
A Systematic Review of API Evolution Literature

MAXIME LAMOTHE, Department of Computer Engineering and Software Engineering, Polytechnique
Montréal, Canada
YANN-GAËL GUÉHÉNEUC and WEIYI SHANG, Department of Computer Science and Software
Engineering, Concordia University, Canada

Recent software advances have led to an expansion of the development and usage of application programming
interfaces (APIs). From millions of Android packages (APKs) available on Google Store to millions of open-
source packages available inMaven, PyPI, and npm, APIs have become an integral part of software development.

Like any software artifact, software APIs evolve and suffer from this evolution. Prior research has uncovered
many challenges to the development, usage, and evolution of APIs. While some challenges have been studied
and solved, many remain. These challenges are scattered in the literature, which hides advances and cloaks
the remaining challenges.

In this systematic literature review on APIs and API evolution, we uncover and describe publication trends
and trending topics. We compile common research goals, evaluation methods, metrics, and subjects. We
summarize the current state-of-the-art and outline known existing challenges as well as new challenges
uncovered during this review.

We conclude that the main remaining challenges related to APIs and API evolution are (1) automatically
identifying and leveraging factors that drive API changes, (2) creating and using uniform benchmarks for
research evaluation, and (3) understanding the impact of API evolution on API developers and users with
respect to various programming languages.

CCS Concepts: • Software and its engineering→Designing software; Software design tradeoffs; Soft-
ware evolution;

Additional Key Words and Phrases: SLR, APIs, API Evolution

ACM Reference Format:
Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. 2020. A Systematic Review of API Evolution
Literature. 1, 1 (June 2020), 35 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Software application programming interfaces (APIs) allow their users to save time and effort by
relying on pre-made functionality [121]. It is therefore not surprising that APIs are extensively used
by software developers and that their usage is highly recommended to promote software quality
while reducing development effort. For example, the Android API allows APKs, over 8 million in
the Google Play store alone [56], to run on mobile devices across the world.

Authors’ addresses: Maxime Lamothe, maxime.lamothe@polymtl.ca, Department of Computer Engineering and Software
Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Qc, Canada; Yann-Gaël Guéhéneuc,
yann-gael.gueheneuc@concordia.ca;Weiyi Shang, shang@encs.concordia.ca, Department of Computer Science and Software
Engineering, Concordia University, 1455 Boulevard de Maisonneuve O, Montréal, Qc, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/6-ART $15.00
https://doi.org/10.1145/1122445.1122456

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

2 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

APIs are by definition interfaces to be used as entry points to reusable software entities [145]. They
are not independent software entities; they are instead packaged with the software libraries [40],
frameworks [70], or Web services [161], that offer them.
The ease with which APIs can be discovered and used increased with the advent of Software-

as-a-service [85] and the growth of open-source software repositories, e.g., GitHub. For example,
JUnit, a popular unit-testing framework, has been used by over 20,000 applications in a 42,000
application sample [155] and is often adopted by users when migrating away from other testing
frameworks, e.g., TestNG [37].
APIs are inherently software artifacts and are, thus, not immune to Lehman’s laws [89]. To

remain useful and competitive, APIs must evolve. They evolve to offer new functionalities, fix
security issues, retire unsafe/no longer necessary functionalities, and, more generally, to increase
the ease with which developers can use them. For example, JUnit was introduced in 2002 and its
latest version released in September 2020. It grew from version 1.0 to version 5.7.0, from offering
“plain old Java objects” (POJO, classes really) and using reflection to an annotation-based framework
with filters, recorders, loggers, conditional testing, etc. However, API evolution can cause various
issues for both their users and their developers [85, 103, 121, 147].

Due to their omnipresence and evolution, APIs greatly impact software development.
Understanding, mitigating, and leveraging the impact of APIs and API evolution on soft-
ware development is necessary to design and use software APIs [148].

In the last few decades, interest in APIs and API evolution has grown rapidly in the software-
engineering research community. As it grew, so did the number of publications related to APIs
and their evolution. We only identified one work published in 1994 related to API evolution but 36
works in 2020. In all the works that we studied, researchers explored a variety of aspects of APIs,
from API usability and misuses, to API maintenance, migration, documentation, recommendation
and more. Prior research has produced many empirical studies [15, 70, 74, 104], new tools and
techniques [109, 145, 148], and datasets [3, 11, 155] to uncover and solve issues due to API evolution.

Due to both the breadth and depth of the research related to APIs and API evolution, it is difficult
to determine the extent of prior research, for example, which problems were uncovered, and which
solutions were proposed. The large number of existing publications hide advances and also cloak
important, remaining challenges in APIs and API evolution. We need a comprehensive view of the
state of the art on APIs and API evolution to help researchers and practitioners.

Therefore, a survey of prior work between 1994 and 2020 (i.e., 27 years) related to API evolution
and its effects would benefit the software research community as well as software developers. It
should highlight existing research into API evolution and issues affected by API evolution, present
the current state-of-the-art solutions to uncovered challenges, and enumerate challenges that have
yet to be solved.

In this survey paper, we compile the challenges of API evolution scattered in the litera-
ture through a systematic literature review.We uncover and describe publications trends
as well as trending topics. We also compile common research goals, evaluation methods,
metrics, and subjects.We summarise the current state-of-the-art and provide an overview
of known existing challenges and new challenges uncovered during this review.
We conclude that the main remaining challenges related to APIs and API evolution are (1) to

automatically identify and leverage factors that drive API changes, (2) create and use uniform
benchmarks for research evaluation, and (3) understand the impact of API evolution on API
developers and users with respect to various programming languages.

Section 2 defines APIs and API evolution. Section 3 describes the methodology used to find the
works selected for this literature review. Section 4 highlights the various goals, tools, and evaluations
used in API evolution research. Section 5 summarises the state-of-the-art in API evolution research.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 3

Section 6 presents open API evolution challenges that remain either partially or completely unsolved
by current research. Section 7 describes the threats to the validity of this paper. Finally, Section 8
concludes the paper.

2 PRELIMINARIES
This section briefly presents the concept of APIs and presents an introduction to API evolution.

2.1 Definition of an API
To the best of our knowledge, the term application programming interface appeared for the first
time in 1968 within the context of providing a remotely accessed, interactive computer graphics
system [32]. Application programming interfaces (API) are varied and can encompass different
concepts. For example, when the concept of information hiding was first coined by Parnas [127] in
1972, it was based on interfaces among modules, which today would be called APIs.

Prior work has defined APIs as “the interface to a reusable software entity used by multiple clients
outside the developing organization, and that can be distributed separately from environment
code” [145]. Although the term ’API’ can be used as a general term for an interface between software
components, there exists nomenclature to refer to certain types of APIs. For example, software
libraries [13, 20, 39, 40, 54, 57, 65, 77, 110, 115, 190, 195], software frameworks [33, 40, 42, 43, 70, 107,
117, 159, 183, 184, 188, 194], and Web services either RESTful [100, 137, 160, 161] or SOAP [160]
have all been interchangeably been referred to as APIs because they all allow pieces of software to
communicate, albeit in different ways. However, API terminology can sometimes be nuanced. For
example, object-oriented languages, such as Java and C#, have specific keyword concepts to define
interfaces [111, 126]. According to the definition of an API presented by prior research [145], these
interfaces may only be considered APIs if they are used by multiple external clients. In this paper,
we use this API definition but also consider interfaces that may be used by multiple clients within
a developing organization as APIs.

2.2 API Evolution
Prior studies have shown that APIs evolve for various reasons such as increasing complexity [103],
and continuous change [41, 89]. However, due to their nature as a connection point between
software modules, API evolution is not without side-effects. Many studies have shown the effects of
API changes not only on the API itself [41], but also on its clients [104]. APIs may therefore change
differently from traditional software artifacts. For example, Sun Microsystem preferred introducing
the new interface java.awt.LayoutManager2 rather than change the java.awt.LayoutManager because
changing the latter would have broken existing code [162].
The evolution of APIs induces a variety of problems and challenges for API users and API

developers alike [86]. On the one hand, as predicted by Lehman, continuing change [89] means
that API developers must determine ways to keep their APIs useful, cutting edge, and competitive
with other pieces of software [85] and API users must adapt to these API changes and new API
releases. On the other hand, conservation of familiarity [89], or existing API usages, constrain
the evolution of an API to avoid breaking changes while improving the API (i.e., security or
performance improvements). The evolution of APIs therefore involves a balancing act of constant
improvement and maintaining existing functionality. Maintaining existing functionality requires
in-depth knowledge of use cases and architectural foresight and flexibility, while keeping up with
rapid release cycles requires modifications to user applications as well as learning about new APIs
and changes to existing APIs. Therefore, when gathering literature for our systematic review, we
not only concentrate on work that directly studies APIs and their evolution, but we also consider
prior work that focuses on finding solutions to problems that are caused by API evolution.

, Vol. 1, No. 1, Article . Publication date: June 2020.

4 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

3 METHODOLOGY
In this paper, we used a well-defined, structured, and systematic approach to produce a survey on
API evolution. The approach followed was inspired by guidelines from Kitchenham et al. [81] and
Petersen et al. [130].

3.1 ResearchQuestions
The goal of this systematic literature review is to provide a structured and categorized aggregate of
existing API evolution research to uncover the state of API research. This knowledge will hopefully
allow insight into the current state-of-the-art research and provide a quick reference into existing
practices and currently unsolved challenges for future research. To achieve this goal, we designed
the following research questions (RQs):

– RQ1: How has the field of API evolution research evolved?
We seek to explore published papers related to API evolution, we provide an overview of
these paper, categorize them, identify their goals, and investigate strategies used by API
evolution researchers to evaluate their findings and discuss evaluation trends. We present
our findings for this RQ in Section 4.

– RQ2: What is the current state-of-the-art in API evolution research?
We present state-of-the-art approaches and tools that have been proposed to deal with
problems related to API evolution. We present our findings in Section 5.

– RQ3: What are the current and future challenges related to API evolution?
Finally, we seek to uncover current and future challenges still left to solve for future API
research. We present our findings in Section 6.

3.2 Literature Repository Selection
Weused prior state-of-the-art software engineering literature reviews [72, 75] to obtain our selection
criteria for online literature repositories. Our original selection of papers came from the following
technical publishers:

• ACM Digital Library
• Elsevier Science Direct
• IEEE Xplore Digital Library
• Springer Online Library
• Wiley Online Library

We also augmented our paper selection by performing a search in the Google Scholar database
by entering “API Evolution” as an exact search string and parsing the results. This was done to
supplement the selection of papers from technical publishers and to ensure the widest possible
search scope for our survey. Indeed, the exact search phrase “API Evolution” was as our search
phrase for all technical publishers.1 Furthermore, we manually mined the references of each of
the papers in our original selection, using forward and backward snowballing (i.e., using Google
Scholar to search for citations of, and in, a specific publication), to find cited works that appeared
to present work within the scope of API evolution based on their abstracts.

3.3 Literature Search and Selection
Using our predefined literature repositories, we performed searches using the exact “API Evolution”
search phrase.2 The results obtained are presented in Table 1. The results highlight the absolute
number of publications found in each library, as well as the number of publications that were
1Repository of our primary studies and classifications: https://github.com/senseconcordia/APIEvolutionSurveyPapers
2The latest search was conducted on Feb 12, 2020.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 5

Table 1. Publications found by search engine

Search Engine Unfiltered Publications Cross-Referenced
ACM Digital Library 122 113
Elsevier Science Direct 22 10
IEEE Xplore Digital Library 38 33
Springer Online Library 81 74
Wiley Online Library 5 4
Google Scholar 1061 215
Total (duplicates removed) 1040 212

cross-referenced and available in multiple libraries. After accounting for all duplicate publications,
we found a total of 828 publications. The first author then manually filtered the results of this
search, keeping only results which met the following criteria:
(1) Studies must be written in English
(2) Studies must be related to computer science or software engineering
(3) Studies should have a relation to API evolution
(4) Studies must not be a Master or PhD thesis
(5) Studies must be fully available from one or more online library
A flowchart of our publication selection process can be found in Figure 1. Based on our filtering

process, we obtained 179 publications. After checking the references of the chosen papers, we
added a further 190 papers to the survey. These papers were likely missing in the initial library
search due to nomenclature differences (e.g., Framework evolution instead of API evolution). Finally,
using the results of our initial search, along with any references that matched our filtering criteria,
we selected a total of 369 publications (or primary studies) with which to conduct this survey. The
filtering was done by one author, with a test-retest reliability coefficient of 0.94, showing excellent
reliability [81, 173]. The most common reasons for filtering out publications were: not related to

Search

“API Evolution”

02-12-2020

Filter (one author test-retest):

-Language

-Domain

-Paper type

-Availability

-Duplicate

-Title and abstract appear

related to subject

Online libraries

(1061 papers)

179 seed

papers

Perform citation

based search

(forward snowballing)

Perform reference

extraction

(backward snowballing)

190 papers

369 papers

One author test-retest

Full text review:

-Data extraction

Filter (one author test-retest):

-Language

-Domain

-Paper type

-Availability

-Duplicate

-Title and abstract appear

related to subject

All authors

Categorization &

Discussion

Fig. 1. Our paper selection process

, Vol. 1, No. 1, Article . Publication date: June 2020.

6 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

Table 2. Data extracted for our research questions

RQ Type of Data Extracted

RQ1

Title, author information (names and affiliations),
publication information (type, year, and location),
names and sources of systems under test, types of evaluations performed,
evaluation metrics, study motivation, methodology, and paper type

RQ2 Paper type, primary contribution, challenges uncovered and solved
RQ3 Unresolved questions, future research avenues

API Evolution (46%), not available from at least one online library (25%), thesis (17%), language (i.e.,
non-English) (9%), not related to software engineering (3%).

3.4 Data Extraction and Collection
To answer our research questions, one author carefully examined and extracted information from
each of the 369 publications selected for this study. We paid particular attention to the motivation,
contributions, methodologies and tooling, results, and challenges presented in the publications.
To present concise and practical information, we categorized our findings into abstract categories
whenever possible. The types of data extracted from each publication by one author and their
relevance to each research question are presented in Table 2. The extracted categories were tested
using test-retest reliability on a statistically significant sample of 189 publications (confidence
level 95%, margin of error 5%). A test-retest reliability coefficient of 0.97 was obtained, showing
excellent reliability [173]. All papers that met our filtering criteria and were officially published as
of December 31st, 2020, were included in this study.

To answer RQ1 we categorize the topics of our selected publications, determine publication trends
in API evolution, and uncover publication patterns in API evolution research. We look at which
researchers and organizations publish most in the field, how often papers are published, in which
type of venue they are published, and with which type of work they are most related.3 We also cate-
gorize API evolution papers into five contribution types: New Tools and Techniques, Empirical
Studies, Tools and Techniques Proposals, Surveys, and Datasets.

0

10

20

30

40

50

60

1
9

9
4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0

0
8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0

1
7

2
0
1

8

2
0
1

9

2
0
2

0

N
u
m

b
e
r

o
f

P
u

b
lic

a
ti
o
n

s

Year

(a) Publications per year

0

50

100

150

200

250

300

350

400

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

N
u
m

b
e
r

o
f

P
u

b
lic

a
ti
o
n

s

Year

(b) Cumulative publications per year

Fig. 2. API Evolution publications from Sept 19th, 1994, to Dec 31st, 2020

3More information is presented as part of an Appendix on: https://github.com/senseconcordia/APIEvolutionSurveyPapers

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 7

3.4.1 Publication Trends. Publications in API Evolution are trending upwards. As shown in Figure 2,
the number of publications with topics related to API Evolution more than doubled from 2017 to
2018 and has continued to stay high. Furthermore, we can also observe an exponential increase
in the number of cumulative publications per year. This tells us that API Evolution is not only an
active research topic but is also a growing research field.

3.5 Overview of Primary Studies
3.5.1 Most Common Publication Venues. The publications studied in this paper are spread over
a variety of venues, some are more popular than others. Amongst the reviewed publications, the
most common venue for journal paper publications is IEEE’s Transactions on Software Engineering
(TSE) with eight journal publications, followed by Empirical Software Engineering with six API
Evolution journal publications. The most common conference is the International Conference on
Software Engineering (ICSE) with 42 publications. The most common workshop is the Workshop
on API Usage and Evolution (WAPI) with 12 publications.

As shown in Figure 3 we can see that the majority of publications in API Evolution are conference
papers, followed by Journal papers and workshops, with only a slim minority (two) books being
published. We can also see that workshop papers appear to be increasing in numbers starting in
2017. This increase in workshop publications is likely due to the founding of the International
Workshop on API Usage and Evolution (WAPI) in 2017.

68%

24%

8%

0%

Conference Journal Workshop Book

(a) Overall venue distribution

0

5

10

15

20

25

30

35

40

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

N
u
m

b
e
r

o
f
P

u
b
lic

a
ti
o
n
s

Year

Conference Journal Workshop Book

(b) Yearly venue distribution

Fig. 3. API Evolution publication venues

3.5.2 Publication Topics. The three authors classified the 369 publications into various topics
through the use of keywords provided by the authors within the papers themselves, keywords
provided by the publisher (e.g., IEEE Keywords), or through the use of our judgment in cases where
we could not recover relevant keywords.

We first employed closed card sorting to sort papers into three blanket categories,APIMaintenance
which contains 178/369 publications, API Usability which contains 161/369 publications, and Other
which contains 19 publications. We then used a second round of closed card sorting to further
subdivide each blanket category as shown in Figure 4. We identified three primary API research
topics: API Maintenance, API Usability, and Other.
Since the Other category only contains 19 publications of various topics, it was not subdivided

into subcategories. The evolution trend of the three categories and their subcategories can be
observed in Figure 5. Figure 5a shows that both API usability and maintenance papers grew through
the years. However, since 2011, the API research community has started to favor usability papers,
with the exception of 2020 where maintenance papers dominated the field (24 vs. 7).

, Vol. 1, No. 1, Article . Publication date: June 2020.

8 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

API Evolution Research

Maintenance Usability Other

Adapting to API changes

API Deprecation

API Migration

API Reuse patterns

API Documentation

API Examples

API Misuse

API Usage

API Recommendation

Performance

Security

Testing

Verification

Integration

Fig. 4. API research topics

Looking at the subtopics for API maintenance and usability in Figure 5 we can see that the API
Usage research subtopic appears to be growing rapidly in recent years. This growth can likely
be attributed to tools and empirical research to uncover what makes API hard to use [202] and
uncovering usage patterns to help developers [179]. The growth in popularity for these topics might
be linked to the growth in available API usage data on open-source repositories and forums such
as GitHub and Stack Overflow which were both launched in 2008. API migration research appears
to be one of the more steadily growing research subtopics with a minimum of two publications
per year since 2003, and 14 in 2020. Meanwhile, the API misuses and recommendation subtopics
appear to be gaining popularity in recent years. Although the first API misuse paper in our sample
was published in 2001 [50], recent years have shown a steady stream of papers related to the
topic, with three papers published in 2018 [5, 9, 142], and two in 2019 [4, 177]. The topic of API
recommendation started gaining recognition in 2009 [135] and has been steadily gaining ground
ever since.

3.5.3 Publication Contribution Types. We also classified our sample of 369 publications into five
publication contribution types using an open card sorting approach with all three authors. For
this classification, we rely on the judgement of the authors of this paper to extract the primary
contribution of each paper. It is possible for a paper to present more than one contribution, and we
sometimes must rely on human judgement to identify the primary or main contribution. Similarly
to the research topic classification in Section 3.5.2, we created the contribution type categories by
using author and publisher keywords, while also relying on publication venue information when it
was relevant. These sources of information were combined with our best judgement to classify
each publication after reading it. We generated the following five contribution types: (1) New Tools
and techniques: comprised of publications that showcase novel tools and techniques to aid with
existing or unsolved API evolution challenges, (2) Empirical studies: publications that primarily
present data analysis and findings based on empirical evidence, (3) Tools and Technique Proposals:
publications that propose novel tools or techniques without implementation details or experimental

Table 3. API publication by type

Publication Type Papers
Conference 251
Journal 87
Workshop 29
Book 2

Table 4. API publication contribution types

Main contribution Papers
New Tools and Techniques 210
Empirical Studies 138
Tools and Technique Proposals 13
Surveys 5
Datasets 3

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 9

0

5

10

15

20

25

30

35

1
9
9

4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1

7

2
0
1

8

2
0
1

9

2
0
2

0

N
u
m

b
e
r

o
f

P
u

b
lic

a
ti
o
n

s

API usability papers API maintenance papers Other

(a) API Maintenance and Usability publication trends

0

2

4

6

8

10

12

14

16

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0
0

1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0
0

9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0
1

7

2
0

1
8

2
0

1
9

2
0

2
0

N
u
m

b
e
r

o
f
P

u
b
lic

a
ti
o
n
s

Reuse patterns Deprecation Migration Adapting to changes

(b) API Maintenance subtopic publications per year

0

2

4

6

8

10

12

14

16

1
9
9

4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1

7

2
0
1

8

2
0
1

9

2
0
2

0

N
u
m

b
e
r

o
f

P
u

b
lic

a
ti
o
n

s

Usage Examples Recommendation Misuses

(c) API Usability subtopic publications per year

Fig. 5. API Maintenance and Usability subtopic publication trends

results, (4) Surveys: publications based on the systematic analysis of multiple existing works, and
(5) Datasets: publications that showcase and share novel data to be used for future research. The
overall classification of the publications we studied can be found in Table 4.

4 EVOLUTION OF API EVOLUTION RESEARCH
We now answer RQ1: How has the field of API evolution research evolved? We divide our answer in
three parts on (1) API evolution research goals, (2) API evolution research evaluation, and (3) API
evolution experimental subjects, which are the three main components of any research work on
API evolution.

4.1 API Evolution Research Goals
We answer the first part of our RQ1 by presenting the various goals that we uncovered when
surveyingAPI evolution literature. API evolution presents various avenues for research. For example,
it is possible to empirically observe the impact of API changes on API users [85], otherwise known
as the effect of perceived complexity on users [89], these studies can then provide motivation and
insight to develop software tooling [34]. To better understand the trends in API evolution research,
we use our publication contribution classification of the 369 papers. We divide this section using
the five contribution types identified in Section 3.5.3, namely, Datasets, Empirical Studies, Tools and

, Vol. 1, No. 1, Article . Publication date: June 2020.

10 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

Technique Proposals, Surveys, and New Tools and Techniques to uncover which primary contributions
align with which research goals.

4.1.1 New Tools and Techniques. As shown in Table 4, the majority of the papers present new
tools and techniques to help with API evolution. These tools and techniques vary in scope and
purpose. However, they all seek to resolve problems caused by API evolution through the interven-
tion of either a tool or a new technique. For example, to deal with the challenge of breaking API
changes, some papers attempt to help organize changes [89, 158], while others try to automate API
migration [34, 64, 87, 184]. To help improve API usability, some attempt to reduce complexity [148],
others attempt to help conserve familiarity [149]. To reduce API misuses, some papers propose
misuse detectors [4]. We use existing surveys on API property inference techniques [145], recom-
mendation systems [148], and software merging [109] as well as some of our own categorizations
to label our dataset into API research topics presented in Section 3.5.2 of this survey (i.e, adapting
to API changes, documentation, deprecation, examples, misuse, migration, recommendation, reuse
patterns, usage, and other).

Answers of RQ1: New tools and techniques typically seek to help with API evolution by resolving
problems that it can cause for API users (e.g., API migration tools) or to help reduce the development
burden on API developer (e.g., automatic API documentation tools).

4.1.2 Empirical Studies. The second largest category of API evolution publications are presented as
empirical studies. The empirical studies we observed within our dataset can largely be divided into
three sub-categories. Data-mining empirical studies, that make use of data from several projects
or non-human sources, empirical case studies, which target specific projects and often provide
in-depth results for a few specific non-human sources, and finally user studies which make use of
human participants.

Data-mining Studies: Data-mining studies concentrate on using large sources of data to provide
evidence for the existence of problems and to determine their impact. These studies mainly explore
challenges that deal with breaking API changes, for example, through studying the rapid evolution
of mobile apps and the android API [28, 104], app categories [61] and ratings [15], and compatibility
problems [63].

Case Studies: Case studies study a few (e.g., fewer than 10) systems. Comparatively to data-mining
studies, the results of case studies are specific to the studied systems. These studies present a range
of goals and deal with various challenges. From understanding braking API changes, by determining
the impact of API evolution on API users [70], to improving API usability by determining whether
IDEs influence the usability of dynamic and static APIs [131], or determining the factors that
support the long term success of frameworks [117], and many more [9, 178, 179].

User Studies: We classified eight of the papers reviewed for this survey as user studies. These
papers rely on human responses to answer their research questions, which have a strong usability
component. Therefore, we surmise that user studies are particularly well suited for API usability
studies, and particularly concentrate on the challenges of improving API usability. The papers
determine learning barriers in end-user systems [74], analyze the API usage of an IDE [27], under-
stand developers’ deprecation needs [154] understand how API documentation fails [169], evaluate
the usability of the factory pattern in APIs [48], determine what makes APIs hard to learn [144],
explore the pitfalls of unfamiliar APIs [45], and study API usability [134].

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 11

Answers of RQ1: Empirical studies related to API evolution typically employ large data, case
studies, or user studies to provide evidence of existing problems, the impacts of API evolution, or
potential solutions to existing problems. These problems typically centre around the impacts of
API evolution on API usability and API maintainability.

4.1.3 Tools and Technique Proposals. Tools and Technique Proposals within our dataset seek to
highlight existing concerns in the field and provide potential approaches to resolving the problems.
These papers are categorized separately because they present a particular paper structure. These
papers concentrate on the same issues as New Tools and Techniques, however they only propose
their solutions rather than actualize them. These proposals highlight issues that have been found in
prior work (e.g., most API breaking changes are caused by refactoring [42]), and propose potential
solutions to these problems (e.g., automatically detect API refactoring and replay them for clients
in [42]). However, these papers are proposals and do not provide complete solution details and do
not evaluate the proposed solution.

Answers of RQ1: Tools and techniques proposals related to API evolution typically seek to highlight
existing concerns in the field, and provide potential approaches to resolving these problems.

4.1.4 Surveys. Like this research paper, surveys of existing literature seek to present a fair eval-
uation of a research topic by using rigorous methods [81]. The surveys presented in this paper
typically start with a research topic and observe existing literature to provide a view of the topic at
hand. Our dataset contains five surveys related to API evolution.
In his 2016 survey on software ecosystems research, Manikas [102] seeks to provide updated

evidence to determine and document evolution in the field of software ecosystems. The survey shows
evidence that the evolution of software ecosystems draws the attention of numerous papers [102].

As part of a book by Robillard [148], Mens and Lozano produced a chapter on Source Code-Based
Recommendation Systems [108], and Kim and Meng [148], produced a chapter on Automating
Repetitive Software Changes. These chapters can be independently obtained through the Springer
archives, and we consider them to be two separate surveys of specific areas of recommendation
systems since they are presented as such in Recommendations Systems in Software Engineering. Both
of these chapters seek to provide state-of-the-art insight into specific recommendation Systems.
Kim and Meng provide a general view of five source code-based recommendation systems and the
in-depth design of one system to provide insight into the design decisions that are made when
creating source-code based recommendation systems [148]. The chapter byMens and Lozano seek to
present state-of-the-art approaches that can be used to automate repetitive software changes [108].
In their survey of automated API property inference techniques, Robillard et al. [145], seek to

provide an overview of API property inference techniques to present properties inferred, mining
techniques, and empirical results of API property inference techniques [145].
In his survey on software merging, Mens [109], seeks to present a comprehensive analysis of

available software merging approaches. The finding presented in this survey are directly applicable
to API evolution topics such as API migration tools where merging techniques can be used to help
automate API migration [106].

Answers of RQ1: Survey papers, like this systematic literature review, typically seek to present an
overview of a subject using existing literature to provide clarity for their given subject and allow
for effective stepping-stones for future research. The survey papers we reviewed consider subject
matters related to API evolution without concentrating on API evolution itself.

, Vol. 1, No. 1, Article . Publication date: June 2020.

12 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

0

5

10

15

20

25

30

35

40

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0
0

1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0
0

9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0
1

7

2
0

1
8

2
0

1
9

2
0

2
0

N
u
m

b
e
r

o
f
P

u
b
lic

a
ti
o
n
s

Empirical Case study User study Qualitative

(a) Type of evaluation used over time

0

5

10

15

20

25

30

35

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0
0

1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0
0

9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0
1

7

2
0

1
8

2
0

1
9

2
0

2
0

N
u
m

b
e
r

o
f
P

u
b
lic

a
ti
o
n
s

C C++ C# Java JavaScript Python Pharo

(b) Language used for evaluation over time

Fig. 6. API evaluation trends

4.1.5 Datasets. Out of the 369 papers investigated for this study, we uncovered three papers that
we labeled as dataset papers. Which concentrate on building a dataset related to some aspect of API
evolution (e.g., Linux system calls [11]). The datasets are produced to conduct further studies [11],
advance the state-of-the-art [3], and improve reproducibility of research [155].

4.2 API Evolution Research Evaluation
We seek to determine how API evolution research is typically evaluated. API evolution research
often requires more than manually observing an API. Studies rely on distinct evaluation methods
and make use of various software metrics to evaluate their results. Details for the various types of
evaluations performed in API evolution can be found online.4

We identify four major means of evaluation used for API evolution research. Empirical evaluation,
where quantitative metrics like LOC (lines of code) or precision and recall are used for evaluation
over multiple subject systems. Case studies, where a single subject system is used to obtain subject
related metrics and results. User studies, that employ survey techniques and interviews with
developers or users. Finally, qualitative evaluation which relies on subjective interpretations.
Figure 6a presents the evolution trends of these four evaluation means. We concentrate on the five
paper types and identify the evaluation methods and the metrics that are used in these papers.
We identified 31 different evaluation metrics used in our publication sample. We assembled

the metrics that occurred fewer than five times and were not known statistical properties (e.g.,
AUC, Confidence interval) into more global metric types, such as absolute value metrics, qualitative
metrics and other. Thus, we obtained 9 metric types. Figure 7a shows their yearly trends.
Using the data we uncovered, we can see that although more rigorous evaluation metrics such

as precision, recall, AUC, and F1 score appear to be gaining in popularity, a large percentage of
papers still use a variety of non-standard absolute value metrics. A wide range of absolute value
metrics are used to evaluate experiments and tools such as method parameter count, method
changes, popularity, community size, project maturity, number of years active, fix rate, number
of restarts [8, 59, 84]. None of these metrics are flawed but the lack of standardization makes it
difficult to compare similar experiments and determine if progress is being made.

4.2.1 New Tools and Techniques. As presented in Section 4.1 the majority of the papers fall within
the scope of new tools and techniques. A surprising number of API evolution tools and techniques
do not formally evaluate their tool. In most of these cases, the tools appear to have been evaluated by
4https://github.com/senseconcordia/APIEvolutionSurveyEvaluation

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 13

the authors of the paper, however no formal evaluation is provided, e.g., when the tool is presented
as part of a short paper and is evaluated as part of a second paper. This is the case for SemDiff by
Dagenais et al. [34]. The reader must be vigilant to obtain the evaluation of a tool.
Most API evolution tools are evaluated for their accuracy. In older papers, this accuracy was

simply reporting the true positive rate [19, 105, 140]. Recent papers reported precision, recall,
F1-score, and the area-under-the-curve (i.e., AUC) [30, 71, 174, 175, 187]. Figure 7a shows that, in
the last decade, papers begun using more standardized metrics for their experiments.
In some cases, it is not possible to ascertain the recall of a measure (e.g., in the case of mined

framework usage changes [159]), then authors normally concentrate on providing precision metrics
instead [33, 159, 165, 181, 189], which is particularly prevalent in data mined from large repositories
for which it is impossible to manually determine if any instances were missed by the approach.
It would be possible to remedy to this situation with high quality open-source datasets that have
been manually vetted by experts.

4.2.2 Empirical Studies. All of the empirical studies relied on quantitative analysis to evaluate their
results. The metrics evaluated depend on the study, ranging from changes in APIs (e.g., addition,
modification, removal) [95], changes in lines of code [104], code smells [61], API popularity [22],
errors [115]. The most pervasive API evaluation criteria is absolute changes in API methods (e.g.,
changes to numbers of deprecated APIs, APIs added, APIs removed, APIs modified).

As shown in Figure 7b, case studies present a variety of evaluations. Some papers [84] compare
various metrics like added APIs, deprecated APIs, removed APIs. Quantifying API changes through
added/modified/removed APIs [51, 84] appears to be common for API evolution case studies.
However, although most API case studies consider and quantify API changes, some also rely

on qualitative evaluations [14, 36, 143]. For example, one study [36] identifies six promises and
seven perils of ported visualization tools such as promising to provide feedback about errors. This
qualitative information must be manually extracted by the authors.
Case studies appear to be well suited to uncover new evaluation metrics for APIs to uncover

previously unknown information such as the promises and perils of ported visualization tools [36],
the types of ripple effects caused by changes in software ecosystems [143], and API migration
issues [14]. It is therefore expected that case studies present more uncommon absolute value
metrics and other metrics, because these studies might be attempting to identify new metrics. The
information uncovered through case studies can later be used in larger scale empirical studies of
various APIs, for example to determine the impact of API migration issues on various APIs [196].

0

10

20

30

40

50

60

70

80

90

100

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

P
e
rc

e
n
ta

g
e
 o

f
m

e
tr

ic
s
 u

s
e
d
 f

o
r

e
v
a
lu

a
ti
o
n

Absolute values LOC Accuracy

p-value Precision&Recall Qualitative metrics

F1 score AUC Other

(a) Evolution of evaluation metrics over time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Empirical Case study User study

P
e
rc

e
n
ta

g
e
 o

f
m

e
tr

ic
s
 u

s
e
d
 f

o
r

e
v
a
lu

a
ti
o
n

Absolute values LOC Accuracy

p-value Precision&Recall Qualitative metrics

F1 score AUC Other

(b) Metrics used for different evaluation types

Fig. 7. API evaluation metrics

, Vol. 1, No. 1, Article . Publication date: June 2020.

14 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

4.2.3 Tools and Techniques Proposals. Reports from talks or expert panels of API evolution con-
centrate on coarse grained issues and challenges that plague the field of software APIs. These
papers concentrate on abstracted problems taken from existing literature, and rarely evaluate their
methodology. Most papers that concentrate on future research avenues [16, 78] and paradigm
shifts [149] do not present evaluation criteria.

However, some exceptions exist. A report on web APIs, concentrates on challenges in the field,
but also suggests looking into metrics like latency to benchmark performance [180]. Similarly,
papers on recommended practices [88] concern specific software metrics that could be improved
through developer knowledge (e.g., reducing coupling) [88]. Finally, a tool proposal contains an
evaluation for their tool through accuracy metrics, and a user study [42].

4.2.4 Surveys. We observe two types of survey papers related to API evolution. The first type
concentrates on existing literature, for example a survey on automated API property inference
techniques by Robillard et al. [145] surveys existing techniques and provides a summary of these
techniques. Surveys of this type do not appear to rely on metrics to evaluate the papers presented in
their findings. These papers instead rely on the evaluation presented in each of the papers surveyed.
Furthermore, each survey of this type identifies a particular scope and specific criteria that must be
respected throughout the study, criteria which are manually evaluated by the author(s). Similarly,
in this systematic literature review, we also rely on the evaluations presented in our sampled papers.
However, we also use quantitative information to uncover publishing and evaluation trends, as
well as determine the emergence of API evolution sub-fields.

The second survey type provides the results of questions used to extract data from participants.
These papers present quantifiable data that can be evaluated in various ways. For example, one pa-
per [144] provides raw data for responses to survey questions within the related paper. Furthermore,
the responses to the survey questions are quantitatively evaluated by the author [144]. Meanwhile,
other works [48] survey the behavior of programmers to specific tasks. This behavior can be quan-
tified through statistical measures such as standard deviation, Z-score, and p-values [48]. Current
evaluation methodologies appear to be tailored to specific papers with no standardized dataset
or evaluation methodology used for API evolution surveys. This lack of standardized evaluation
methodology should be addressed by the community since it hampers research comparison and
therefore makes it difficult to determine when and where progress has been made.

4.2.5 Datasets. We found three papers presenting empirical datasets. Datasets related to API
evolution, are proposed to stimulate research [155], and to improve the state-of-the-art [3].

Datasets are not always fully evaluated because fully verifying large datasets can incur a heavy
manual overhead. Therefore, some datasets do not present any immediate evaluation [155], some
datasets are fully manually verified by multiple individuals [3], and some datasets are evaluated
through manual verification of a statistically significant sample [11].

Answers of RQ1: Similarly to API property inference techniques [145], empirical evaluation in
API evolution studies in general has not yet converged to specific styles and metrics. A surprising
number of API evolution tools and techniques do not present any empirical evaluation while
studies with similar tools and techniques evaluate precision, recall, f1-score, and AUC. Meanwhile,
API evolution empirical studies rely on various metrics with absolute changes in API methods
appearing most often, but not always. Survey papers, tools and techniques proposals, and dataset
papers similarly present a variety of evaluation criterion with no clear standards. While some
flexibility is indeed required to allow for various research goals, there is still work to be done to
evaluate similar research goals using similar evaluations styles and metrics.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 15

Table 5. APIs used most commonly as evaluation subjects

API Frequency
Android 52
Java API 51
Toy systems 21
Eclipse 18
JHotDraw 12
Log4j 12
Proprietary systems 12
Struts (1&2) 9
JUnit 9

API Frequency
Guava 8
Hibernate 8
JFreeChart 8
Lucene 8
Spring 8
Hadoop 6
Pharo 6
.Net API 5

4.3 API Evolution Experimental Subjects
We now finish answering our RQ1 by providing further insight into API evolution evaluation by
presenting the APIs that are most commonly used as evaluation subjects. We concentrate on APIs
that are used as evaluation systems in at least five different studies within our sample set. The
frequency of API under evaluation in our sample set is presented in Table 5. While comparing the
frequency of the various APIs used as evaluation subjects by prior work, we highlight benefits and
reasons for choosing specific APIs as evaluation subjects.

We find that the majority (346) of the studies in our dataset employ at least one API to evaluate
their hypotheses. 127 of these 346 studies employ multiple APIs to allow the generalization of
results across multiple systems or multiple programming languages.

27 out of 369 publications either do not present or do not use an API to test hypotheses. The lack
of test systems may be due to the nature of the publication. For example, survey papers concentrate
on summarizing the state of prior work [102, 108, 109, 145]. Similarly, book chapters [148], papers
about general programming practices [88], future research proposals [46, 149], and hypotheses
about the future of software engineering [78] do not employ APIs. Some tool proposal papers do not
provide any tests when simply presenting the tool [40, 42, 120, 163, 164, 186]. Similarly, exploratory
research with theoretical findings does not always provide tests [1, 16, 180]. Finally, some research
uses theoretical proofs to ascertain their results, and prove the validity of their approach without
tests [29, 94, 150, 178].
When considering that the Android API is primarily Java, and that most toy systems (12 out

of 21) used within our sample are created by using the Java programming language, we find that
API evolution research is heavily skewed towards the Java programming language. As shown
in Figure 6b, 236/369 papers (63.9%) are exclusively evaluated with Java systems between 1994
and 2020. However, this trend seems to be shifting in recent years. The second most common
programming language is JavaScript with 15 papers using JavaScript APIs, since 2011, to evaluate
their findings. Figure 6b presents the evolution trends of programming languages used in the
evaluation of API research from 1994-2020. We only include programming languages that were
used for more than two publications within our sample. Table 5 presents APIs that are used as test
in more than five different research papers.

Answers of RQ1: API evolution evaluation is skewed towards the Java programming language:
236/369 papers (63.9%) used exclusively Java APIs. This presents opportunities for replication
studies as well as potential avenues for future research with other programming languages that
differ from Java, e.g., Python or JavaScript.

, Vol. 1, No. 1, Article . Publication date: June 2020.

16 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

Answers of RQ1: How has the field of API evolution research evolved? API usability and main-
tainability are API researchers’ main research goals and subjects of empirical studies. Proposals
and surveys pertain to all aspects of API evolution. Empirical studies, surveys, and datasets on
API evolution use various evaluation methods, criteria, and metrics. API evolution evaluation is
heavily skewed towards the Java programming language.

5 SEMINAL AND RECENT PUBLICATIONS
To answer RQ2: What is the current state-of-the-art in API evolution research?, we first present
publication trends within the state-of-the-art in API research. We then concentrate on the seminal
and most recent concepts and research works. We chose these seminal works based on the novelty
of their content, the number of works that present similar ideas and build on these seminal works.
We divide this section by publication contribution type as in Section 4.1.

5.1 New Tools and Techniques
Over the years a variety of tools and techniques have been developed to ease the burdens caused
by API evolution. In general, we find that tools and techniques appear to primarily concern
themselves with Lehmans law of Conservation of Familiarity while other laws such as Continuing
Change, Increasing Complexity, and Invariant Work Rate serve as challenges to the Conservation
of Familiarity [89]. We separate API evolution tools and techniques into general topics such
as documentation [35], examples [186],misuse [5],migration [43], recommendation [108], usage [145],
and other. As presented in Section 3.5.2, these tool topics were either identified in prior surveys [102,
108, 109, 145, 148], or by using publication keywords, titles, abstracts as well as our own judgement.
We provide a general overview of the state-of-the-art for each tool topic.

API Documentation Tools: API documentation has been described as large and cumbersome [38],
lacking and difficult to produce [56], but instrumental to success [146]. State-of-the-art tools and
techniques use Stack Overflow posts to supplement documentation for lexical queries [71], augment
documentation by automatically detecting APIs in the documentation [171], employ dynamic
specification mining to improve decaying documentation [2], identify misuses in documentation to
warn users [92], generate high quality source code summaries [98], and employ neural networks to
produce high-quality text-to-code [119], code-to-text, and code-to-code retrieval [123].

API Examples Tools: API examples have been touted as helpful to understand how APIs work [105,
113]. Approaches such as MAPO [199] and Jungloid [101] mine API examples from existing code.
Approaches such as Examplore [58] employ relational topic models to produce API examples that
span multiple files. Techniques using bytecode analysis [105], framework extension points [33],
and software visualization [26] have also been used to identify API examples.

API Misuse Tools: API misuse tools primarily attempt to identify unfavorable API uses that
could lead to future problems [4]. Approaches use machine learning [142], mutation analysis [177],
specification mining [138], and API-usage-graphs [4], to attempt to detect misuses.

API Migration Tools: CatchUp! [40, 64] was one of the original approaches to deal with the
problem of API migration. It captures API refactorings produced by API developers and synthesizes
an edit script that can be replayed on API user code. Similar approaches were created where edit
scripts could be manually created by the API developers [13] rather than recorded.
JDiff [6] is one of the first tools to synthesize a report of API changes between two versions of

an application. It presents additions, removals, and modifications to any API. This information can
be used to automatically track changes made to APIs. Similarly, ACUA [183] analyzes the binary

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 17

code of both frameworks and client’s programs written in Java to identify API changes, generating
a report to estimate migration workload.

SemDiff [34] was one of the first approaches to use call dependency analysis to map APIs between
two versions and determine a migration path between two or more migrated APIs. AURA [184]
combines call dependency and text similarity analyses to identify API change rules between two
versions. HiMa [107] uses revision control to create framework-evolution rules, which are then
used to migrate user applications, outperforming both SemDiff and AURA. Approaches such as
LASE [106] create a context-aware edit script from two or more examples and use the script to
automatically identify edit locations and transform code. Recent API migration tools and techniques
employ abstraction layers [57], knowledge extracted from API clients’ evolution [158], and syntactic
changes [20] to improve API migration techniques.

Tools and techniques also exist to migrate across programming languages rather than application
version [24]. The state-of-the-art in this domain currently employs generative adversarial networks
to produce high quality API mappings across languages such as Java and C♯ [24].

API Recommendation Tools: Identifying useful APIs can be a challenge for API users [118]. API
recommendation attempt to ease the burden of selecting the most appropriate API by automatically
recommending potentially useful API [141]. Various tools and techniques have been proposed
to recommend useful API methods [30, 47, 135], and parameters [7]. Current state-of-the-art
approaches rely on converting English text queries and documentation to API elements [12, 125],
ranking existing API recommendations by leveraging API usage path features [99], version history
and Stack Overflow posts [10, 190].

API Usage Mining Tools: Most of the tools and techniques are primarily targeted at API users.
However, API usage mining tools are particularly suited to API researchers and API developers.
These tools attempt to uncover various API usage metrics from API user projects and examples.
These tools and techniques are meant to determine API usage for a variety of reasons. These reasons
range from determining the most useful API methods [163], to improving API productivity [116].
We identified tools that automatically identify refactoring with high precision and recall [44, 168].
Tools that can automatically identify API that will be made public in the future [69], and tools that
can extract fine-grained API usage [156].
Learning to use APIs appropriately is challenging [46]. Several attempts have been made at

easing the learning curve of APIs by automatically improving online question/answer forums either
through automatic answers [151], or by providingmore information about the APIs themselves [132].
Other approaches use of machine learning approaches to extract and provide API tips to users [175].
There are also techniques that infer structured descriptions of web APIs from web examples [166].

Other API Tools: Not all tools fit in the categories presented above. Some tools present solutions
to niche problems to help verify the impact of APIs on program correctness [164, 176, 181, 182],
software security [73, 140, 200], and software quality [18]. We also found papers that detect
deprecated APIs [201] and API reuse patterns or code clones [66, 122, 198] to identify useful
patterns for API users and APIs to improve for API developers. Finally, tools have been created to
apply standards to REST API [91], test cloud APIs [8], and develop adapters for web services [17].

Answers of RQ2: State-of-the-art tools and techniques related to API evolution seek to, in order of
importance, improve API usage, help adapt to changes, provide automated API migration, provide
API recommendations, reduce API misuse, and provide better API documentation and examples.

, Vol. 1, No. 1, Article . Publication date: June 2020.

18 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

5.2 Empirical Studies
We uncover two main subjects in the state-of-the-art API evolution empirical studies, those that
concentrate on API usability and those that concentrate on API maintenance.

API Usability: Many papers look into various aspects of API usability to reduce complexity [89].
These papers concentrate on issues such as breaking changes, integration problems, how API are
used and what makes APIs hard to use, API standards, API misuses, and API documentation.
Current empirical studies in breaking API changes suggest that there is a growing need to

document acceptable usages for APIs [179]. Furthermore, it is suggested that non-atomic refactoring
patterns used by API developers can reduce API migration burdens [179]. Non-atomic refactorings
in this case are defined as introducing a new API and changing the existing API piecemeal until
there is no more use of the old API [179].
On average dominant topics on forums can cover at least of 50% of questions pertaining to

web API integration [172]. It is possible to unbundle software APIs in different ways to vary the
uniqueness of API bundles [103].
Finding good names, relations between API types, knowing the impact of API flexibility and

accurate documentation are all needed for good API usability [134]. API users claim that discovering
allowable types is difficult, thus tools to suggest allowable types could benefit users [45]. APIs do
present meaningful local interaction patterns that can be used for future recommendations [65].
Developers have a hard time understanding reflections API, and only produce tests after a bug
is reported [136]. Developers use examples to understand how APIs work. They also need to
understand the general idea of how an API works [144]

Recent papers have uncovered 22 patterns that determine what makes an API less usable [202].
Programming language [197] as well as tools, information, and boundary resources such as com-
munity are very important when selecting an API [117].

Issues pertaining to API standards [92, 114, 178] affect the usability of web APIs [51]. Deprecation
in particular has been found to vary mechanism, support, and implementation and fail to fully
address the needs of developers [154]. Performance issues in mobile apps has been studied and
carefully designing storage, limiting the MVC pattern, and limiting widgets are all factors that
improve app performance [96].

Various works have studied API misuses [9, 79]. 11 different types of API fault cases have been
identified [9]. Most cases have been attributed to missing data [9]. However, a lack of semantic
awareness and correct usage examples lead to many false positives in API misuse detectors [5].

Many papers concentrate on API documentation motivated by incomplete documentation [49],
the challenge of producing good documentation [129], and the shift of API documentation to more
social sources [128]. A case study with Github and Stack Overflow to locate information from
10 popular APIs found that Github and Stack Overflow are often used by Google to document
new functionalities [167]. An empirical study that combines API patterns extracted from GitHub
projects to determine if Stack Overflow posts present faulty API code, found that up to 31% of
posts may have potential API violations [193]. Languages with static typing and documentation
are much easier to use than dynamic languages, with or without documentation [49]. Documenta-
tion incompleteness and ambiguity plague developers in a user-study to determine what causes
developers to use other APIs [169]. Almost all usage constraints are present in API source code but
not in documentation [152]. An empirical study of automatic knowledge extraction techniques to
extract knowledge from API documentation found that SVM and deep-learning methods can be
complementary when attempting automatic knowledge extraction [55].

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 19

Answers of RQ2: Empirical studies on API usability typically concentrate on how API are used and
what makes APIs hard to use this includes challenges, such as, in order of importance, breaking
changes, integration problems, and API standards. API usability studies also concentrate on API
misuses, API examples, and API documentation.

API Maintainability: A large number of empirical studies related to API evolution concentrate
on the maintainability of APIs to conserve familiarity as APIs evolve [89]. More precisely, papers
mainly concentrate on aspects such as deprecation, reuse patterns, the speed at which APIs change,
and the effects of propagating these changes.
A user study found that developers who use unstable Eclipse APIs often do not read documen-

tation and therefore do not know which API are deprecated [27]. Empirical studies have been
conducted to determine how effective documentation is at solving deprecation problems. Most
documentation does not cover alternative APIs and code examples are very rarely documented [82].
However, in the case of the Android API, deprecated entities are removed in a timely manner, and
the Android API recommends alternatives; yet most deprecated APIs in Android are in popular
libraries [95]. Another empirical study determined that there is no major effort to update depreca-
tion messages in most projects and that deprecated messages depend on the size and community of
the project [23]. They found that only 64% of API elements that are deprecated have replacement
messages, and that there is no effort to improve this over time [22]

Empirical studies have been conducted to detect reuse patterns and software clones to improve
maintainability [76]. Patterns of API reuse have been identified in various code samples (e.g.,
opening and closing files) [110]. A decline of popularity appears to indicate that something is
wrong with an API [112]. Some studies have shown that over 80% of breaking changes in API are
due to refactoring [43], however other studies have since disputed this claim [31]. Refactoring APIs
has however shown a tendency to increase the speed at which bugs are fixed [80].
Empirical studies that concentrate on the side effects of rapid API evolution found that using

new APIs that are highly touted may be a counter-productive practice [139]. Although the potential
for problems to occur due to developers updating to newer library versions without modifying any
of their source code is high, these problems tend not to occur on a wide scale in practice [39]. 28%
of android references are out of date. 22% of outdated API usages eventually upgrade to newer API
versions but this takes about 14 months [104]. Mostafa et al. [115] found that most API incompati-
bilities are not well documented, and 67% of client bugs linked to backwards incompatibility can be
fixed through simple client changes [115]. Furthermore, over 88% of Android apps follow the same
workaround pattern to fix Android version issues, and this pattern can sometimes lead to incorrect
behavior [63]. Studies have suggested that developers believe there is a direct relationship between
adopted APIs and user ratings [15]. Web services follow a spike and calm cycle of maintenance, an
empirical study into Amazon services determined recommendations to make the most of spike and
calm cycles from a developer point of view [191].

API evolution empirical studies have been used to determine different patterns of evolution for
web APIs [93]. APIs change due to needing more functionality and usability [60]. Most API develop-
ers appear to introduce breaking changes to simplify the API and introduce new functionality [21].
Meanwhile, library maintainers are less likely to break API classes used by many clients [83]. API
users update API versions and only use deprecated entities less than 20% of the time. However, most
users do not react to deprecation, but remove API references when something gets deleted [157].
14.78% of API changes break compatibility and impact 2.54% of clients [185]. Systems with higher
break frequencies are usually larger and more popular [185]. Another empirical study similarly
finds that about half of API changes cause reactions in only 5% of clients and that the overall
reaction time is slow [67].

, Vol. 1, No. 1, Article . Publication date: June 2020.

20 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

Studies have shown that mobile development questions increase when new versions of Android
are released, and these questions appear to concentrate on deleted methods [97]. Meanwhile, mobile
devs rarely update their apps, and when they do, it is likely with respect to GUIs [153]. API updates
are ignored due to poor awareness of benefits and high cost [153].
The results of empirical studies lead to the recommendation of semantic versioning, self-

documenting APIs, publishing customized change-logs with discussion forums for changes [160].
Furthermore, web APIs should not change too often, old versions should not linger, API developers
should keep usage data, blackout tests should be used, and providing examples is useful to users [53].

Answers of RQ2: Empirical studies on API maintainability typically concentrate on challenges,
such as the speed at which APIs change, change impact, reuse patterns, and API deprecation.

5.3 Tools and Techniques Proposals
The tools and technique proposals primarily concentrate on highlighting an existing problem
and proposing potential solutions for future work. API evolution tools and technique proposals
concentrate on the future of API evolution research. The more recent proposals highlight the need
to differentiate between web APIs and library APIs [180] and to develop digital assistants to map
user intent to ever more numerous APIs [16]. Furthermore, one particular proposal concentrates on
a vision of automated developer documentation [149]. It highlights challenges such as establishing
precise links between artifacts, capturing document request context, and the summarizing and
synthesis of documents [149]. These proposals are particularly useful to understand the current
demands of researchers and developers.

Answers of RQ2: Tools and technique proposals discuss differences between Web and library APIs,
automated documentation, and automated traceability between APIs and other software artifacts.

5.4 Surveys
Surveys highlight seminal concepts and state-of-the-art work by design. As previously mentioned
in Section 4.1, we found five survey papers pertaining to API evolution using the methodology
highlighted in Section 3.

These papers highlight the state-of-the-art in recommendation systems pertaining to API evolu-
tion [108, 148], software ecosystems [102], API property inference techniques [145], and software
merging techniques [109]. We use metrics, classifications, and challenges uncovered by prior sur-
veys [102, 108, 109, 145, 148] to reinforce our own findings, and to categorize tools and techniques
employed in API evolution studies, and empirical studies into publication types in Sections 5 & 6.

The survey papers also highlight open problems and future research directions in their respective
domain. Some open-questions have been solved since the publication of the surveys. However,
some challenges are still open, and we re-iterate these along with our own findings in Section 6.

Answers of RQ2: Surveys associated to API evolution tend to highlight the state-of-the-art in
research as well as current research challenges and future research directions.

5.5 Datasets
Papers that primarily concentrate on datasets are oriented towards replication, and future studies.
In the three datasets in our study, the data presented is recent (2015-2018) and available online to
be kept up to date and relevant to API evolution studies.

We identified a dataset constructed from the observation of a decade of Linux system calls [11].
This dataset presents 8,870 classified system call related changes. Another dataset presents 1,482,726

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 21

Challenge Proposed State-of-the-Art Solution

Dealing with breaking API changes

Document acceptable usages [179]
API bundles [103]
Automated API migration [24, 57]
Extracting migration knowledge from clients [86, 158]

Improving API usability

Local interaction patterns [65]
Usability patterns [202]
API selection criteria [117]
Digital assistants [16]
Automated API tips [175]
Automated documentation [2, 71, 98, 149, 171]
Example mining [58, 116, 168]
API recommendation algorithms [12, 99, 125, 190]

Reducing API misuses Misuse detectors [4, 5, 9]
Table 6. State-of-the-art solutions to existing API evolution challenges

method invocations related to 5 Java APIs (Guava, Guice, Spring, Hibernate, EasyMock) created by
mining 20,263 projects on GitHub [155]. Both of these datasets target research in software APIs to
improve the state-of-the-art in future API studies.
The final dataset specifically concentrates on API misuses [3]. This dataset contains 89 API

misuses collected from 33 projects and a survey. The primary goal of the benchmark is to evaluate
API-misuse detectors, which will then allow fair comparison between various approaches [3].

We consider three papers that present datasets as primary contributions. However, papers listed
under different primary contributions (e.g., Empirical studies) could have a dataset as secondary con-
tributions. For example, there are papers that contribute approaches [156], or empirical studies [61]
but also include datasets. Making research datasets open-source is becoming more popular.

State-of-the-art datasets are vetted, open-source sources of data for replications: API invoca-
tions [155], Linux system calls [11], and API misuses [3] are available for API evolution research.

Answers of RQ2: What is the current state-of-the-art in API evolution research? We described
seminal and recent API evolution works. Table 6 summarises their challenges and state-of-the-art
solutions. They are concerned by breaking changes, usability, and misuses. They want to ease API
usage, API changes, API migration. They also want to provide API recommendations, reduce API
misuse, and document APIs. They suggest that future works should concern Web APIs, automated
documentation, and automated traceability between APIs and other software artifacts.

6 CURRENT AND FUTURE CHALLENGES
To answer RQ3: What are the current and future challenges related to API evolution?, we manually
identify existing API evolution research challenges and also uncover unsolved ones (presented in
Table 7). Indeed, although API research has grown rapidly in the last decades, and several avenues
of research have shown promising results and tools, there are still many unsolved challenges related
to API evolution. Challenges in API evolution research are scattered in the literature, which hides
advances and also cloaks important, remaining challenges.
While producing this literature review, we kept a record of challenges that are mentioned in

publications. Using this record, if we find publications that attempt to resolve these challenges,
we consider them existing challenges (EC). However, if a challenge is mentioned, but no solutions
currently exist we consider the challenge to be an emerging or unsolved challenge (UC). We
manually added further challenges to these unsolved challenges by using the insights that we
gained throughout this literature review.

, Vol. 1, No. 1, Article . Publication date: June 2020.

22 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

Table 7. Open challenges in API research

Challenge types Paper types Challenges

Existing challenges

New tools and techniques

EC-1 Combining textual merging with syntactic and semantic approaches [109]
EC-2 Providing a commercially viable API migration solution [20, 34]
EC-3 Incorporating domain specific information into tools [109]
EC-4 Using systematic evaluation methods in empirical evaluations [145]
EC-5 Producing more specific and less abstract theories [102]
EC-6 Reducing the variability of software API studies [102]
EC-7 Finding input examples for API migration through examples [148]
EC-8 Improving the granularity of API migration approaches [148]
EC-9 Validation and correction of API migration edit scripts [148]
EC-10 More tools to help with Web APIs [180]
EC-11Using existing library API research as stepping stones forWeb APIs [180]
EC-12 Combining both API side learning with client side learning [158]
EC-13 Dealing with out-of-vocabulary problems [24]

Empirical studies

EC-14 Defining best fit APIs [192]
EC-15 Automatically identifying factors that drive API changes [60, 70, 191]
EC-16 Dealing with API semantics and dependencies [5]
EC-17 Deploying bug fixes to multiple API versions [160]

Unsolved Challenges

New tools and techniques

UC-1 Using uniform benchmarks for API tool evaluation
UC-2 Supporting the context sensitivity of API migration tools
UC-3 Improving performance of API tooling to allow user adoption
UC-4 Dealing with fuzzy and ambiguous developer intent
UC-5 Reducing the knowledge gap between API users and developers
UC-6 Tools that mine usage data help API developers improve APIs
UC-7 Keeping API users in the loop for API recommendation systems
UC-8 Generalizing API tools to languages other than Java
UC-9 Tools to help API developers deal with API migration, not just users
UC-10 Reducing API misuse from the API development side

Empirical studies

UC-11 Understanding the coupling between APIs and programming languages
UC-12 Determining API migration and API recommendation impacts
UC-13 Generalizing API empirical studies to languages other than Java
UC-14 Comparing the evolution of various APIs

Datasets UC-15 Creating large scale API migration and recommendation datasets

We identify existing challenges for API evolution research on new tools and techniques, empirical
studies. We uncover no challenges from proposals or surveys. Similarly, we did not uncover existing
challenges from datasets, only unsolved challenges. Based on our findings, we believe that Lehman’s
8th law, namely Feedback System [90], poses the largest hurdle to future API evolution research.

6.1 New Tools and Techniques
Existing Challenges: Issue: Most of the tools presented in this report concentrate on library

APIs; little effort has been done on Web APIs [180] (EC-10). While Web APIs differ from library
APIs, their users must concern themselves with quality of service, weak specifications, and a
lack of comprehensive listings for Web APIs [180]. Web APIs do suffer from API migration, API
documentation, and API example problems, but their research prevalence is sparse. Propositions:
Researchers should use existing research, such as API migration approaches [6, 20, 24, 34, 57, 106,
158, 183, 184], high quality code summary generation [98], misuse identification [92], and using
relational topic models for examples [58] as stepping stones to improve Web API tooling (EC-11).
State-of-the-art migration techniques should consider hybrid approaches (EC-12) to combine

both API side learning with client side learning [158] and consider the use of domain adaptation
methods (EC-13) to deal with out-of-vocabulary problems, a current API Evolution issue [24].
Issue: API migration, API recommendation, and API misuse detectors still have room for im-

provement. Propositions: These challenges require keeping the API users in the loop, because
they are ultimately the ones most impacted by these problems. Furthermore, tools that attempt to
aid with these problems should aim to support more programming languages and Web APIs.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 23

Unsolved Challenges: Issue: Many tools and techniques have been created to deal with API
evolution challenges. However, most tools concentrate on a small range of challenges and do not
fully consider feedback loops involved in API evolution. Although individual tools show promising
results [4, 34, 58], none can claim to be 100% effective at solving their target problem. Machine
learning approaches are now emerging as potential solutions to key API evolution issues [25, 124],
it remains unclear whether current approaches are good enough for user adoption, whether they
can be applied to all issues, or if performance should still be improved before users can start using
these tools (UC-3). Fuzzy and ambiguous intent (UC-4) as well as the rapid evolution of software
services that employ APIs, such as IoT devices, are challenges that concern evolving APIs [16].
Propositions: Effective API engineering must find solutions to deal with technical problems caused
by APIs, and to reduce ambiguity of APIs [132] and the knowledge gap between API developers
and users (UC-5). New tools are needed to help API developers create APIs that are easy to use by
API users [144] (UC-6), just like better techniques are required to help API users understand how
to use APIs [147] (UC-7). Both of these challenges are dependent on researchers understanding
what constitutes a "good" API, and why API users select one API over another.

Issue: Many tools want to expand to more programming languages [68, 71, 116, 175, 189].
However, most are still developed for Java. Figure 6b shows an emerging shift to other programming
languages in recent years. However, it remains to be seen how effectively API evolution tools would
translate to other programming languages (UC-8).

Issue: API migration received a great deal of attention in API evolution research. However, it is
still an open problem. Most existing approaches concentrate on the client side, with the premise that
API migration is the burden of API users [87, 106, 133]. Propositions: Research should be done to
determine if it would be more efficient to transfer some of the burden to API developers (UC-9)
(e.g., have API developers provide migration scripts like Python5 versions 2 to 3), and develop tools
to improve API engineering such that API migration efforts are reduced on the client side.

Issue: Several tools have been developed to extract API misuses [4] and API usage [105] (e.g., API
call frequency). Propositions: Research should concentrate on using usage andmisuse information
to create a feedback loop to help API developers improve their APIs (e.g., using API workarounds
as improvement areas [86]) (UC-10). Most of the API research conducted in the last two decades
concentrated on API users rather than API developers.

6.2 Empirical Studies
Existing Challenges: Issue/Proposition: Studies uncovered the need for future work on API

developers and API development for supporting the evolution of APIs [52, 143], defining best fit
APIs [192] (EC-14), and automatically identifying factors driving API changes [60, 191] (EC-15).

Issue/Proposition: In their study on API misuse detectors, Amann et al. [5] highlight the need
for future studies into program semantics and dependencies (EC-16), as well the need for tools that
properly handle alternative patterns for the same API.

Issue/Proposition: The need for tools to deploy bug fixes to several versions of an API at once
(EC-17) has been proposed by Sohan et al. [160].

Unsolved Challenges: Issue: Most (66%) API evolution empirical studies concentrate on APIs
written in the Java programming language. Other languages such as C, C++, C#, JavaScript, Python
are only covered by a small percentage (≤ 5% each) of empirical studies. Proposition: Future
studies should generalize to languages other than Java (UC-13).

Issue: A great number (74%) of empirical studies do not rely on any statistical tests to evaluate
their results. The majority of these studies present metrics such as lines-of-code (LOC) or the
5http://python-future.org/automatic_conversion.html

, Vol. 1, No. 1, Article . Publication date: June 2020.

24 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

numbers of field/method/class changes, but there is no current way to normalize these results
to compare them across studies or APIs (UC-14). Proposition: It remains an open challenge to
compare the evolution of various APIs, particularly across programming languages.

6.3 Datasets
Unsolved Challenges: Issue:We identified three papers on datasets. Although it has become more

popular in recent years to publish datasets (all four datasets presented in this paper were published
after 2015), the field suffers from a lack of accepted and up-to-date datasets. For example, 13 papers
concentrate on API migration tools and techniques, however, we could not identify any common
dataset or API to directly compare migration tools or studies.

Proposition: API evolution research would greatly benefit from more datasets, particularly for
API migration and recommendation (UC-15). Such datasets are challenging to create because some
API migrations and recommendations are subjective and context sensitive.

6.4 Others
Other goals of research on API evolution, tools and technique proposals and surveys, are scarcer so
we discuss them together in this section.

Existing Challenges: Issue/Proposition: In his survey on software merging [109], Mens high-
lights a need for tools that combine textual merging with syntactic and semantic approaches (EC-1).
Since attempted in API migration tools like SemDiff [34] and APIDiff [20]. However, these tools
have yet to provide a commercially viable solution (EC-2). Mens further highlights the need to
incorporate domain specific information, which has also been attempted by various API migration
tools, with various levels of success (EC-3). However, current solutions appear context sensitive.

Issue/Proposition: Robillard et al. [145] found that the empirical evaluation of API properties
is lacking in systematic evaluation methodology (EC-4). Although their survey determines a
foundation to compare API property inference techniques, this methodology has yet to rise. It is
unclear why this foundation has yet to take hold. Perhaps due to a lack of exposure, or because
there are hurdles imposed by the proposed systematic evaluation methodology. We hope to bring
attention to this challenge amongst others, to improve the exposure of existing proposed evaluation
methodologies, and guide future research into more systematic and comparable evaluations.

Issue/Proposition: Manikas et al. [102] posit that theories about software ecosystems and the
APIs they involve can often be either too general (EC-5) or too abstract. Manikas highlights that it
is difficult to study software ecosystems due to the high variability in the field, APIs which are part
of these ecosystems are therefore similarly impacted by high variability (EC-6).

Issue/Proposition: Robillard et al. [148] highlight several open challenges with respect to
automating repetitive software changes. Finding input examples to automate software changes
remains an open problem (EC-7). Integrating testing with code recommendation and dealing with
various levels of code granularity (EC-8) for API recommendations and migrations also remain
open challenges. Current recommendation tools rely on human intervention to determine the
correctness of the recommendation (EC-9). Tools such as MAPO [199] attempted to automate API
example gathering, but no tool currently fully solved this challenge. Work remains to extract code
examples relevant to user queries, and to determine whether multiple examples are similar.

Unsolved Challenges: Issue: Currently, API property inference techniques do not appear to use
uniform benchmarks to test their performance. The results of these techniques are therefore at
the mercy of the dataset and evaluation methodologies chosen by their authors which prevents
comparisons between techniques. Proposition: Future research should seek to use a standard
evaluation such as the one provided by Robillard et al. [145] to improve the ease of comparison

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 25

between various approaches (UC-1). Issue: Current solutions are context sensitive, yet extracting
code context remains a challenging problem [87]. Proposition: Incorporating domain specific
information into tools could help remedy this problem [62]. Yet, it is unclear how to best support the
context sensitive nature of API migration tools, how these approaches would perform on different
datasets (UC-2), or how their usage might affect API evolution feedback loops.

Issue: We posit that although there are some studies that attempt to generate theories about
software APIs [65, 96, 134, 202], most tools and studies appear to be either dependent on, or linked to,
factors such as API ecosystems and programming languages of the API (UC-11). Few studies attempt
to determine whether the severity of various API evolution problems such as API migration and API
recommendation are present across all programming languages (UC-12). Proposition: Systematic
studies to determine the impact of API migration and the helpfulness of API recommendation
systems are required to understand whether such aid is universally required or language dependent.

Answers of RQ3: What are the current and future challenges related to API evolution? Table 7 6

summarises and labels existing challenges (EC-1 through EC-17) and unsolved challenges (UC-1
through UC-15) identified during this systematic literature review. It shows that existing and
unsolved challenges concern new tools and techniques and empirical studies first. We also consider
unsolved challenges with datasets. They are concerned first and foremost with API migration,
including towards Web APIs, and the evaluation/validation of API tools and their results.

7 THREATS TO VALIDITY
Construct validity.Wedo not claim that "API Evolution" presents a perfect search phrase. Different
search sentences, and more search terms, could yield more results. However, to mitigate this threat,
we include a large number of studies to accurately represent the field. Our taxonomy was produced
in a mostly ad-hoc manner and may present some subjectivity bias [170]. We attempt to mitigate
this threat by using classifications that can be found in existing papers, synonyms for that existing
terminology, and the opinion of three authors.
External validity. While we concede that it is unlikely that we managed to find and present
all of the papers linked to the topic of API evolution in this study, we believe that the sample
of publications chosen for this study is representative of the state of the art in the field of API
evolution. We are confident that the majority of published works in the field of API evolution
are present in this study and that the trends and findings in this work are the state-of-the-art.
We attempt to mitigate this threat by using six different publication search engines and by using
forward and backward snowballing to obtain papers missed by out search.
Internal validity. The choice and categorization of the papers presented in this paper could
present some biases on the part of the authors of this paper. We attempted to mitigate these biases
by relying on the API experience of all three authors and by having all three authors agree on the
selection procedure before papers were selected. Furthermore, the categories used to classify the
papers were also agreed upon by all authors. Finally, although the majority of the selection and
classification of the papers was done by a single author, these procedures were verified using a
test-retest reliability to ensure that the results were internally consistent. Results showed excellent
reliability.

6It shows the main references presenting existing challenges. Emerging unsolved challenges are indirectly referenced
because they are recently emerging and have not yet been thoroughly discussed and addressed in the literature.

, Vol. 1, No. 1, Article . Publication date: June 2020.

26 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

8 CONCLUSION
In this paper, we presented a systematic survey of the literature on API evolution between 1994
and 2020 (27 years). We uncovered the publication trends as well as questions and goals related to
API evolution common in the literature. We answered three research questions: RQ1: How has the
field of API evolution research evolved? , RQ2: What is the current state-of-the-art in API evolution
research? , and RQ3: What are the current and future challenges related to API evolution?
We observed that there are five API evolution research goals, in Section 4.1: new tools and

techniques, empirical studies, tools and technique proposals, surveys, and datasets. We summarised
the various methods and popular subject APIs used to evaluate API evolution research. In Sec-
tion 4.2, we observed a variety of evaluation metrics, with precision, recall, f1-score, and AUC
being the most common. We recommend that API evolution researchers develop/use more
common benchmarks and systematic evaluation methodologies [145] to allow thorough
comparisons against and systematic improvements to the state of the art.

We collected information on the APIs used to perform evaluation in the literature and reported
in Section 4.3 that the Java programming language is the language of the studied API in 70.4% of
the analysed papers, with the Java API, the Java Android API, some toy systems in Java, the Eclipse
platform, JHotDraw, and Log4J used in more than half the papers. While we do recommend
that API evolution research uses common benchmarks and, therefore, similar evaluation
subjects, we also recommend considering different programming languages than Java to
improve generalisability and to identify underlying common/different factors.
We studied the tools and techniques proposed in the literature and observed that they mostly

seek (1) to improve API usage, (2) to provide API recommendation, (3) to help with API migra-
tion, (4) to reduce API misuse, and (5) to create better API documentation and examples. We
recommend incorporating domain-specific information into tools [109], creating tools
for Web APIs [180] and others that help API developers improve their APIs. We recom-
mend exploring machine learning approaches to help with API evolution challenges, a
currently emerging area of interest [25, 124]. We also recommend generalising API tools
to programming languages other than Java.
We reviewed works presenting empirical studies on API evolution and concluded that they

focus mostly on API usability and API maintainability. Studies on API usability focus on breaking
changes, integration problems, API usages, standards, misuses, and documentation. Studies on
API maintainability concern change velocity and change impact, deprecation, and reuse patterns.
We recommend studies to understand the coupling between APIs and programming lan-
guages, to determine the impact of APImigration and recommendations, and to compare
the evolution of APIs.

We reported that tools and technique proposals discuss differentiating between Web and library
APIs, automated documentation, and automated traceability between APIs and other software
artifacts while surveys highlight past, current, and future challenges. We also reported that datasets
are available with Linux system calls, API misuses, and API invocations. WhileWeb and library APIs
are different and have different levels of difficulties due to the control available to API developers,
API evolution research is on-going, which warrants a continuation of efforts related to survey
papers and an increase in the number of datasets available for API evolution research.We strongly
encourage researchers whose work is related to API evolution tomake their benchmarks
and datasets openly available and to augment existing datasets when appropriate.
Although we found that continuing change, increasing complexity, conservation of familiarity,

continuing growth, and declining quality are all worthy challenges to API evolution, the next hurdle
will be leveraging and mastering the feedback systems involved in API evolution [90]. Thus, we

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 27

hope that this paper can act as a reference for existing work within the scope of API evolution, as
well as present challenges to guide the future of API evolution research.

REFERENCES
[1] Alberto Abelló Gamazo, Claudia Martinez, Carles Farré, Cristina Gómez, Marc Oriol, and Oscar Romero. 2017. A

Data-driven approach to improve the process of data-intensive API creation and evolution. In CAiSE-Forum-DC 2017:
Proceedings of the Forum and Doctoral Consortium Papers Presented at the 29th International Conference on Advanced
Information Systems Engineering. CAiSE, Essen, Germany, 1–8.

[2] Ziyad Alsaeed and Michal Young. 2018. Extending existing inference tools to mine dynamic APIs. In Proceedings of the
2nd International Workshop on API Usage and Evolution - WAPI ’18. ACM Press, New York, New York, USA, 23–26.

[3] Sven Amann, Sarah Nadi, Hoan A. Nguyen, Tien N Nguyen, and Mira Mezini. 2016. MUBench A Benchmark for
API-Misuse Detectors. In Proceedings of the 13th International Workshop on Mining Software Repositories - MSR ’16.
ACM Press, New York, New York, USA, 464–467.

[4] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini. 2019. Investigating Next Steps in
Static API-Misuse Detection. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)
(MSR ’19). IEEE, Piscataway, NJ, USA, 265–275.

[5] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini. 2019. A Systematic Evaluation of
Static API-Misuse Detectors. IEEE Trans. Software Eng. 45, 12 (2019), 1170–1188.

[6] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2007. JDiff: A differencing technique and tool
for object-oriented programs. Automated Software Engineering 14, 1 (mar 2007), 3–36.

[7] Muhammad Asaduzzaman, Chanchal K. Roy, Samiul Monir, and Kevin A. Schneider. 2015. Exploring API method
parameter recommendations. In 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, USA, 271–280.

[8] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler: Stateful REST API Fuzzing. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE) (ICSE ’19). IEEE, Piscataway, NJ, USA, 748–758.

[9] Joop Aué, Maurício Aniche, Maikel Lobbezoo, and Arie van Deursen. 2018. An exploratory study on faults in web
API integration in a large-scale payment company. In Proceedings of the 40th International Conference on Software
Engineering Software Engineering in Practice - ICSE-SEIP ’18. ACM Press, New York, New York, USA, 13–22.

[10] Shams Azad, Peter C. Rigby, and Latifa Guerrouj. 2017. Generating API Call Rules from Version History and Stack
Overflow Posts. ACM Transactions on Software Engineering and Methodology 25, 4 (jan 2017), 1–22.

[11] Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer, Ahmed E. Hassan, Juergen Dingel, and James R. Cordy. 2018.
Analyzing a decade of Linux system calls. Empirical Software Engineering 23, 3 (jun 2018), 1519–1551.

[12] Mehdi Bahrami, Junhee Park, Lei Liu, and Wei-Peng Chen. 2018. API Learning. In Companion of the The Web Conference
2018 on The Web Conference 2018 - WWW ’18. ACM Press, New York, New York, USA, 151–154.

[13] Ittai Balaban, Frank Tip, and Robert Fuhrer. 2005. Refactoring support for class library migration. ACM SIGPLAN
Notices 40, 10 (oct 2005), 265.

[14] Thiago Tonelli Bartolomei, Krzysztof Czarnecki, Ralf Lämmel, and Tijs van der Storm. 2010. Study of an API Migration
for Two XML APIs. In Software Language Engineering. SLE 2009. Springer, Berlin, Heidelberg, 42–61.

[15] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Massimiliano Di Penta, Rocco Oliveto, and
Denys Poshyvanyk. 2015. The Impact of API Change- and Fault-Proneness on the User Ratings of Android Apps. IEEE
Transactions on Software Engineering 41, 4 (apr 2015), 384–407.

[16] Boualem Benatallah and Fabio Casati. 2018. Panel on Cognitive Service Engineering. In Companion of the The Web
Conference 2018 on The Web Conference 2018 - WWW ’18. ACM Press, New York, New York, USA, 883–883.

[17] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R Motahari Nezhad, and Farouk Toumani. 2005. Developing
Adapters for Web Services Integration. In Advanced Information Systems Engineering, Oscar Pastor and João e Cunha
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 415–429.

[18] David Bermbach and Erik Wittern. 2016. Benchmarking Web API Quality. InWeb Engineering. ICWE 2016. Springer,
Berlin, Heidelberg, 188–206.

[19] Salah Bouktif, Houari Sahraoui, and Faheem Ahmed. 2014. Predicting Stability of Open-Source Software Systems
Using Combination of Bayesian Classifiers. ACM Transactions on Management Information Systems 5, 1 (apr 2014),
1–26.

[20] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff: Detecting API breaking changes. In
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), Vol. 2018-March.
IEEE, USA, 507–511.

[21] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. Why and how Java developers break APIs. In
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), Vol. 2018-March.

, Vol. 1, No. 1, Article . Publication date: June 2020.

28 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

IEEE, USA, 255–265. arXiv:1801.05198
[22] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2016. Do Developers Deprecate APIs with

Replacement Messages? A Large-Scale Analysis on Java Systems. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, USA, 360–369.

[23] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2018. On the use of replacement messages in
API deprecation: An empirical study. Journal of Systems and Software 137 (mar 2018), 306–321.

[24] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: learning cross-language API mappings with little knowledge.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering - ESEC/FSE 2019. ACM Press, New York, New York, USA, 796–806. arXiv:1906.03835

[25] Nghi D Q Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: learning cross-language API mappings with little knowledge.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering - ESEC/FSE 2019 (ESEC/FSE 2019). ACM Press, New York, New York, USA, 796–806.

[26] Raymond P. L. Buse and Westley Weimer. 2012. Synthesizing API usage examples. In 2012 34th International Conference
on Software Engineering (ICSE). IEEE, USA, 782–792.

[27] John Businge, Alexander Serebrenik, and M. van den Brand. 2013. Analyzing the Eclipse API Usage: Putting the
Developer in the Loop. In 17th European Conference on Software Maintenance and Reengineering. IEEE, USA, 37–46.

[28] Paolo Calciati, Konstantin Kuznetsov, Xue Bai, and Alessandra Gorla. 2018. What did really change with the new
release of the app?. In Proceedings of the 15th International Conference on Mining Software Repositories - MSR ’18. ACM
Press, New York, New York, USA, 142–152.

[29] Joao Campinhos, Joao Costa Seco, and Jacome Cunha. 2017. Type-Safe Evolution of Web Services. In 2017 IEEE/ACM
2nd International Workshop on Variability and Complexity in Software Design (VACE). IEEE, USA, 20–26.

[30] Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching Connected API Subgraph via Text Phrases. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering (FSE ’12).
Association for Computing Machinery, New York, NY, USA, Article 10, 11 pages.

[31] Bradley E Cossette and Robert J Walker. 2012. Seeking the ground truth. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering - FSE ’12 (FSE ’12). ACM Press, USA, 1.

[32] Ira W. Cotton and Frank S. Greatorex, Jr. 1968. Data Structures and Techniques for Remote Computer Graphics. In
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I (AFIPS ’68 (Fall, part I)). ACM, New York,
NY, USA, Article 1476661, 12 pages.

[33] Barthélémy Dagenais and Harold Ossher. 2008. Automatically locating framework extension examples. In Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of software engineering - SIGSOFT ’08/FSE-16 (SIGSOFT
’08/FSE-16). ACM Press, New York, New York, USA, 203.

[34] Barthelemy Dagenais and Martin P. Robillard. 2009. SemDiff: Analysis and recommendation support for API evolution.
In 2009 IEEE 31st International Conference on Software Engineering. IEEE, USA, 599–602.

[35] Barthélémy Dagenais and Martin P Robillard. 2010. Creating and evolving developer documentation. In Proceedings of
the eighteenth ACM SIGSOFT international symposium on Foundations of software engineering - FSE ’10 (FSE ’10). ACM
Press, New York, New York, USA, 127.

[36] Marco D’Ambros, Michele Lanza, Mircea Lungu, and Romain Robbes. 2009. Promises and perils of porting software
visualization tools to the web. In 2009 11th IEEE International Symposium onWeb Systems Evolution. IEEE, USA, 109–118.

[37] Fernando López de la Mora and Sarah Nadi. 2018. Which Library Should I Use? A Metric-Based Comparison of
Software Libraries. In Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER ’18). Association for Computing Machinery, New York, NY, USA, 37–40.

[38] Uri Dekel and James D. Herbsleb. 2009. Improving API Documentation Usability with Knowledge Pushing. In
Proceedings of the 31st International Conference on Software Engineering. IEEE Computer Society, USA, 320–330.

[39] Jens Dietrich, Kamil Jezek, and Premek Brada. 2014. Broken promises: An empirical study into evolution problems
in Java programs caused by library upgrades, In 2014 Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE). 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE) 1, 64–73.

[40] Danny Dig. 2005. Using refactorings to automatically update component-based applications. In Companion to the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications - OOPSLA ’05.
ACM Press, New York, New York, USA, 234.

[41] Danny Dig and Ralph Johnson. 2005. The role of refactorings in API evolution. 21st IEEE International Conference on
Software Maintenance (ICSM’05) 2005 (2005), 389–398.

[42] Danny Dig and Ralph Johnson. 2006. Automated upgrading of component-based applications. In Companion to the 21st
ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications - OOPSLA ’06, Vol. 2006.
ACM Press, New York, New York, USA, 675.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://arxiv.org/abs/1801.05198
https://arxiv.org/abs/1906.03835

A Systematic Review of API Evolution Literature 29

[43] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring. Journal of Software Maintenance
and Evolution: Research and Practice 18, 2 (mar 2006), 83–107.

[44] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. 2007. Refactoring-Aware Configuration Management
for Object-Oriented Programs. In Proceedings of the 29th International Conference on Software Engineering (ICSE ’07).
IEEE Computer Society, USA, 427–436.

[45] Ekwa Duala-Ekoko and Martin P Robillard. 2012. Asking and answering questions about unfamiliar APIs: An
exploratory study. In 2012 34th International Conference on Software Engineering (ICSE). IEEE, USA, 266–276.

[46] Anna Maria Eilertsen and Anya Helene Bagge. 2018. Exploring API. In Proceedings of the 2nd International Workshop
on API Usage and Evolution - WAPI ’18. ACM Press, New York, New York, USA, 10–13.

[47] Daniel S. Eisenberg, Jeffrey Stylos, and Brad A. Myers. 2010. Apatite. In Proceedings of the 28th international conference
on Human factors in computing systems - CHI ’10. ACM Press, New York, New York, USA, 1331.

[48] Brian Ellis, Jeffrey Stylos, and Brad Myers. 2007. The Factory Pattern in API Design: A Usability Evaluation. In
Proceedings of the 29th International Conference on Software Engineering. IEEE Computer Society, USA, 302–312.

[49] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014. How do API documentation and static
typing affect API usability?. In Proceedings of the 36th International Conference on Software Engineering - ICSE 2014.
ACM Press, New York, New York, USA, 632–642.

[50] M.D. Ernst, Jake Cockrell, W.G. Griswold, and David Notkin. 2001. Dynamically discovering likely program invariants
to support program evolution. IEEE Transactions on Software Engineering 27, 2 (2001), 99–123.

[51] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API growing pains: Stories from client developers
and their code. In 2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE). IEEE, USA, 84–93.

[52] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2015. Web API Fragility: How Robust is Your Mobile
Application?. In Proceedings of the Second ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft ’15). IEEE Press, USA, 12–21.

[53] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2015. Web API growing pains: Loosely coupled yet strongly
tied. Journal of Systems and Software 100 (feb 2015), 27–43.

[54] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. 2018. Efficient static checking of library
updates. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering - ESEC/FSE 2018. ACM Press, New York, New York, USA, 791–796.

[55] Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On using machine learning to identify
knowledge in API reference documentation. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering - ESEC/FSE 2019. ACM Press, New
York, New York, USA, 109–119. arXiv:1907.09807

[56] Jun Gao, Pingfan Kong, Li Li, Tegawende F. Bissyande, and Jacques Klein. 2019. Negative Results on Mining Crypto-API
Usage Rules in Android Apps. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, USA, 388–398.

[57] Simos Gerasimou, Maria Kechagia, Dimitris Kolovos, Richard Paige, and Georgios Gousios. 2018. On software
modernisation due to library obsolescence. In Proceedings of the 2nd International Workshop on API Usage and Evolution
- WAPI ’18. ACM Press, New York, New York, USA, 6–9.

[58] Elena L Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018. Visualizing API Usage Examples at Scale.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18. ACM Press, USA, 1–12.

[59] M.W. Godfrey and Lijie Zou. 2005. Using origin analysis to detect merging and splitting of source code entities. IEEE
Transactions on Software Engineering 31, 2 (feb 2005), 166–181.

[60] William Granli, John Burchell, Imed Hammouda, and Eric Knauss. 2015. The driving forces of API evolution. In
Proceedings of the 14th International Workshop on Principles of Software Evolution - IWPSE 2015, Vol. 30-Aug-201. ACM
Press, New York, New York, USA, 28–37.

[61] Giovanni Grano, Andrea Di Sorbo, Francesco Mercaldo, Corrado A. Visaggio, Gerardo Canfora, and Sebastiano
Panichella. 2017. Android apps and user feedback: a dataset for software evolution and quality improvement. In
Proceedings of the 2nd ACM SIGSOFT International Workshop on App Market Analytics - WAMA 2017. ACM Press, New
York, New York, USA, 8–11.

[62] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM: Migrate APIs with Multi-Modal
Sequence to Sequence Learning. In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI’17). AAAI Press, 3675–3681.

[63] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue. 2018. Understanding and detecting
evolution-induced compatibility issues in Android apps. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering - ASE 2018. ACM Press, New York, New York, USA, 167–177.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://arxiv.org/abs/1907.09807

30 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

[64] J. Henkel and A. Diwan. 2005. Catchup! capturing and replaying refactorings to support API evolution. In Proceedings.
27th International Conference on Software Engineering, 2005. ICSE 2005. IEEE, USA, 274–283.

[65] Robert Heumüller, Sebastian Nielebock, and Frank Ortmeier. 2018. Who plays with whom? ... and how? mining
API interaction patterns from source code. In Proceedings of the 7th International Workshop on Software Mining -
SoftwareMining 2018. ACM Press, New York, New York, USA, 8–11.

[66] Reid Holmes and Robert J. Walker. 2008. A newbie’s guide to eclipse APIs. In Proceedings of the 2008 international
workshop on Mining software repositories - MSR ’08. ACM Press, New York, New York, USA, 149.

[67] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien, and Stéphane Ducasse. 2018. How do
developers react to API evolution? A large-scale empirical study. Software Quality Journal 26, 1 (mar 2018), 161–191.

[68] Andre Hora and Marco Tulio Valente. 2015. Apiwave: Keeping track of API popularity and migration. In 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE, USA, 321–323.

[69] André Hora, Marco Tulio Valente, Romain Robbes, and Nicolas Anquetil. 2016. When should internal interfaces be
promoted to public?. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2016, Vol. 13-18-Nove. ACM Press, New York, New York, USA, 278–289.

[70] Daqing Hou and Xiaojia Yao. 2011. Exploring the Intent behind API Evolution: A Case Study. In 2011 18th Working
Conference on Reverse Engineering. IEEE, USA, 131–140.

[71] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API method recommendation without
worrying about the task-API knowledge gap. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering - ASE 2018. ACM Press, New York, New York, USA, 293–304.

[72] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia. 2019. A Survey on Adaptive Random Testing. IEEE Transactions
on Software Engineering 1, 1 (2019), 1–1.

[73] Shiyou Huang, Jianmei Guo, Sanhong Li, Xiang Li, Yumin Qi, Kingsum Chow, and Jeff Huang. 2019. SafeCheck: Safety
Enhancement of Java Unsafe API. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
Vol. 2019-May. IEEE, USA, 889–899.

[74] Andrew J. Ko, B.A. Myers, and H.H. Aung. 2004. Six Learning Barriers in End-User Programming Systems. In 2004
IEEE Symposium on Visual Languages - Human Centric Computing. IEEE, USA, 199–206.

[75] Z. M. Jiang and A. E. Hassan. 2015. A Survey on Load Testing of Large-Scale Software Systems. IEEE Transactions on
Software Engineering 41, 11 (2015), 1091–1118.

[76] Johnson. 1994. Substring matching for clone detection and change tracking. In Proceedings International Conference on
Software Maintenance ICSM-94. IEEE Comput. Soc. Press, USA, 120–126.

[77] Sukrit Kalra, Ayush Goel, Dhriti Khanna, Mohan Dhawan, Subodh Sharma, and Rahul Purandare. 2016. POLLUX:
safely upgrading dependent application libraries. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering - FSE 2016, Vol. 13-18-Nove. ACM Press, New York, New York, USA, 290–300.

[78] R H Katz. 2000. The post-PC era. In Proceedings of the 4th international workshop on Discrete algorithms and methods
for mobile computing and communications - DIALM ’00. ACM Press, New York, New York, USA, 64.

[79] David Kawrykow and Martin P. Robillard. 2009. Improving API Usage through Automatic Detection of Redundant
Code. In 2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, USA, 111–122.

[80] Miryung Kim, Dongxiang Cai, and Sunghun Kim. 2011. An Empirical Investigation into the Role of API-Level
Refactorings during Software Evolution. In Proceedings of the 33rd International Conference on Software Engineering
(ICSE ’11). Association for Computing Machinery, New York, NY, USA, 151–160.

[81] B. Kitchenham and S Charters. Keele University, Keele, U.K., Tech. Rep. EBSE-2007-01, 2007. Guidelines for performing
Systematic Literature Reviews in Software Engineering. (Keele University, Keele, U.K., Tech. Rep. EBSE-2007-01, 2007).

[82] Deokyoon Ko, Kyeongwook Ma, Sooyong Park, Suntae Kim, Dongsun Kim, and Yves Le Traon. 2014. API Document
Quality for Resolving Deprecated APIs. In 21st Asia-Pacific Software Engineering Conference, Vol. 2. IEEE, USA, 27–30.

[83] Raula Gaikovina Kula, Ali Ouni, Daniel M. German, and Katsuro Inoue. 2018. An empirical study on the impact of
refactoring activities on evolving client-used APIs. Information and Software Technology 93, July 2016 (jan 2018),
186–199. arXiv:1709.09474

[84] Hobum Kwon, Juwon Ahn, Sunggyu Choi, Jakub Siewierski, Piotr Kosko, and Piotr Szydelko. 2018. An Experience
Report of the API Evolution and Maintenance for Software Platforms. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, USA, 587–590.

[85] Maxime Lamothe and Weiyi Shang. 2018. Exploring the use of automated API migrating techniques in practice.
Proceedings of the 15th International Conference on Mining Software Repositories - MSR ’18 1 (2018), 503–514.

[86] Maxime Lamothe and Weiyi Shang. 2020. When APIs Are Intentionally Bypassed: An Exploratory Study of API
Workarounds. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 912–924.

[87] M. Lamothe, W. Shang, and T. P. Chen. 2020. A3: Assisting Android API Migrations Using Code Examples. IEEE
Transactions on Software Engineering (2020).

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://arxiv.org/abs/1709.09474

A Systematic Review of API Evolution Literature 31

[88] Craig Larman. 2001. Protected variation: the importance of being closed. IEEE Software 18, 3 (2001), 89–91.
[89] M. M. Lehman. 1980. Programs, life cycles, and laws of software evolution. Proc. IEEE 68, 9 (1980), 1060–1076.
[90] M. M. Lehman. 1996. Laws of Software Evolution Revisited. In Proceedings of the 5th European Workshop on Software

Process Technology (EWSPT ’96). Springer-Verlag, Berlin, Heidelberg, 108–124.
[91] Grace A. Lewis and Dennis B. Smith. 2008. Service-Oriented Architecture and its implications for software maintenance

and evolution. In 2008 Frontiers of Software Maintenance. IEEE, USA, 1–10.
[92] Jing Li, Aixin Sun, Zhenchang Xing, and Lei Han. 2018. API Caveat Explorer – Surfacing Negative Usages from Practice.

In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval - SIGIR ’18. ACM
Press, New York, New York, USA, 1293–1296.

[93] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. 2013. How Does Web Service API Evolution Affect Clients? 2013
IEEE 20th International Conference on Web Services 1 (jun 2013), 300–307.

[94] Li Li and Wu Chou. 2015. Designing Large Scale REST APIs Based on REST Chart. In 2015 IEEE International Conference
on Web Services (ICWS ’15). IEEE, Washington, DC, USA, 631–638.

[95] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018. Characterising deprecated Android
APIs. In Proceedings of the 15th International Conference on Mining Software Repositories - MSR ’18. ACM Press, New
York, New York, USA, 254–264.

[96] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto, Massimiliano Di Penta, and Denys
Poshyvanyk. 2014. Mining energy-greedy API usage patterns in Android apps: an empirical study. Proceedings of the
11th Working Conference on Mining Software Repositories - MSR 2014 1 (2014), 2–11.

[97] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2014. How do
API changes trigger stack overflow discussions? a study on the Android SDK. In Proceedings of the 22nd International
Conference on Program Comprehension - ICPC 2014. ACM Press, New York, New York, USA, 83–94.

[98] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing, and Yang Liu. 2019.
Generating query-specific class API summaries. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering - ESEC/FSE 2019 (ESEC/FSE 2019).
ACM Press, New York, New York, USA, 120–130.

[99] Xiaoyu Liu, LiGuo Huang, and Vincent Ng. 2018. Effective API recommendation without historical software repositories.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering - ASE 2018. ACM
Press, New York, New York, USA, 282–292.

[100] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. 2010. Investigating Web APIs on the World Wide Web. In
2010 Eighth IEEE European Conference on Web Services. IEEE, USA, 107–114.

[101] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid Mining: Helping to Navigate the API
Jungle. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’05). Association for Computing Machinery, New York, NY, USA, 48–61.

[102] Konstantinos Manikas. 2016. Revisiting software ecosystems Research: A longitudinal literature study. Journal of
Systems and Software 117 (jul 2016), 84–103.

[103] Anderson S. Matos, Joao B. Ferreira Filho, and Lincoln S. Rocha. 2019. Splitting APIs: An Exploratory Study of
Software Unbundling. In IEEE/ACM 16th International Conference on Mining Software Repositories. IEEE, USA, 360–370.

[104] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of API Stability and Adoption in the
Android Ecosystem. In 2013 IEEE International Conference on Software Maintenance. IEEE, USA, 70–79.

[105] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. 2010. Recommending Source Code Examples via API Call
Usages and Documentation. In Proceedings of the 2nd International Workshop on Recommendation Systems for Software
Engineering (RSSE ’10). Association for Computing Machinery, New York, NY, USA, 21–25.

[106] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and Applying Systematic Edits by Learning
from Examples. In Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, USA, 502–511.

[107] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. 2012. A history-based matching approach to identification of
framework evolution. In 2012 34th International Conference on Software Engineering (ICSE). IEEE, USA, 353–363.

[108] Kim Mens and Angela Lozano. 2014. Source Code-Based Recommendation Systems. In Recommendation Systems in
Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 93–130.

[109] Tom Mens. 2002. A state-of-the-art survey on software merging. IEEE Transactions on Software Engineering 28, 5
(may 2002), 449–462.

[110] A. Michail. 2003. Data mining library reuse patterns in user-selected applications. In 14th IEEE International Conference
on Automated Software Engineering. IEEE Comput. Soc, USA, 24–33.

[111] Microsoft. 2019. interface c# reference 2019. Docs.microsoft.com (2019).
[112] Yana Momchilova Mileva, Valentin Dallmeier, and Andreas Zeller. 2010. Mining API Popularity. In Testing – Practice

and Research Techniques. TAIC PART 2010. Springer, Berlin, Heidelberg, 173–180.

, Vol. 1, No. 1, Article . Publication date: June 2020.

32 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

[113] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian Marcus. 2015. How Can I Use This
Method?. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, USA, 880–890.

[114] Eduardo Mosqueira-Rey, David Alonso-Ríos, Vicente Moret-Bonillo, Isaac Fernández-Varela, and Diego Álvarez-
Estévez. 2018. A systematic approach to API usability: Taxonomy-derived criteria and a case study. Information and
Software Technology 97, December 2017 (may 2018), 46–63.

[115] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience paper: a study on behavioral backward
incompatibilities of Java software libraries. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis - ISSTA 2017. ACM Press, New York, New York, USA, 215–225.

[116] Emerson Murphy-Hill, Caitlin Sadowski, Andrew Head, John Daughtry, Andrew Macvean, Ciera Jaspan, and Collin
Winter. 2018. Discovering API usability problems at scale. In Proceedings of the 2nd International Workshop on API
Usage and Evolution - WAPI ’18. ACM Press, New York, New York, USA, 14–17.

[117] Varvana Myllärniemi, Sari Kujala, Mikko Raatikainen, and Piia Sevonn. 2018. Development as a journey: factors
supporting the adoption and use of software frameworks. Journal of Software Engineering Research and Development 6,
1 (dec 2018), 6.

[118] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast, Eli Rademacher, Tien N. Nguyen,
and Danny Dig. 2016. API code recommendation using statistical learning from fine-grained changes. In Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM Press, USA, 511–522.

[119] Anh Tuan Nguyen, Peter C. Rigby, Thanh Van Nguyen, Mark Karanfil, and Tien N. Nguyen. 2017. Statistical
Translation of English Texts to API Code Templates. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, USA, 331–333.

[120] Hoan Anh Nguyen, Tien N. Nguyen, Hridesh Rajan, and Robert Dyer. 2018. Towards combining usage mining and
implementation analysis to infer API preconditions. In Proceedings of the 1st ACM SIGSOFT International Workshop on
Automated Specification Inference - WASPI 2018. ACM Press, New York, New York, USA, 15–16.

[121] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas Degueule, and Massimiliano Di Penta.
2019. FOCUS: A Recommender System for Mining API Function Calls and Usage Patterns. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, USA, 1050–1060.

[122] Thanh Nguyen, Peter C. Rigby, Anh Tuan Nguyen, Mark Karanfil, and Tien N. Nguyen. 2016. T2API: synthesizing
API code usage templates from English texts with statistical translation. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM Press, USA, 1013–1017.

[123] Thanh Nguyen, Ngoc Tran, Hung Phan, Trong Nguyen, Linh Truong, Anh Tuan Nguyen, Hoan Anh Nguyen,
and Tien N. Nguyen. 2018. Complementing global and local contexts in representing API descriptions to improve
API retrieval tasks. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering - ESEC/FSE. ACM Press, USA, 551–562.

[124] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. 2017. Exploring API Embedding for
API Usages and Applications. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
USA, 438–449.

[125] Thanh V. Nguyen and Tien N. Nguyen. 2018. Inferring API elements relevant to an english query. In Proceedings of
the 40th International Conference on Software Engineering Companion Proceeedings - ICSE ’18, Vol. Part F1373. ACM
Press, New York, New York, USA, 167–168.

[126] Oracle. 2019. what is an interface? (Java™ learning the java language object-oriented programming concepts. (2019).
[127] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into Modules. Commun. ACM 15, 12 (Dec.

1972), 1053–1058.
[128] Chris Parnin and Christoph Treude. 2011. Measuring API documentation on the web. In Proceeding of the 2nd

international workshop on Web 2.0 for software engineering - Web2SE ’11. ACM Press, New York, New York, USA, 25–30.
[129] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012. Crowd documentation: Exploring

the coverage and the dynamics of API discussions on Stack Overflow. Georgia Tech Technical Report 1 (2012), 1–11.
[130] K. Petersen, S. Vakkalanka, and L. Kuzniarz. 2015. Guidelines for Conducting Systematic Mapping Studies in Software

Engineering: An Update. Inf. Softw. Technol. 64, C (Aug. 2015), 1–18.
[131] Pujan Petersen, Stefan Hanenberg, and Romain Robbes. 2014. An empirical comparison of static and dynamic type

systems on API usage in the presence of an IDE: Java vs. groovy with eclipse. In Proceedings of the 22nd International
Conference on Program Comprehension - ICPC 2014. ACM Press, New York, New York, USA, 212–222.

[132] Hung Phan, Hoan Anh Nguyen, NgocM Tran, Linh H Truong, Anh Tuan Nguyen, and Tien N. Nguyen. 2018. Statistical
learning of API fully qualified names in code snippets of online forums. In Proceedings of the 40th International Conference
on Software Engineering - ICSE ’18, Vol. 11. ACM Press, New York, New York, USA, 632–642.

[133] H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen. 2017. Statistical Migration of API Usages. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C). 47–50.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Systematic Review of API Evolution Literature 33

[134] Marco Piccioni, Carlo A. Furia, and Bertrand Meyer. 2013. An Empirical Study of API Usability. In 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement. IEEE, USA, 5–14.

[135] David M Pletcher and Daqing Hou. 2009. BCC: Enhancing code completion for better API usability. 2009 IEEE
International Conference on Software Maintenance 1 (sep 2009), 393–394.

[136] Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro. 2019. Java reflection API: revealing
the dark side of the mirror. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering - ESEC/FSE 2019. ACM Press, New York, New
York, USA, 636–646.

[137] Ivan Porres and Irum Rauf. 2011. Modeling behavioral RESTful web service interfaces in UML. In Proceedings of the
2011 ACM Symposium on Applied Computing - SAC ’11 (SAC ’11). ACM Press, New York, New York, USA, 1598.

[138] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. 2012. Statically checking API protocol
conformance with mined multi-object specifications. In 2012 34th International Conference on Software Engineering
(ICSE). IEEE, USA, 925–935.

[139] Lutz Prechelt and D.J. Hutzel. 2003. The co-evolution of a hype and a software architecture: experience of component-
producing large-scale EJB early adopters. In 25th International Conference on Software Engineering, 2003. Proceedings.,
Vol. 0. IEEE, USA, 553–556.

[140] Qi Xi, Tianyang Zhou, Qingxian Wang, and Yongjun Zeng. 2013. An API deobfuscation method combining dynamic
and static techniques. Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and
Computer (MEC) 1 (dec 2013), 2133–2138.

[141] Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. RACK: Automatic API Recommendation Using
Crowdsourced Knowledge. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE, USA, 349–359.

[142] Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim. 2018. Augmenting stack overflow with API
usage patterns mined from GitHub. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM Press, USA, 880–883.

[143] Romain Robbes and Mircea Lungu. 2011. A study of ripple effects in software ecosystems. In Proceeding of the 33rd
international conference on Software engineering - ICSE ’11 (ICSE ’11). ACM Press, New York, New York, USA, 904.

[144] Martin P Robillard. 2009. What Makes APIs Hard to Learn? Answers from Developers. IEEE Software 26 (2009),
27–34.

[145] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford. 2013. Automated API Property
Inference Techniques. IEEE Transactions on Software Engineering 39, 5 (may 2013), 613–637.

[146] Martin P Robillard and Yam B Chhetri. 2015. Recommending reference API documentation. Empirical Software
Engineering 20, 6 (dec 2015), 1558–1586.

[147] Martin P. Robillard and Robert DeLine. 2011. A field study of API learning obstacles. Empirical Software Engineering
16, 6 (dec 2011), 703–732.

[148] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann. 2014. Recommendation Systems in
Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg. v–viii pages.

[149] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro, Neil Ernst, Marco Aurelio
Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vasquez, Gail C. Murphy, Laura Moreno, David Shepherd,
and Edmund Wong. 2017. On-demand Developer Documentation. 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME) 1 (sep 2017), 479–483.

[150] Thomas Ruhroth and Heike Wehrheim. 2009. Refinement-Preserving Co-evolution. In Formal Methods and Software
Engineering. ICFEM 2009. Springer, Berlin, Heidelberg, 620–638.

[151] Chandan R Rupakheti and Daqing Hou. 2012. Evaluating forum discussions to inform the design of an API critic. In
2012 20th IEEE International Conference on Program Comprehension (ICPC). IEEE, USA, 53–62.

[152] Mohamed Aymen Saied, Houari Sahraoui, and Bruno Dufour. 2015. An observational study on API usage constraints
and their documentation. 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER) 1 (mar 2015), 33–42.

[153] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, Andrea De Lucia, and Filomena Ferrucci. 2018. Do
developers update third-party libraries in mobile apps?. In Proceedings of the 26th Conference on Program Comprehension
- ICPC ’18. ACM Press, New York, New York, USA, 255–265.

[154] Anand Ashok Sawant, Maurício Aniche, Arie van Deursen, and Alberto Bacchelli. 2018. Understanding developers’
needs on deprecation as a language feature. In Proceedings of the 40th International Conference on Software Engineering
- ICSE ’18, Vol. 11. ACM Press, New York, New York, USA, 561–571.

[155] Anand Ashok Sawant and Alberto Bacchelli. 2015. A Dataset for API Usage. In 2015 IEEE/ACM 12thWorking Conference
on Mining Software Repositories, Vol. 2015-Augus. IEEE, USA, 506–509.

, Vol. 1, No. 1, Article . Publication date: June 2020.

34 Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang

[156] Anand Ashok Sawant and Alberto Bacchelli. 2017. fine-GRAPE: fine-grained APi usage extractor – an approach and
dataset to investigate API usage. Empirical Software Engineering 22, 3 (jun 2017), 1348–1371.

[157] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2018. On the reaction to deprecation of clients of 4 + 1
popular Java APIs and the JDK. Empirical Software Engineering 23, 4 (aug 2018), 2158–2197.

[158] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vasquez, Michele Lanza, and Rocco Oliveto. 2019. Data-Driven
Solutions to Detect API Compatibility Issues in Android: An Empirical Study. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), Vol. 2019-May. IEEE, USA, 288–298.

[159] Thorsten Schäfer, Jan Jonas, and Mira Mezini. 2008. Mining framework usage changes from instantiation code. In
Proceedings of the 13th international conference on Software engineering (ICSE). ACM Press, USA, 471.

[160] S.M. Sohan, Craig Anslow, and Frank Maurer. 2015. A Case Study of Web API Evolution. In 2015 IEEE World Congress
on Services. IEEE, USA, 245–252.

[161] S M Sohan, Craig Anslow, and Frank Maurer. 2015. SpyREST: Automated RESTful API Documentation Using an HTTP
Proxy Server. In 30th IEEE/ACM International Conference on Automated Software Engineering. IEEE, USA, 271–276.

[162] Brett Spell. 2015. Pro Java 8 programming. Apress, USA.
[163] Jeffrey Stylos and B.A. Myers. 2006. Mica: A Web-Search Tool for Finding API Components and Examples. In Visual

Languages and Human-Centric Computing (VL/HCC’06). IEEE, USA, 195–202.
[164] Jingyi Su, Mohd Arafat, and Robert Dyer. 2018. Using consensus to automatically infer post-conditions. In Proceedings

of the 40th International Conference on Software Engineering Companion Proceeedings. ACM Press, USA, 202–203.
[165] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API documentation. In Proceedings of the

36th International Conference on Software Engineering - ICSE 2014. ACM Press, New York, New York, USA, 643–652.
[166] Philippe Suter and Erik Wittern. 2015. Inferring Web API Descriptions from Usage Data. In 2015 Third IEEE Workshop

on Hot Topics in Web Systems and Technologies (HotWeb). IEEE, USA, 7–12.
[167] Christoph Treude and Maurício Aniche. 2018. Where does Google find API documentation? Proceedings of the 2nd

International Workshop on API Usage and Evolution - WAPI ’18 2 (2018), 19–22.
[168] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and Danny Dig. 2018. Accurate

and efficient refactoring detection in commit history. In Proceedings of the 40th International Conference on Software
Engineering - ICSE ’18. ACM Press, New York, New York, USA, 483–494.

[169] Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE Software 32, 4 (jul 2015), 68–75.
[170] Muhammad Usman, Ricardo Britto, Jürgen Börstler, and Emilia Mendes. 2017. Taxonomies in software engineering:

A Systematic mapping study and a revised taxonomy development method. Information and Software Technology 85
(2017), 43–59. https://www.sciencedirect.com/science/article/pii/S0950584917300472

[171] Thanh Van Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. 2016. Characterizing API elements in software
documentation with vector representation. In Proceedings of the 38th International Conference on Software Engineering
Companion - ICSE ’16. ACM Press, New York, New York, USA, 749–751.

[172] Pradeep K. Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E. Hassan. 2016. What Do Client
Developers Concern When Using Web APIs? An Empirical Study on Developer Forums and Stack Overflow. In 2016
IEEE International Conference on Web Services (ICWS). IEEE, USA, 131–138.

[173] Gemma Vilagut. 2014. Test-Retest Reliability. Springer Netherlands, Dordrecht, 6622–6625. https://doi.org/10.1007/978-
94-007-0753-5_3001

[174] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei Zhang. 2013. Mining succinct and
high-coverage API usage patterns from source code. In 2013 10th Working Conference on Mining Software Repositories
(MSR). IEEE, USA, 319–328.

[175] Shaohua Wang, Nhathai Phan, Yan Wang, and Yong Zhao. 2019. Extracting API Tips from Developer Question
and Answer Websites. In IEEE/ACM 16th International Conference on Mining Software Repositories, Vol. 1. IEEE, USA,
321–332.

[176] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2019. PIVOT: Learning API-Device Correlations to Facilitate Android
Compatibility Issue Detection. In IEEE/ACM 41st International Conference on Software Engineering. IEEE, USA, 878–888.

[177] Ming Wen, Yepang Liu, Rongxin Wu, Xuan Xie, Shing-Chi Cheung, and Zhendong Su. 2019. Exposing Library API
Misuses Via Mutation Analysis. In IEEE/ACM 41st International Conference on Software Engineering, Vol. 1. IEEE, USA,
866–877.

[178] Erik Wilde. 2018. Surfing the API Web. In Companion of the The Web Conference 2018 on The Web Conference 2018 -
WWW ’18. ACM Press, New York, New York, USA, 797–803.

[179] Titus Winters. 2018. Non-atomic refactoring and software sustainability. In Proceedings of the 2nd International
Workshop on API Usage and Evolution - WAPI ’18. ACM Press, New York, New York, USA, 2–5.

[180] Erik Wittern. 2018. Web APIs - challenges, design points, and research opportunities. In Proceedings of the 2nd
International Workshop on API Usage and Evolution - WAPI ’18. ACM Press, New York, New York, USA, 18–18.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://www.sciencedirect.com/science/article/pii/S0950584917300472
https://doi.org/10.1007/978-94-007-0753-5_3001
https://doi.org/10.1007/978-94-007-0753-5_3001

A Systematic Review of API Evolution Literature 35

[181] Erik Wittern, Annie T.T. Ying, Yunhui Zheng, Julian Dolby, and Jim A. Laredo. 2017. Statically Checking Web API
Requests in JavaScript. In IEEE/ACM 39th International Conference on Software Engineering. IEEE, USA, 244–254.

[182] Erik Wittern, Annie T.T. Ying, Yunhui Zheng, Jim A Laredo, Julian Dolby, Christopher C Young, and Aleksander A
Slominski. 2017. Opportunities in Software Engineering Research for Web API Consumption. 2017 IEEE/ACM 1st
International Workshop on API Usage and Evolution (WAPI) 1 (may 2017), 7–10. arXiv:1705.06586

[183] Wei Wu, Bram Adams, Yann-Gael Gueheneuc, and Giuliano Antoniol. 2014. ACUA: API Change and Usage Auditor.
In 2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation. IEEE, USA, 89–94.

[184] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. 2010. AURA. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, Vol. 1. ACM Press, New York, New York, USA, 325.

[185] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical and impact analysis of API
breaking changes: A large-scale study. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, USA, 138–147.

[186] Tao Xie and Jian Pei. 2006. MAPO. In Proceedings of the 2006 international workshop on Mining software repositories -
MSR ’06. ACM Press, New York, New York, USA, 54.

[187] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Jing Li, and Nachiket Kapre. 2016. Learning to Extract API Mentions
from Informal Natural Language Discussions. 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME) 1 (oct 2016), 389–399.

[188] Reishi Yokomori, Harvey Siy, Masami Noro, and Katsuro Inoue. 2009. Assessing the impact of framework changes
using component ranking. In 2009 IEEE International Conference on Software Maintenance. IEEE, USA, 189–198.

[189] Ping Yu, Fei Yang, Chun Cao, Hao Hu, and Xiaoxing Ma. 2017. API Usage Change Rules Mining based on Fine-grained
Call Dependency Analysis. In Proceedings of the 9th Asia-Pacific Symposium on Internetware - Internetware’17, Vol. Part
F1309. ACM Press, New York, New York, USA, 1–9.

[190] Weizhao Yuan, Hoang H. Nguyen, Lingxiao Jiang, and Yuting Chen. 2018. LibraryGuru. In Proceedings of the 40th
International Conference on Software Engineering Companion Proceeedings. ACM Press, USA, 364–365.

[191] Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos. 2016. Keep Calm and Wait for the Spike! Insights on the
Evolution of Amazon Services. In CAiSE, Selmin Nurcan, Pnina Soffer, Marko Bajec, and Johann Eder (Eds.). Lecture
Notes in Computer Science, Vol. 9694. Springer International Publishing, Cham, 444–458.

[192] Amir Zghidi, Imed Hammouda, Brahim Hnich, and Eric Knauss. 2017. On the Role of Fitness Dimensions in API
Design Assessment - An Empirical Investigation. In 2017 IEEE/ACM 1st International Workshop on API Usage and
Evolution (WAPI). IEEE, USA, 19–22.

[193] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung Kim. 2018. Are code examples
on an online Q&A forum reliable?. In Proceedings of the 40th International Conference on Software Engineering - ICSE
’18. ACM Press, New York, New York, USA, 886–896.

[194] Zhenchang Xing and Eleni Stroulia. 2007. API-Evolution Support with Diff-CatchUp. IEEE Transactions on Software
Engineering 33, 12 (dec 2007), 818–836.

[195] Wujie Zheng, Qirun Zhang, and Michael Lyu. 2011. Cross-library API recommendation using web search engines.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software
engineering - SIGSOFT/FSE ’11. ACM Press, New York, New York, USA, 480.

[196] Hao Zhong, Suresh Thummalapenta, and Tao Xie. 2013. Exposing Behavioral Differences in Cross-Language API
Mapping Relations. In Fundamental Approaches to Software Engineering, Vittorio Cortellessa and Dániel Varró (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 130–145.

[197] Hao Zhong, Suresh Thummalapenta, and Tao Xie. 2013. Exposing Behavioral Differences in Cross-Language API
Mapping Relations. In Fundamental Approaches to Software Engineering. Springer, Berlin, Heidelberg, 130–145.

[198] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010. Mining API mapping for language
migration. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, Vol. 1. ACM Press,
USA, 195.

[199] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and Recommending API Usage Patterns.
In Proceedings of the 23rd European Conference on ECOOP 2009 — Object-Oriented Programming (Genoa). Springer-Verlag,
Berlin, Heidelberg, 318–343.

[200] Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. 2013. DroidAlarm. In Proceedings of the 8th ACM SIGSAC symposium
on Information, computer and communications security - ASIA CCS ’13. ACM Press, New York, New York, USA, 353.

[201] Jing Zhou and Robert J. Walker. 2016. API deprecation: a retrospective analysis and detection method for code
examples on the web. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2016, Vol. 13-18-Nove. ACM Press, New York, New York, USA, 266–277.

[202] Minhaz F. Zibran, Farjana Z. Eishita, and Chanchal K. Roy. 2011. Useful, But Usable? Factors Affecting the Usability
of APIs. In 2011 18th Working Conference on Reverse Engineering. IEEE, USA, 151–155.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://arxiv.org/abs/1705.06586

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definition of an API
	2.2 API Evolution

	3 Methodology
	3.1 Research Questions
	3.2 Literature Repository Selection
	3.3 Literature Search and Selection
	3.4 Data Extraction and Collection
	3.5 Overview of Primary Studies

	4 Evolution of API Evolution Research
	4.1 API Evolution Research Goals
	4.2 API Evolution Research Evaluation
	4.3 API Evolution Experimental Subjects

	5 Seminal and Recent Publications
	5.1 New Tools and Techniques
	5.2 Empirical Studies
	5.3 Tools and Techniques Proposals
	5.4 Surveys
	5.5 Datasets

	6 Current and Future Challenges
	6.1 New Tools and Techniques
	6.2 Empirical Studies
	6.3 Datasets
	6.4 Others

	7 Threats to Validity
	8 Conclusion
	References

