3
1.
32

W
ith

L
og

24
4.
0s

+0
.3
s

+l
ar
ge

2,
63
0

+1
23

+l
ar
ge

1.
36
%

+0
.0
5%

+l
ar
ge

0.
99

+0
.0
1

+l
ar
ge

W
ith

ou
tL

og
24
3.
7s

2,
50
7

1.
31
%

0.
98

N
/A

in
ef
fe
ct
si
ze
s
m
ea
ns

th
at
th
e
di
ff
er
en
ce

is
st
at
is
tic
al
ly

in
si
gn
if
ic
an
t

Empirical Software Engineering

the performance of each test unstable. The overhead caused by the logging statements is not
statistically significant in such an environment due to the large noise.

We also find that, compared to local unit tests and instrumented tests, the performance
overhead of logging is less likely to be statistically significant during Espresso tests (see
Table 12). In particular, only three of the Espresso tests shows statistically significant battery
consumption overhead. Such a result agrees with the findings from a prior study by Chowd-
hury et al. (2017), which finds that energy consumption of logging may not be significant
in regular usage of mobile apps.

We cannot observe any relationship between the frequency of generated logs and whether
the logging overhead is statistically significant. For example, Espresso test #2 in Anten-
naPod has the highest logging frequency while logs do not introduce any statistically
significant performance overhead. On the other hand, Espresso test #3 in AntennaPod has a
much lower logging frequency yet introduces significant performance overhead with large
effect sizes in every metric. Such results show the complex nature of performance overhead
from logging and motivates further in-depth studies on logging overhead in different usage
scenarios.

Finding 8: If disabling logging statement provides significant performance improve-
ment, the performance overhead from unnecessary logging statements generated by
the current tests can be statistically significant.

To filter out the unnecessary logs, we manually categorize the purpose of the eight
selected apps’ logging codes. For OsmAnd and OpenKeychain, there exists no logging code
for anomaly detection or bookkeeping. Similarly, for Nextcloud, all log messages printed
during tests stem from the test files. It means that all logs are unnecessary thus there is no
candidate to be compared to for these three apps. For WordPress, some unnecessary logs
come from code in an external jar file which we cannot exclude. The remaining apps (c:geo,
AnkiDroid, K-9 Mail and AntennaPod) have both necessary and unnecessary logging code
that can be optimized.

We evaluate the runtime impact of unnecessary logs of four apps (c:geo, AnkiDroid, K-9
Mail and AntennaPod) as well as all the Espresso tests of the eight apps. We observe many
cases where that such unnecessary logs typically do not show statistically significant per-
formance overhead (see Table 13). By carefully examine such cases, we find that there are
cases that have very few unnecessary logs or undergo low performance overhead of log-
ging. For example, on one hand, we manually examine the test in c:geo and find that the
number of unnecessary logs generated by the instrumented test is low (almost 0%). There-
fore, disabling the unnecessary logs or even all the logs in the instrumented test of c:geo
does not improve performance significantly. On the other hand, with a more realistic work-
load in the Espresso tests, the number of generated unnecessary logs is much higher (61.1%
to 99.3%). However, the performance improvement of disabling these unnecessary logs is
minimized due to the observed low performance overhead of logging in Espresso tests (see
Tables 10, 11 and 12). In other words, if even disabling all logs would not provide any per-
formance improvement, based on the results in Tables 10, 11 and 12, we cannot expect any
performance improvement by only disabling unnecessary logs. Nevertheless, it is clear to
see that in the case of c:geo, AnkiDroid and AntennaPod, if performance improvement is
statistically significant when disabling all the logs in the Espresso tests (see Table 12), the
unnecessary logging overhead is also statistically significant (see Table 13).

Empirical Software Engineering

Ta
bl
e
13

Pe
rf
or
m
an
ce

im
pa
ct
be
tw
ee
n
en
ab
lin

g
al
ll
og
gi
ng

an
d
di
sa
bl
in
g
un
ne
ce
ss
ar
y
lo
gg
in
g

A
pp

Te
st

% U
nn
ec
es
sa
ry

lo
gs

St
ag
e

L
og

s
pe
r

se
co
nd

R
es
po
ns
e
tim

e
C
PU

cy
cl
es

C
PU

pe
rc
en
ta
ge

B
at
te
ry

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

In
st
ru
m
en
te
d
te
st
s

c:
ge
o

8
∼0

.0
%

W
ith

L
og

13
7.
46

61
.2
s

–0
.1
s

N
/A

8,
71

0
+3

2
N
/A

17
.1
7%

−0
.0
2%

N
/A

5.
66

0
N
/A

W
ith

N
ec
es
sa
ry

L
og

13
7.
46

61
.3
s

8,
67

8
17

.1
9%

5.
66

A
nk

iD
ro
id

1
51

.6
%

W
ith

L
og

4.
01

53
.6
s

+1
.1
s

+l
ar
ge

3,
12

0
+4

8
+m

ed
iu
m

7.
63

%
0

N
/A

1.
04

+0
.0
5

+l
ar
ge

W
ith

N
ec
es
sa
ry

L
og

1.
98

52
.5
s

3,
07

2
7.
63

%
0.
99

2
50

.0
%

W
ith

L
og

0.
17

57
.9
s

+1
.3
s

+l
ar
ge

3,
04

6
−2

6
N
/A

7.
00

%
−0

.0
2%

N
/A

0.
99

+0
.0
1

+m
ed
iu
m

W
ith

N
ec
es
sa
ry

L
og

0.
09

56
.6
s

3,
07

2
7.
02

%
0.
98

3
89

.1
%

W
ith

L
og

28
.2
3

68
.4
s

+0
.6
s

+m
ed
iu
m

4,
68

8
+6

69
+l

ar
ge

8.
39

%
+0

.1
5%

+l
ar
ge

1.
63

+0
.1
0

+l
ar
ge

W
ith

N
ec
es
sa
ry

L
og

3.
10

67
.8
s

4,
01

9
8.
24

%
1.
53

K
-9

M
ai
l

1
76

.8
%

W
ith

L
og

1.
23

66
.4
s

+1
9.
1s

+l
ar
ge

8,
50

6
+2

,2
29

+l
ar
ge

15
.9
9%

+0
.7
1%

+s
m
al
l

5.
26

+1
.5
4

+l
ar
ge

W
ith

N
ec
es
sa
ry

L
og

0.
40

47
.3
s

6,
27

7
15

.2
8%

3.
72

A
nt
en
na
Po

d
2

95
.3
%

W
ith

L
og

27
.6
8

73
.4
s

+1
0.
0s

+l
ar
ge

35
5

+4
9

+l
ar
ge

0.
69

%
+0

.0
9%

+l
ar
ge

0.
25

+0
.1
6

+l
ar
ge

W
ith

N
ec
es
sa
ry

L
og

1.
58

63
.4
s

30
6

0.
60

%
0.
09

E
sp
re
ss
o
te
st
s

O
sm

A
nd

1
84

.8
%

W
ith

L
og

1.
22

81
.4
s

–0
.1
s

N
/A

1,
48

6
0

N
/A

2.
11

%
0

N
/A

1.
18

+0
.0
1

N
/A

W
ith

N
ec
es
sa
ry

L
og

0.
18

81
.5
s

1,
48

6
2.
11

%
1.
17

W
or
dp

re
ss

1
74

.4
%

W
ith

L
og

1.
62

55
.7
s

0
N
/A

82
3

+
1

N
/A

1.
73

%
0

N
/A

0.
00

1
0

N
/A

W
ith

N
ec
es
sa
ry

L
og

0.
41

55
.7
s

82
2

1.
73

%
0.
00

1

Empirical Software Engineering

Ta
bl
e
13

(c
on
tin

ue
d)

A
pp

Te
st

% U
nn
ec
es
sa
ry

lo
gs

St
ag
e

L
og

s
pe
r

se
co
nd

R
es
po
ns
e
tim

e
C
PU

cy
cl
es

C
PU

pe
rc
en
ta
ge

B
at
te
ry

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

M
ed
ia
n
M
ed
ia
n

di
ff

E
ff
ec
t

si
ze
s

c:
ge
o

1
61

.1
%

W
ith

L
og

1.
17

76
.7
s

+0
.2
s

+m
ed
iu
m

1,
90

9
+5

2
+
la
rg
e

2.
90

%
+0

.0
8%

+m
ed
iu
m

1.
17

0
N
/A

W
ith

N
ec
es
sa
ry

L
og

0.
46

76
.5
s

1,
85

7
2.
82

%
1.
17

N
ex
tc
lo
ud

1
83

.9
%

W
ith

L
og

9.
90

67
.3
s

–0
.1
s

N
/A

1,
51

6
+1

N
/A

2.
94

%
+0

.0
1%

N
/A

0.
75

0
N
/A

W
ith

N
ec
es
sa
ry

L
og

1.
59

67
.4
s

1,
51

5
2.
93

%
0.
75

A
nk

iD
ro
id

1
97

.9
%

W
ith

L
og

11
.4
3

86
.8
s

0
N
/A

1,
75

8
+3

7
+
la
rg
e

2.
51

%
+0

.0
4%

+l
ar
ge

0.
02

4
+0

.0
01

+s
m
al
l

W
ith

N
ec
es
sa
ry

L
og

0.
24

86
.8
s

1,
72

1
2.
47

%
0.
02

3

K
-9

M
ai
l

1
66

.7
%

W
ith

L
og

0.
23

10
4.
8s

+0
.2
s

N
/A

1,
59

5
–2

N
/A

1.
88

%
0

N
/A

0.
88

0
N
/A

W
ith

N
ec
es
sa
ry

L
og

0.
08

10
4.
6s

1,
59

7
1.
88

%
0.
88

O
pe
nK

ey
ch
ai
n
1

99
.3
%

W
ith

L
og

2.
84

94
.3
s

+0
.1
s

N
/A

1,
81

2
–6

5
N
/A

2.
57

%
0

N
/A

0.
37

–0
.1
2

N
/A

W
ith

N
ec
es
sa
ry

L
og

0.
02

94
.2
s

1,
87

7
2.
57

%
0.
49

A
nt
en
na
Po

d
1

92
.8
%

W
ith

L
og

10
.3
7

92
.5
s

+0
.1
s

N
/A

1,
88

5
+2

1
+
la
rg
e

2.
56

%
+0

.0
3%

+l
ar
ge

0.
67

0
N
/A

W
ith

N
ec
es
sa
ry

L
og

0.
75

92
.4
s

1,
86

4
2.
53

%
0.
67

2
94

.5
%

W
ith

L
og

52
.1
3

75
.5
s

+0
.1
s

N
/A

1,
93

5
–4

N
/A

3.
21

%
−0

.0
3%

–s
m
al
l

0.
74

0
N
/A

W
ith

N
ec
es
sa
ry

L
og

2.
88

75
.4
s

1,
93

9
3.
24

%
0.
74

3
78

.9
%

W
ith

L
og

1.
32

24
4.
0s

+1
.0
s

+l
ar
ge

2,
63

0
+5

8
+l

ar
ge

1.
36

%
+0

.0
2%

+l
ar
ge

0.
99

+0
.0
2

+l
ar
ge

W
ith

N
ec
es
sa
ry

L
og

0.
28

24
3.
0s

2,
57

2
1.
34

%
0.
97

N
/A

in
ef
fe
ct
si
ze
s
m
ea
ns

th
at
th
e
di
ff
er
en
ce

is
st
at
is
tic
al
ly

in
si
gn
if
ic
an
t

Empirical Software Engineering

4 Discussion

In this section, we discuss the implications of our study results.

4.1 The Different Logging Practices BetweenMobile Apps and Server/Desktop
Applications (RQ1)

From our empirical study results, we observe that logging practices of mobile apps is much
different from those of server and desktop applications.

There Exist Less Pervasive Logging Practices in Mobile App Development We consider
the reason to be two folds. First of all, mobile apps typically have a much smaller code base
(3,760 median SLOC in 1,444 F-Droid apps, 202K median SLOC in the studied C/C++
server applications (Yuan et al. 2012a), 116K median SLOC in the studied Java server and
desktop applications Chen and Jiang 2017) and fewer contributors (4 median authors in
1,444 F-Droid apps, 34 median authors in the studied C/C++ server applications (Yuan et al.
2012a), 37 median authors in the studied Java server and desktop applications Chen and
Jiang 2017). With less uncertainty of the application and the development activity, there may
exist less needs for using logs to tackle the challenges of program comprehension. Second,
although Android provides a default logging library, the logging library is not optimized for
mobile app development. In particular, default Android logs can only be viewed in Logcat
with the device connected to a computer, while developers cannot retrieve the logs from a
disconnected mobile device (Developer 2017). Although in the study we also consider the
logging statements with third-party logging libraries such as Logger30 and Timber,31 the
naive features of the default logging library may prevent developers from leveraging logs in
practice.

The Logging Statements are Less Maintained During Development; While There Exists
Much More Deletion to Logging Statements Compared to Server and Desktop Appli-
cations We find that all too often, logging statements in mobile apps are only used
temporarily in the source code, i.e., developers add logging statements for particular tasks
and then delete the logging statements after they finish the task. For example, in DAP-
NETApp,32 the developer removed logging statements such as “Log.i(TAG,“saveAdmin:
admin: ”+admin);” as she or he indicated in the commit message: “Remove debug log-
ging”. These logging statements were added in one previous commit,33 which aimed to fix
an issue as the commit message mentioned: “This fixes #18, version bump to 1.0.2”. As
we examined the issue description and source code, we found that these logging statements
were used to present user information and program execution status in order to fix an HTTP
403 Error when a user tried to view phone calls. After the bug was fixed, the developer
removed the debug logging statements. Therefore, many logging statements are not meant
to stay in the source code, hence, without the need for maintenance. Such a practice is not
reported in prior studies on the logging practices in server and desktop applications.

30https://github.com/orhanobut/logger
31https://github.com/JakeWharton/timber
32https://github.com/DecentralizedAmateurPagingNetwork/DAPNETApp/commit/bd7427d825a02cde2584
858396fa170f7dd0a44d
33https://github.com/DecentralizedAmateurPagingNetwork/DAPNETApp/commit/f4a84c261a910b2b9d702
028275299f6a4c04663

https://github.com/orhanobut/logger
https://github.com/JakeWharton/timber
https://github.com/DecentralizedAmateurPagingNetwork/DAPNETApp/commit/bd7427d825a02cde2584858396fa170f7dd0a44d
https://github.com/DecentralizedAmateurPagingNetwork/DAPNETApp/commit/bd7427d825a02cde2584858396fa170f7dd0a44d
https://github.com/DecentralizedAmateurPagingNetwork/DAPNETApp/commit/f4a84c261a910b2b9d702028275299f6a4c04663
https://github.com/DecentralizedAmateurPagingNetwork/DAPNETApp/commit/f4a84c261a910b2b9d702028275299f6a4c04663

Empirical Software Engineering

The Majority of the Mobile App Logging Statements are in the Debug and Error Level
Although Android default logging library provides different verbosity levels to print log
messages, the verbosity level itself only controls whether the verbose level logging state-
ments are compiled into the source code (Elye 2018). For example, a logging statement
“Log.d(TAG, “get token:” + token);” in the debug level, can still generate log messages in
the release build of the app. In such a case, the verbosity level itself is more about indicat-
ing the severity and purpose of the logs rather than controlling how verbose the logs are.
Therefore, by considering our finding that a large portion of the logging statements are in
the debug level, it may be the case that developers often add logging statements when they
start to debug and remove the logging statement after debugging, making logging statements
only exist temporarily in the development history.

Take-home message 1: Developers and software engineering researchers of mobile
apps should be aware of the differences between mobile and server/desktop logging
practices. Prior findings on logging practices on server/desktop applications may not
hold for mobile apps.

4.2 The Rationale and the Verbosity of Mobile App Logging (RQ2)

Debug Accounts for the Majority of Logging Rationale From the results of our firehouse
email interview and qualitative annotation, we find that the majority of the logging state-
ments in mobile apps are for debugging purposes. Such debugging logging statements are
meant to be temporary in the source code and should not be shipped to the users, due to
performance and security reasons.

As the example from email interview that we show for the debugging logging state-
ment (see RQ2), the developer mentioned that the logging statement for debugging has
been removed after the feature is not required anymore. This indicates that developers have
some concern that logging statements might have adverse impact and should be managed
well. Therefore, we further examine whether developers remove the logging statements after
debugging. Following the firehouse email interview, we find that out of these 41 debugging
logging statements, only 10 of them actually get removed. In one case, the developer men-
tioned will remove it, but he/she has not already done so the last time we checked (July 26th,
2018). The rest 31 (75.6%) of them still exist in the source code. For the three of the logging
statements, the developers mentioned that they use logging level to control the appearance
of the logs and these logging statements would not get shipped to users. Such results indi-
cate that developers may be aware that debugging logging statements is unnecessary, or
even harmful, for the end-users of mobile apps.

There is one response of logging statement (Log.i(TAG, “Selected file: ” + filePath) in
Video Transcoder34) for which the developer explicitly mentioned that he wanted to keep
the logging statement after debugging. The developer mentioned that:

“This commit adds a file picker which is embedded into the application. During develop-
ment I was learning how to use this library, and the log statement allowed me to debug the
application in a few test scenarios to ensure that it was working as expected. The log state-
ment was kept (instead of being removed after debugging) for two reasons: 1) In case I did

34https://github.com/brarcher/video-transcoder/commit/55c22c594cba15abae60528a55e0309c00c035ca

https://github.com/brarcher/video-transcoder/commit/55c22c594cba15abae60528a55e0309c00c035ca

Empirical Software Engineering

not get the usage of the file picker library correct and a user hits a problem, the log state-
ment may help diagnose what data the file picker is returning, and hopefully help triage the
issue; and 2) This log statement represents the first data selected by the user for process-
ing. If something went wrong later in the program, this log statement will trace back the
input used by the application. It will tell valuable information such as what partition the
data resides on (internal storage, SD card) and what media type the file represents (via its
extension).”

From the response, we can see that there is a need for the debugging logging statement in
production because it provides valuable information for further problem diagnosis. There-
fore, further research can be conducted on how to balance the potential adverse impact and
the valuable information that logging statements provide.

4.3 The Energy Overhead of Mobile App Logging (RQ3)

Insignificant Energy Overhead by Logging Found by a Prior Study The prior study by
Chowdhury et al. (2017) evaluates the logging overhead on energy consumption in mobile
apps. Chowdhury et al.’s study finds that most of the mobile apps do not have a signifi-
cant energy overhead when enabling logs. We consider the reason is that our experiments
are conducted with running tests, which may have less noises from internal factors such as
memory management. Such noises are discussed to be one of the reasons that the logging
overhead is not significant in the prior study. By examining the context of the experiments
and the results, we consider that such a finding does not conflict with our finding of sta-
tistically significant performance overhead of logging. In particular, our findings on local
unit tests and instrumented tests confirm the existence of logging overhead in mobile apps,
since the tests are conducted in a controlled manner with less noise. On the other hand, our
results with Espresso tests and the findings by Chowdhury et al. show that, with the noise of
other factors that may impact performance, the overhead is often not noticeable on a typical
workload and current logging density. However, with more logging added into the source
code and heavier workload, the impact may start to be noticed in real life.

There Exists a Strong Need for Automated Logging Library and Tooling Support for
Mobile Apps Our results show that logging has a significant performance impact on mobile
apps. It consumes extra system resources such as battery and cost longer response time. If
developers do not have the optimized logging decisions, the overhead of logging may have
a large negative performance impact on end-users’ experience of mobile apps, due to the
limited computing power and energy. Therefore, specially designed strategies for mobile
logging are needed in such cases. In addition, some of the overhead is contributed by the
suboptimal logging libraries on mobile apps, while the logging libraries for server and desk-
top machines are much more advanced (e.g., the async feature in Log4j235). Therefore,
specially designed mobile app logging libraries would help in reducing such overhead.

Take-home message 2: Practitioners should be aware of the energy overhead of mobile
logging. In particular, energy should not be wasted on outputting information that is
not needed in mobile app runtime.

35https://logging.apache.org/log4j/2.x/

https://logging.apache.org/log4j/2.x/

Empirical Software Engineering

5 Threats to Validity

This section discusses the threats to the validity of our study.

5.1 External Validity

In our study, the selected mobile apps are all free and open source Android apps written in
Java. However, compared to the vast number of Android apps, our results may not be gen-
eralizable to other, especially the non-free and closed source, Android apps. In particular,
Gaming apps make a great portion in the Android apps in the Google Play Store. Such Gam-
ing apps may have a strong need for performance improvement (Lin et al. 2018) and may
benefit from learning user behaviours from logs (Harpstead et al. 2015). However, Gaming
apps only take 10% of the F-Droid apps. Our study is based on the logging statements in
the source code. We do not have access to the source code of closed source mobile apps.
Even by decompiling the APK files, we cannot identify logging statements in the code due
to code obfuscation. Collaborating with close-source mobile app developers from industry
may address this challenge. In addition, we cannot claim that the performance testing results
of the eight selected apps can be generalized to other apps. Future studies may provide more
insights on the mobile app logging performance overhead of other types of apps to address
this threat.

Our Espresso tests are created based on the monitoring data of the usage of the first
author on the apps. The usage may not be generalizable for other end users. More Espresso
tests that are generated by more end users can minimize this threat.

Since we only studied logging practices in Android apps that are implemented in Java,
our findings may not be generalizable to apps that are implemented in other programming
languages (e.g., Kotlin or Swift) and mobile operating systems (e.g., iOS). Further studies
are needed on the logging practices for apps with other programming languages and in other
mobile operating systems.

5.2 Internal Validity

In the data gathering process to identify log modification, we use a Levenshtein ratio of
0.5 as the threshold to determine whether the log change belongs to modification or not.
Although we leverage the same threshold as prior studies (Zhao et al. 2017) and the result
is found to be accurate, the threshold may have an impact on our findings.

The manual classification on the rationale of adding logging statement may be subjective.
To mitigate this threat, two authors of the paper examine the logging statements and we have
a third person as a tie-breaker when the two authors cannot make a consensus. The Cohen’s
kappa statistic (Fleiss and Cohen 1973) of our manual classification is 0.68, i.e., substantial
agreement. More user studies and case studies are needed to further address this threat and
to provide deeper understanding on the rationale of mobile logging.

In our approach, we choose one popular domain performance metric response time and
other physical level performance metrics to measure performance. However, there exist a
large number of other performance metrics especially for mobile apps, such as the network
traffic over the air. Future studies can consider more performance metrics to complement
our study.

Empirical Software Engineering

5.3 Construct Validity

We use git diff to determine the type of logging statement changes. However, when a file
gets renamed and the code is changed more than 50%, git would identify the original file
as deleted and the renamed version as added. Therefore, the logging statement in such files
would be identified as deleted and added, even though they are not changed at all. In such
cases, altering the threshold values would not help eliminate the threat. In order to examine
the impact of such threat, we extract added and deleted logging statements that are exactly
the same and are from same commit. Such cases may be prone to be impacted by this threat.
We only find a total of 3,744 logging statements that belong to this situation, which only
accounts for 0.7% of the entire dataset. Therefore, we consider the impact of the threat is
minimal.

When calculating logging lines of code, we count the number of logging statements.
However, when one logging statement takes more than one lines of source code, the result
may be biased. From a sample of 384 randomly selected (95% of confidence level with a
5% confidence interval) logging statements, we find that only 27 of them contain multiple
lines of source code.

We find that Android app developers may use Android default logging library, third-
party logging libraries, as well as implementing their own custom logging class. With the
wide range of subject apps we selected, our regular expression match approach may contain
false positives. We manually sampled 384 pieces of logging statements, which corresponds
to a 95% of confidence level with a 5% confidence interval. We find that our approach can
effectively extract the true logging statements with an accuracy of 99%.

There exist environmental noises when we run tests to measure performance impact of
mobile logging (Mytkowicz et al. 2009b). In order to minimize noises in performance mea-
surement, we ignore the tests that are associated with network to eliminate the influence of
network fluctuation. Furthermore, we perform repetitive measurement to evaluate perfor-
mance. Future studies can further increase the number of repeated executions and mock the
network access to further complement our study.

6 RelatedWork

In this section, we discuss prior research related to this paper with regards to empirical
studies on logging practices, assisting in logging decisions, and logging performance.

6.1 Empirical Studies on Logging Practices

In practice, logging statements are widely used to expose valuable information of runtime
system behavior. Such information helps developers trace, monitor and debug the sys-
tem. Due to the value of logs, extensive empirical studies on logging practices have been
conducted. Yuan et al. (2012a) performed the first empirical study on quantitatively charac-
terizing the logging practices. The authors studied four large open-source software written
in C/C++ and found that logging is pervasive, and developers often do not make the log
messages right at the first time. They built a simple log-level checker to detect problematic
logging levels based on inconsistent verbosity levels within similar code snippets. The work
done by Chen and Jiang (2017) is a replication study of Yuan et al. (2012a) by analyzing the

Empirical Software Engineering

logging practices of 21 Java applications from the Apache Software Foundation (ASF). The
applications they studied are selected from server-side, client-side or support-component-
based applications. They found that certain aspects of the logging practices in Java-based
applications are different from C/C++ based applications.

Shang et al. (2011) and Weiyi et al. (2013) studied the evolution of logs in the forms
of both logging statements and the generated logs over multiple releases of large software
systems. The findings illustrate that logging statements are often changed by developers
without considering the need of other practitioners who highly depend on these logs.

Prior research also presents that logging has a relationship with software quality and
often support to trace software issues to improve software quality. Syer et al. (2013) pro-
posed an automated approach that combines performance counters and execution logs to
diagnose memory-related issues in load tests. The approach that they developed is fully
automated and scales well to ultra-large-scale open-source and enterprise systems. Shang
et al. (2015) studied the relationship between logging characteristics and software quality
on four releases of Hadoop and JBoss. They found that log related metrics (e.g., log density)
have strong correlations with post-release defects. Their findings suggested that software
maintainers should allocate more preventive maintenance effort on source code files with
more logs and log churn.

Kabinna et al. (2018) and Kabinna et al. (2016b) conducted studies on the stability of
logging statements in four open source applications, i.e., Liferay, ActiveMQ, Camel and
CloudStack, to reduce the effort that is required to maintain log analysis. The authors found
that 20% to 45% of the logging statements are changed at least once. They also built a ran-
dom forest classifier to determine the change risk of just-introduced and long-lived logging
statements. Kabinna et al. found that developers’ experience, file ownership, log density and
SLOC are the most important change risks of both just-introduced and long-lived logging
statements.

Shang et al. (2014b) studied three open source applications: Hadoop, Cassandra and
Zookeeper to recover development knowledge for log lines. In their study, they manually
examined 300 randomly sampled logging statements and used 45 real-life inquiries in the
user mailing lists. They found that it is sometimes difficult for practitioners to understand
log lines, development knowledge such as issue reports are useful for log line understanding.

6.2 Assisting Logging Decisions

Although logs are of much value for software practitioners, the usefulness of logs highly
depends on the quality of logs. There exists a significant challenge for developers to make
proper logging decisions. Such decisions include choosing the logging level, the logging
location, the text in the logs and even whether the logging statements needs to be updated.

Prior research has proposed automated approaches to help developers choose the appro-
priate logging level for newly inserted logging statements. Li et al. (2017a) built an ordinal
regression model to automatically provide the suggestion of logging level when developers
add logging statements. Hassani et al. (2018) also found that incorrect logging level is one
of the typical log-related issues and Hassani et al. implemented a tool to detect incorrect
logging levels based on the words that only appear in one logging level.

Logging too little information limits its ability to assist development while too much
would cost extra resources. In order to assist logging decision, prior studies have proposed
and implemented automated tools supporting to guide logging improvement. Yuan et al.
(2012b) analyzed 250 randomly sampled reported issues and found that more than half of
them could not be diagnosed due to the lack of log messages. Yuan et al. proposed a tool

Empirical Software Engineering

name Errlog to analyze the source code to detect exceptions without logging and auto-
matically insert the missing logging statements. On the other hand, for existing logging
statements, Yuan et al. (2012c) built a tool called LogEnhancer to enrich the recorded con-
tents by automatically adding additional critical variable information to existing logging
statements to aid in future failure diagnosis.

Variance approaches are proposed to automatically suggest where to put logging state-
ments in source code. Fu et al. (2014) studied the logging practices in two industrial software
applications written in C# at Microsoft. The authors manually investigated the logged code
snippet and found that there exist five categories of logged code snippets. Furthermore, the
authors found six factors that are considered for logging and proposes an automatic classi-
fication approach to predict whether to log for a code snippet. In another study, Zhu et al.
(2015) examined four applications written in C# and performed a machine learning tech-
nique to extract structural, textual and syntactic features of code snippets in order to build a
logging suggestion tool, LogAdvisor. Their tool automatically learns the common logging
practices from existing logging instances and suggest developers with logging locations.
Similarly, Li et al. (2018) studied the relationship between logging locations and topics of
the source code that contain logging statements. Heng et al. found that logging related top-
ics often vary across projects. However, with an automated classifier built with the topics of
the source code, Heng et al. proposed a tool that can successfully suggest logging locations.
Zhao et al. (2017) proposed an approach called Log20 to automate the placement of log-
ging statements by measuring the effectiveness of each logging statement in disambiguating
code paths by information theory. Given a specified amount of performance overhead, the
tool determined a near-optimal placement of log printing statements under the constraint of
adding less than the overhead.

Pinjia et al. (2018) conducted an empirical study on the usage of natural language
descriptions in logging statements to facilitate the maintenance of logging decisions. In par-
ticular, the authors studied the context of logging statements in ten Java applications and
seven C# applications and find that there are three categories of logging descriptions in log-
ging statements namely: description for program operation, description for error condition,
and description for high-level code semantics. Furthermore, this paper proposed a simple
effective method implying the feasibility of automated logging description generation.

Finally, motivated by Shang et al.’s findings (2011, 2013), changing logging statement
also needs automated tool support. Li et al. (2017b) analyzed the reasons for log changes
and proposed an approach that can provide developers with log change suggestions as soon
as they commit a code change. They manually examined 380 random sample of log changes
from four open source applications: Hadoop, Directory Server, Commons HttpClient and
Qpid, and found that the reasons of log changes can be categorized to four categories: block
change, log improvement, dependence-driven change, and logging issue. Based on the rea-
sons, they applied random forest classifiers to provide accurate just-in-time suggestions for
logging statement changes.

Prior work that provides automated support on logging decisions are often based on
machine learning techniques from a large-scale prior logging data (Li et al. 2017a, b, 2018;
Zhu et al. 2015). However, mobile apps often do not have such large amount of data to
build these models. In addition, the techniques from prior research are often used as a black
box without giving concrete reasons (Li et al. 2017a, b, 2018; Zhu et al. 2015). On the
contrary, our findings do not contribute as an automated approach but particularly focus on
one aspect, i.e., the inconsistency between the rationale and the verbosity level of logging
statements, leading to potential waste of energy from logging. Such a finding may be more
easily understood and accepted by developers.

Empirical Software Engineering

6.3 Logging Performance

Despite the value of logs and the advances of logging libraries, such as Log4j2,36 logging
does require extra system resources and may pose a significant impact on system perfor-
mance (Chen and Shang 2017). Ding et al. (2015) conducted a survey on 84 Microsoft
engineers to understand the participants’ experience in logging systems and logging over-
head. 80% of the interviewees agreed that logging has a non-trivial overhead. The authors
proposed a cost-aware logging mechanism called Log2 to selectively record useful logs
based on a given logging output frequency.

Kabinna et al. (2016a) conducted a case study on logging library migrations within
Apache Software Foundation (ASF) projects. They manually analyzed JIRA issues and find
that 33 out of 223 ASF projects exist logging library migration. They examined all the JIRA
issues that attempt a migration and find that flexibility and performance improvement are
the two primary motivations for logging library migrations. However, their finding shows
that performance is rarely improved after the logging library migrations.

An exploratory study conducted by Chowdhury et al. (2017) investigates the energy cost
of logging in Android apps using GreenMiner, an automated energy test-bed for mobile
apps. Chowdhury et al. studied 24 Android apps that were tested with logging enabled and
disabled and found that execution logs have a negligible effect on energy consumption for
most of the mobile apps tested.

Our work differs from prior work in three dimensions: 1) our study is the first large-scale
empirical study on logging practices in mobile apps; 2) we study the rationale of mobile
logging in order to deeply understand the unique logging practices; and 3) we perform
a statistically rigorous approach to examine the system resources’ consumption including
response time, CPU and battery consumption.

7 Conclusion

Logging has been widely used by developers to understand, debug and perform failure diag-
nosis. Prior studies have focused on logging practices in server and desktop applications,
helping to make logging decisions and leverage logs to reduce maintenance effort. How-
ever, few studies have been conducted on logging practices of mobile apps. Therefore, to
fill the gap, in this paper, we investigate the logging practices in mobile apps. Specifically,
we study 1,444 open source Android apps in the F-Droid repository.

By studying the characteristics of mobile logging, we find that logging in mobile apps is
less pervasive and less actively maintained than logging in server and desktop application,
while much more often to be leveraged in a temporary manner. In order to further understand
the uniqueness of mobile logging, we conduct both firehouse email interview and qualitative
annotation on the rationale of mobile logging. We find that the majority of the logging
statements are used for debugging purposes, which helps explain the unique characteristics
of mobile logging. However, such debugging logs are often still generated in the released
version of the apps, causing potential performance overhead.

To understand the performance impact of mobile logging, we conduct an experiment by
comparing the system resource consumption between enabling and disabling logging on
eight selected apps. We find that logging can introduce a statistically significant perfor-
mance overhead such as longer response time and higher battery consumption. Disabling

36https://logging.apache.org/log4j/2.x/

https://logging.apache.org/log4j/2.x/

Empirical Software Engineering

the unnecessary logs (e.g., logs for tracing and debugging information) may also provide a
statistically significant performance improvement in many scenarios.

The contributions of this paper are as follows:

– Our work both quantitatively and qualitatively analyze the logging characteristics of
Android apps.

– We perform a qualitative annotation investigating the rationale behind mobile logging.
– We find that a considerable number of logs is unnecessarily generated during runtime

of mobile apps.
– We perform a statistically rigorous approach to measure the performance impact of

logging can have in mobile apps.

Our findings advocate for the need for automated tooling support and more advanced
logging infrastructure, such as logging libraries, that are specially optimized for mobile
apps.

Acknowledgements The authors gratefully thank the developers who participated and shared their
thoughts in our email interview.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Android (2017) Log. https://developer.android.com/reference/android/util/Log.html
Boulon J, Konwinski A, Qi R, Rabkin A, Yang E, Yang M (2008) Chukwa, a large-scale monitoring system.

In: Proceedings of CCA, vol 8, pp 1–5
Chen B, Jiang ZMJ (2017) Characterizing logging practices in java-based open source software projects–a

replication study in apache software foundation. Empir Softw Eng 22(1):330–374
Chen J, Shang W (2017) An exploratory study of performance regression introducing code changes. In: 2017

IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 341–352
Chen TH, Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P (2014) Detecting performance anti-patterns

for applications developed using object-relational mapping. In: Proceedings of the 36th international
conference on software engineering. ACM, pp 1001–1012

Chen TH, ShangW, Jiang ZM, Hassan AE, Nasser M, Flora P (2016) Finding and evaluating the performance
impact of redundant data access for applications that are developed using object-relational mapping
frameworks. IEEE Trans Softw Eng 42(12):1148–1161

Chowdhury S, Di Nardo S, Hindle A, Jiang ZMJ (2017) An exploratory study on assessing the energy impact
of logging on android apps. Empir Softw Eng, 1–35

Cliff N (1993) Dominance statistics: ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494
Developer A (2017)Write and view logs with logcat. https://developer.android.com/studio/debug/am-logcat#

WriteLogs
Ding R, Zhou H, Lou JG, Zhang H, Lin Q, Fu Q, Zhang D, Xie T (2015) Log2: a cost-aware logging

mechanism for performance diagnosis. In: USENIX annual technical conference, pp 139–150
Elye (2018) Debug messages your responsibility to strip it before release!. https://medium.com/@elye.

project/debug-messages-your-responsible-to-clear-it-before-release-1a0f872d66f
F-Droid (2017) Free and open source android app repository. https://f-droid.org/
Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as

measures of reliability. Educ Psychol Measur 33(3):613–619
Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T (2014) Where do developers log? An empirical

study on logging practices in industry. In: Companion proceedings of the 36th international conference
on software engineering. ACM, pp 24–33

Harpstead E, Zimmermann T, Nagapan N, Guajardo JJ, Cooper R, Solberg T, Greenawalt D (2015) What
drives people: creating engagement profiles of players from game log data. In: Proceedings of the 2015
annual symposium on computer-human interaction in play. ACM, pp 369–379

https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/studio/debug/am-logcat#WriteLogs
https://developer.android.com/studio/debug/am-logcat#WriteLogs
https://medium.com/@elye.project/debug-messages-your-responsible-to-clear-it-before-release-1a0f872d66f
https://medium.com/@elye.project/debug-messages-your-responsible-to-clear-it-before-release-1a0f872d66f
https://f-droid.org/

Empirical Software Engineering

Hassani M, Shang W, Shihab E, Tsantalis N (2018) Studying and detecting log-related issues. Empir Softw
Eng, 1–33

Kabinna S, Bezemer CP, Shang W, Hassan AE (2016a) Logging library migrations: a case study for the
apache software foundation projects. In: 2016 IEEE/ACM 13th working conference on mining software
repositories (MSR), pp 154–164

Kabinna S, Shang W, Bezemer CP, Hassan AE (2016b) Examining the stability of logging statements. In:
2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER),
vol 1. IEEE, pp 326–337

Kabinna S, Bezemer CP, Shang W, Syer MD, Hassan AE (2018) Examining the stability of logging
statements. Empir Softw Eng 23(1):290–333. https://doi.org/10.1007/s10664-017-9518-0

Kernighan BW, Pike R (1999) The practice of programming. Addison-Wesley Longman Publishing Co., Inc.,
Boston

Li H, Shang W, Hassan AE (2017a) Which log level should developers choose for a new logging statement?
Empir Softw Eng 22(4):1684–1716

Li H, Shang W, Zou Y, Hassan AE (2017b) Towards just-in-time suggestions for log changes. Empir Softw
Eng 22(4):1831–1865

Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging using topic models. Empir Softw
Eng 23(5):2655–2694. https://doi.org/10.1007/s10664-018-9595-8

Lin D, Bezemer CP, Zou Y, Hassan AE (2018) An empirical study of game reviews on the steam platform.
Empir Softw Eng, 1–38

Malik H, Hemmati H, Hassan AE (2013) Automatic detection of performance deviations in the load testing
of large scale systems. In: Proceedings of the 2013 international conference on software engineering,
ICSE ’13. IEEE Press, Piscataway, pp 1012–1021. http://dl.acm.org/citation.cfm?id=2486788.2486927

Moore DS, Craig BA, McCabe GP (2012) Introduction to the practice of statistics. WH Freeman
Murphy-Hill E, Zimmermann T, Bird C, Nagappan N (2015) The design space of bug fixes and how

developers navigate it. IEEE Trans Softw Eng 41(1):65–81
Mytkowicz T, Diwan A, Hauswirth M, Sweeney PF (2009a) Producing wrong data without doing anything

obviously wrong! ACM Sigplan Not 44(3):265–276
Mytkowicz T, Diwan A, Hauswirth M, Sweeney PF (2009b) Producing wrong data without doing anything

obviously wrong! SIGPLAN Not 44(3):265–276
Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In: 27th

international conference on software engineering, 2005. ICSE 2005. Proceedings. IEEE, pp 284–292
Pinjia H, Zhuangbin C, Shilin H, Lyu MR (2018) Characterizing the natural language descriptions in soft-

ware logging statements. In: Proceedings of the 33rd IEEE/ACM international conference on automated
software engineering. IEEE Press

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and cohen’sd for evaluating group differences on the nsse and other surveys. In:
Annual meeting of the Florida association of institutional research, pp 1–33

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2011) An exploratory study
of the evolution of communicated information about the execution of large software systems. In: 2011
18th working conference on reverse engineering, pp 335–344

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2014a) An exploratory study
of the evolution of communicated information about the execution of large software systems. J Softw
Evol Process 26(1):3–26

Shang W, Nagappan M, Hassan AE, Jiang ZM (2014b) Understanding log lines using development knowl-
edge. In: 2014 IEEE international conference on software maintenance and evolution (ICSME). IEEE,
pp 21–30

Shang W, Nagappan M, Hassan AE (2015) Studying the relationship between logging characteristics and the
code quality of platform software. Empir Softw Eng 20(1):1–27. https://doi.org/10.1007/s10664-013-
9274-8

Shull F, Singer J, Sjøberg DI (2007) Guide to advanced empirical software engineering. Springer
StackOverflow (2017) Why doesn’t “system.out.println” work in android? https://stackoverflow.com/a/

2220559
Syer MD, Jiang ZM, Nagappan M, Hassan AE, Nasser M, Flora P (2013) Leveraging performance coun-

ters and execution logs to diagnose memory-related performance issues. In: 2013 IEEE international
conference on software maintenance, pp 110–119

Tan J, Pan X, Kavulya S, Gandhi R, Narasimhan P (2008) Salsa: analyzing logs as state machines. In: Pro-
ceedings of the first USENIX conference on analysis of system logs, WASL’08. USENIX Association,
Berkeley, pp 6–6. http://dl.acm.org/citation.cfm?id=1855886.1855892

https://doi.org/10.1007/s10664-017-9518-0
https://doi.org/10.1007/s10664-018-9595-8
http://dl.acm.org/citation.cfm?id=2486788.2486927
https://doi.org/10.1007/s10664-013-9274-8
https://doi.org/10.1007/s10664-013-9274-8
https://stackoverflow.com/a/2220559
https://stackoverflow.com/a/2220559
http://dl.acm.org/citation.cfm?id=1855886.1855892

Empirical Software Engineering

Weiyi S, Ming JZ, Bram A, HA E, GM W, Mohamed N, Parminder F (2013) An exploratory study of the
evolution of communicated information about the execution of large software systems. J Softw: Evol
Process 26(1):3–26. https://doi.org/10.1002/smr.1579

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining
console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on operating systems principles,
SOSP ’09. ACM, New York, pp 117–132. https://doi.org/10.1145/1629575.1629587

Yamane T (1973) Statistics: an introductory analysis
Yuan D, Park S, Zhou Y (2012a) Characterizing logging practices in open-source software. In: Proceedings

of the 34th international conference on software engineering. IEEE Press, pp 102–112
Yuan D, Park S, Huang P, Liu Y, Lee MMJ, Tang X, Zhou Y, Savage S (2012b) Be conservative: enhancing

failure diagnosis with proactive logging. In: OSDI, vol 12, pp 293–306
Yuan D, Zheng J, Park S, Zhou Y, Savage S (2012c) Improving software diagnosability via log enhancement.

ACM Trans Comput Syst (TOCS) 30(1):4
Zhao X, Rodrigues K, Luo Y, StummM, Yuan D, Zhou Y (2017) Log20: fully automated optimal placement

of log printing statements under specified overhead threshold. In: Proceedings of the 26th symposium
on operating systems principles. ACM, pp 565–581

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log: helping developers make informed
logging decisions. In: Proceedings of the 37th international conference on software engineering, vol 1.
IEEE Press, pp 415–425

Yi Zeng is a Master’s student at the Department of Computer Science and Software Engineering at Concor-
dia University, Montreal, Canada. He obtained his B.Sc. from Sun Yat-sen University in Guangzhou, China.
His research interests are mining software repositories, software log analysis and software performance
engineering.

Jinfu Chen is a Ph.D. student in the Department of Computer Science and Software Engineering at Concordia
University, Montreal. He has received his M.Sc. degree from Chinese Academy of Sciences and he obtained
B.Eng. from Harbin Institute of Technology. His research interest lies in empirical software engineering,
software performance engineering, performance testing, performance mining.

https://doi.org/10.1002/smr.1579
https://doi.org/10.1145/1629575.1629587

Empirical Software Engineering

Weiyi Shang is an Assistant Professor and Concordia University Research Chair in Ultra-large-scale Sys-
tems at the Department of Computer Science and Software Engineering at Concordia University, Montreal.
He has received his Ph.D. and M.Sc. degrees from Queens University (Canada) and he obtained B.Eng.
from Harbin Institute of Technology. His research interests include big data software engineering, software
engineering for ultra-largescale systems, software log mining, empirical software engineering, and software
performance engineering. His work has been published at premier venues such as ICSE, FSE, ASE, ICSME,
MSR and WCRE, as well as in major journals such as TSE, EMSE, JSS, JSEP and SCP. His work has won
premium awards, such as SIGSOFT Distinguished paper award at ICSE 2013 and best paper award at WCRE
2011. His industrial experience includes helping improve the quality and performance of ultra-large-scale
systems in BlackBerry. Early tools and techniques developed by him are already integrated into products
used by millions of users worldwide. Contact him at shang@encs.concordia.ca; http://users.encs.concordia.
ca/∼shang.

Tse-Hsun (Peter) Chen is an Assistant Professor in the Department of Computer Science and Software
Engineering at Concordia University, Montreal, Canada. He obtained his BSc from the University of British
Columbia, and MSc and Ph.D. from Queen’s University. Besides his academic career, Dr. Chen also worked
as a software performance engineer at BlackBerry for over four years. His research interests include perfor-
mance engineering, database performance, program analysis, log analysis, and mining software repositories.
Early tools developed by Dr. Chen were integrated into industrial practice for ensuring the quality of
large-scale enterprise systems. More information at http://petertsehsun.github.io/.

http://users.encs.concordia.ca/~shang
http://users.encs.concordia.ca/~shang
http://petertsehsun.github.io/

Empirical Software Engineering

Affiliations

Yi Zeng1 · Jinfu Chen1 ·Weiyi Shang1 · Tse-Hsun (Peter) Chen1

Jinfu Chen
fu chen@encs.concordia.ca

Weiyi Shang
shang@encs.concordia.ca

Tse-Hsun (Peter) Chen
peterc@encs.concordia.ca

1 Department of Computer Science and Software Engineering, Concordia University, Montreal,
Quebec, Canada

http://orcid.org/0000-0001-7814-9524
mailto: fu_chen@encs.concordia.ca
mailto: shang@encs.concordia.ca
mailto: peterc@encs.concordia.ca

	Studying the characteristics of logging practices in mobile apps: a case study on F-Droid
	Abstract
	Introduction
	Paper Organization

	Case Study Setup
	Android Logging
	Subject Apps
	Data Gathering

	Case Study Results
	RQ1: What are the Characteristics of Mobile Logging Practices?
	Motivation
	Approach
	Results
	Verbosity Level Modification
	Text-Related Log Modifications
	Variable-Related Log Modifications
	Logging Library Modifications

	RQ2: What are the Rationales of Mobile Logging?
	Motivation
	Approach
	Firehouse Email Interview
	Qualitative Annotation

	Results
	Debug
	Anomaly Detection
	Bookkeeping
	Assist in Development
	Performance
	Change for Consistency
	Customize Logging Library
	From Third-Party Library

	RQ3: How Large Can the Performance Impact of Mobile Logging Be?
	Motivation
	Approach
	Local Unit Tests
	Instrumented Tests
	Espresso Tests

	Results

	Discussion
	The Different Logging Practices Between Mobile Apps and Server/Desktop Applications (RQ1)
	There Exist Less Pervasive Logging Practices in Mobile App Development
	The Logging Statements are Less Maintained During Development; While There Exists Much More Deletion to Logging Statements Compared to Server and Desktop Applications
	The Majority of the Mobile App Logging Statements are in the Debug and Error Level

	The Rationale and the Verbosity of Mobile App Logging (RQ2)
	Debug Accounts for the Majority of Logging Rationale

	The Energy Overhead of Mobile App Logging (RQ3)
	Insignificant Energy Overhead by Logging Found by a Prior Study
	There Exists a Strong Need for Automated Logging Library and Tooling Support for Mobile Apps

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Related Work
	Empirical Studies on Logging Practices
	Assisting Logging Decisions
	Logging Performance

	Conclusion
	References
	Affiliations

