
Empir Software Eng
https://doi.org/10.1007/s10664-017-9553-x

Empirical study on the discrepancy between performance
testing results from virtual and physical environments

Muhammad Moiz Arif1 ·Weiyi Shang1 ·Emad Shihab1

© Springer Science+Business Media, LLC 2017

Abstract Large software systems often undergo performance tests to ensure their capa-
bility to handle expected loads. These performance tests often consume large amounts of
computing resources and time since heavy loads need to be generated. Making it worse,
the ever evolving field requires frequent updates to the performance testing environment.
In practice, virtual machines (VMs) are widely exploited to provide flexible and less costly
environments for performance tests. However, the use of VMs may introduce confounding
overhead (e.g., a higher than expected memory utilization with unstable I/O traffic) to the
testing environment and lead to unrealistic performance testing results. Yet, little research
has studied the impact on test results of using VMs in performance testing activities. To
evaluate the discrepancy between the performance testing results from virtual and phys-
ical environments, we perform a case study on two open source systems – namely Dell
DVD Store (DS2) and CloudStore. We conduct the same performance tests in both virtual
and physical environments and compare the performance testing results based on the three
aspects that are typically examined for performance testing results: 1) single performance
metric (e.g. CPU Time from virtual environment vs. CPU Time from physical environ-
ment), 2) the relationship among performance metrics (e.g. correlation between CPU and
I/O) and 3) performance models that are built to predict system performance. Our results
show that 1) A single metric from virtual and physical environments do not follow the
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same distribution, hence practitioners cannot simply use a scaling factor to compare the
performance between environments, 2) correlations among performance metrics in vir-
tual environments are different from those in physical environments 3) statistical models
built based on the performance metrics from virtual environments are different from the
models built from physical environments suggesting that practitioners cannot use the per-
formance testing results across virtual and physical environments. In order to assist the
practitioners leverage performance testing results in both environments, we investigate ways
to reduce the discrepancy. We find that such discrepancy can be reduced by normalizing
performance metrics based on deviance. Overall, we suggest that practitioners should not
use the performance testing results from virtual environment with the simple assumption
of straightforward performance overhead. Instead, practitioners should consider leveraging
normalization techniques to reduce the discrepancy before examining performance testing
results from virtual and physical environments.

Keywords Software performance engineering · Software performance analysis and testing
on virtual environments

1 Introduction

Software performance assurance activities play a vital role in the development of large
software systems. These activities ensure that the software meets the desired performance
requirements (Woodside et al. 2007). Often however, failures in large software systems are
due to performance issues rather than functional bugs (Dean and Barroso 2013; Foo et al.
2010). Such failures lead to the eventual decline in quality of the system with reputational
and monetary consequences (CA Technologies 2011). For instance, Amazon estimates that
a one-second page-load slowdown can cost up to $1.6 billion (Eeton 2012).

In order to mitigate performance issues and ensure software reliability, practitioners often
conduct performance tests (Woodside et al. 2007). Performance tests apply a workload (e.g.,
mimicking users’ behavior in the field) on the software system (Jain 1990; Syer et al. 2017),
and monitor performance metrics, such as CPU usage, that are generated based on the tests.
Practitioners use such metrics to gage the performance of the software system and iden-
tify potential performance issues (such as memory leaks (Syer et al. 2013) and throughput
bottlenecks (Malik et al. 2010a)).

Since performance tests are often performed on large-scale software systems, the perfor-
mance tests often require many resources (Jain 1990). Moreover, performance tests often
need to run for a long period of time in order to build statistical confidence on the results
(Jain 1990). Such testing environments need to be easily configurable such that a specific
environment can be mimicked, reducing false performance issues. For example, issues that
are related to the environment. Hence, due to their flexibility, virtual environments enable
practitioners to easily prepare, customize, use and update performance testing environments
in an efficient manner. Therefore, to address such challenges, virtual environments (VMs)
are often leveraged for performance testing (Chen and Noble 2001; VMWare 2016). The
use of VMs in performance testing are widely discussed (Dee 2014; Kearon 2012; Tintin
2011), and even well documented (Merrill 2009) by practitioners. In addition, many soft-
ware systems are released both on-premise (physical) and on cloud (virtual) environment
(e.g., SugarCRM 2017 and BlackBerry Enterprize Server 2014). Hence, it is important
to conduct performance testing on both the virtual (for cloud deployment) and physical
environments (for on-premise deployment).
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Prior studies show that virtual environments are widely exploited in practice (Cito et al.
2015; Nguyen et al. 2012; Xiong et al. 2013). Studies have investigated the overhead that is
associated with virtual environments (Menon et al. 2005). Such overheads may not impose
effect on the results of performance tests carried out in physical and virtual environments.
For example, if the performance (e.g., throughput) of the system follows the same trend (or
distribution) in both, the physical and virtual environments, such overhead would not sig-
nificantly impact the outcome for the practitioners who examine the performance testing
results. Our work is one of the first works that examine such discrepancy between per-
formance testing results in virtual and physical environments. Exploring, identifying and
minimizing such discrepancy will help practitioners and researchers understand and lever-
age performance testing results from virtual and physical environments. Without knowing
if there exists a discrepancy between the performance testing results from the two envi-
ronments practitioners cannot rely on the performance assurance activities carried out in
the virtual environment or vice versa. Once the discrepancy is identified, the performance
results could be evaluated more accurately.

In this paper, we perform a study on two open-source systems, DS2 (Jaffe and Muirhead
2011) and CloudStore (CloudScale-Project 2014), where performance tests are conducted
using virtual and physical environments. Our study focuses on the discrepancy between
the two environments, the impact of discrepancy on analyzing performance testing results
and highlights potential opportunities to minimize the discrepancy. In particular, we com-
pare performance testing results from virtual and physical environments based on the three
widely examined aspects:

– single performance metric: the trends and distributions of each performance metric
– the relationship between the performance metrics: the correlations between every two

performance metrics
– statistical performance models: the models that are built using performance metrics to

predict the overall performance of the system

We find that 1) performance metrics have different shapes of distributions and trends
in virtual environments compared to physical environments, 2) there are large differences
in correlations among performance metrics measured in virtual and physical environments,
and 3) statistical models using performance metrics from virtual environments do not apply
to physical environments (i.e., produce high prediction error) and vice versa. Then, we
examined the feasibility of using normalizations to help alleviate the discrepancy between
performance metrics. We find that in some cases, normalizing performance metrics based on
deviance may reduce the prediction error when using performance metrics collected from
one environment and applying it on another. Our findings show that practitioners cannot
assume that their performance tests that are observed on one environment will necessarily
apply to another environment. The overhead from virtual environments does not only impact
the scale of the performance metrics, but also impacts the relationship among performance
metrics, i.e a change in correlation values. On the other hand, we find that practitioners who
leverage both, virtual and physical environments, may be able to reduce the discrepancy
that may arise due to the environment (i.e., virtual vs. physical) by applying normalization
techniques.

The rest of the paper is organized as follows. Section 2 presents the background and
related work. Section 3 presents the case study setup. Section 4 presents the results of our
case study, followed by a discussion of our results in Section 5. Section 6 discusses the
threats to validity of our findings. Finally, Section 7 concludes this paper.
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2 Background and Related Work

In this section, we discuss the motivation and related work of this paper in broadly three
subsections: 1) analyzing performance metrics from performance testing, 2) analysis of VM
overhead and 3) performance testing and bug detection.

2.1 Analyzing Performance Metrics from Performance Testing

Prior research has proposed a slew of techniques to analyze performance testing results,
i.e. performance metrics. Such techniques typically examine three different aspects of the
metrics: 1) single performance metric, 2) the relationship between performance metrics, and
3) statistical modeling based on performance metrics.

2.1.1 Single Performance Metric

Nguyen et al. (2012) introduce the concept of using control charts (Shewhart 1931) in order
to detect performance regressions. Control charts use a predefined threshold to detect per-
formance anomalies. However control charts assume that the output follows a uni-model
distribution, which may be an inappropriate assumption for performance. Nguyen et al. pro-
pose an approach to normalize performance metrics between heterogeneous environments
and workloads in order to build robust control charts.

Malik et al. (2010b, 2013) propose approaches that cluster performance metrics using
Principal Component Analysis (PCA). Each component generated by PCA is mapped to
performance metrics by a weight value. The weight value measures how much a metric
contributes to the component. For every performance metric, a comparison is performed on
the weight value of each component to detect performance regressions.

Heger et al. (2013) present an approach that uses software development history and
unit tests to diagnose the root cause of performance regressions. In the first step of their
approach, they leverage Analysis of Variance (ANOVA) to compare the response time
of the system to detect performance regressions. Similarly, Jiang et al. (2009) extract
response time from system logs. Instead of conducting statistical tests, Jiang et al. visual-
ize the trend of response time during performance tests, in order to identify performance
issues.

2.1.2 Relationship Between Performance Metrics

Malik et al. (2010a) leverage Spearman’s rank correlation to capture the relationship
between performance metrics. The deviance of correlation is calculated in order to pinpoint
which subsystem should take responsibility of the performance deviation.

Foo et al. (2010) propose an approach that leverages association rules in order to address
the limitations of manually detecting performance regressions in large scale software sys-
tems. Association rules capture the historical relationship among performance metrics and
generate rules based on the results of prior performance tests. Deviations in the association
rules are considered signs of performance regressions.

Jiang et al. (2009a) use normalized mutual information as a similarity measure to clus-
ter correlated performance metrics. Since metrics in one cluster are highly correlated, the
uncertainty among metrics in the cluster should be low. Jiang et al. leverage entropy from
information theory to monitor the uncertainty of each cluster. A significant change in the
entropy is considered as a sign of a performance fault.
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2.1.3 Statistical Modeling Based on Performance Metrics

Xiong et al. (2013) proposed a model-driven approach named vPerfGuard to detect soft-
ware performance regressions in a cloud-environment. The approach builds models between
workload metrics and a performance metric, such as CPU. The models can be used to detect
workload changes and assists in identifying performance bottlenecks. Since the usage of
vPerfGuard is typically in a virtual environment, our study may help the future evaluation
of vPerfGuard. Similarly, Shang et al. (2015) propose an approach of including only a lim-
ited number of performance metrics for building statistical models. The approach leverages
an automatic clustering technique in order to find the number of models to be build for the
performance testing results. By building statistical models for each cluster, their approach
is applicable to detect injected performance regressions.

Cohen et al. (2004) propose an approach that builds probabilistic models, such as
Tree-Augmented Bayesian Networks, to examine the causes that target the changes in the
system’s response time. Cohen et al. (2005) also proposed that system faults can be detected
by building statistical models based on performance metrics. The approaches of Cohen et al.
(2004, 2005) were improved by Bodı́k et al. (2008) by using logistic regression models.

Jiang et al. (2009b) propose an approach that improves the Ordinary Least Squares
regression models that are built from performance metrics and use the model to detect
faults in a system. The authors conclude that their approach is more efficient in successfully
detecting the injected faults than the current linear-model approach.

On one hand, none of the prior research discusses the impact of their approaches results
in virtual and physical environments, which motivates the empirical study that is conducted
in this paper. On the other hand, since there are hardly two identical performance testing
results, we do no compare the raw data of performance testing results from virtual and
physical environments. Instead, we conduct our case study in the context of all the above
three types of analyzes, in order to see the impact when practitioners use such analyzes
on performance testing results. Our findings can help better evaluate and understand the
findings from the aforementioned research.

2.2 Analysis of VM Overhead

Kraft et al. (2011) discuss the issues related to disk I/O in a virtual environment. They
examine the performance degradation of disk request response time by recommending a
trace-driven approach. Kraft et al. emphasize on the latencies existing in virtual machine
requests for disk IO due to increments in time associated with request queues.

Menon et al. (2005) audit the performance overhead in Xen virtual machines. They
uncover the origins of overhead that might exist in the network I/O causing a peculiar sys-
tem behavior. However, there study is limited to Xen virtual machine only while mainly
focusing on network related performance overhead.

Brosig et al. (2013) predict the performance overhead of virtualized environments using
Petri-nets in Xen server. The authors focused on the visualization overhead with respect to
queuing networks only. The authors were able to accurately predict server utilization but
had significant errors for multiple VMs.

Huber et al. (2011) present a study on cloud-like environments. The authors compare the
performance of virtual environments and study the degradation between the two environ-
ments. Huber et al. further categorize factors that influence the overhead and use regression
based models to evaluate the overhead. However, the modeling only considers CPU and
memory.



Empir Software Eng

Luo et al. (2016) converge the set of inputs that may cause software regression. They
apply genetic algorithms to detect such combinations. Netto et al. (2011) present a sim-
ilar study to compare performance metrics generated via load tests between the two
environments. However, the author did not analyze the results from a statistical perspective.

Prior research focused on the overhead of virtual environments without considering the
impact of such overhead on performance testing and assurance activities. In this paper, we
evaluate the discrepancy between virtual and physical environments by focusing on the
impact of performance testing results analyzes and investigate whether such impact can be
reduced in practice.

2.3 Performance Testing and Bug Detection

There exists much research on performance testing and bug detection. Nistor et al. (2013b)
detect the presence of functional and loop-related performance bugs with the help of their
developed tool. Jin et al. (2012) present a study on a wide range of performance bugs. The
authors examined real-world performance bugs and developed rule-based performance bug
detection tools. Nistor et al. (2013a) in another study highlight that automated tool based
performance bug detection is limited. The authors also comment that performance bugs are
mostly detected by code reasoning rather than seeing the effects of the system by the end
users. Tsakiltsidis et al. (2016) use prediction models to detect and predict performance
bugs based on extraction from source code repositories. Malik et al. (2010c) present a study
to uncover functional bugs via load testing. The authors propose an approach to reduce
the large amount of performance metrics at the end of a load test by principal component
analysis. Zaman et al. (2012) study the tracking and fixing of performance bugs.

However, none of the above mentioned performance bug detection approach has been
applied in different environments. In most of the cases, the environment is not explicitly
mentioned. Hence, to generalize the findings across environments remains an open topic.

3 Case Study Setup

The goal of our case study is to evaluate the discrepancy between performance testing results
from virtual and physical environments. We deploy our subject systems in two identical
environments (physical and virtual) with the same hardware. A load driver is used to exer-
cise our subject systems. After the collection and processing of the performance metrics
we analyze and draw conclusions based on: 1) single performance metric 2) relationship
between performance metrics and 3) statistical models based on the performance metrics.
An overview of our case study setup is shown in Fig. 1.

3.1 Subject Systems

Dell DVD Store (DS2) (Jaffe and Muirhead 2011) is an online multi-tier e-commerce web
application that is widely used in performance testing and prior performance engineering
research (Shang et al. 2015; Nguyen et al. 2012; Jiang et al. 2009). We deploy DS2 (SLOC
> 3,200) on an Apache (Version 3.0.0) web application server with MySQL 5.6 database
server (Oracle 1998). CloudStore (CloudScale-Project 2014), our second subject system,
is an open source application based on the TPC-W benchmark (TPC 2001). CloudStore
(SLOC > 7,600) is widely used to evaluate the performance of cloud computing infrastruc-
ture when hosting web-based software systems and is leveraged in prior research (Ahmed
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Fig. 1 An overview of our case study setup

et al. 2016). We deploy CloudStore on Apache Tomcat (Apache 2007) (version 7.0.65) with
MySQL 5.6 database server (Oracle 1998).

3.2 Environmental Setup

The performance tests of the two subject systems are conducted on three machines in a lab
environment. Each machine has an Intel i5 4690 Haswell Quad-Core 3.50 GHz CPU, with 8
GB of memory, 100GB SATA storage and connected to a local gigabyte ethernet. The first
machine hosts the application servers (Apache and Tomcat). The second machine hosts the
MySQL 5.6 database server. The load drivers were deployed on the third machine. We sepa-
rate the load driver, the web/application server and the database server on different machines
in order to mimic real world scenario and avoid interference among these processes. For
example, isolating the application and database driver would ensure that the processor is
not overused. The operating systems on the three machines are Windows 7. We disable all
other processes and unrelated system services to minimize their performance impact. Since
our goal is to compare performance metrics in virtual and physical environments, we setup
the two different environments, as follows:

Virtual Environment We install one Virtual Box (version 5.0.16) and create only one vir-
tual machine on one physical machine to avoid the interference between virtual machines.
For each virtual machine, we allocate two cores and three gigabytes of memory, which is
well below capacity to make sure we are not topping out and pushing our configuration
for unrealistic results. Virtual machines typically have an option of using disk pass-through
(Costantini 2015). However, disk pass-through prevents the quick deployment of an existing
virtual machine image that’s designed for performance testing and quick execution of per-
formance tests (Srion 2015). Hence, we opt to disable disk pass-through since it is unlikely
to be used in practice. The network of the virtual machine is set up based on network address
translation (NAT) configuration (Tyson 2001). The network traffic of the workload was gen-
erated on a dedicated load machine to keep our experiments as close to the real-world as
possible.

Physical Environment We used the same hardware as the virtual environment to set up
our physical environments. To make the physical environment similar to the virtual envi-
ronment, we only enable two cores and three gigabytes of memory for each machine for the
physical environment.
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3.3 Performance Tests

DS2 is released with a dedicated load driver program that is designed to exercise DS2 for
performance testing. We used the load driver to conduct performance testing on DS2. We
used Apache JMeter (Apache 2008) to generate a workload to conduct the performance tests
on CloudStore. For both subject systems, the workload of the performance tests is varied
randomly and periodically in order to avoid bias from a consistent workload. The variation
was identical across environments. The workload variation was introduced by the number
of threads. A higher number of threads represents a higher number of users accessing the
system. Each performance test is run after a 15 minute warming up period of the system and
lasts for 9 hours. We chose to run the test 9 hours ensuring that our sample sizes have enough
data points for our results to be statistically significant. The nature of our performance
tests was based on our related studies mentioned in Section 2.2. To ensure the consistency
between the performance tests, we restored the environments followed by a restart of the
systems after every test.

3.4 Data Collection and Preprocessing

Performance Metrics We used PerfMon (Microsoft Technet 2007) to record the values
of performance metrics. PerfMon is a performance monitoring tool used to observe and
record performance metrics such as CPU utilization, memory usage and disk IOs. We run
PerfMon on each of the application server and database server machines. We record all the
available performance metrics that can be monitored on a single process by PerfMon. In
order to minimize the influence of Perfmon, we monitor only the performance of the two
processes of the application server and database server on the two dedicated machines. We
recorded the performance metrics with an interval of 10 seconds. In total, we recorded 44
performance metrics.

System Throughput We used the application server’s access logs from Apache and Tom-
cat to calculate the throughput of the system by measuring the number of requests per
minute. The two datasets were then concatenated and mapped against requests using their
respective timestamps.

Since an end user will consider a system as a whole, we combine the performance
datasets from our application and database servers. In order to combine the two datasets
of performance metrics and system throughput, and to minimize noise of the performance
metric recording, we calculate the mean values of the performance metrics every minute.
Then, we combine the datasets of performance metrics and system throughput based on the
time stamp on a per minute basis. A similar approach has been applied to address mining
performance metrics challenges (Foo et al. 2010).

4 Case Study Results

The goal of our study is to evaluate the discrepancy between performance testing results
from virtual and physical environments, particularly considering the impact of discrepancy
on the analysis of such results. Our experiments are set in the context of analyzing per-
formance testing data, based on the related work. Shown in Section 2, prior research and
practitioners examine performance testing results in three types of approaches: 1) examining
a single performance metric, 2) examining the relationship between performance metrics
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and 3) building statistical models using performance metrics. Therefore, our experiments
are designed to answer three research questions, where each questions corresponds to one
of the types of analysis above.

4.1 Are the Trend and Distribution of a Single Performance Metric Similar
Across Environments?

Motivation The most intuitive approach of examining performance testing results is to
examine every single performance metric. As shown in Section 2.1.1, prior studies propose
different approaches that typically compare the distribution or trend of each performance
metric from different tests. Due to influences from testing environments, performance test-
ing results are not expected to be identical in raw values. However, the shape of distribution
and the trend of the metrics should be similar. For example, if in one environment, we
observe the Memory has increasing trend while the increasing trend is not seen in another
environment, we observe a discrepancy. In addition, the distribution differences between
two test results should not be statistically significant. Therefore, we use quantile-quantile
(Q-Q) plot and normalized Kolmogorov-Smirnov (KS) tests to examine the differences in
trends and shape of the distributions.

Approach After running and collecting the performance metrics, we compare every single
performance metric between the virtual and physical environments. Since the performance
tests are conducted in different environments, intuitively the scales of performance metrics
are not the same. For example, the virtual environment may have higher CPU usage than
the physical environment. Therefore, instead of comparing the values of each performance
metric in both environments, we study whether the performance metric follows the same
shape of the distribution and the same trend in virtual and physical environments.

First, we plot a quantile-quantile (Q-Q) plot (NIST/SEMATECH 2003) for every per-
formance metric in two environments. A Q-Q plot is a plot of the quantiles of the first
data set against the quantiles of the second data set. We also plot a 45-degree reference
line on the Q-Q plots. If the performance metrics in both environments follow the same
shape of distribution, the points on the Q-Q plots should fall approximately along this ref-
erence (i.e., 45-degree) line. A large departure from the reference line indicates that the
performance metrics in the virtual and physical environments come from populations with
different shapes of distributions, which can lead to a different set of conclusions. For exam-
ple, the virtual environment has a CPU’s utilization spike at a certain time, but the spike is
absent in the physical environment.

Second, to quantitatively measure the discrepancy, we perform a Kolmogorov-Smirnov
test (Stapleton 2008) between every performance metric in the virtual and physical envi-
ronments. Since the scales of each performance metric in both environments are not the
same, we first normalize the metrics based on their median values and their median absolute
deviation:

Mnormalized = M − M̃

MAD(M))
(1)

where Mnormalized is the normalized value of the metric, M is the original value of the metric,
M̃ is the median value of the metric and MAD(M) is the median absolute deviation of the
metric (Walker 1929). The Kolmogorov-Smirnov test gives a p-value as the test outcome.
A p-value ≤ 0.05 means that the result is statistically significant, and we may reject the
null hypothesis (i.e., two populations are from the same distribution). By rejecting the null
hypothesis, we can accept the alternative hypothesis, which tells us the performance metrics
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in virtual and physical environments do not have the same distribution. We choose to use
the Kolmogorov-Smirnov test since it does not have any assumption on the distribution of
the metrics.

Finally, we calculate Spearman’s rank correlation between every performance metric in
the virtual environment and the corresponding performance metric in the physical environ-
ment, in order to assess whether the same performance metrics in two environments follow
the same trend during the test. Intuitively, two sets of performance testing results without
discrepancy should show a similar trend, i.e., when memory keeps increasing in the physical
environment (like memory leak), the memory should also increase in the virtual environ-
ment. We choose Spearman’s rank correlation since it does not have any assumption on the
distribution of the metrics.

Results Most performance metrics do not follow the same shape of distribution in virtual
and physical environments. Figures 2 and 3 show the Q-Q plots by comparing the quantiles
of performance metrics from virtual and physical environments. Due to the limited space,
we only present Q-Q plot for CPU user time, IO data operations/sec and memory working
set for both application sever and database server.1 The results show that the lines on the
Q-Q plot are not close to the 45-degree reference line. By looking closely on the Q-Q plots
we find that the patterns of each performance metric from different subject systems are
different. For example, the application (web) server’s CPU user time for DS2 in the virtual
environment shows higher values than in the physical environment at the median to high
range of the distribution; while the Q-Q plot of CloudStore shows application (web) server’s
CPU user time with higher values at the low range of the distribution. In addition, the lines
of the Q-Q plots for database memory working set show completely different shapes in DS2
and in CloudStore. The results imply that the discrepancies between virtual and physical
environments are present between the subject systems. The impact of the subject systems
warrants its own study.

The majority of the performance metrics had statistically significantly different distri-
butions (p-values lower than 0.05 in Kolmogorov-Smirnov tests). Only 13 and 12 metrics
(out of 44 for each environment) have p-values higher than 0.05, for DS2 and CloudStore,
respectively, showing statistically in-significant difference between the distribution in vir-
tual and physical environments. By looking closely at such metrics, we find that these
metrics either do not highly relate to the execution of the subject system (e.g., application
server CPU privileged time in DS2), or highly relate to the workload. Since the workload
between the two environments are similar, it is expected that the metrics related to the
workload follow the same shape of distribution. For example, the I/O operations are highly
related with the workload. The metrics related to I/O operations may show statistically in-
significant differences between the distributions in the virtual and physical environments
(e.g., application server I/O write operations per second in DS2).

Most performance metrics do not have the same trend in virtual and physical environ-
ments. Table 1 shows the Spearman’s rank correlation coefficient and corresponding p-value
between the selected performance metrics for which we shared the Q-Q plots. We find that
for the application server memory working set in CloudStore and the database server mem-
ory working set in DS2, there exists strong (0.69) to moderate (0.46) correlation between
the virtual and physical environments, respectively. By examining the metrics, we find
that both metrics have an increasing trend that may be caused by a memory leak. Such

1The complete results, data and scripts are shared online at http://das.encs.concordia.ca/members/moiz-arif/

http://das.encs.concordia.ca/members/moiz-arif/
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Fig. 2 Q-Q plots for DS2

increasing trend may be the cause of the moderate to strong correlation. Instead of show-
ing the selected metrics as the Q-Q plots, Table 2 shows a summary of the Spearman’s rank
correlation of all the performance metrics. Most of the correlations have an absolute value
of 0 to 0.3 (low correlation), or the correlation is not statistically significant (p-val>0.05).

Impact on the interpretation of examining single performance metric. Practitioners often
plot the trend of each important performance metrics, identify when the outliers exist or
calculate the median or mean value of the metric to understand the performance of the
system in general. However, based on our findings in this RQ, such analysis results may
not be useful if they are from a virtual environment. For example, shown in Figs. 2 and 3
many differences between the two distribution are in the lower and higher ends of the plots,
which corresponds to the high and low values of the metrics. Such values are often treated as
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Fig. 3 Q-Q plots for CloudStore

outliers to be examined. However, if such outliers are due to the virtual environment rather
than the system itself, the results may be misleading. In addition, since the distribution of
the metrics are statistically different, the mean and median value of the metrics may also be
misleading.

Findings: Performance metrics typically do not follow the same distribution in virtual
and physical environments.
Actionable implications: Practitioners cannot assume a straightforward overhead from
the virtual environment nor compare single performance metric after applying a simple
scaling factor to the metric.
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Table 1 Spearman’s rank
correlation coefficients and
p-values of the highlighted
performance metrics for which
we shared the Q-Q plots, in
virtual and physical environments

Performance metrics DS2 CloudStore

coef. p-value coef. p-value

Web servers’ user times 0.08 0.07 − 0.04 0.33

DB servers user times − 0.05 0.30 0.10 0.02

Web servers’ IO data ops/sec 0.25 0.00 0.13 0.00

DB servers’ IO data ops/sec − 0.14 0.00 0.13 0.00

Web servers’ memory working set 0.22 0.00 0.69 0.00

DB servers’ memory working set 0.46 0.00 − 0.16 0.00

4.2 To what Extent does the Relationship Between the Performance Metrics
Change Across Environments?

Motivation The relationship between two performance metrics may significantly change
between two environments, which may be a hint of performance issues or system regres-
sions. As found by Cohen et al. (2004), combinations of performance metrics are signifi-
cantly more predictive toward performance issues than a single metric. A change in these
combinations can reflect the discrepancy of performance and can help a practitioner iden-
tify the behavioral changes of a system between the two environments. For instance, in one
release of the system, the CPU may be highly correlated with I/O while (e.g., when I/O is
high, CPU is also high); while on a new release of the system, the correlation between CPU
and I/O may become low. Such change to the correlation may expose a performance issue
(e.g., the high CPU without I/O operation may be due to a performance bug). However, if
there is a significant difference in correlations simply due to the platform being used, i.e.,
virtual vs. physical, then practitioners may need to be warned that a correlation discrepancy
may be false. Therefore, we examine whether the relationship among performance metrics
has a discrepancy between the virtual and physical environments.

Approach We calculate Spearman’s rank correlation coefficients among all the metrics
from each performance test in each environment. Then we study whether such correlation
coefficients are different between the virtual and physical environments.

First, we compare the changes in correlation between the performance metrics and the
system throughput. For example, in one environment, the system throughput may be highly
correlated with CPU; while in another environment, such correlation is low. In such a case,
we consider there to be a discrepancy in the correlation coefficient between CPU and the

Table 2 Summary of Spearman’s rank correlation p-values and absolute coefficients of all the performance
metrics, in virtual and physical environments

System p-value>0.05 p-value<05

0.0∼0.3 0.3∼0.5 0.5∼0.7 0.7∼1

DS2 8 28 4 0 1

CloudStore 5 25 4 4 3

The numbers in the table are the number of metrics that fall into each category

Three metrics are constant. Therefore, we do no calculate the correlation on those metrics
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system throughput. Second, for every pair of metrics, we calculate the absolute difference
between the correlation in two environments. For example, if CPU and Memory have a
correlation of 0.3 in the virtual environment and 0.5 in the physical environment, we report
the absolute difference in correlation as 0.2 (|0.3 − 0.5|). Since we have 44 metrics in
total, we plot a heatmap in order to visualize the 1,936 absolute difference values between
every pair of performance metrics. The lighter the color for each block in the heatmap, the
larger the absolute difference in correlation between a pair of performance metrics. With
the heatmap, we can quickly spot the metrics that have large discrepancy in correlation
coefficients.

Results The correlations between system throughput and performance metrics change
between virtual and physical environments. Tables 3 and 4 present the top ten metrics with
the highest correlations to system throughput in the physical environment for DS2 and
CloudStore, respectively. We chose system throughput to be our criterion as it was kept
identical between the environments. We find that for these top ten metric sets, the difference
in correlation coefficients in virtual and physical environments is up to 0.78 and the rank
changes from #9 to #40 in DS2 and #1 to #10 in CloudStore.

There exist differences in correlation among the performance metrics from virtual and
physical environments. Figures 4 and 5 present the heatmap showing the changes in correla-
tion coefficient among the performance metrics from virtual and physical environments. By
looking at the heatmap, we find hotspots (with lighter color), which have larger correlation
differences. For the sake of brevity, we do not show all the metric names in our heatmaps.
Instead, we enlarge the heatmap by showing one of the hotspots for each subject system in
Figs. 4 and 5. We find that the hotspots correspond to the changes in correlation among I/O
related metrics. Prior research on virtual machines has similar findings about I/O overhead
in virtual machines (Menon et al. 2005; Kraft et al. 2011). In such a situation, when prac-
titioners observe that the relationship between I/O metrics and other metrics change, the
change may not indicate a performance regression, but rather the change may be due to the
use of a virtual environment.

Impact on the interpretation of examining correlations between performance metric.
When a system is reported to have performance issues, correlations between metrics are

Table 3 Top ten metrics with
highest correlation coefficient to
system throughput in the
physical environment for DS2

Rank Performance Coef. Coef. Rank in

Metrics PE VE VE

1 Web IO Other Ops/sec 0.91 0.62 10

2 Web IO Other Bytes/sec 0.91 0.62 12

3 Web IO Write Ops/sec 0.91 0.63 9

4 Web IO Data Ops/sec 0.91 0.63 8

5 Web IO Write Bytes/sec 0.90 0.62 11

6 Web IO Data Bytes/sec 0.90 0.61 13

7 DB IO Other Ops/sec 0.84 0.75 3

8 DB IO Data Ops/sec 0.83 0.07 41

9 DB IO Other Bytes/sec 0.83 0.15 40

10 DB IO Read Ops/sec 0.82 0.15 39
PE in the table is short for
physical environment; while VE
is short for virtual environment
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Table 4 Top ten metrics with
highest correlation coefficient to
system throughput in the physical
environment for CloudStore

Rank Performance Coef. Coef. Rank in

Metrics PE VE VE

1 DB Server IO Other Bytes/sec 0.98 0.73 10

2 DB Server IO Read Ops/sec 0.98 0.84 7

3 DB Server IO Read Bytes/sec 0.98 0.93 5

4 DB Server IO Write Ops/sec 0.98 0.97 2

5 DB Server IO Data Ops/sec 0.98 0.92 6

6 DB Server IO Data Bytes/sec 0.98 0.96 4

7 DB Server IO Write Bytes/sec 0.98 0.96 3

8 Web Server IO Other Bytes/sec 0.98 0.68 16

9 DB Server IO Other Ops/sec 0.98 0.98 1

10 Web Server IO Other Ops/sec 0.98 0.70 14
PE in the table is short for
physical environment; while VE
is short for virtual environment

often used in practice, as describe in the motivation of this RQ. However, since such cor-
relation can be inconsistent in virtual and physical environment, existing knowledge of
assumptions of correlation may not exist or new correlation may emerge, due to the use
of virtual environment. For example, practitioners of a database-centric system may have
the knowledge that I/O traffic is correlated with CPU and system throughput. Examining
these three metrics together can help diagnose performance issues, while if no such corre-
lation exists in the virtual environment, these three metrics together may not be as useful in
performance issue diagnosis.

Findings: The correlations between performance metrics and system load may change
considerably between virtual and physical environments. The correlation among perfor-
mance metrics may also change considerably between virtual and physical environments.
The correlations that are related with I/O metrics have the largest discrepancy.
Actionable implications: Practitioners should always verify whether the inconsistency
of correlations between performance metrics (especially I/O metrics) are due to virtual
environments.

Fig. 4 Heatmap of correlation changes for DS2
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Fig. 5 Heatmap of correlation changes for CloudStore

4.3 Can Statistical Performance Models be Applied Across Virtual and Physical
Environments?

Motivation As discussed in the last research question (see Section 4.2), the relation-
ship among performance metrics is critical for examining performance testing results (see
Section 2.1.2). However, thus far we have only examined the relationships between two per-
formance metrics. In order to capture the relationship among a large number of performance
metrics, more complex modeling techniques are needed. Hence, we use statistical modeling
techniques to examine the relationship among a set of performance metrics (Xiong et al.
2013; Cohen et al. 2004). Moreover, some performance metrics do not have any impact
with system performance, which are still examined. For example, for a software system that
is CPU intensive, I/O operations may be irrelevant. Such performance metrics may expose
large discrepancies between virtual and physical environments while not contributing to the
examination of performance testing results. It is necessary to remove such performance met-
rics that are not contributing or impacting the results of the performance analysis. To address
the above issues, modeling techniques are proposed to examine performance testing results
(see Section 2.1.3). In this step, we examine whether the modeling among performance met-
rics can apply across virtual and physical environments and whether we can minimize such
discrepancy between performance models.

Approach We follow a model building approach that is similar to the approach from prior
research (Shang et al. 2015; Cohen et al. 2005; Xiong et al. 2013). We first build statistical
models using performance metrics from one environment, then we test the accuracy of our
performance model with the metric values from the same environment and also from a
different environment. For example, if the model was built in a physical environment it was
tested in both, physical and virtual environments.

4.3.1 B-1: Reducing Metrics

Mathematically, performance metrics that show little or no variation do not contribute to the
statistical models hence we first remove performance metrics that have constant values in
the test results. We then perform a correlation analysis on the performance metrics to remove
multicollinearity based on statistical analysis (Kuhn 2008). We used the Spearman’s rank
correlation coefficient among all performance metrics from one environment. We find the
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pair of performance metrics that have a correlation higher than 0.75, as 0.75 is considered
to be a high correlation (Syer et al. 2017). From these two performance metrics, we remove
the metric that has a higher average correlation with all other metrics. We repeat this step
until there exists no correlation higher than 0.75.

We then perform redundancy analysis on the performance metrics. The redundancy
analysis would consider a performance metric redundant if it can be predicted from a com-
bination of other metrics (Harrell 2001). We use each performance metric as a dependent
variable and use the rest of the metrics as independent variables to build a regression model.
We calculate the R2 of each model. R2, or the coefficient of multicollinearity, is used to
analyze how a change in one of the variables (e.g. predictor) can be explained by the change
in the second variable (e.g. response) (Andale 2012). We consider multicollinearity to be
present if more than one predictor variable can explain the change in the response variable.
If the R2 is larger than a threshold (0.9) (Syer et al. 2017), the current dependent variable
(i.e., performance metric) is considered redundant. We then remove the performance met-
ric with the highest R2 and repeat the process until no performance metric can be predicted
with R2 higher than the threshold. For example, if CPU can be linearly modeled by the rest
of the performance metrics with R2 > 0.9, we remove the metric for CPU.

Not all the metrics in the model are statistically significant. Therefore in this step, we
only keep the metrics that have a statistically significant contribution to the model. We
leverage the stepwise function that adds the independent variables one by one to the model
to exclude any metrics that are not contributing to the model (Kabacoff 2011).

4.3.2 B-2: Building Statistical Models

In the second step, we build a linear regression model (Freedman 2009) using the per-
formance metrics that are left after the reduction and removal of statistically insignificant
metrics in the previous step as independent variables and use the system throughput as our
dependent variable. We chose the linear regression model over other models because of its
simple explanation. Hence, it is easier to interpret the discrepancy that is illustrated by the
model. Similar models have been built in prior research (Cohen et al. 2005; Xiong et al.
2013; Shang et al. 2015).

After removing all the insignificant metrics, we have all the metrics that significantly
contribute to the model. We use these metrics as independent variables to build the final
model.

4.3.3 V-1: Validating Model Fit

Before we validate the model with internal and external data, we first examine how good
the model fit is. If the model has a poor fit to the data, then our findings from the model
may be biased by the noise from the poor model quality. We calculate the R2 of each model
to measure fit. If the model perfectly fits the data, the R2 of the model is 1, while a zero
R2 value indicates that the model does not explain the variability of the response data. We
would also like to estimate the impact that each independent variable has on the model fit.
We follow a “drop one” approach (Chambers et al. 1990), which measures the impact of an
independent variable on a model by measuring the difference in the performance of models
built using: (1) all independent variables (the full model), and (2) all independent variables
except for the one under test (the dropped model). A Wald statistic is reported by comparing
the performance of these two models (Harrell 2001). A larger Wald statistic indicates that
an independent variable has a larger impact on the model’s performance, i.e., model fit. A
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similar approach has been leveraged by prior research in Mcintosh et al. (2016). We then
rank the independent variables by their impact on model fit.

4.3.4 V-2: Internal Validation

We validate our models with the performance testing data that is from the same environment.
We leverage a standard 10-fold cross validation process, which starts by partitioning the
performance data to 10 partitions. We take one partition (fold) at a time as the test set, and
train on the remaining nine partitions (Refaeilzadeh et al. 2009; Kohavi 1995), similar to
prior research (Malik et al. 2013). For every data point in the testing data, we calculate
the absolute percentage error. For example, for a data point with a throughput value of
100 requests per minute, if our predicted value is 110 requests per minute, the absolute
percentage error is 0.1 ( |110−100|

100 ). After the ten-fold cross validation, we have a distribution
of absolute percentage error (MAPE) for all the data records.

4.3.5 V-3: External Validation

To evaluate whether the model built using performance testing data in one environment
(e.g., virtual environment) can apply to another environment (e.g., physical environment),
we test the model using the data from the other environment.

Since the performance testing data is generated from different environments, directly
applying the data on the model would intuitively generate large amounts of error. We adopt
two approaches in order to normalize the data in different environments: (1) Normaliza-
tion by deviance. The first approach we use is the same when we compare the distribution
of each single performance metric shown in (1) from Section 4.1 by calculating the relative
deviance of a metric value from its median value. (2) Normalization by load. The sec-
ond approach that we adopt is an approach that is proposed by Nguyen et al. (2012). The
approach uses the load of the system to normalize the performance metric values across dif-
ferent environments. As there are varying inputs for the performance tests that we carried
out, normalization by load helps in normalizing the multi-modal distribution that might be
because of the trivial tasks like background processes(bookkeeping).

To normalize our metrics, we first build a linear regression model with the one metric as
an independent variable and the throughput of the system as the dependent variable. With
the linear regression model in one environment, the metric values can be represented by the
system throughput. Then we normalize the metric value by the linear regression from the
other environment. The details of the metric transformation are shown as follows:

throughputp = αp × Mp + βp

throughputv = αv × Mv + βv

Mnormalized = (αv × Mv) + βv − βp

αp

where throughputp and throughputv are the system throughput in the physical and virtual
environment, respectively. Mp and Mv are the performance metrics from both environments,
while Mnormalized is the metric after normalization. α and β are the coefficient and inter-
cept values for the linear regression models. After normalization, we calculate the absolute
percentage error for every data record in the testing data.
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4.3.6 Identifying Model Discrepancy

In order to identify the discrepancy between the models built using data from the virtual
and physical environments, we compare the two distributions of absolute percentage error
based on our internal and external validation. If the two distributions are significantly dif-
ferent (e.g., the absolute percentage error from internal validation is much lower than that
from external validation), the two models are considered to have a discrepancy. To be more
concrete, in total for each subject system, we ended up with four distributions of abso-
lute percentage error: 1) modeling using the virtual environment and testing internally (on
data from the virtual environment), 2) modeling using the virtual environment and testing
externally (on data from the physical environment), 3) modeling using the physical envi-
ronment and testing internally (on data from the physical environment), 4) modeling using
the physical environment and testing externally (on data from the virtual environment). We
compare distributions 1) and 2) and we compare distributions 3) and 4). Since normaliza-
tion based on deviance will change the metrics values to be negative when the metric value
is lower than median, such negative values cannot be used to calculate absolute percent-
age error. We perform a min-max normalization on the metric values before calculating the
absolute percentage error. In addition, if the observed throughput value after normalization
is zero (when the observed throughput value is the minimum value of both the observed
and predicted throughput values), we cannot calculate the absolute percentage error for that
particular data record. Therefore, we remove the data record if the throughput value after
normalization is zero. In our case study, we only removed one data record when performing
external validation with the model built in the physical environment.

Results The statistically significant performance metrics leveraged by the models in virtual
and physical environments are different. Tables 5 and 6 show the summary of the statisti-
cal models built for the virtual and physical environments for the two subject systems. We
find that all the models have a good fit (66.9 to 94.6% R2 values). However, some statisti-
cally significant independent variables in one model do not appear in the other model. For
example, Web Server Virtual Bytes ranks #4 for the model built from the physical envi-
ronment data of CloudStore, while the metric is not significant in the model built from the
virtual environment data. In fact, none of the significant variables in the model built from
the virtual environment are related to the application server’s memory (see Table 6). We do
observe some performance metrics that are significant in both models even with the same
ranking. For example, Web Server IO Other Bytes/sec is the #1 significant metric for both
models built from the virtual and physical environment data of DS2 (see Table 5).

The prediction error illustrates discrepancies between models built in virtual and physi-
cal environments. Although the statistically significant independent variables in the models
built by the performance testing results in the virtual and physical environments are dif-
ferent, the model may have similar prediction results due to correlations between metrics.
However, we find that the external prediction errors are higher than internal prediction errors
for all four models from the virtual and physical environments for the two subject sys-
tems. In particular, Table 7 shows the prediction errors using normalization based on load
is always higher than that of the internal validation. For example, the median absolute per-
centage error for CloudStore using normalization by load is 632% and 483% for the models
built in the physical environment and virtual environment, respectively; while the median
absolute percentage error in internal validation is only 2% and 10% for the models built in
the physical and virtual environments, respectively. However, in some cases, the normal-
ization by deviance can produce low absolute percentage error in external validation. For
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Table 5 Summary of statistical models built for DS2

Environment Physical Virtual

1 Web Server IO Other Bytes/sec Web Server IO Other Bytes/sec

2 Web Server Page Faults/sec DB server Working Set - Peak

3 DB Server Page Faults/sec Web Server Virtual Bytes

4 DB Server IO Write Bytes/sec Web Server Page Faults/sec

5 Web Server IO Read Bytes/sec DB Server Page Faults/sec

6 DB Server User Time DB Server IO Data Ops/sec

7 DB Server Pool Paged Bytes –

8 DB Server Privileged Time –

R2 94.6% 66.90%

The metrics listed in the table are the significant independent variables

example, the median absolute percentage error for CloudStore can be reduced to 9% using
normalization by deviance.

One possible reason is that the normalization based on load performs better, even though
it is shown to be effective in prior research (Nguyen et al. 2012), assumes a linear relation-
ship between the performance metric and the system load. However, such an assumption
may not be true in some performance testing results. For example, Table 3 shows that some
I/O related metrics do have low correlation with the system load in virtual environments. On
the other hand, the normalization based on deviance shows much lower prediction error. We
think the reason is that the virtual environments may introduce metric values with high vari-
ance. Normalizing based on the deviance controls such variance, leading to lower prediction
errors.

Impact on the interpretation of examining statistical performance models. Statistical per-
formance models are often used to interpret relationships among many system performance
metrics. For example, what are the significant metrics that are associated with system load
and what performance metrics are redundant. Since the statistical performance models have

Table 6 Summary of statistical models built for CloudStore

Environment Physical Virtual

1 Web Server Privileged Time Web Server IO Write Ops/sec

2 DB Server Privileged Time DB Server IO Read Ops/sec

3 Web Server Page Faults/sec Web Server Privileged Time

4 Web Server Virtual Bytes DB Server Privileged Time

5 Web Server Page File Bytes Peak DB Server IO Other Bytes/sec

6 DB Server Pool Nonpaged Bytes DB Server Pool Nonpaged Bytes

7 DB Server Page Faults/sec –

8 DB Server Working Set –

R2 85.30% 90.20%

The metrics listed in the table are the significant independent variables
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Table 7 Internal and external prediction errors for both subject systems
DS2

Model Built Validation Min. 1st Quart. Median Mean 3rd Quart. Max

Physical
Internal Validation 0.00 0.01 0.02 0.03 0.05 0.30

External Validation
Normalization by Deviance 0.00 0.08 0.25 0.36 0.49 13.65
Normalization by Load 0.00 0.34 0.44 0.48 0.56 1.56

Virtual
Internal Validation 0.00 0.04 0.09 0.11 0.15 0.54

External Validation
Normalization by Deviance 0.00 0.09 0.20 0.27 0.34 2.82
Normalization by Load 0.00 0.06 0.13 0.17 0.23 0.92

CloudStore
Model Built Validation Min. 1st Quart. Median Mean 3rd Quart. Max

Physical
Internal Validation 0.00 0..05 0.10 0.16 0.18 2.68

External Validation
Normalization by Deviance 0.00 0.04 0.09 0.17 0.17 2.29
Normalization by Load 2.90 5.14 6.32 7.75 8.08 51.33

Virtual
Internal Validation 0.00 0.01 0.03 0.04 0.05 0.50

External Validation
Normalization by Deviance 0.00 0.03 0.07 0.11 0.13 1.00
Normalization by Load 4.07 4.64 4.83 5.13 5.10 33.36

large discrepancy, even after applying normalization techniques that is proposed by prior
research, we cannot directly use the performance models built in the virtual environment.
Even though our results show that normalizing by deviance can reduce the discrepancy,
practitioners should still be aware of it when examining the performance models.

Findings: We find that the statistical models built by performance testing results in an
environment cannot advocate for the other environment due to discrepancies present. Nor-
malization technique for heterogeneous environments and workloads that is proposed by
prior research may not work for virtual and physical environment.
Actionable implications: Normalizing the performance metrics by deviance may min-
imize such discrepancy and should be considered by practitioners before examining
performance testing results.

5 Discussion

In the previous section, we find that there is a discrepancy between performance testing
results from the virtual and physical environments. However, such discrepancy can also be
due to other factors such as 1) the instability of the virtual environments, 2) the virtual
machine that we used or 3) the different hardware resources on the virtual environments.
Therefore, in this section, we examine the impact of such factors to better understand our
results.

5.1 Investigating the Stability of Virtual Environments

Thus far, we perform our case studies in one virtual environment and compare the perfor-
mance metrics to the physical environment. However, the stability of the results obtained
from the virtual environment need to be validated, in particular since VMs tend to be highly
sensitive to the environment that they run in Leitner and Cito (2016).

In order to study whether the virtual environment is stable, we repeat the same perfor-
mance tests, on the virtual environments for both subject systems. We perform the data
analysis in Section 4.3 by building statistical models using performance metrics. As the
previously mentioned approach, we build a model based on one of the runs, serving as our
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Table 8 Median absolute percentage error from building a model using VMWare data

Validation type Median absolute percentage error

CloudStore DS2

External validation with Virtual Box results 0.07 0.10

External validation with physical normalization by load 7.52 1.63

training data for the model, and tested it on another run. In this case, we define external val-
idation when a model is trained on a different run than it is tested on. We validate our model
by predicting the throughput of a different run.

Prediction error values (see Section 4.3.5) closer to 0 indicate that our model was able to
successfully explain the variation of the throughput of a different run. This also means that
the external validation error closer to 1 or higher depicts instability of the environment. We
find the external validation error to be 0.04 and 0.13 for CloudStore and DS2, respectively.
The internal validation error is 0.03 and 0.09 for CloudStore and DS2, respectively. Such
low error values show that the performance testing results from the virtual environments are
rather stable.

5.2 Investigating the Impact of Specific Virtual Machine Software

In all of our experiments, we used the Virtual Box software to setup our virtual environ-
ment. However, there exists a plethora of VM software (i.e., it can be argued that our chosen
subject systems behave differently in another environment). The question that arises then is
whether the choice of VM software impacts our findings. In order to address the aforemen-
tioned hypothesis, we set up another virtual environment using VMWare (version 12) with
the same allocated computing resources as when we set up Virtual Box.

To investigate this phenomenon, we repeat the performance tests for both subject sys-
tems. We train statistical models on the performance testing results from VMWare and test
on the results from both the original virtual environment data (Virtual Box) and the results
from the physical environments. We could not apply the normalization by deviance for the
data from VMWare since some of the significant metrics in the model have a median abso-
lute deviance of 0, making the normalized metric value to be infinite (see (1)). We only
apply the normalization by load.

Table 8 shows that the performance testing results from the two different virtual machine
software are similar, as supported by the low percentage error when our model was tested on
Virtual Box. In addition, the high error when predicting with physical environment agrees
with the results when testing with the performance testing results from the Virtual Box (see
Table 7). Such results show that the discrepancy observed during our experiment also exits
with the virtual environments that are set up with VMWare.

5.3 Investigating the Impact of Allocated Resources

Another aspect that may impact our results is the resources allocated and the configuration
of the virtual environment. We did not decrease the system resources as decreasing the
resources may lead to crashes in the testing environment.
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To investigate the impact of the allocated resources, we increase the computing resources
allocated to the virtual environments by increasing the CPU to be 3 cores and increasing
the memory to be 5GB. We cannot allocate more resource to the virtual environment since
we need to keep resources for the hosting OS. We train statistical models on the new per-
formance testing results and tested it on the performance testing results from the physical
environment.

Similar to the results shown in Table 7, the prediction error is high when we normalize
by the load as per (1) (1.57 for DS2 and 1.25 for CloudStore), while normalizing based
on deviance can significantly reduce the error (0.09 for DS2 and 0.07 for CloudStore).
We conclude that our findings still hold when the allocated resources are changed and this
change has minimal impact on the results of our case studies.

6 Threats to Validity

6.1 External Validity

We chose two subject systems, CloudStore and DS2 for our study and two virtual machine
software, VirtualBox and VMware. The two subject systems have years of history and prior
performance engineering research has studied both systems (Jiang et al. 2009; Nguyen et al.
2012; Ahmed et al. 2016). The virtual machine software that we used is widely used in
practice. Nevertheless more case studies on other subject systems in other domains with
other virtual machine software are needed to evaluate our findings. We also present our
results based on our subject systems only and do not generalize for all the virtual machines.

6.2 Internal Validity

Our empirical study is based on the performance testing results on subject systems. The
quality and the way of conducting the performance tests may introduce threats to the validity
of our findings. In particular, our approach is based on the recorded performance metrics.
The quality of recorded performance metrics can have an impact the internal validity of
our study. We followed the approaches in the prior research to control the workload and to
introduce the workload variation on our subject systems. However, we acknowledge that
there exist other ways of control and vary workload. Our performance tests all last for 9
hours, while the length of the performance tests may impact the findings of the case study.
Replicating our study by using other performance monitoring tools, such as psutil (Rodola
2009), using other approaches to control and to vary the workload of the system and running
the performance tests for a longer period of time (for example, 72 hours), may address this
threat.

Even though we build a statistical model using performance metrics and system through-
put, we do not assume that there is causal relationship. The use of statistical models merely
aims to capture the relationship among multiple metrics. Similar approaches have been used
in the prior studies (Cohen et al. 2005; Shang et al. 2015; Xiong et al. 2013).

6.3 Construct Validity

We monitor the performance by recording performance metrics every 10 seconds and com-
bine the performance metrics for every minute together as an average value. There may exist
unfinished system requests when we record the system performance, leading to noise in our
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data. We choose a time interval (10 seconds) that is much higher than the response time of
the requests (less than 0.1 second), in order to minimize the noise. Repeating our study by
choosing other time interval sizes would address this threat. We exploit two approaches to
normalize performance data from different environments. We also see that our R2 value is
high. Although a higher R2 determines our model is accurate but it may also be an indica-
tion of overfit. There may exist other advance approaches to normalize performance data
from heterogeneous environment. We plan to extend our study on other possible normaliza-
tion approaches. There may exist other ways of examining performance testing results. We
plan to extend our study by evaluating the discrepancy of using other ways of examining
performance testing results in virtual and physical environments.

In our performance tests, we consider the subject systems as a whole from the users’ point
of view. We did not conduct isolated performance testing for each feature or component of
the system. Isolated performance testing may unveil more discrepancies than our results.
Future work may consider such isolated performance tests to address this threat.

In practice, the system performance may be interfered by other environmental issues.
However, in our experiments, we opt for a more controlled environment to better understand
the discrepancy without any environmental interference, hence we can limit the possibil-
ity that the discrepancy is from handling interference rather than the environments. Future
work can be applied to investigate the performance impact from different environments by
handling interference.

We recorded 44 performance metrics that are readily available from PerfMon and
calculated throughput of the subject system. However, there may exist other valuable per-
formance metrics, such as system load. Prior study shows that most performance metrics
are often correlated to each other (Malik et al. 2010b). Future work may expand our list of
performance metrics to address this threat.

7 Conclusion

Performance assurance activities are vital in ensuring software reliability. Virtual envi-
ronments are often used to conduct performance tests. However, the discrepancy between
performance testing results in virtual and physical environments are never evaluated. We
aimed to highlight whether a discrepancy present between physical and virtual environ-
ments will impact the studies and tests carried out in the software domain. In this paper,
we evaluate such discrepancy by conducting performance tests on two open source systems
(DS2 and CloudStore) in both, virtual and physical environments. By examining the perfor-
mance testing results, we find that there exists a discrepancy between performance testing
results in virtual and physical environments when examining single performance metric, the
relationship among performance metrics and building statistical models from performance
metrics, even after we normalize performance metrics across different environments. The
major contribution of this paper includes:

– Our paper is one of the first research that attempts to evaluate the discrepancy in the
context of analyzing performance testing results in virtual and physical environments.

– We find that relationships among I/O related metrics have large differences between vir-
tual and physical environments. Developers cannot assume an straightforward overhead
from the virtual environment (such as a simple increment of CPU).

– Prior approach that are proposed to normalize performance testing results with het-
erogeneous environments and workloads may not work between physical and virtual
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environments. We find that normalizing performance metrics based on deviance may
reduce the discrepancy. Practitioners may exploit such normalization techniques when
analyzing performance testing results from virtual environments.

Our results highlight the need to be aware of and to reduce the discrepancy between
performance testing results in virtual and physical environments, for both practitioners and
researchers.

Future Work This paper is the first step to lay a ground for a deeper understanding of
the discrepancy between performance testing results in virtual and physical environments
and the impact of detecting performance issues with such discrepancy. With the knowledge
of such discrepancy, we can, in the future, better understand the existence and magnitude
of impact on detecting real world performance bugs. Moreover, future research effort can
focus on generating comparable performance testing results from different environments
with different workload.
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