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Abstract—Logs are generated by output statements that de-
velopers insert into the code. By recording the system behaviour
during runtime, logs play an important role in the maintenance
of large software systems. The rich nature of logs has introduced
a new market of log management applications (e.g., Splunk,
XpoLog and logstash) that assist in storing, querying and an-
alyzing logs. Moreover, recent research has demonstrated the
importance of logs in operating, understanding and improving
software systems. Thus log maintenance is an important task
for the developers. However, all too often practitioners (i.e.,
operators and administrators) are left without any support to
help them unravel the meaning and impact of specific log lines.
By spending over 100 human hours and manually examining
all the email threads in the mailing list for three open source
systems (Hadoop, Cassandra and Zookeeper) and performing web
search on sampled logging statements, we found 15 email inquiries
and 73 inquiries from web search about different log lines. We
identified that five types of development knowledge that are
often sought from the logs by practitioners: meaning, cause,
context, impact and solution. Due to the frequency and nature
of log lines about which real customers inquire, documenting
all the log lines or identifying which ones to document is not
efficient. Hence in this paper we propose an on-demand approach,
which associates the development knowledge present in various
development repositories (e.g., code commits and issues reports)
with the log lines. Our case studies show that the derived
development knowledge can be used to resolve real-life inquiries
about logs.

I. INTRODUCTION

Logs play an important role in the maintenance of large
software systems [1]–[3]. Logs report the major system ac-
tivities (e.g., system workload or errors) and their associated
contexts (e.g., a time-stamp or a user ID) to assist practitioners
(i.e., operators and system administrators) in understanding
the high-level system behavior in the field. Logs capture
developers’ expertise, since logging statements are inserted
into specific code spots that are considered to be particularly
important by developers or of great interest by practitioners [4].
Thus logging statements are an integral and necessary part
of the code and maintaining them is just as important as
maintaining the functional part of the code [5].

The rich yet unstructured nature of logs has introduced a
new market of log management applications (e.g., Splunk [6],
XpoLog [7] and logstash [8]) that assist in storing, querying
and analyzing logs. Moreover, recent research has demon-
strated the importance of logs in understanding and improving
the quality of large scale software systems. For example,
practitioners can leverage the rich information in the logs
to generate workload information for capacity planning of
large-scale systems [9], to monitor system health [6], to

detect abnormal system behaviours [1], [10], [11], or to flag
performance degradations [2], [12].

However, all too often practitioners are faced with many
challenges in trying to understand the meaning of logs or to
answer questions about specific log lines [13]–[15]. Unfortu-
nately, there exists no research in understanding logs, even
though they are of great importance. For example, there is
an email inquiry about the log line “Too many fetch-failure”
from Hadoop in its user mailing list1. In the email inquiry,
the practitioner posted the log lines and asked “... I wonder
what’s the causes of so many these error reports. Do you have
similar experience? Or do you have any suggestions about my
problem?”. The email reply to the inquiry did not answer the
question, but suggested practitioner to search his answers on
the web (i.e., Google).

We found that documenting all log lines is an inefficient
use of the developers’ time (since less than 1% of the log
lines are inquired about). Additionally, knowing which lines
to add more documentation is a difficult challenge, since
we found log lines with all logging levels are inquired in
practice and different users want to inquire about different
log lines. Hence, we cannot simply add documentation to
a specific set of log lines like error level logs. However,
we still need to be able to help the practitioners with their
log inquiries. Hence in this paper, we propose a systematic
on-demand approach that attaches development knowledge to
logs. Interpreting the attached development knowledge assists
developers in understanding log lines. We define development
knowledge of log lines as the information that is not conveyed
directly in the log lines, but hidden in the development
history of the code surrounding the logging statements from
which these log lines are generated. Various sources of data
generated during software development, such as development
history [16], [17], design rationale, concerns of the source
code [18], [19] and email discussions [20], [21] are widely
used in program comprehension tasks.

The contributions of this paper are:
• This is the first work that proposes a systematic on-

demand approach to help practitioners understand log
lines. Our approach assists in resolving real-life log
inquiries and outperforms the web search results.

• This is the first work that provides taxonomy on
user inquiries of logs. We have identified five types
of information that are often sought about log lines
by practitioners - meaning, cause, context, impact

1http://goo.gl/jzEURG, checked April 2014.



TABLE I: Overview of the subject systems
System Application KLOC Length of # logging

domains history statements
Hadoop Distributed 580 8 years 5,641

platform
Cassandra Distributed 118 4 years 1,080

database
Zookeeper Distributed

coordination 78 5 years 1,163
service

and solution. We have derived this information by
manually going through the user mailing list emails
and StackOverflow questions for Hadoop, Cassandra
and Zookeeper.

• Our derived development knowledge can also help
identify experts regarding a particular log line.

The rest of this paper is organized as follows: Section II
explains our process and the results of identifying the common
types of information sought about log lines by the practitioners.
Section III presents our approach that automatically extracts
and synthesizes development knowledge for log lines on-
demand. Sections IV and V evaluate our approach against
three open source systems. Section VI discusses the related
work. Section VII discusses the threats to validity. Finally,
Section VIII concludes the paper.

II. CATEGORIZING LOG INQUIRIES

Understanding log lines is critical for practitioners. How-
ever, before we propose an approach to help practitioners
understand log lines, we first need to better understand the
types of information that are often sought about logs lines by
the practitioners. Hence, we first perform an exploratory study
that examines several real-life inquiries about log lines.

A. Manually Examining the Mailing Lists
We choose three subject software systems, which generate

large amounts of logs during execution. Table I shows an
overview of our subject systems. The systems are of different
sizes, histories and application domains. However, they are all
“systems software” (i.e., no user interfaces) – a choice that was
done to ensure that these systems make heavy use of logging.
We manually read through all the email threads in the mailing
lists of the subject systems – a process that took over 100 man-
hours. We end up with 15 different inquiries for log lines. For
example, in the Cassandra user mailing list, an inquiry asks
the following question:

Is it affecting my data put? (I have seen other weird
validation exceptions where my data is still put and I can
read it from cassandra and I get no exception client side)

Through our manual inspection, we have learned the fol-
lowing about asking and answering of log-related questions on
the mailing lists:

1) Inquiries about logs may not be answered or might take
a long period of time to be resolved. Although 12 of the 15
email inquiries had replies, practitioners never got an answer
for 3 log lines in the mailing list. The maximum time for the
first reply is over 105 hours.

2) Not all email replies are helpful. Some email replies are
informative (e.g., resolving the issue), some replies are brief,

some replies lack certainty and some replies are not useful.
For example, in a reply to an inquiry, a user indicated that
his/her prior reply was wrong and asked others to ignore the
reply.

3) Manual analysis of the development knowledge is used
to answer questions in some cases. For example, to find
out the cause of a Hadoop log line, the practitioner manually
browsed the source code of Hadoop and found the method
that generates the log line. He was not familiar with Java, but
after he posted the code snippets online, an expert replied and
resolved his issue.

B. Identifying Types of Inquired Information
Based on these 15 threads, we have identified five different

types of inquired information that are often sought about a log
line by following the coding approach widely used by previous
studies [22]. We repeat the process until we cannot find any
new types of inquired information. We assign the “N/A” tag to
an inquiry if the practitioners only include the log lines in the
email without asking any type of particular information. Our
study finds that there exist five types of information that are
often sought about log lines. Table II tabulates the meaning of
these five different types of inquired information.

We do note that a few industry guideline documents for
creating logs do mention some of the types of information
that we discovered above. For example, the design documents
from the SANS consensus project for information systems [23]
suggests that log lines should include the subject and object
of the event, time of the event, tools that performed the event
and the error status of the event. However, other types of
information, such as the solution and impact, are not suggested.
Moreover, developers may forget to provide some information
even though it is required [24].

C. Cross-validating Our Findings
We were a bit surprised with the small number of inquiries

about log lines on the mailing lists of the studied open source
projects, since in prior industrial collaborations we noted that
log lines played a key role in interactions between customers
and developers (e.g., [25]). Hence, we randomly sampled 300
logging statements from the three subject systems and searched
for the text in the logging statements using Google. If the text
in the logging statement is ambiguous, we added the name of
the subject system after the logging statement. For example,
the text “Child Error” in a Hadoop logging statement may be
ambiguous. We then search for “Child Error Hadoop” instead.
We then examined the first 10 web search results from Google.

By examining the web search results, we found that 32,
23 and 18 log lines (total 73 in the set of 300) from Hadoop,
Zookeeper and Cassandra, respectively, are discussed or in-
quired about through other mediums other than the project
mailing list. Online issue reports (e.g., the Apache JIRA web
interface) and Stack Overflow are the two sources where the
log lines are discussed or inquired the most.

We also manually browsed the top 100 most frequently
viewed questions on Stack Overflow for the tags “Hadoop”
and “Cassandra” and we found 7 and 2 questions that inquired
about log lines, respectively. For the tag “Zookeeper”, there
were only 15 questions in total with one of them being a
log related inquiry. In short, practitioners inquire about logs



TABLE II: Types of information that practitioners asked about logs in the email inquiries.
Type Explanation Example

Meaning Better description of the meaning of a log line is often sought. An inquiry for a log line in Hadoop asks, “What exactly does
this message mean?”

Cause A clarification of the cause of a log line is commonly sought. An inquiry for a log line in Zookeeper asked, “Does anybody
know why this happened?”

Context Practitioners often inquiry about the scenarios when a log line
is printed.

An inquiry for a log line in Cassandra asked, “when does this
occur?”

Solution The inquiry seeks a solution for avoiding a particular log line,
when the log line indicates an error.

An inquiry for a log line in Hadoop asked “It will be great if
some one can point to the direction how to solve this”.

Impact The inquiry seeks the impact of a log line (e.g., whether a log
line implies performance degradations).

An inquiry for a log line in Cassandra asked, “Is it affecting
my data?”

with such inquiries being scattered across various mediums
– potentially making them harder to archive and retrieve.
Development knowledge often contains the answers for such
inquiries.

III. OUR APPROACH

In this section, we present the motivation and propose
an automated on-demand approach to associate development
knowledge to log lines.

Motivation for our approach: Only less than 1% of the log
lines are inquired in the user mailing lists and other online
sources. Hence, it’s not cost-effective to document every log
line. After examining the 15 lines in more detail we find
that they have 5 different logging levels, the degree of fan-in
among the methods that contain the logging statement varies
from 0 to 2, and the number of changes to the methods
that contain the logging statement varies from 1 to over
200. Since, there is nothing in common between the inquired
log lines, it is difficult to even predict which lines to add
documentation to by the developers. However, it still is a
problem that needs to be solved, since real customers have
issues with respect to understanding log lines as is evident
from the emails to the mailing lists. Hence, in the rest of this
section we propose an on-demand approach that will gather
the required information when the practitioners need it with
minimal intervention from the developers. Figure 1 shows a
general overview of our approach. To ease explanation, we will
use the log inquiry mentioned in Section I as an illustration
example while presenting our approach (shown in Figure 2).

A. Extracting high-level source change information
J-REX [26] is used to extract historical information from

Java software systems. We use J-REX to extract high-level
source change information from the SVN repositories. J-REX
extracts source code snapshots for each Java file revision from
the SVN repository. Along with the extraction, J-REX also
keeps track of all commit messages and issue report IDs in
the commit messages for all revisions. For each source code
snapshot of a file, J-REX builds an abstract syntax tree for the
file using the Eclipse JDT parser.

B. Identifying logging statements
Software projects typically leverage logging libraries to

generate logs. Typically, the logging source code contains
method invocations that call the logging library. For example,
in Hadoop, a method invocation with a caller “LOG” is
considered as a logging statement in the source code. Knowing
the logging library of the subject system, we analyze the

output of J-REX to identify the code snippets responsible for
logging, the corresponding historical changes to these logging
statements and the source code in the method containing the
logging statement. Some systems wrap the logging statements
in other methods. For example, the inquired log line shown
in Figure 2 is printed by a method “failedTask”, which wraps
the logging statement. Having the abstract syntax tree of the
source code enables us to identify such methods that print log
lines by wrapping logging statements.

C. Generating log templates
Typically a logging statement contains both static parts

and dynamic parts. The static parts are the fixed strings
and the dynamic parts are the variables whose values are
determined at run-time. For example, in a logging statement
LOG.info(“Retrying connect to server: Already tried” + n+
“time(s)”, the variable n is the dynamic part, while “Retry-
ing connect to server: Already tried” and “time(s)” are the
static parts. We identify the static and dynamic parts in each
logging statement and create a regular expression for each
logging statement [10]. The regular expression generated for
the above example is Retrying connect to server: Already
tried.*time\(s\). For the example shown in Figure 2, the
regular expression generated for the logging statement is .*Too
many fetch-failures.*.

D. Associating development knowledge to log lines
Having all the regular expressions for the templates of

logging statements, we are able to match log lines in the
execution log files to the logging statements. For each of
the inquired log lines, we find all the log templates that
match it. We associate five sources of development data to the
inquired log lines. We broadly categorize these five sources of
development knowledge in to two categories:

Category 1 - Snapshot data: Snapshot knowledge includes
information from the most up-to-date snapshot of the source
code associated with a log line.

Source code: The source code in the method that contains
the logging statement may provide information about the log
line. For the example in Figure 2, by tracking the logging
statement, we found that it is in the method “fetchFailureNo-
tification” in file “JobInProgress.java”.

Code comments: Sometimes the source code is not self-
explanatory. In these cases, the code comment may be used to
explain the source code and the associated logging statements.
For the example in Figure 2, we find the code comment right
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Fig. 1: An overview of our approach to link development knowledge to the corresponding log lines

Log	  line	  

JobInProgress.java	  
fetchFailureNo:fica:on	  {	  
…	  
	  	  	  	  //	  declare	  faulty	  if	  fetch-‐failures	  >=	  max-‐allowed-‐failures	  
…	  
	  	  	  failedTask(:p,	  mapTaskId,	  "Too	  many	  fetch-‐failures”,	  

	  (:p.isMapTask(),	  TaskStatus.Phase.MAP	  :	  
	  TaskStatus.Phase.REDUCE),	  	  
	  TaskStatus.State.FAILED,	  trackerName);	  

}	  

//	  declare	  faulty	  if	  fetch-‐failures	  >=	  
max-‐allowed-‐failures	  

processHeartbeat	  

updateTaskStatuses	  

fetchFailureNo:fica:on	  
Source	  code	  

Code	  comments	  

Call	  graph	  

Code	  commits	  

a[empt_2011022
81006_0004_m_0
00009_0,	  Status	  :	  
FAILED	  
Too	  many	  fetch-‐
failures	  

Issue	  reports	  

HADOOP-‐1158.	  	  Change	  
JobTracker	  to	  record	  map-‐
output	  transmission	  errors	  
and	  use	  them	  to	  trigger	  
specula:ve	  re-‐execu:on	  of	  
tasks.	  	  Contributed	  by	  Arun.	  

HADOOP-‐1158.	  	  Change	  
JobTracker	  to	  record	  map-‐
output	  transmission	  errors	  
and	  use	  them	  to	  trigger	  
specula:ve	  re-‐execu:on	  of	  
tasks.	  	  Contributed	  by	  Arun.	  

HADOOP-‐1158.	  	  Change	  
JobTracker	  to	  record	  map-‐
output	  transmission	  errors	  
and	  use	  them	  to	  trigger	  
specula:ve	  re-‐execu:on	  of	  
tasks.	  	  Contributed	  by	  Arun.	  

Revision	  569063	  
HADOOP-‐1158.	  	  Change	  
JobTracker	  to	  record	  map-‐
output	  transmission	  errors	  
and	  use	  them	  to	  trigger	  
specula:ve	  re-‐execu:on	  of	  
tasks.	  	  Contributed	  by	  Arun.	  

HADOOP-‐1158.	  	  Change	  
JobTracker	  to	  record	  map-‐
output	  transmission	  errors	  
and	  use	  them	  to	  trigger	  
specula:ve	  re-‐execu:on	  of	  
tasks.	  	  Contributed	  by	  Arun.	  

HADOOP-‐1158	  
JobTracker	  should	  collect	  
sta:s:cs	  of	  failed	  map	  output	  
fetches,	  and	  take	  decisions	  to	  
reexecute	  map	  tasks	  and/or	  
restart	  the	  (possibly	  faulty)	  
Je[y	  server	  on	  the	  TaskTracker.	  

Fig. 2: An example of associating development knowledge to log line “Too many fetch-failures”.

before the method saying “declare faulty if fetch-failures >=
max - allowed-failures”.

Call graph: Often, the logs only describe what happened
instead of why the event happened or in what circumstances the
event happened. When the reason or the context of a log line
is sought out, the answer may be in the methods that trigger
the method containing the logging statement. From the call
graph of the log line in Figure 2, we find this method is called
by method “processHeartbeat” and “updateTaskStatuses”. Due
to the complexity and size of the entire call graph, we only
include the direct callers and callees of the method that
containing the logging statement.

Category 2 - Historical data: Historical knowledge consists
of the information that is generated during the development
of the logging statement behind a log line or its associated
source code. A previous study by Yuan et al. [27] shows the
high churn rate of logging statements. The more a logging
statement churns, the more historical data we have for the
logging statement, i.e., we can learn more knowledge about
logs from the development.

Code commits: A code commit contains the changes to
the code and other corresponding information, such as the
check-in comment describing the change and the developer
who made the change. For example, the check-in comment
for the change that adds or modifies a logging statement
(or its surrounding or triggering code, calculated via the call
graph) may provide information about the meaning of the log
line. For the log line in Figure 2, we generate all 9 commits
that change this method. One code commit (revision 569063),
which introduce the log line, has message “HADOOP-1158.
Change JobTracker to record map-output transmission errors
and use them to trigger speculative re-execution of tasks. Con-
tributed by Arun.”. Another code commit (revision 606267)
has message “HADOOP-2247. Fine- tune the strategies for
killing mappers and reducers due to failures while fetching
map-outputs. Now the map- completion times and number

of currently running reduces are taken into account by the
JobTracker before killing the mappers, while the progress made
by the reducer and the number of fetch-failures vis-a-vis total
number of fetch-attempts are taken into account before the
reducer kills itself. Contributed by Amar Kamat.”

Issue reports: The source code changes are often due to
issues (such as new feature requests and bugs), in the system.
These issues are tracked in issue tracking systems, like JIRA.
The report of an issue consists of its description, its resolution
and developer discussions about it. An issue that is related to
logs may be helpful in explaining the rationale of the logs.
From the commit message attached to the inquired log line
in Figure 2, we found issue reports with id “HADOOP-2247”
and “HADOOP-1158”.

We synthesizes the above data (i.e., source code, code
comments, call graph, code commits and issue reports) into
the following five types of development knowledge for the
inquired log line:
• Meaning: The task does not respond for a number of

times.
• Cause: Configuration mistake or Jetty issue are two

of the possible reasons.
• Context: The event happens during the shuffle period.
• Impact: The event impacts the jobtracker component

and will kill the corresponding task trackers.
• Solution: Updating configuration options or change

Jetty versions may solve the issue.

IV. CAN DEVELOPMENT KNOWLEDGE HELP RESOLVE
REAL-LIFE INQUIRES?

In this section, we will apply our on-demand approach
using three open source systems: Hadoop, Cassandra and
Zookeeper (shown in Table I) in two steps. First, we examine
whether our approach can resolve the real-life inquires iden-
tified in Section II. Second, we evaluate our approach against
a large sample of log lines from the source code of the three
subject systems.



A. Resolving real-life inquiries
In Sections II, we have found a set of real-life inquiries

about log lines from mailing lists, issue reports and Stack
Overflow. In this subsection, we would like to evaluate whether
our approach can assist in resolving these real-life inquiries.

1) Approach: For the 15 log lines inquired in the user
mailing list and 73 web search hits in total, we only focus
on 14 log lines from the user mailing list and 31 web search
results where we can clearly identify the specific inquired types
of knowledge. Although some log lines are mentioned in the
email, issue reports and other places on the web, we cannot
easily identify the inquired knowledge.

For each of the 45 online inquiries (i.e., mailing list
questions or search hits), we identify all the types of inquired
information since each online inquiry may contain inquiries
to multiple items of information. For example, inquiry # 1 in
Hadoop asks about both the meaning and the cause of a log
line (see Table III). In total, 21 items are inquired by the 14
email inquiries and 39 items are inquired by 31 web search
inquiries. We then examine whether the various sources of
development knowledge can resolve the inquiries.

2) Results: Our approach can be used to resolve real-life
inquiries. Development knowledge provides answers to 9 out
of 14 inquiries from the user mailing list. Table III shows that
our approach can resolve 13 out of the 21 items of inquired
information in the 14 real-life inquiries from the user mailing
list. Issue reports are the best source of data to resolve real-life
inquiries. Issue report can alone provide answers to 8 out of
9 log-inquiries from the mailing list that are resolved by our
approach. In addition, 12 out of 13 resolved inquiry items from
the mailing list are resolved by issue reports. Our approach
provides answers to 15 out of 31 inquiries from the web search
hits and resolves 16 out of 39 items of requested information.
Each source of data performs similarly in resolving inquired
items from the web search hits. Source code, code comment,
call graph, commit and issue report can respectively resolve
4, 6, 3, 5 and 6 items of requested information from the web
search hits.

3) Discussion: We discuss alternative approaches, such as
web searching and reading the mailing list, to resolve real-life
inquiries in this subsection.

Using the web search engine to resolve the real-life inquiries:
We first compare the use of our approach and the use of a
web search engine to resolve the real-life inquiries. One may
consider using a web search engine, such as Google, to resolve
log line inquiries. We use Google to search for the real-life
inquired log lines and check whether the first 10 results from
the web search engine can answer the inquiries. If the log lines
can be ambiguous to other general terms, we add the name of
the subject system after the log line.

We focus on the 14 real-life inquired log lines from the
user mailing list since the other 31 real-life log lines are also
from Google web search. For the 14 mailing list inquiries,
we find four types of relevant search results from Google:
the online link to the mailing list, the online link to the
development knowledge (e.g., the Apache JIRA web interface),
open source community websites (e.g., Stack Overflow) and
personal websites. We find three inquired log lines where open
source community websites can provide useful information and

two inquired log lines where personal websites can provide
useful information. From such results, we consider that the
development knowledge (9 out of 14 inquired log lines) out-
performs the results from a web search engine (5 out of 14
inquired log lines).

Using mailing list to resolve the real-life inquiries: We com-
pare the use of our approach and the answers from mailing
list to resolve the real-life inquiries. We find that our approach
is comparable to the answers in the mailing list. In the
mailing list, 10 inquiries are resolved after email discussion,
while 9 inquiries are answered by development knowledge.
However, we notice that the answers from mailing list are
clearer and precise; while our approach returns more content
and needs interpretation to resolve the inquiries. Nevertheless,
our approach is on-demand and automatic. Hence the users can
get the development knowledge almost instantly when using
our approach, while they have to wait (sometimes as much as
105 hours) for someone to reply.�

�

�

�

Our approach can provide help in resolving 9 out of
14 real-life inquiries from the user mailing list and 15
out of 31 real-life inquiries from other sources on the
web. Development knowledge outperforms the simple web
searches and is comparable to browsing the mailing list in
resolving log line inquiries.

B. Complementing case study of randomly-sampled log lines
In the previous subsection, we have demonstrated that our

approach can assist in resolving real-life inquiries. In this
subsection, we want to check whether our approach can help
understand a set of randomly-sampled log lines.

1) Approach: We select a random sample of 100 logging
statements from all the logging statements throughout the
lifetime of each of the subject systems. We then determine
which of the 5 different types of inquired information (i.e.,
meaning, cause, impact, context and solution (see Section II))
by practitioners is missing from the log line itself. We then
check whether our approach can complement the log lines
using the development knowledge and fill in the missing
information.

2) Results: We find that our approach of using the de-
velopment knowledge can complement log lines by providing
data on the 5 most common types of information inquired by
users. As shown in Table IV, our approach can provide most of
the missing meaning and context (on average 93% and 87%,
respectively), around half of the missing cause and impact (on
average 53% and 41% respectively) and only on average 12%
of the missing solution. These percentages are calculated using
the number of log statements with that type of development
knowledge missing. We think the reason for such results is
that, intuitively the meaning and context of the log line are
the easiest types of information to get; the cause and impact
of the log line are more difficult to find; while solving a logged
error is the most difficult to uncover.

In particular, we find that issue reports are the source of
data that can resolve the most log inquiries (see Table V).
Issue reports are able to provide the four most-missing types of
development knowledge (cause, context, solution and impact).
Although source code is a source of data in providing the most
meaning of log lines, most log lines have already contain the
knowledge of meaning.



TABLE III: Result of using our approach to resolve the 14 real-life mailing list inquiries. Each table cell indicates the source
of data that resolves the inquired information. A table cell with “not answered” indicates that the inquired knowledge is not
provided by our approach. A blank cell indicates that the corresponding information was not inquired in the email. The first

inquiry of Zookeeper did not request any specific information in the email and hence excluded in this table.
Hadoop meaning cause context solution impact

1 call graph, issue report
2 commit, issue report
3 not answered not answered
4 issue report issue report
5 not answered
6 commit, issue report commit, issue report
7 not answered not answered
8 not answered
9 not answered

10 source code, issue report issue report
Cassandra meaning cause context solution impact

1 code comment, issue report issue report
2 not answered source code

Zookeeper meaning cause context solution impact
1 issue report
2 issue report

TABLE IV: Percentage of the logging statements complemented by our approach.
meaning cause context solution impact

Hadoop 90% (19/21) 58% (57/98) 97% (69/71) 13% (13/99) 44% (40/91)
Cassandra 100% (21/21) 49% (48/98) 86% (65/76) 6% (6/100) 40% (36/90)
Zookeeper 89% (17/19) 51% (47/93) 79% (53/67) 18% (17/97) 39% (33/84)

Average 93% (57/61) 53% (152/289) 87% (187/214) 12% (36/296) 41% (109/265)

TABLE V: Number of log lines where each source of data
can provide a particular type of development knowledge. The
largest numbers in each type of knowledge are shown in bold.

Hadoop
meaning cause context solution impact

source code 83 12 23 1 5
comment 55 11 37 1 15

call graph 2 25 66 0 3
commit 42 26 61 4 11

issue report 49 37 69 12 27
Cassandra

meaning cause context solution impact
source code 59 4 14 0 11

comment 47 19 26 1 18
call graph 0 11 39 0 1

commit 43 17 45 1 5
issue report 47 24 51 5 15

Zookeeper
meaning cause context solution impact

source code 59 9 12 0 13
comment 41 18 30 4 17

call graph 2 6 40 0 0
commit 37 22 45 3 5

issue report 51 34 56 17 25

3) Discussion: We discuss how each type of inquired
information assists in understanding log lines.

Meaning. The meaning of a log line is inquired because
the text in the log line is not descriptive enough. As we can
see from Table V, source code is the best source for getting the
meaning of a log line. For example, a log line from Hadoop
prints “-files”, which does not have a clear meaning. From the
source code, we can find out that the log line corresponds to
temporary files defined by a user from command line. Issue

reports also provide useful information about the meaning of
log lines. For example, the Hadoop issue report “HADOOP-
182” is associated with the log line “lost tracker”. In the
discussion for the issue report, the meaning of the log line
was clearly presented as: “When a Task Tracker is lost (by
not sending a heartbeat for 10 minutes), the JobTracker marks
the tasks that were active on that node as failed”. Therefore,
we can say that the “lost” message in the log line means that
a heartbeat from the tracker was not received.

Cause. 11 out of 15 email inquiries in Section II asked
about the cause for a log line. Our results in Table V show that
both sources of historical development knowledge, i.e. commit
messages and issue reports, can help in explaining the reason
of some log lines. Issue reports are the source of development
knowledge in providing the cause of log lines in most cases.
There are typically two scenarios when an issue report would
provide such useful information:

1) A logging statement is added into the source code as
part of a feature or improvement. For example, to resolve
Hadoop issue “HADOOP-1171” (where the issue was to
enable multiple retries of reading the data), log line “fetch
failure” was added.

2) A logging statement is explained in the discussion of the
issue report when a bug in the source code is identified. For
example, in the discussion about Hadoop issue “HADOOP-
1093”, the reason for log line “NameSystem.completeFile:
failed to complete” in Hadoop was explained as, a race
condition between a client and data server of Hadoop. The
commit message is another source of development knowledge
for explaining the cause of a log line. For example, a log line
“DIR * FSDirectory.mkdirs: failed to create directory” was
added in revision 412474 of Hadoop, with a commit message



TABLE VI: Resolved and un-resolved email inquiries.
System total resolved not-resolved

by by replied by only replied not
expert non-expert expert by non-expert replied

Hadoop 10 5 1 0 1 3
Cassandra 2 0 2 0 0 0
Zookeeper 3 3 0 0 0 0

“Fix DFS mkdirs() to not warn when directories already exist”,
which clearly indicates the cause.

Impact. Source code can provide the information about
which components contain the event causing the log line.
For example, from the source code of log line “initialization
failed”, we find that the logging statement is embedded in
the constructor method of class “FSNamesystem”. Therefore,
we have the information that the initialization failure is in the
name index component of the file system. The source code can
also provide information about other components that might
be impacted by the event causing the log line to be printed.
Note that, although some logging libraries, such as Log4j, can
provide the information about the component that generates the
logs, information about other indirectly impacted components
cannot be gathered using logging library.

Context. Context of the log line is important in understand-
ing log lines. Call graph is one type of development knowledge
that provides context for the log lines. For example, the call
graph of log line “Column family ID mismatch” of Cassandra
tells that the log line is in the update period of the system.
Most logging libraries provide a time stamp for each log line.
However, such time stamps are not as useful as the domain-
specific context. For example in MapReduce, the time stamp
of a log line is not as useful as knowing if the log line is
printed in the map period or reduce period.

Solution. If a log line indicates an error, one would want
to know how to solve the error. However, since many complex
reasons could potentially cause one error, log lines typically
do not contain information on how to solve the error. It is
difficult to provide a solution to a logged error. Prior research
by Thakkar et al. [28] proposes a technique to find similar
customer engagement reports to solve field issues. Similarly,
issue reports can provide some solutions for logged errors. We
find cases where developers discuss the log-related issues in
the issue tracking system. For example, the log line “Severe
unrecoverable error, exiting” from Zookeeper is related to issue
“ZOOKEEPER-1277”, where a developer describes the way to
resolve this issue by patching to a new version.�

�

�

�
Our approach can assist in complementing the information
available in log lines by using development knowledge. In
particular, issue reports are the best source to provide the
inquired information for log lines, among other sources of
data.
V. CAN EXPERTS ASSIST IN RESOLVING INQUIRIES OF

LOG LINES?
Logging statements are embedded in the source code

intentionally by developers. Intuitively, the developers who
added the log lines may be the most suitable person to address
any log line inquiries. From our manual examination, we find
that the replies in the user mailing lists of the subject systems
often resolve the inquiries (see Section II). We would like to
verify whether experts of the log lines, such as the developers

who added the log line, do provide such information more
often than non-experts of the log lines. If the experts of the
log lines can better provide extra information about log lines,
our development knowledge could help on two aspects. First,
we can use development knowledge and leverage existing
techniques [29] to identify the experts of the log lines to rapidly
re-route log line inquiries to the most appropriate developer
(i.e., the owner of the log line). Second, in the case of multiple
replies or posts for a particular question or web search, we can
use development knowledge to identify expert replies or posts.

A. Approach
Previous research by Mockus et al. [29] proposed a tech-

nique that uses the code change information to identify the
experts of code units, such as modules and methods. Based
on this technique, we define an expert for a log line as “a
developer who has committed changes to the method/function
that contains the logging statement, which generates the log
line.” For example, log line “Lost tracker” of Hadoop is in
a method called “lostTaskTracker” and all the 10 developers
who have committed changes to the method “lostTaskTracker”
are considered as log experts for that log line.

We read the email threads of all the 15 inquired log lines
and assign them to 1 of 5 categories: resolved by expert,
resolved by non-experts, not-resolved but replied by expert,
not-resolved but only replied by non-expert and not replied.
We also calculate the ‘time for first reply’ for experts and
non-experts to measure their response time.

B. Results
We answer the following two questions:

1. Who resolved the inquiries in the email threads?An
overview of the results is presented in Table VI. We find that
an expert is crucial in providing answers to log line inquiries
– 8 of the 11 resolved inquiries had replies by log experts.
The one inquiry from Hadoop that was tagged as “resolved
by non-expert” was actually resolved by the person who had
the inquiry. The two inquiries resolved by non-expert from
Cassandra were resolved by other developers of the projects.
We find that experts have considerable knowledge about the
log line itself, as well as the rest of the project which assists
them in resolving inquiries of log lines. For example, an expert
pointed out that an inquired log line from Zookeeper was due
to a fixed bug. It is hard for a non-expert to provide such
information.

It is also interesting to observe that all the inquiries that
are answered by experts are done through short and affirmative
answers. For example, the email that inquired about “Lost
tracker” was replied to by one expert and one non-expert.
The non-expert asked about the context of the log line, while
the expert directly gave the answer and also pointed out that
there were bugs related to this log line. We also note that the
experts for all the inquired log lines are still active members in
the development team of the three subject systems. Therefore
the log line inquiries that had no replies were not due to the
absence of experts in the development team, but most probably
due to the experts not being aware of such inquiries.

2. How long did the first reply in the email thread take?The
median times for the first reply from experts in Hadoop and
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Fig. 3: Density plot of the number of emails and active years
of the experts of the inquired log lines from Hadoop.

TABLE VII: ‘Time for first reply’ of email inquiries.
Expert Non-expert

Median Min Max Median Min Max
Hadoop 3 h 3 min 96 h 1 h 8 min 2 h

Cassandra - - - 7 min 77 h 105 h
Zookeeper 5 h 1 h 9h - - -

Zookeeper are 3 and 5 hours respectively. However, the experts
from Cassandra never replied (see Table VII). The ‘time for
first reply’ from experts is sometimes slower than non-experts.
From browsing the email replies, we find the reason for slower
reply is that experts often reply with a definitive answer,
while non-experts often ask for more information. Therefore,
although experts might reply later than non-experts, they often
provide more useful information than the non-experts.

Our findings provide evidence that experts are important
in providing useful information about log lines. Therefore,
finding the expert of a log line may be the most effective
way for understanding the log line. However, a person with
a log line inquiry won’t be able to direct their inquiries to
experts since information about log line expertise is not easily
accessible. Moreover, experts might be too busy to check the
mailing list. Automated ways to push inquiries to experts might
be of great value for understanding log lines.

C. Discussion
Experts can provide useful information about a log line.

However, we do not know how many experts are there for
a particular log line, how many of these experts are active
on the mailing lists and how many orphaned log lines exist
without any experts. Since these questions shed more light on
the experts of a log line, we decided to answer them. The
results for these questions are below.

1. How many experts are there for the inquired log lines?We
manually check the experts of the 300 sampled logging
statements in the 3 subject systems. We not only check the
developer who commits the revisions, but we also read the
commit comments. If a commit comment says that the revision
is contributed by another developer or that the developer has
committed the revision on behalf of another developer, then we
consider the developer who coded the revision as the expert
instead of the developer who committed the revision.

We find that on average, there are 4.6, 3.1 and 2.8 experts
for each log line in Hadoop, Cassandra and Zookeeper,
respectively. We also find that some log lines from Hadoop
have over 30 experts since the log lines are embedded inside
large methods, while some log lines only have 1 expert. It
would be easier to find an expert for the log lines in large
methods since there are more experts to answer the inquiries;

while for the log lines with only 1 expert, if the single expert
is not available or not currently working as part of the team,
it would be hard to find someone to answer the inquiry about
these log lines.

2. How active are experts on the mailing list? We examine
all the experts of the 15 inquired log lines in the mailing list.
For each expert, we count the number of emails sent and the
number of active years in the mailing list. Figure 3(a) shows
the distribution of the number of emails sent by the experts of
the 10 inquired log lines for Hadoop. We can identify three
types of experts: 1) heavy email contributors, who might send
hundreds of emails over the years and are typically experts of
the entire project, 2) medium email contributors, who would
reply to the inquiries about which they have knowledge and
3) light email contributors who are typically not considered in
the “core” of the development team.

From the number of active years shown in Figure 3(b) for
the log-line experts in Hadoop, we observe that some experts
are active in the mailing list throughout the entire history of
the project (which is 8 years), while other ones are only active
for a short period of time.

We also find that in the expert-resolved inquiries, the
inquiries are resolved by the experts who are heavy email
contributors with long active years. This finding also indicates
the value of automatically pushing inquiries to experts since
not all experts might be active on the mailing list and are often
likely to miss inquiries, which they could easily resolve.

3. How many orphan log lines are there with no experts?
We define orphan log lines as the log lines whose experts are
no longer committing code changes to the project since the
last release to the time of the inquiry. We examine all experts
of the 15 log lines that are inquired in the mailing lists and
we find that none of the log lines are orphaned. Such a result
indicates that looking for the experts of log lines may be one
of the best ways to resolve inquiries about log lines since it is
unlikely that the inquired log line is an orphan.

However, as we can see in Tables VI and VII, there are
cases where there are no replies or the replies take as much
as 4 days. The person who has posed the inquiry might
need information much faster, especially when the log line
is associated with an error. Hence, it would be beneficial
if one could either directly contact the log-line expert or
automatically get the same information provided by the experts
elsewhere and without having to wait long.�
�

�
�

The responses from experts of logs can assist in log line
understanding. Development knowledge derived from our
approach can help identify experts.

VI. RELATED WORK

Documenting Code. There are many prior research studies
focusing on providing documentation to assist in the better
understanding of source code. Haiduc et al. [30], [31] used
automated text summarization techniques, such as LSI and
VSM to create summarized descriptions for source code.
They performed an user study to evaluate the quality of the
automatically generated summarization. Sridhara et al. [32]
describe a technique that automatically generates comments
for Java methods. Their technique focuses on describing
the roles of parameters in a method. Padioleau et al. [33]



performed a qualitative study on the source code comments
of three large open source operating systems and found that
code comments can complement software documentation and
record the thoughts of developers during the development
in an informal manner. Padioleau et al. [33] claimed that
source code comments, an important source of documentation,
contains valuable knowledge from developers. They performed
a qualitative study on the source code comments from three
large open source operating systems and found that code
comments can complement software documentation and record
the thoughts of developers during the development in an
informal manner. Instead of improving understandability of
source code, our work focuses on assisting understanding log
lines that is widely used in software maintenance, yet typically
with poor documentation.

Gathering knowledge of IT events. Prior research has pre-
sented an approach that gather knowledge of IT events [34].
The approach searches the IT events from online data sources,
such as Oracle online forum. The search results, i.e. a list of
documents relevant to IT events, are enhanced by a ranking
system based on content source and quality of information rel-
evancy. Our approach considered another source of knowledge,
i.e., the development knowledge. From our evaluation shown
in Section IV, our approach outperforms online search results
and email threads.

Improving log lines. There are prior research studies that
aim to automatically improve the information in log lines by
providing the context and solution.

1. Providing context. Some logging libraries, such as Log4j,
can automatically output the name of the class, in which the
log is generated. Such information is useful to understand
the context of the logs. Yuan et al. [5] propose an approach
to automatically enhance logging statements by printing the
values of the accessible variables. This technique assists in
adding more context to the log lines. Shang et al. [35] design a
technique to automatically provide context information for log
lines to assist in deploying applications in a cloud environment.
Beschastnikh et al. [36] build models from logs to infer the
state of a system when an error occurs.

2. Providing solution. Ding et al. [37] designed a framework
to correlate logs, system issues and corresponding simple
solutions. They store such information in a database to assist in
providing simple solutions, such as “rebooting an application”,
when similar logs appear.

Instead of improving the documentation of code or im-
proving the information in the logs lines, our work focuses
on assisting developers in understanding log lines that are
widely used in practice, yet typically have poor documentation.
Our work can potentially improve the existing log analysis
techniques by providing better understanding of log lines.

VII. THREATS TO VALIDITY

External validity. Our case study only focuses on 300 ran-
domly sampled logging statements, 15 email log lines inquiries
and 73 log line inquiries from the web hits for three “systems”
projects with years of history and a large user base. The results
might not generalize to other systems. Our case studies only
focus on three Java systems. Our approach can be extended
to support systems with other programming languages too.
However, a specific parser needs to be implemented for for

each programming language. Additional case studies on other
open source and commercial systems in different domains are
needed. We also plan to perform user studies to evaluate the
usefulness of our approach. There might be other sources
of development knowledge, such as IRC channels, design
documents and code review comments, which maybe useful
to understand log lines. Adding additional information could
improve our approach. A broader study, which includes more
sources of development knowledge needs to be conducted to
identify the potential of each source in resolving the various
types of log line inquiries.

Construct validity. The manual examination throughout the
study is carried out by the authors of this paper showing our
approach is fully accurate. Although we have some experience
in using and studying the subject systems in our previous
research (e.g., [35]), our expertise in them might be imperfect.
We plan to have a larger user study to evaluate our approach.

We choose to attach development knowledge to log lines at
the method level. The higher the level, the more development
knowledge that can be attached, but the more overwhelming
such attached knowledge might become. If we set the level
lower (e.g., log statement level), we would lose some useful
knowledge about log lines. We plan to explore attaching
development knowledge at different levels of granularity.

Our approach treat all types of logging statement the same.
However, different types of logging statements may require
different information for improvement. We plan to improve
optimize our approach by considering different types of log-
ging statements. In our approach, we consider all code commits
that change the logging statement as part of the development
knowledge. However, some code commits may not provide
useful information, such as renaming a variable. Filters can be
applied to further improve our approach. Based on previous
research of source code expertise [29], we consider developers
who commit code that changes the methods containing the
logging statements as the experts of the log lines. Such an
assumption may not be entirely correct. There could be other
approaches to refine the set of experts for log lines. Even with
this naive approach, we are able to show the importance of
experts in resolving log line inquiries.

VIII. CONCLUSION

Much of the knowledge about log lines lives only in the
minds of the developers who embedded the logging statements
in the source code. Due to the lack of communication with
developers of large software systems, practitioners, who might
heavily rely on logs for software maintenance tasks, often face
the challenge of understanding the logs. Such challenges may
jeopardize the effectiveness and correctness of leveraging logs.

To address the challenge of understanding log lines, we
propose an systematic on-demand approach to recover devel-
opment knowledge for log lines. To evaluate our approach,
we studied three open source systems: Hadoop, Cassandra
and Zookeeper. In our case study, we manual examine 300
randomly sampled logging statements from the subject systems
and use 45 real-life inquiries in the user mailing lists of the
three subject systems and from web search hits. We find that:
• Practitioners sometimes find it difficult to understand

the log lines. The five types of information (i.e., cause,



meaning, impact, context and solution) about the log
lines are inquired in the mailing lists.

• Development knowledge can be leveraged for under-
standing log line. In particular, issue reports are useful
for log line understanding.

• Our approach can also be used to identify experts of
a particular log line.

In conclusion, our study demonstrates the importance and
opportunities of leveraging development knowledge for under-
standing log lines.
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