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Abstract—There are numerous studies that examine whether 

or not cloned code is harmful to software systems. Yet, few of 

them study which characteristics of cloned code in particular 

lead to software defects. In our work, we use survival analysis 

to understand the impact of clones on software defects and to 

determine the characteristics of cloned code that have the 

highest impact on software defects. Our survival models 

express the risk of defects in terms of basic predictors inherent 

to the code (e.g., LOC) and cloning predictors (e.g., number of 

clone siblings). We perform a case study using two clone 

detection tools on two large, long-lived systems using survival 

analysis. We determine that the defect-proneness of cloned 

methods is specific to the system under study and that more 

resources should be directed towards methods with a longer 

'commit history'.  

I.  INTRODUCTION 

Code clones are traditionally defined as segments of code 
that are highly similar or identical in terms of their semantics 
or structure. Two or more clones form a clone class, and the 
members of the class are known as clone siblings. Clones 
can be introduced intentionally (e.g., copy and paste 
behavior) or unintentionally in both the development and 
maintenance phases of the software lifecycle. 

Previous empirical studies have tried to establish a 
causality relationship between clones and software defects. 
Some researchers claim that clones reduce the 
maintainability of code. They argue that inconsistent changes 
to clones within a clone class can introduce software defects 
[7]. For example, if a developer makes a change to a method, 
but is unaware of clone siblings of that method, the fix will 
not be applied to the clones, possibly leading to defects. 
Those against cloning also argue that 'blind' copy and pasting 
of code can lead to software defects if the developer does not 
understand how the pasted code will interact with existing 
code. However, opposing studies claim that there are 
circumstances in which clones are justified. In those cases, 
clone management techniques are required instead of 
removing the clones through refactoring [6, 14]. For 
example, clones might be used to maintain the stability of a 
system by avoiding unstable experimental code containing 
defects. 

Typically, limited resources are available for inspecting 
and testing code, so it is unreasonable to verify that each 
clone is defect-free. Our goal is to provide managers with a 
set of predictors that can be used to identify which clones are 
most at risk of containing a defect. This information can be 
used to focus code testing efforts. 

In this paper, we study the impact of various clone 
characteristics using two subject systems and two clone 
detection tools. We use survival models to calculate the risk 
of an event occurring (e.g., a defect) over time, given certain 
predictors. We build hazard and survival models to address 
two research questions: 

 
RQ1: Can we model the impact of clones on defects with 

high accuracy?  
We determine if the relationship between clones 
and defects can be generalized across different 
systems. We also examine if cloned code is overall 
more or less defect-prone than non-cloned code. 
 

RQ2:  What are the most important predictors of defects in 
cloned code?  
Previous research has tried to classify clones in 
general as either helpful or harmful to a software 
system. Filtering the clones based on defect-prone 
predictors can help focus code testing and review 
efforts. 
 

The rest of this paper is organized as follows. Section 2 
provides an overview of survival and hazard models. Section 
3 explains our study design. Section 4 describes the study 
results. Section 5 lists some threats to the validity of the 
study. Section 6 summarizes related empirical studies on 
code clones. Finally, Section 7 summarizes and concludes 
the paper. 

II. COX HAZARD MODELS 

In this study, we analyze method revisions to study the 
relationship between cloned method revisions and defects. 
We also determine the characteristics of cloned method 
revisions that have the highest impact on defects. In 
regression modeling each subject, in this case each method, 
can correspond to only one observation (i.e., row) in the data. 
However, since each method can have more than one 
revision, we need a way to represent each method as several 
observations in the data. 

Cox hazard models model the instantaneous risk (or 
„hazard‟) of the occurrence of an event as a function of a set 
of predictors [2, 10, 11]. In particular, Cox models are used 
in survival analysis to model how long subjects under 
observation „survive‟ before the occurrence of an event. For 
example, Fox [11] used Cox models to represent the risk of 
recently released prisoners being rearrested, where the 
„rearrest‟ is the event of interest.  



Unlike regression models, Cox models allow each 
subject to have time dependent covariates. Each subject is 
reflected in the data as multiple observations over time. Each 
observation includes the start and the end time of the 
observation, a flag signifying the occurrence of the event of 
interest, and a set of covariates. Hence, we used Cox models 
rather than standard regression models in order to model the 
„risk‟ of a method experiencing an event over time. The 
occurrence of a defect is the event of interest in our models. 
The subjects in this study are methods, and each observation 
(i.e., one row) corresponds to one method revision. Since a 
method can experience a defect more than once throughout 
its lifetime, we use an extended version of standard Cox 
models that can handle „recurrent events‟. In other words, 
such Cox models can handle data in which the event of 
interest (e.g., occurrence of a defect) can occur more than 
once for a method.  

The hazard or probability of experiencing a defect at time 
t is modeled by the following hazard function: 
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Or equivalently, taking the log of both sides, we get 
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observation i at time t 
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 0 is the baseline hazard 

 k is the number of predictors 
 
The baseline hazard can be thought of as the hazard of 

occurrence of the event of interest when all the predictors 
have zero effect on the hazard. The baseline hazard is 
cancelled out when calculating the relative hazard between 
two classes (i.e. two methods in our case) at a specific time, 
as shown in equation (3) below [2]. 
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This implies that the relative hazard is a function of only 

the predictors‟ values, not of the baseline hazard. This 
assumption is referred to as proportional hazards assumption. 
The proportional hazards assumption states that the effect of 
predictors is stable over time and that the effect of the 

predictor does not show a trend (e.g., increase or decrease) 
with time. A diagnostic test has to be carried out to check 
that this assumption is satisfied, hence validating the Cox 
model. Other diagnostic tests were proposed in the literature 
[2,11], but only the proportional hazards diagnostic test was 
carried out in this study. 

Equation (2) shows that the log of the hazard is a linear 
function of the log of the baseline hazard and all the 
predictors taken into consideration. If a linear relationship 
between the log hazard and the predictors does not exist, a 
link function should be applied to the predictors to make this 
linear relationship valid. Link functions are used to transform 
the predictors to a new scale, hence making the predictors 
linearly related to the log hazard. Choosing an appropriate 
link function for predictors in Cox hazard models is essential 
so that identical changes in the value of a predictor affect the 
log hazard equally, regardless the original value of the 
predictor. This allows the Cox models to uphold the 
proportionality assumption. 

The literature proposes several hazard model variants. 
We selected Cox hazard models for this study for four 
reasons: 

1. Only some of the study subjects (i.e., a method) 
must experience the event (i.e., a defect).The models 
allow subjects to leave the study early or survive the 
entire observation period without experiencing the 
event. 

2. The subjects can be grouped according to the value 
of one predictor (e.g. clone or non-clone), with each 
group having an individual baseline hazard within 
the model [2,11] . 

3. The characteristics of the subjects can change over 
time. For example, the LOC of a method can change 
each time the method is changed.  

4. Cox models have been adapted for recurrent events. 
Accommodating recurrent events is suitable for 
modeling open source software development, where 
software modules continuously evolve over time, 
and a method can have multiple defect fixes over its 
lifetime [2]. 

III. STUDY DESIGN 

This section describes the approach we use to populate 
the code predictors and answer our research questions. A 
general overview of our approach is shown in Figure 1. We 
mine the CVS source code repository of each subject system 
using a tool called J-REX to produce a copy of each method 
revision and identify method revisions that fix a defect. We 
then perform clone detection and measure the code metrics 
(e.g. LOC, cyclomatic complexity) of each method revision. 

 
Figure 1.     Overview of our approach 



Using the survival package in the R tool, we build and 
validate survival models for each subject system. We 
describe each step in more detail in the remainder of this 
section. 

A. Mining the CVS using J-Rex 

Similar to C-REX [1], J-REX is used to study the 
evolution of source code of Java software systems. For each 
subject system, we build a list of all methods and their 
revisions using J-REX. This list is correlated with the bug 
repository to identify revisions that contain a defect fix. 
Using the information from the CVS, it is only possibly to 
identify revisions where a defect fix occurred, but it is 
unknown which revision introduced the defect [2].  

The approach used by J-REX is broken down into three 
phases: 

1. Extraction: J-REX extracts source code snapshots 
for each Java file revision in a CVS repository.  

2. Parsing: Using the Eclipse JDT parser, J-REX builds 
an abstract syntax tree for each extracted file 
revision and stores the tree in an XML document. 

3. Analysis: J-REX compares the XML documents of 
consecutive file revisions to determine changed code 
units and generates evolutionary change data. The 
results are stored in an XML document. There is one 
XML document for each Java file.  

In addition to the source extraction and evolutionary 
analysis, J-REX uses a heuristic on all commit log text to 
determine the reason for the commit.  For example, a commit 
log text containing the word “bug” is assigned the type 
“bug”. We use the same heuristics as proposed by Mockus et 
al. [3]. Using the assignments in the J-REX output, we 
identify the method revisions that contain a defect fix. 

J-REX takes as input the CVS repository of a Java 
system. In our study, systems that used a SVN repository 
were first migrated to CVS before executing J-REX. No data 
required by our study was lost during conversion, nor was 
the data modified in a way that would change our results. 

B. Removing Test Files 

The subject systems include test files that are used by the 
developers to test the project subsystems. Some of these test 
files contain incomplete code. Test files increase the number 
of clones, since many test files are copied and then modified 
slightly to test different cases. We remove such test files 
from all systems. 

C. Clone Detection 

Past researchers execute clone detection on a subset of 
the repository. For example, Rahman et al. [9] detect clones 
between monthly snapshots of the system. Using this 
technique leads to a loss of information, since the clone 
status of revisions between the snapshots is lost. This 
information is important for developers, since the change 
from clone to non-clone might indicate a defect. The period 
between snapshots must be selected to minimize the loss of 
data. 

Our approach avoids the use of snapshots. We perform 
clone detection using all the method revisions, no revisions 
are skipped. All the method revisions from the entire version 
history of a subject system are submitted to an existing clone 
detection tool. Clone detection is performed once to detect 
clones between all the revisions. This introduces noise, such 
as clones between method revisions that never co-existed or 
between revisions of the same method. 

More specifically, the contents of each method revision 
output by J-REX are extracted into individual files (i.e., one 
file per method revision). To uniquely identify which 
revision file belongs to a specific method revision, we set the 
file name as a hash of the method path information and the 
revision number. Existing clone detection tools can be used 
without modification to detect clones between the method 
revision files. After detection, the file name is used to map 
the clones back to the matching method revision and label 
the revision as a clone. 

Two revisions can only be labeled as clones if they exist 
simultaneously (co-exist) within the history of the software 
system. It does not make sense to propagate a change 
historically to a past revision of a method. An example of 
post processing is shown in Figure 2. In the figure, revision 1 
of method A and revision 2 of method C are identified as a 
possible clone pair, but removed from the clone list because 
they never co-exist. Revision 1 of method B and revision 2 
of method A are a clone pair because they overlap during 
their lifetimes.  For these reasons, we label a method revision 
as a clone only under the following conditions:  

 the clone detection tool identifies a clone sibling 

 the clone sibling co-existed with the revision under 
study 

The validity of our study is dependent on whether the 
clones identified by the clone detection tool are valid clones. 
For this reason, we use two different clone detection tools 

 
Figure 2.     Post processing of clone detection results 



and compare the results. We conduct our study using 
CCFinder, a token-based clone detection tool, and Simian, a 
string-based clone detection tool. Both tools identify clones 
that are exact matches and clones with minor modifications 
(e.g., identifiers have been renamed). Neither can detect 
clones between segments of code where lines of code have 
been added or removed. These clones are known as "gapped 
clones". 

D. Gathering Code Metrics 

Based on the method revision files we create for clone 
detection, we calculate metrics used as predictors in the 
hazard models, such as Lines of Code (LOC) and cyclomatic 
complexity. These metrics are described in more detail in 
Section 3.E.2. 

The data collected in all the previous steps is stored in a 
MySQL database. This allows us to aggregate metrics for 
each method across multiple revisions. 

E. Building Survival Models 

1) Identifying Link Functions for Predictors 
We followed a similar approach to the one followed by 

Koru et al. [2] for identifying a link function for LOC in each 

considered data set. Like Koru et al., we plot the log relative 
risk vs. LOC, and visually identify an appropriate link 
function. For simplicity, we find the optimal link function for 
the LOC predictor and apply it to all the other predictors. As 
described in Section 2, a link function ensures that the 
proportionality assumption for the Cox model is satisfied. 

2) Building Cox Models 
The Cox Models are created using the survival package 

in R [22]. A summary of the predictors used in this study is 
shown in Table 1. The predictors are sorted into two 
categories: control predictors and cloning predictors. For 
each data set we build two Cox models:  

 Model based on Control Predictors: This model uses 
predictors inherent to the method revision, such as 
LOC, cyclomatic complexity and the number of 
nesting levels. The control predictors are predictors 
used in former studies to build models for defect 
analysis. Using control predictors allows us to build 
models that can be easily compared to models from 
other studies. 

 Model based on Control and Cloning Predictors: 
This model is used to study the effect of cloning 
predictors in presence of control predictors. This 

TABLE I.        PREDICTORS USED IN COX MODELING 

Predictors Variable Name Description 

Control Predictors 

Lines of Code loc A raw count of the number of lines of code for a method. 

Tokens tokens CCFinder returns clones as a range of code tokens within a file. The total 
number of tokens in each method is provided by CCFinder. 

Nesting nesting The maximum number of nesting levels for a method. 

Cyclomatic Complexity cyclo The number of if-tests within a method. 

Clone clone This variable is true if the method contains at least one clone. 

Cumulative Defects culdefects The number of method defects up to and including the current revision. 

Cumulative Defects/ Number of 
Revisions 

numdefectnumprev The method defect density.  

Cloning Characteristic Predictors 

Born Clone bornclone True if the first revision of the method is a clone. 

Number of Cloned Revisions numrev The number of cloned revisions for a method up to and including the 

current revision. 

Number of Clone Siblings numsib The total number of clone siblings of a method revision. The siblings could 

belong to different clone classes. 

Number of Defect Siblings numdefectsib The total number of clone siblings that contain a defect. 

Average Cumulative Defect 
Siblings 

avgculdefectsib The cumulative number of defects for a method revision is the number of 
defective revisions for all revisions of the same method up to and including 

all the current revision. For each cloned revision, we calculate the average 

across all clone siblings. 

Average Normalized Cumulative 
Defect Siblings 

avgculdefectsibavg The revision number of a clone sibling is not consistent across all siblings. 
It is possible that one sibling has 4 defects within 8 revisions and another 

has 4 defects within 12 revisions. To normalize these results, we divide the 
cumulative number of defects by the revision number of the clone sibling. 

Then, for each cloned revision, we calculate the average normalized 

cumulative number of defects across all clone siblings. 

Cloning Characteristic Predictors - Simian Specific 

Cloned Lines of Code cloneLOC The number of method LOC that are cloned. 

Clone Coverage  
(Simian only) 

percentCloneLOC The percentage of the method that is cloned, based on the total number of 
LOC. 

Cloning Characteristic Predictors - CCFinder Specific 

Clone Tokens  cloneTokens The number of method tokens that are cloned. 

Clone Coverage percentCloneTokens The percentage of the method that is cloned, as a percentage of the total 

number of method tokens. 

 



model allows us to study the effect of cloning 
predictors on the defect proneness of methods. 
Simian outputs clone ranges in LOCs whereas 
CCFinder outputs clone ranges in tokens. Some of 
the clone predictors reflect the choice of the clone 
detection tool. The cloning predictors were selected 
to capture characteristics of cloned code and clone 
siblings that are not commonly investigated in 
former studies. However, our intuition is that 
characteristics of cloned code and clone siblings can 
have a major impact on code defects and can give 
interesting insight as to what profoundly affects the 
risk of experiencing a defect. For example, it is 
interesting to learn whether having many clone 
siblings makes a method more defect-prone since it 
is harder to consistently maintain many clone 
siblings as compared to maintaining one or two clone 
siblings.  

Each Cox model was stratified based on whether or not 
the method revisions are a „clone‟. Stratification generates 
different baseline hazards for different classes of 
observations. This stratification sets aside the effect of 
whether or not a method revision is cloned, and hence makes 
the effect of other predictors more prominent [2]. In this 
study, the models have different baseline hazards for cloned 
and non-cloned method revisions. 

F. Interpretation of Results and Validation of Models 

The R package [20] produces a summary with various 
statistics of the models, which we examine to interpret the 
results in terms of the following factors: 

 The effect of each predictor (e.g., a predictor‟s 
coefficient) on the defect proneness. The sign of a 
coefficient (e.g., positive or negative) signifies the 

direction of change in defect proneness (e.g., 
increase or decrease) when the predictor increases.  

 The standard error of each predictor coefficient. 

 The correlation between the actual and the predicted 
number of occurrences of defect fixes. This allows 
us to quantify how well the models represent the 
hazard of defect occurrence of the raw data. 

We carry out the proportional hazards diagnostic test for 
all our models to prove their validity. Other diagnostic tests 
are available for Cox models [11] and can be investigated as 
future work to further validate our models. 

IV. STUDY RESULTS 

A. Subject Systems 

As our subject systems, we use two open source Java 
projects: Apache Ant and ArgoUML. They are selected 
because of their use in previous studies. Table 2 describes 
the characteristics of the two subject systems. We use two 
clone detection tools, Simian and CCFinder, on each of the 
two subject systems. Therefore, we build models for four 
data sets: Ant-Simian, Ant-CCFinder, ArgoUML-Simian and 
ArgoUML-CCFinder. 

B. Correlation Results 

For each of the four data sets, correlation analysis 
between the predictors is carried out to eliminate redundant 
predictors. Hence, different predictors were eliminated for 
each data set. We used „0.8‟ as the correlation threshold over 
which any two predictors are considered correlated. For each 
pair of correlated predictors, we eliminate one predictor. The 
remaining predictors are used to build the hazard models. 
Table 3 shows for each data set which predictors were 
eliminated according to the correlation results. 

C. Identifying a link function of the LOC predictor 

We determine the appropriate link function for LOC in 
each of the four data sets by plotting the log relative risk vs. 
LOC as done by Koru et al. [2]. We examine the four plots 
created by the four data sets to find a suitable link function 

TABLE II.             SUBJECT SYSTEMS 

System Total 

LOC 

Number of 

Methods 

Number of 

Method 

Revisions 

CCFinder 

Clones 

(%) 

Simian 

Clones 

(%) 

Revisions 

Containing 

Defects 

(%) 

Number 

of 

Revisions 

in Study 

Number of 

Revisions 

in Study 

(%) 

Apache Ant 1.41M 17.57K 61.02K 30.78% 1.99% 11.32% 60.85K 99.72% 

ArgoUML 1.76M 23.30K 92.55K 10.57% 1.73% 21.26% 5.68K 6.14% 

 

 

 

 

 

TABLE III.           PREDICTORS ELIMINATED ACCORDING TO 

CORRELATION ANALYSIS 

Data Set 
Predictors Eliminated 

Control Predictors Environment Predictors 

ArgoUML 
Simian 

culdefects 
cloneLOC, 
avgCulDefectSib 

ArgoUML 

CCFinder 
culdefects avgCulDefectSib 

Ant 

Simian 

nesting, cyclo, 

culdefects 
avgCulDefectSib 

Ant 

CCFinder 

nesting, cyclo, 

tokens, culdefects 

cloneToken, 

percentCloneToken, 
avgCulDefectSib 

 

TABLE IV.           TEST FOR PROPORTIONALITY ASSUMPTION  

Data Set 
Test for Proportionality Assumption 

rho chisq p-value 

ArgoUML – Simian 0.02690 0.821 0.3650 

ArgoUML – CCFinder 0.03070   1.070 0.3000 

Ant – Simian 0.02260    3.100 0.0783 

Ant – CCFinder -0.00766 0.372 0.5420 

 

 



for LOC. However, due to the large LOC range, we notice 
that the plots do not exhibit an obvious functional form 
throughout the entire range and hence we cannot find one 
link function that fits the LOC data. Hence, we decide to 
identify the optimal LOC range for each data set that exhibits 
a functional form (e.g., shows a pure logarithmic or cubic 
behavior in this range) in its plot. Since choosing a link 
function is intended so that the model passes the 
proportionality assumption test, we ensure that the chosen 
range of LOC passes the proportionality assumption with a 
high p-value. Any method revisions with LOC outside the 
selected range are discarded from the study. The number of 
method revisions used overall in the study is show in the last 
column of Table 2.  

Each of the two subject systems had a different optimal 
LOC range. The range is independent of the choice of clone 
detector. Future work should extend this by building models 
for the data sets that work across the whole LOC range for 
all studied systems.  The selected LOC range for Ant is 0-
200 and for ArgoUML is 55-300. As shown in Table 2, in 
the case of Ant, almost all the revisions (99.72%) are 
included in this range. The optimal range for ArgoUML 
limited the study to only 6% of the revisions. 

Figure 3 shows the relationship between LOC and log 
relative hazard for the Ant-Simian data set after selecting 
functions within the chosen LOC range. All subject systems 
showed similar plots for their selected LOC range. This 
implied that we can use a logarithmic link function for LOC. 

D. Building Cox Models 

We build two Cox models for each of the four data sets 
using all predictors except for the predictors removed during 
the correlation analysis. This results in eight Cox models. 
After building each model, we examine the summary of the 
model and iteratively remove insignificant predictors 
(p>0.05), starting with the variable having the highest p-
value. Table 5 shows the set of predictors that were most 
significant in determining defects in each of the eight 
models. Most systems showed that LOC and the history of 
defects of a method (e.g. numdefectnumprev) are control 
predictors that are the most significant in determining 
defects. From the cloning predictors, the number of defective 
clone siblings (e.g. NumDefectSib) is significant in 
determining defects in most systems.  

For each of the eight models, we generate the summary 
of the model. Hence, we can interpret the effect of each 
predictor in each model. For space limitations, we show the 
summary of the model based on control and cloning 
predictors for the Ant-CCFinder data set in Table 6. Positive 
coefficients signify that an increase in the corresponding 
predictor will increase defects. Therefore, defects increase 
with an increase in LOC, with an increase in the number of 
defects in the history of a method (numdefectnumprev) and 
with an increase in the number of cloned siblings 
(numCloneSib).  However, defects would decrease if a 
method was born as a clone (bornclone) and with an increase 
in the number of defective clone siblings (numDefectSib). 
Table 6 also shows that a control predictor (e.g. 
numdefectnumprev) can have the highest impact on 
predicting defects with a coefficient relatively much higher 
(e.g., 1.145) than that for other predictors and with a very 
low p value (p-value < 2*10e-16). Overall, control predictors 
are more important in determining the defect proneness of a 
method than cloning predictors. 

The summaries of all eight models can be interpreted in a 
similar manner. The signs of the coefficients for the same 
predictors varied for the different data sets. In the future, we 
plan to explore more data sets, and reach a general consensus 
regarding the effect of each predictor on defects and why the 
effect of the same predictor differs across data sets. 

E. Analysis of Models 

We structure our discussion of the analysis of the models 
around our two research questions stated in section I. 

 
RQ1: Can we model the impact of clones on defects with 

high accuracy?  
To determine whether the generated Cox models can 

represent the impact of clones on defects with high accuracy, 
we calculate the Spearman correlation between the actual 
and predicted occurrence of defects according to our models. 
Table 7 shows the results obtained. All the models show 
medium to high correlation. Models built for ArgoUML 
show lower correlation than other data sets due to the low 

 

Figure 3.     Determining the link function for Ant 

TABLE V.          SIGNIFICANT PREDICTORS IN PREDICTING 

DEFECTS 

Data Set Model Based on 

Control Predictors 

Only 

Model Based on 

Control and Cloning 

Predictors 

ArgoUML 

Simian 

loc 

numdefectnumprev 
clone 

loc, numdefectnumprev 

numclonesib, 
NumDefectSib, clone 

ArgoUML 

CCFinder 

tokens, clone 

numdefectnumprev 
 

tokens, clone 

numdefectnumprev 
avgCulSibDefectAvg 

Ant 

Simian 

loc, clone 

numdefectnumprev 

loc, numdefectnumprev, 

numclonerev, clone, 

numclonesib, 
NumDefectSib 

Ant 

CCFinder 

loc, clone, 

numdefectnumprev 

 

loc, numdefectnumprev, 

bornclone, clone, 

numclonesib, 

NumDefectSib 

 



number of revisions used from ArgoUML (Table 2). Not all 
data sets in Table 7 show a higher correlation when the 
number of predictors used in the models increases. In fact, 
only one data set (i.e., ArgoUML-Simian) shows a higher 
correlation when building the Cox model using control and 
cloning predictors. The three other data sets show a higher 
correlation when their models are built using only control 
predictors. This indicates that practitioners can use 
traditional control predictors to predict defects in systems 
and still get high prediction results. 

To further check the validity of the models, we test the 
proportionality assumption on the eight models. Table 8 
shows the p-value of the test for proportionality assumption 
for the eight models. This is different from the tests shown in 
Table 4 because the tests in Table 8 are based on all the 
predictors, not just LOC. Table 8 reveals that all models pass 
the test for proportionality assumption (p-value > 0.01) 
except for the Ant-Simian data set, which did not pass the 
test using the model based on control predictors only.  

For each of the eight models, we plot the survival curves 
for cloned and non-cloned functions. This helps us determine 
whether non-cloned functions can survive defects more than 
cloned functions as traditionally claimed. Due to space 
limitations, in Figure 4 we only show the survival curves for 
ArgoUML-Simian and Ant-Simian when using the model 
based on control and cloning predictors. The CCFinder data 
sets are similar to the Simian data sets, but with a smaller 

gap between the survivals of cloned and non-cloned 
methods. 

In Figure 4, different data sets seem to show different 
behaviour for cloned and non-cloned methods. The Y axis is 
the probability of a method surviving defects. Hence low 
numbers on the Y axis signify a low survival rate (i.e. high 
hazard or high risk of experiencing defects) For some data 
sets (e.g. Argouml-simian), non-cloned methods survive 
defects better than cloned methods since their survival curves 
have higher values on the Y axis. For such data sets, non-
cloned methods are less risky than cloned methods, as 
traditionally claimed. Especially for the ArgoUML-Simian 
data set, cloned methods are highly risky and can barely 
survive the occurrence of defects. On the other hand, the 
Ant-Simian data set shows that cloned code is safer than 

TABLE VI.  SUMMARY OF MODEL BASED ON CONTROL AND 

CLONING PREDICTORS FOR ANT - CCFINDER 

 coef Se(coef) z p 

loc 0.102 0.0213 4.8 1.60e-06 

numdefectnumprev 1.145 0.066 17.35 <2*10e-16 

bornclone -0.325    0.0517 -6.29 3.21e-10 

numclonesib 0.107 0.0293 3.64 2.68e-04 

numdefectsib -0.368    0.0816 -4.51 6.52e-06 

TABLE VII.  SPEARMAN CORRELATION BETWEEN ACTUAL 

AND EXPECTED OCCURRENCE OF DEFECTS 

 

Model based 

on Control 

Predictors 

Model based 

on Control and 

Cloning 

Predictors 

ArgoUML –Simian 0.5956751 0.6099531 

ArgoUML - CCFinder 0.5525268 0.5083261 

Ant – Simian 0.6809132 0.6424308 

Ant –CCFinder 0.7038093 0.5814575 

TABLE VIII.  P-VALUE OF THE TEST FOR PROPORTIONALITY 

ASSUMPTION 

Data set 

Model 

based on 

Control 

predictors 

only 

Model based on 

Control and 

Cloning 

predictors 

ArgoUML –Simian 0.468 0.01597 

ArgoUML - CCFinder 0.55 0.367 

Ant –Simian 0.00823 0.02913 

Ant –CCFinder 0.02435 0.1527 
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Figure 4.  Survival curves of cloned and non cloned methods in 

ArgoUML-Simian and Ant-Simian using the control and cloning 
predictor models 

ArgoUML Simian 

 

Figure 5.  Survival of methods in the ArgoUML-Simian data 

set, using only the control predictors 



non-cloned code. We deduce that we cannot build a single 
Cox model to represent different data sets, since different 
data sets show different survival probabilities for cloned and 
non-cloned methods. 
 
RQ2: What are the most important predictors of defects in 

cloned code? 
As previously discussed in Section 4.D, each model 

shows a different set of predictors that are significant in 
detecting defects. However, from Table 5 we see that most 
of the models based on control and cloning predictors have 
numDefectSib as a common significant predictor.  

To further explore the effect of using additional cloning 
predictors we compare two plots. Figure 5 shows the 
survival curve for ArgoUML-Simian when using the model 
based on control predictors only and Figure 4 shows the 
survival curve for ArgoUML-Simian when using the model 
based on control and cloning predictors. Figure 5 reveals that 
using only the control predictors, the data set shows that 
cloned revisions are initially risky in the first four revisions 
of their lifetime, then become more stable than non-cloned 
revisions in the second half of their lifetime. However, the 
corresponding plot for ArgoUML-Simian in Figure 4 shows 
that cloned code is more risky than non cloned code 
throughout their lifetime. Hence, incorporating cloning 
predictors into the model reveal features of methods that are 
initially not apparent. In case of ArgoUML, non-cloned code 
survives defects better than cloned code. In the case of 
Apache Ant, cloned code survives defects better than non-
cloned code. This leads to the finding that the stability of 
cloned code is intrinsic to the system under study. 

V. THREATS TO VALIDITY 

A. Identifying Defect Fixes 

Our study is based on the data provided by J-REX, a 
software evolution tool that generates high-level 
evolutionary change data of the source code of software 
projects. J-Rex uses heuristics to identify defect-fixing 
changes [3]. The results of the paper are dependent on the 
accuracy of the results from J-REX. We are confident in the 
results from J-REX as it implements the same algorithm used 
previously by Hassan et al. [1] and Mockus et al. [3]. 

B. Clone Detection 

The classification of a method revision as a clone or non-
clone is only as accurate as our choice of clone detection 
tool. To mitigate the possibly of misclassification, we chose 
two clone detection tools and repeat the study for both tools. 

C. Choice of Link Function 

We selected a logarithmic link function for all predictors. 
It is possible that a different link function would be a better 
fit for some of the predictors. The diagnostics indicate that 
the models were a good fit for the data. Thus the choice of 
link function does not have a significant impact on the model 
fit. We leave the selection of different link functions for each 
predictor as future work. 

D. Limitation of LOC Ranges 

For each subject system, we limit our analysis to a range 
of LOC values. This reduces the number of revisions used in 
the study. To minimize this risk, we select two systems. 
ArgoUML is limited to only 6% of the total revisions, but in 
the case of Ant, almost all revisions are used in the study. In 
the future we plan to investigate more systems. 

VI. RELATED WORK 

A. Predicting Failure Proneness in Software Systems 

Koru et al. [2] explore the relationship between the size 
of a Java class and its risk of defects. They build Cox models 
of defect fixes using class size as the only predictor. The 
study provides evidence that small classes are proportionally 
more defect prone than large classes. Cataldo et al. [15] 
investigate the effect of different kinds of software 
dependencies on the probability of observing faults. 
Different dependency measures are defined and used to build 
a logistic regression model to predict failure proneness at the 
file level. All dependencies prove to increase failure 
proneness, with differences in their degree of impact.  

Mockus et al. [4] build models to predict customer 
perceived software quality based on a set of predictors. The 
results show that the deployment time, the hardware 
configuration, and the software platform are vital factors in 
forecasting the probability of observing a software failure.  

Zimmermann et al. [23] construct the Eclipse bug data 
set and show that complexity has a high positive correlation 
with failure. 

B. Tracking Evolution of Clones in Software Systems 

Harder and Göde [12] discuss the available clone 
evolution models and corresponding techniques that track 
clones between versions of a software system. The study 
describes three major clone evolution patterns, the clone 
detection approaches used, the clone-mapping 
methodologies, and their evaluation. 

Kim and Notkin [17] propose a clone genealogy extractor 
that generates the clone history of code. The study defines a 
clone evolution model. Results show that many clones 
change inconsistently. Hence, maintaining clones could be a 
better solution than refactoring. 

C. Studying Failure Proneness as a Function of Code 

Cloning 

Juergens et al. [8] propose an algorithm to track 
inconsistently changing clones. The authors then investigate 
bugs related to such clones. Results show a precision of up to 
38% in detecting bugs related to inconsistent clone changes. 
Aversano et al. [13] further investigate co-change on clones 
and whether or not a bug fix effort is propagated to a clone 
class. A case study showed that clones can be maintained to 
a high degree if the co-change happens within a small time 
window. 

Bettenburg et al. [18] argue that studying clone evolution 
and maintenance at the release level would provide insight 
into the effects of code cloning as perceived by customers. A 



case study proves that at most 3% of inconsistent changes to 
clones at the release level lead to bugs. 

Rahman et al. [9] investigate the effect of cloning on 
defect proneness. Unlike our study at the revision level, they 
use monthly snapshots of four open source subject systems. 
The study does not find evidence that cloned code is risky. 
There is also no strong evidence that cloned code with more 
siblings is more defect-prone than cloned code with fewer 
siblings.  

Our study differs from similar studies in the literature in 
several aspects. We explore a new set of predictors related to 
clone siblings, which were not previously investigated by 
other studies. When analyzing software systems, we do so at 
the method revision level. To the best of our knowledge, our 
study is the first to perform clone-defect analysis at this 
level. We also use Cox hazard models with stratification. 
The stratification allows us to model cloned and non-cloned 
method revisions using different baseline hazards. Hence, we 
are able to infer the most crucial predictors in determining 
the risk of a method experiencing a defect fix, to analyze 
how cloned methods are affected by their siblings and to 
figure out when resources should be allocated to testing and 
defect fixing in the lifetime of a method. 

VII. CONCLUSION 

In this study, we use Cox hazard models to determine 
whether cloned code is harmful, what features of cloned 
code make it defect-prone, and when in the lifetime of a 
method is it most prone to defects. We analyze the models to 
understand which predictors are significant in determining 
defects and the relationship between the predictors and the 
defects. We demonstrate the validity and accuracy of our 
models using the proportionality assumption test and by 
calculating the spearman correlation between the actual and 
predicted occurrence of defects. Based on our study of two 
systems, we made two findings. First, we found that cloned 
code is not always more risky than non-cloned code; the risk 
seems to be system dependent. For example, our study 
showed that cloned code is more risky than non-cloned code 
in ArgoUML, unlike in Ant. Second, we discovered that the 
survival of all methods against defects decreases with time. 
This indicates that more testing effort should be dedicated to 
methods with a longer history of commits.  
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