
Studying the Impact of Clones on Software Defects

Gehan M. K. Selim, Liliane Barbour, Weiyi Shang, Bram Adams, Ahmed E. Hassan, Ying Zou

Queen‟s University

Kingston, Canada

gehan@cs.queensu.ca, l.barbour@queensu.ca, {swy, bram, ahmed}@cs.queensu.ca, ying.zou@queensu.ca

Abstract—There are numerous studies that examine whether

or not cloned code is harmful to software systems. Yet, few of

them study which characteristics of cloned code in particular

lead to software defects. In our work, we use survival analysis

to understand the impact of clones on software defects and to

determine the characteristics of cloned code that have the

highest impact on software defects. Our survival models

express the risk of defects in terms of basic predictors inherent

to the code (e.g., LOC) and cloning predictors (e.g., number of

clone siblings). We perform a case study using two clone

detection tools on two large, long-lived systems using survival

analysis. We determine that the defect-proneness of cloned

methods is specific to the system under study and that more

resources should be directed towards methods with a longer

'commit history'.

I. INTRODUCTION

Code clones are traditionally defined as segments of code
that are highly similar or identical in terms of their semantics
or structure. Two or more clones form a clone class, and the
members of the class are known as clone siblings. Clones
can be introduced intentionally (e.g., copy and paste
behavior) or unintentionally in both the development and
maintenance phases of the software lifecycle.

Previous empirical studies have tried to establish a
causality relationship between clones and software defects.
Some researchers claim that clones reduce the
maintainability of code. They argue that inconsistent changes
to clones within a clone class can introduce software defects
[7]. For example, if a developer makes a change to a method,
but is unaware of clone siblings of that method, the fix will
not be applied to the clones, possibly leading to defects.
Those against cloning also argue that 'blind' copy and pasting
of code can lead to software defects if the developer does not
understand how the pasted code will interact with existing
code. However, opposing studies claim that there are
circumstances in which clones are justified. In those cases,
clone management techniques are required instead of
removing the clones through refactoring [6, 14]. For
example, clones might be used to maintain the stability of a
system by avoiding unstable experimental code containing
defects.

Typically, limited resources are available for inspecting
and testing code, so it is unreasonable to verify that each
clone is defect-free. Our goal is to provide managers with a
set of predictors that can be used to identify which clones are
most at risk of containing a defect. This information can be
used to focus code testing efforts.

In this paper, we study the impact of various clone
characteristics using two subject systems and two clone
detection tools. We use survival models to calculate the risk
of an event occurring (e.g., a defect) over time, given certain
predictors. We build hazard and survival models to address
two research questions:

RQ1: Can we model the impact of clones on defects with

high accuracy?
We determine if the relationship between clones
and defects can be generalized across different
systems. We also examine if cloned code is overall
more or less defect-prone than non-cloned code.

RQ2: What are the most important predictors of defects in
cloned code?
Previous research has tried to classify clones in
general as either helpful or harmful to a software
system. Filtering the clones based on defect-prone
predictors can help focus code testing and review
efforts.

The rest of this paper is organized as follows. Section 2
provides an overview of survival and hazard models. Section
3 explains our study design. Section 4 describes the study
results. Section 5 lists some threats to the validity of the
study. Section 6 summarizes related empirical studies on
code clones. Finally, Section 7 summarizes and concludes
the paper.

II. COX HAZARD MODELS

In this study, we analyze method revisions to study the
relationship between cloned method revisions and defects.
We also determine the characteristics of cloned method
revisions that have the highest impact on defects. In
regression modeling each subject, in this case each method,
can correspond to only one observation (i.e., row) in the data.
However, since each method can have more than one
revision, we need a way to represent each method as several
observations in the data.

Cox hazard models model the instantaneous risk (or
„hazard‟) of the occurrence of an event as a function of a set
of predictors [2, 10, 11]. In particular, Cox models are used
in survival analysis to model how long subjects under
observation „survive‟ before the occurrence of an event. For
example, Fox [11] used Cox models to represent the risk of
recently released prisoners being rearrested, where the
„rearrest‟ is the event of interest.

Unlike regression models, Cox models allow each
subject to have time dependent covariates. Each subject is
reflected in the data as multiple observations over time. Each
observation includes the start and the end time of the
observation, a flag signifying the occurrence of the event of
interest, and a set of covariates. Hence, we used Cox models
rather than standard regression models in order to model the
„risk‟ of a method experiencing an event over time. The
occurrence of a defect is the event of interest in our models.
The subjects in this study are methods, and each observation
(i.e., one row) corresponds to one method revision. Since a
method can experience a defect more than once throughout
its lifetime, we use an extended version of standard Cox
models that can handle „recurrent events‟. In other words,
such Cox models can handle data in which the event of
interest (e.g., occurrence of a defect) can occur more than
once for a method.

The hazard or probability of experiencing a defect at time
t is modeled by the following hazard function:

)t(X*

0i
ie*)t()t(

Or equivalently, taking the log of both sides, we get

)t(x...)t(x))t(log())t(log(ikk1i10i (2)

where:

)t(X
i

is the vector of time-dependent predictors of

observation i at time t

 is the vector of coefficients for the predictors in)t(X
i

 0 is the baseline hazard

 k is the number of predictors

The baseline hazard can be thought of as the hazard of

occurrence of the event of interest when all the predictors
have zero effect on the hazard. The baseline hazard is
cancelled out when calculating the relative hazard between
two classes (i.e. two methods in our case) at a specific time,
as shown in equation (3) below [2].

))()((txtx

ji
jie

 (3)

This implies that the relative hazard is a function of only

the predictors‟ values, not of the baseline hazard. This
assumption is referred to as proportional hazards assumption.
The proportional hazards assumption states that the effect of
predictors is stable over time and that the effect of the

predictor does not show a trend (e.g., increase or decrease)
with time. A diagnostic test has to be carried out to check
that this assumption is satisfied, hence validating the Cox
model. Other diagnostic tests were proposed in the literature
[2,11], but only the proportional hazards diagnostic test was
carried out in this study.

Equation (2) shows that the log of the hazard is a linear
function of the log of the baseline hazard and all the
predictors taken into consideration. If a linear relationship
between the log hazard and the predictors does not exist, a
link function should be applied to the predictors to make this
linear relationship valid. Link functions are used to transform
the predictors to a new scale, hence making the predictors
linearly related to the log hazard. Choosing an appropriate
link function for predictors in Cox hazard models is essential
so that identical changes in the value of a predictor affect the
log hazard equally, regardless the original value of the
predictor. This allows the Cox models to uphold the
proportionality assumption.

The literature proposes several hazard model variants.
We selected Cox hazard models for this study for four
reasons:

1. Only some of the study subjects (i.e., a method)
must experience the event (i.e., a defect).The models
allow subjects to leave the study early or survive the
entire observation period without experiencing the
event.

2. The subjects can be grouped according to the value
of one predictor (e.g. clone or non-clone), with each
group having an individual baseline hazard within
the model [2,11] .

3. The characteristics of the subjects can change over
time. For example, the LOC of a method can change
each time the method is changed.

4. Cox models have been adapted for recurrent events.
Accommodating recurrent events is suitable for
modeling open source software development, where
software modules continuously evolve over time,
and a method can have multiple defect fixes over its
lifetime [2].

III. STUDY DESIGN

This section describes the approach we use to populate
the code predictors and answer our research questions. A
general overview of our approach is shown in Figure 1. We
mine the CVS source code repository of each subject system
using a tool called J-REX to produce a copy of each method
revision and identify method revisions that fix a defect. We
then perform clone detection and measure the code metrics
(e.g. LOC, cyclomatic complexity) of each method revision.

Figure 1. Overview of our approach

Using the survival package in the R tool, we build and
validate survival models for each subject system. We
describe each step in more detail in the remainder of this
section.

A. Mining the CVS using J-Rex

Similar to C-REX [1], J-REX is used to study the
evolution of source code of Java software systems. For each
subject system, we build a list of all methods and their
revisions using J-REX. This list is correlated with the bug
repository to identify revisions that contain a defect fix.
Using the information from the CVS, it is only possibly to
identify revisions where a defect fix occurred, but it is
unknown which revision introduced the defect [2].

The approach used by J-REX is broken down into three
phases:

1. Extraction: J-REX extracts source code snapshots
for each Java file revision in a CVS repository.

2. Parsing: Using the Eclipse JDT parser, J-REX builds
an abstract syntax tree for each extracted file
revision and stores the tree in an XML document.

3. Analysis: J-REX compares the XML documents of
consecutive file revisions to determine changed code
units and generates evolutionary change data. The
results are stored in an XML document. There is one
XML document for each Java file.

In addition to the source extraction and evolutionary
analysis, J-REX uses a heuristic on all commit log text to
determine the reason for the commit. For example, a commit
log text containing the word “bug” is assigned the type
“bug”. We use the same heuristics as proposed by Mockus et
al. [3]. Using the assignments in the J-REX output, we
identify the method revisions that contain a defect fix.

J-REX takes as input the CVS repository of a Java
system. In our study, systems that used a SVN repository
were first migrated to CVS before executing J-REX. No data
required by our study was lost during conversion, nor was
the data modified in a way that would change our results.

B. Removing Test Files

The subject systems include test files that are used by the
developers to test the project subsystems. Some of these test
files contain incomplete code. Test files increase the number
of clones, since many test files are copied and then modified
slightly to test different cases. We remove such test files
from all systems.

C. Clone Detection

Past researchers execute clone detection on a subset of
the repository. For example, Rahman et al. [9] detect clones
between monthly snapshots of the system. Using this
technique leads to a loss of information, since the clone
status of revisions between the snapshots is lost. This
information is important for developers, since the change
from clone to non-clone might indicate a defect. The period
between snapshots must be selected to minimize the loss of
data.

Our approach avoids the use of snapshots. We perform
clone detection using all the method revisions, no revisions
are skipped. All the method revisions from the entire version
history of a subject system are submitted to an existing clone
detection tool. Clone detection is performed once to detect
clones between all the revisions. This introduces noise, such
as clones between method revisions that never co-existed or
between revisions of the same method.

More specifically, the contents of each method revision
output by J-REX are extracted into individual files (i.e., one
file per method revision). To uniquely identify which
revision file belongs to a specific method revision, we set the
file name as a hash of the method path information and the
revision number. Existing clone detection tools can be used
without modification to detect clones between the method
revision files. After detection, the file name is used to map
the clones back to the matching method revision and label
the revision as a clone.

Two revisions can only be labeled as clones if they exist
simultaneously (co-exist) within the history of the software
system. It does not make sense to propagate a change
historically to a past revision of a method. An example of
post processing is shown in Figure 2. In the figure, revision 1
of method A and revision 2 of method C are identified as a
possible clone pair, but removed from the clone list because
they never co-exist. Revision 1 of method B and revision 2
of method A are a clone pair because they overlap during
their lifetimes. For these reasons, we label a method revision
as a clone only under the following conditions:

 the clone detection tool identifies a clone sibling

 the clone sibling co-existed with the revision under
study

The validity of our study is dependent on whether the
clones identified by the clone detection tool are valid clones.
For this reason, we use two different clone detection tools

Figure 2. Post processing of clone detection results

and compare the results. We conduct our study using
CCFinder, a token-based clone detection tool, and Simian, a
string-based clone detection tool. Both tools identify clones
that are exact matches and clones with minor modifications
(e.g., identifiers have been renamed). Neither can detect
clones between segments of code where lines of code have
been added or removed. These clones are known as "gapped
clones".

D. Gathering Code Metrics

Based on the method revision files we create for clone
detection, we calculate metrics used as predictors in the
hazard models, such as Lines of Code (LOC) and cyclomatic
complexity. These metrics are described in more detail in
Section 3.E.2.

The data collected in all the previous steps is stored in a
MySQL database. This allows us to aggregate metrics for
each method across multiple revisions.

E. Building Survival Models

1) Identifying Link Functions for Predictors
We followed a similar approach to the one followed by

Koru et al. [2] for identifying a link function for LOC in each

considered data set. Like Koru et al., we plot the log relative
risk vs. LOC, and visually identify an appropriate link
function. For simplicity, we find the optimal link function for
the LOC predictor and apply it to all the other predictors. As
described in Section 2, a link function ensures that the
proportionality assumption for the Cox model is satisfied.

2) Building Cox Models
The Cox Models are created using the survival package

in R [22]. A summary of the predictors used in this study is
shown in Table 1. The predictors are sorted into two
categories: control predictors and cloning predictors. For
each data set we build two Cox models:

 Model based on Control Predictors: This model uses
predictors inherent to the method revision, such as
LOC, cyclomatic complexity and the number of
nesting levels. The control predictors are predictors
used in former studies to build models for defect
analysis. Using control predictors allows us to build
models that can be easily compared to models from
other studies.

 Model based on Control and Cloning Predictors:
This model is used to study the effect of cloning
predictors in presence of control predictors. This

TABLE I. PREDICTORS USED IN COX MODELING

Predictors Variable Name Description

Control Predictors

Lines of Code loc A raw count of the number of lines of code for a method.

Tokens tokens CCFinder returns clones as a range of code tokens within a file. The total
number of tokens in each method is provided by CCFinder.

Nesting nesting The maximum number of nesting levels for a method.

Cyclomatic Complexity cyclo The number of if-tests within a method.

Clone clone This variable is true if the method contains at least one clone.

Cumulative Defects culdefects The number of method defects up to and including the current revision.

Cumulative Defects/ Number of
Revisions

numdefectnumprev The method defect density.

Cloning Characteristic Predictors

Born Clone bornclone True if the first revision of the method is a clone.

Number of Cloned Revisions numrev The number of cloned revisions for a method up to and including the

current revision.

Number of Clone Siblings numsib The total number of clone siblings of a method revision. The siblings could

belong to different clone classes.

Number of Defect Siblings numdefectsib The total number of clone siblings that contain a defect.

Average Cumulative Defect
Siblings

avgculdefectsib The cumulative number of defects for a method revision is the number of
defective revisions for all revisions of the same method up to and including

all the current revision. For each cloned revision, we calculate the average

across all clone siblings.

Average Normalized Cumulative
Defect Siblings

avgculdefectsibavg The revision number of a clone sibling is not consistent across all siblings.
It is possible that one sibling has 4 defects within 8 revisions and another

has 4 defects within 12 revisions. To normalize these results, we divide the
cumulative number of defects by the revision number of the clone sibling.

Then, for each cloned revision, we calculate the average normalized

cumulative number of defects across all clone siblings.

Cloning Characteristic Predictors - Simian Specific

Cloned Lines of Code cloneLOC The number of method LOC that are cloned.

Clone Coverage
(Simian only)

percentCloneLOC The percentage of the method that is cloned, based on the total number of
LOC.

Cloning Characteristic Predictors - CCFinder Specific

Clone Tokens cloneTokens The number of method tokens that are cloned.

Clone Coverage percentCloneTokens The percentage of the method that is cloned, as a percentage of the total

number of method tokens.

model allows us to study the effect of cloning
predictors on the defect proneness of methods.
Simian outputs clone ranges in LOCs whereas
CCFinder outputs clone ranges in tokens. Some of
the clone predictors reflect the choice of the clone
detection tool. The cloning predictors were selected
to capture characteristics of cloned code and clone
siblings that are not commonly investigated in
former studies. However, our intuition is that
characteristics of cloned code and clone siblings can
have a major impact on code defects and can give
interesting insight as to what profoundly affects the
risk of experiencing a defect. For example, it is
interesting to learn whether having many clone
siblings makes a method more defect-prone since it
is harder to consistently maintain many clone
siblings as compared to maintaining one or two clone
siblings.

Each Cox model was stratified based on whether or not
the method revisions are a „clone‟. Stratification generates
different baseline hazards for different classes of
observations. This stratification sets aside the effect of
whether or not a method revision is cloned, and hence makes
the effect of other predictors more prominent [2]. In this
study, the models have different baseline hazards for cloned
and non-cloned method revisions.

F. Interpretation of Results and Validation of Models

The R package [20] produces a summary with various
statistics of the models, which we examine to interpret the
results in terms of the following factors:

 The effect of each predictor (e.g., a predictor‟s
coefficient) on the defect proneness. The sign of a
coefficient (e.g., positive or negative) signifies the

direction of change in defect proneness (e.g.,
increase or decrease) when the predictor increases.

 The standard error of each predictor coefficient.

 The correlation between the actual and the predicted
number of occurrences of defect fixes. This allows
us to quantify how well the models represent the
hazard of defect occurrence of the raw data.

We carry out the proportional hazards diagnostic test for
all our models to prove their validity. Other diagnostic tests
are available for Cox models [11] and can be investigated as
future work to further validate our models.

IV. STUDY RESULTS

A. Subject Systems

As our subject systems, we use two open source Java
projects: Apache Ant and ArgoUML. They are selected
because of their use in previous studies. Table 2 describes
the characteristics of the two subject systems. We use two
clone detection tools, Simian and CCFinder, on each of the
two subject systems. Therefore, we build models for four
data sets: Ant-Simian, Ant-CCFinder, ArgoUML-Simian and
ArgoUML-CCFinder.

B. Correlation Results

For each of the four data sets, correlation analysis
between the predictors is carried out to eliminate redundant
predictors. Hence, different predictors were eliminated for
each data set. We used „0.8‟ as the correlation threshold over
which any two predictors are considered correlated. For each
pair of correlated predictors, we eliminate one predictor. The
remaining predictors are used to build the hazard models.
Table 3 shows for each data set which predictors were
eliminated according to the correlation results.

C. Identifying a link function of the LOC predictor

We determine the appropriate link function for LOC in
each of the four data sets by plotting the log relative risk vs.
LOC as done by Koru et al. [2]. We examine the four plots
created by the four data sets to find a suitable link function

TABLE II. SUBJECT SYSTEMS

System Total

LOC

Number of

Methods

Number of

Method

Revisions

CCFinder

Clones

(%)

Simian

Clones

(%)

Revisions

Containing

Defects

(%)

Number

of

Revisions

in Study

Number of

Revisions

in Study

(%)

Apache Ant 1.41M 17.57K 61.02K 30.78% 1.99% 11.32% 60.85K 99.72%

ArgoUML 1.76M 23.30K 92.55K 10.57% 1.73% 21.26% 5.68K 6.14%

TABLE III. PREDICTORS ELIMINATED ACCORDING TO

CORRELATION ANALYSIS

Data Set
Predictors Eliminated

Control Predictors Environment Predictors

ArgoUML
Simian

culdefects
cloneLOC,
avgCulDefectSib

ArgoUML

CCFinder
culdefects avgCulDefectSib

Ant

Simian

nesting, cyclo,

culdefects
avgCulDefectSib

Ant

CCFinder

nesting, cyclo,

tokens, culdefects

cloneToken,

percentCloneToken,
avgCulDefectSib

TABLE IV. TEST FOR PROPORTIONALITY ASSUMPTION

Data Set
Test for Proportionality Assumption

rho chisq p-value

ArgoUML – Simian 0.02690 0.821 0.3650

ArgoUML – CCFinder 0.03070 1.070 0.3000

Ant – Simian 0.02260 3.100 0.0783

Ant – CCFinder -0.00766 0.372 0.5420

for LOC. However, due to the large LOC range, we notice
that the plots do not exhibit an obvious functional form
throughout the entire range and hence we cannot find one
link function that fits the LOC data. Hence, we decide to
identify the optimal LOC range for each data set that exhibits
a functional form (e.g., shows a pure logarithmic or cubic
behavior in this range) in its plot. Since choosing a link
function is intended so that the model passes the
proportionality assumption test, we ensure that the chosen
range of LOC passes the proportionality assumption with a
high p-value. Any method revisions with LOC outside the
selected range are discarded from the study. The number of
method revisions used overall in the study is show in the last
column of Table 2.

Each of the two subject systems had a different optimal
LOC range. The range is independent of the choice of clone
detector. Future work should extend this by building models
for the data sets that work across the whole LOC range for
all studied systems. The selected LOC range for Ant is 0-
200 and for ArgoUML is 55-300. As shown in Table 2, in
the case of Ant, almost all the revisions (99.72%) are
included in this range. The optimal range for ArgoUML
limited the study to only 6% of the revisions.

Figure 3 shows the relationship between LOC and log
relative hazard for the Ant-Simian data set after selecting
functions within the chosen LOC range. All subject systems
showed similar plots for their selected LOC range. This
implied that we can use a logarithmic link function for LOC.

D. Building Cox Models

We build two Cox models for each of the four data sets
using all predictors except for the predictors removed during
the correlation analysis. This results in eight Cox models.
After building each model, we examine the summary of the
model and iteratively remove insignificant predictors
(p>0.05), starting with the variable having the highest p-
value. Table 5 shows the set of predictors that were most
significant in determining defects in each of the eight
models. Most systems showed that LOC and the history of
defects of a method (e.g. numdefectnumprev) are control
predictors that are the most significant in determining
defects. From the cloning predictors, the number of defective
clone siblings (e.g. NumDefectSib) is significant in
determining defects in most systems.

For each of the eight models, we generate the summary
of the model. Hence, we can interpret the effect of each
predictor in each model. For space limitations, we show the
summary of the model based on control and cloning
predictors for the Ant-CCFinder data set in Table 6. Positive
coefficients signify that an increase in the corresponding
predictor will increase defects. Therefore, defects increase
with an increase in LOC, with an increase in the number of
defects in the history of a method (numdefectnumprev) and
with an increase in the number of cloned siblings
(numCloneSib). However, defects would decrease if a
method was born as a clone (bornclone) and with an increase
in the number of defective clone siblings (numDefectSib).
Table 6 also shows that a control predictor (e.g.
numdefectnumprev) can have the highest impact on
predicting defects with a coefficient relatively much higher
(e.g., 1.145) than that for other predictors and with a very
low p value (p-value < 2*10e-16). Overall, control predictors
are more important in determining the defect proneness of a
method than cloning predictors.

The summaries of all eight models can be interpreted in a
similar manner. The signs of the coefficients for the same
predictors varied for the different data sets. In the future, we
plan to explore more data sets, and reach a general consensus
regarding the effect of each predictor on defects and why the
effect of the same predictor differs across data sets.

E. Analysis of Models

We structure our discussion of the analysis of the models
around our two research questions stated in section I.

RQ1: Can we model the impact of clones on defects with

high accuracy?
To determine whether the generated Cox models can

represent the impact of clones on defects with high accuracy,
we calculate the Spearman correlation between the actual
and predicted occurrence of defects according to our models.
Table 7 shows the results obtained. All the models show
medium to high correlation. Models built for ArgoUML
show lower correlation than other data sets due to the low

Figure 3. Determining the link function for Ant

TABLE V. SIGNIFICANT PREDICTORS IN PREDICTING

DEFECTS

Data Set Model Based on

Control Predictors

Only

Model Based on

Control and Cloning

Predictors

ArgoUML

Simian

loc

numdefectnumprev
clone

loc, numdefectnumprev

numclonesib,
NumDefectSib, clone

ArgoUML

CCFinder

tokens, clone

numdefectnumprev

tokens, clone

numdefectnumprev
avgCulSibDefectAvg

Ant

Simian

loc, clone

numdefectnumprev

loc, numdefectnumprev,

numclonerev, clone,

numclonesib,
NumDefectSib

Ant

CCFinder

loc, clone,

numdefectnumprev

loc, numdefectnumprev,

bornclone, clone,

numclonesib,

NumDefectSib

number of revisions used from ArgoUML (Table 2). Not all
data sets in Table 7 show a higher correlation when the
number of predictors used in the models increases. In fact,
only one data set (i.e., ArgoUML-Simian) shows a higher
correlation when building the Cox model using control and
cloning predictors. The three other data sets show a higher
correlation when their models are built using only control
predictors. This indicates that practitioners can use
traditional control predictors to predict defects in systems
and still get high prediction results.

To further check the validity of the models, we test the
proportionality assumption on the eight models. Table 8
shows the p-value of the test for proportionality assumption
for the eight models. This is different from the tests shown in
Table 4 because the tests in Table 8 are based on all the
predictors, not just LOC. Table 8 reveals that all models pass
the test for proportionality assumption (p-value > 0.01)
except for the Ant-Simian data set, which did not pass the
test using the model based on control predictors only.

For each of the eight models, we plot the survival curves
for cloned and non-cloned functions. This helps us determine
whether non-cloned functions can survive defects more than
cloned functions as traditionally claimed. Due to space
limitations, in Figure 4 we only show the survival curves for
ArgoUML-Simian and Ant-Simian when using the model
based on control and cloning predictors. The CCFinder data
sets are similar to the Simian data sets, but with a smaller

gap between the survivals of cloned and non-cloned
methods.

In Figure 4, different data sets seem to show different
behaviour for cloned and non-cloned methods. The Y axis is
the probability of a method surviving defects. Hence low
numbers on the Y axis signify a low survival rate (i.e. high
hazard or high risk of experiencing defects) For some data
sets (e.g. Argouml-simian), non-cloned methods survive
defects better than cloned methods since their survival curves
have higher values on the Y axis. For such data sets, non-
cloned methods are less risky than cloned methods, as
traditionally claimed. Especially for the ArgoUML-Simian
data set, cloned methods are highly risky and can barely
survive the occurrence of defects. On the other hand, the
Ant-Simian data set shows that cloned code is safer than

TABLE VI. SUMMARY OF MODEL BASED ON CONTROL AND

CLONING PREDICTORS FOR ANT - CCFINDER

 coef Se(coef) z p

loc 0.102 0.0213 4.8 1.60e-06

numdefectnumprev 1.145 0.066 17.35 <2*10e-16

bornclone -0.325 0.0517 -6.29 3.21e-10

numclonesib 0.107 0.0293 3.64 2.68e-04

numdefectsib -0.368 0.0816 -4.51 6.52e-06

TABLE VII. SPEARMAN CORRELATION BETWEEN ACTUAL

AND EXPECTED OCCURRENCE OF DEFECTS

Model based

on Control

Predictors

Model based

on Control and

Cloning

Predictors

ArgoUML –Simian 0.5956751 0.6099531

ArgoUML - CCFinder 0.5525268 0.5083261

Ant – Simian 0.6809132 0.6424308

Ant –CCFinder 0.7038093 0.5814575

TABLE VIII. P-VALUE OF THE TEST FOR PROPORTIONALITY

ASSUMPTION

Data set

Model

based on

Control

predictors

only

Model based on

Control and

Cloning

predictors

ArgoUML –Simian 0.468 0.01597

ArgoUML - CCFinder 0.55 0.367

Ant –Simian 0.00823 0.02913

Ant –CCFinder 0.02435 0.1527

ArgoUML Simian

Ant Simian

Figure 4. Survival curves of cloned and non cloned methods in

ArgoUML-Simian and Ant-Simian using the control and cloning
predictor models

ArgoUML Simian

Figure 5. Survival of methods in the ArgoUML-Simian data

set, using only the control predictors

non-cloned code. We deduce that we cannot build a single
Cox model to represent different data sets, since different
data sets show different survival probabilities for cloned and
non-cloned methods.

RQ2: What are the most important predictors of defects in

cloned code?
As previously discussed in Section 4.D, each model

shows a different set of predictors that are significant in
detecting defects. However, from Table 5 we see that most
of the models based on control and cloning predictors have
numDefectSib as a common significant predictor.

To further explore the effect of using additional cloning
predictors we compare two plots. Figure 5 shows the
survival curve for ArgoUML-Simian when using the model
based on control predictors only and Figure 4 shows the
survival curve for ArgoUML-Simian when using the model
based on control and cloning predictors. Figure 5 reveals that
using only the control predictors, the data set shows that
cloned revisions are initially risky in the first four revisions
of their lifetime, then become more stable than non-cloned
revisions in the second half of their lifetime. However, the
corresponding plot for ArgoUML-Simian in Figure 4 shows
that cloned code is more risky than non cloned code
throughout their lifetime. Hence, incorporating cloning
predictors into the model reveal features of methods that are
initially not apparent. In case of ArgoUML, non-cloned code
survives defects better than cloned code. In the case of
Apache Ant, cloned code survives defects better than non-
cloned code. This leads to the finding that the stability of
cloned code is intrinsic to the system under study.

V. THREATS TO VALIDITY

A. Identifying Defect Fixes

Our study is based on the data provided by J-REX, a
software evolution tool that generates high-level
evolutionary change data of the source code of software
projects. J-Rex uses heuristics to identify defect-fixing
changes [3]. The results of the paper are dependent on the
accuracy of the results from J-REX. We are confident in the
results from J-REX as it implements the same algorithm used
previously by Hassan et al. [1] and Mockus et al. [3].

B. Clone Detection

The classification of a method revision as a clone or non-
clone is only as accurate as our choice of clone detection
tool. To mitigate the possibly of misclassification, we chose
two clone detection tools and repeat the study for both tools.

C. Choice of Link Function

We selected a logarithmic link function for all predictors.
It is possible that a different link function would be a better
fit for some of the predictors. The diagnostics indicate that
the models were a good fit for the data. Thus the choice of
link function does not have a significant impact on the model
fit. We leave the selection of different link functions for each
predictor as future work.

D. Limitation of LOC Ranges

For each subject system, we limit our analysis to a range
of LOC values. This reduces the number of revisions used in
the study. To minimize this risk, we select two systems.
ArgoUML is limited to only 6% of the total revisions, but in
the case of Ant, almost all revisions are used in the study. In
the future we plan to investigate more systems.

VI. RELATED WORK

A. Predicting Failure Proneness in Software Systems

Koru et al. [2] explore the relationship between the size
of a Java class and its risk of defects. They build Cox models
of defect fixes using class size as the only predictor. The
study provides evidence that small classes are proportionally
more defect prone than large classes. Cataldo et al. [15]
investigate the effect of different kinds of software
dependencies on the probability of observing faults.
Different dependency measures are defined and used to build
a logistic regression model to predict failure proneness at the
file level. All dependencies prove to increase failure
proneness, with differences in their degree of impact.

Mockus et al. [4] build models to predict customer
perceived software quality based on a set of predictors. The
results show that the deployment time, the hardware
configuration, and the software platform are vital factors in
forecasting the probability of observing a software failure.

Zimmermann et al. [23] construct the Eclipse bug data
set and show that complexity has a high positive correlation
with failure.

B. Tracking Evolution of Clones in Software Systems

Harder and Göde [12] discuss the available clone
evolution models and corresponding techniques that track
clones between versions of a software system. The study
describes three major clone evolution patterns, the clone
detection approaches used, the clone-mapping
methodologies, and their evaluation.

Kim and Notkin [17] propose a clone genealogy extractor
that generates the clone history of code. The study defines a
clone evolution model. Results show that many clones
change inconsistently. Hence, maintaining clones could be a
better solution than refactoring.

C. Studying Failure Proneness as a Function of Code

Cloning

Juergens et al. [8] propose an algorithm to track
inconsistently changing clones. The authors then investigate
bugs related to such clones. Results show a precision of up to
38% in detecting bugs related to inconsistent clone changes.
Aversano et al. [13] further investigate co-change on clones
and whether or not a bug fix effort is propagated to a clone
class. A case study showed that clones can be maintained to
a high degree if the co-change happens within a small time
window.

Bettenburg et al. [18] argue that studying clone evolution
and maintenance at the release level would provide insight
into the effects of code cloning as perceived by customers. A

case study proves that at most 3% of inconsistent changes to
clones at the release level lead to bugs.

Rahman et al. [9] investigate the effect of cloning on
defect proneness. Unlike our study at the revision level, they
use monthly snapshots of four open source subject systems.
The study does not find evidence that cloned code is risky.
There is also no strong evidence that cloned code with more
siblings is more defect-prone than cloned code with fewer
siblings.

Our study differs from similar studies in the literature in
several aspects. We explore a new set of predictors related to
clone siblings, which were not previously investigated by
other studies. When analyzing software systems, we do so at
the method revision level. To the best of our knowledge, our
study is the first to perform clone-defect analysis at this
level. We also use Cox hazard models with stratification.
The stratification allows us to model cloned and non-cloned
method revisions using different baseline hazards. Hence, we
are able to infer the most crucial predictors in determining
the risk of a method experiencing a defect fix, to analyze
how cloned methods are affected by their siblings and to
figure out when resources should be allocated to testing and
defect fixing in the lifetime of a method.

VII. CONCLUSION

In this study, we use Cox hazard models to determine
whether cloned code is harmful, what features of cloned
code make it defect-prone, and when in the lifetime of a
method is it most prone to defects. We analyze the models to
understand which predictors are significant in determining
defects and the relationship between the predictors and the
defects. We demonstrate the validity and accuracy of our
models using the proportionality assumption test and by
calculating the spearman correlation between the actual and
predicted occurrence of defects. Based on our study of two
systems, we made two findings. First, we found that cloned
code is not always more risky than non-cloned code; the risk
seems to be system dependent. For example, our study
showed that cloned code is more risky than non-cloned code
in ArgoUML, unlike in Ant. Second, we discovered that the
survival of all methods against defects decreases with time.
This indicates that more testing effort should be dedicated to
methods with a longer history of commits.

REFERENCES

[1] A. E. Hassan and R. C. Holt, “Studying The Evolution of Software
Systems Using Evolutionary Code Extractors,” In Proceedings of the
Principles of Software Evolution, 7th international Workshop
(IWPSE 2004), IEEE Computer Society, Sept. 2004, pp. 76-81.

[2] A. G. Koru, K. El Emam, D. Zhang, H. Liu, and D. Mathew "Theory
of relative defect proneness: Replicated studies on the functional form
of the size-defect relationship," Empirical Software Engineering, vol.
13, pp. 473-498, Oct. 2008.

[3] A. Mockus and L. G. Votta. "Identifying reasons for software change
using historic databases," In Proceedings of the 16th International
Conference on Software Maintenance (ICSM '00), IEEE Computer
Society, Oct 2000, pp 120–130.

[4] A. Mockus, P. Zhang, and P. Luo Li, “Predictors of Customer
Perceived Software Quality," In Proceedings of the 27th international
Conference on Software Engineering (ICSE '05), ACM, May 2005,
pp. 225-233.

[5] CCFinder, http://www.ccfinder.net/

[6] C. Kapser and M. W. Godfrey, "'Cloning Considered Harmful'
Considered Harmful," In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE '06), IEEE Computer
Society, Oct 2006, pp. 19-28.

[7] K. Roy and J. R. Cordy, “A Survey on Software Clone Detection
Research,” Queens University, Kingston, ON, Canada, Technical
Report No. 2007-541, 2007.

[8] E. Juergens, B. Hummel, F. Deissenboeck, and M. Feilkas “Static
Bug Detection Through Analysis of Inconsistent Clones,” In
Workshopdand SE Konferenz 2008, LNI. GI, 2008.

[9] F. Rahman, C. Bird, and P. Devanbu. “Clones: What is that Smell?”
In Proceedings of the Seventh IEEE Working Conference on Mining
Software Repositories (MSR ‟10), May 2010, pp.72-81.

[10] J. D. Singer and J. B. Willett, Applied Longitudinal Data Analysis.
New York: Oxford University Press, 2003.

[11] J. Fox, "Cox Proportional-Hazards Regression for Survival Data,"
Appendix to An R and S-PLUS Companion to Applied Regression,
February 2002.

[12] J. Harder and N. Göde, "Modeling Clone Evolution," The 3rd
International Workshop on Software Clones (IWSC '09), In
Proceedings of the 13th European Conference on Software
Maintenance and Reengineering, March 2009 pp. 17–21.

[13] L. Aversano, L. Cerulo, and M. Di Penta , “How Clones are
Maintained: An Empirical Study,” In Proceedings of the 11th
European Conference on Software Maintenance and Reengineering
(CSMR'07), IEEE Computer Society, March 2007, pp. 81-90.

[14] L. Marks. “An empirical study for the impact of maintenance
activities on code clones,” M.Sc. thesis, Queen‟s University,
Kingston, ON, Canada, 2009.

[15] M. Cataldo, A. Mockus, J. A. Roberts and J. D. Herbsleb, “Software
Dependencies, Work Dependencies and Their Impact on Failure,”
IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 864-
878, November/December 2009.

[16] M. D‟Ambros and M. Lanza, “BugCrawler: Visualizing Evolving
Software Systems,” In Proceedings of the 11th European Conference
on Software Maintenance and Reengineering (CSMR '07), IEEE
Computer Society, March 2007, pp. 333-334.

[17] M. Kim and D. Notkin, “Using a Clone Genealogy Extractor for
Understanding and Supporting Evolution of Code Clones,” The
Second International Workshop on Mining Software Repositories, co-
located with International Conference on Software Engineering,
pages 1-5, ACM, May 2005.

[18] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. E.
Hassan “An Empirical Study on Inconsistent Changes to Code Clones
at Release Level,” In Proceedings of the 16th Working Conference on
Reverse Engineering (WCRE '09), IEEE Computer Society, Oct
2009, p. 85-94.

[19] R. Koschke, “Survey of Research on Software Clones: Duplication,
Redundancy, and Similarity in Software,” Dagstuhl Seminar 06301,
2006.

[20] R, http://cran.r-project.org/

[21] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code,” IEEE Transactions on Software Engineering, vol. 28, no. 7,
pp. 654-670, Jul 2002.

[22] T. Therneau, "R Survival Package", http://cran.r-
project.org/web/packages/survival/index.html

[23] T. Zimmermann, R. Premraj and A. Zeller, “Predicting Defects for
Eclipse,” In Proceedings of the 3rd International Workshop on
Predictor Models in Software Engineering (PROMISE‟07), IEEE
Computer Society, May 2007, pp. 9.

