
1

Object-oriented programming
with Java

Dr. Constantinos Constantinides

Department of Computer Science and
Software Engineering
Concordia University

2

Classes and objects
• A class is a template from which objects may be

created.
– Can have any number of instances (objects).

• An object contains state (data) and behavior
(methods).

• Methods of an object collectively characterize its
behavior.
– Methods can only be invoked by sending messages

to an object.
– Behavior is shared among objects.

2

3

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
this.author = author;
this.title = title;
this.year = year;

}

public void display () {
System.out.println ("Author: " + author + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n");

}

}

Identifying objects and their state in
a library information system

• author, title, year are
instance variables;
they hold data.

• They are of type
String, i.e. they can
hold textual data.

• The state of the
object is composed of
a set of attributes (or
fields), and their
current values.

4

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
this.author = author;
this.title = title;
this.year = year;

}

public void display () {
System.out.println ("Author: " + author + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n");

}

}

Object behavior: methods
• display is of type void,

because it does not
return any value.

• The body of a method lies
between { and } and
defines some
computation to be done.

• The behavior of the
object is defined by a set
of methods (functions),
which may access or
manipulate the state.

3

5

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
this.author = author;
this.title = title;
this.year = year;

}

public void display () {
System.out.println ("Author: " + author + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n");

}

}

Object Behavior: constructor
methods

• Book is a special method,
called the constructor of the
class; used to create and
initialize instances (objects).

• A constructor is a special
method which initializes an
object immediately upon
creation.

• It has the exact same
name as the class in
which it resides.

• A constructor has no
return type, not even
void.

• During object creation, the
constructor is automatically
called to initialize the object.

6

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
this.author = author;
this.title = title;
this.year = year;

}

…

}

Field initialization during
construction

• What happens when an
object is initialized in Java:

– All data fields are set to
zero, false or null.

– The data fields with
initializers are set, in the
order in which they appear
in the class definition.

– The constructor body is
executed.

4

7

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
String author = author;
String title = title;
String year = year;

}

…

}

Field shadowing
• The statement

String author = author; in
the constructor body
defines a new local variable
author that shadows the
data field author!

• After the constructor is
finished, the local variables
are forgotten and the data
field author is still null (as it
was before entering the
constructor)

8

public class PurchaseOrder {
…
public double calculateTotal (double price,

int quantity) {
if (quantity >= 0)

return price * quantity;
}

}

Implementing methods

• What is wrong with
the following code?

• The path of
quantity < 0 is not
terminated by a
return statement.

• As a result, a
compilation error
will occur!

5

9

public class PurchaseOrder {
// …
public double calculateTotal (double price,

int quantity) {
double total;
if (quantity >= 0)

return unitPrice * quantity;
return total;

}
}

Implementing methods (cont.)
• What is wrong with the

following code?

• Local variables are not
automatically initialized
to their default values.

• Local variables must
be explicitly initialized.

• The code will cause a
compilation error.

10

public class IntRef {
public int val;
public IntRef(int i) {val = i;}

}

public class C {
public void inc(IntRef i) {i.val++;}

}

C c = new C();
IntRef k = new IntRef(1); // k.val is 1
c.inc(k); // now k.val is 2

Parameter passing
• All method parameters

are passed by value (i.e.
modifications to
parameters of primitive
types are made on copies
of the actual parameters).

• Objects are passed by
reference.

• In order for a parameter
of primitive type to serve
as a reference parameter,
it must be wrapped inside
a class.

6

11

void aMethod(final IntRef i) {
…
i = new IntRef(2); // not allowed

}

void aMethod(final IntRef i) {
…
i.val++; // ok

}

Parameter passing (cont.)
• A final parameter of a

method may not be
assigned a new value
in the body of the
method.

• However, if the
parameter is of
reference type, it is
allowed to modify the
object (or array)
referenced by the
final parameter.

12

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
this.author = author;
this.title = title;
this.year = year;

}

public void display () {
System.out.println ("Author: " + author + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n");

}

}

Object features
• We distinguish between

mutator methods
(operations), which
change an object, and
accessor methods, which
merely read its data
fields.
– display() is an accessor

method.

• The features of an object
refer to the combination
of the state and the
behavior of the object.

7

13

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
this.author = author;
this.title = title;
this.year = year;

}

public void display () {
System.out.println ("Author: " + author + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n");

}

}

Type signature
• The type signature of a

method (or constructor) is
a sequence that consists
of the types of its
parameters.
– Note that the return type,

parameter names, and final
designations of parameters
are not part of the
signature.

– Parameter order is
significant.

Book - (String, String, String)
display - ()

14

public class staticTest {
static int a = 3;
static int b;
static void method (int x) {

System.out.println(“x = “+ x);
}
static {

System.out.println("inside static block");
b = a * 4;
System.out.println(b);

}
public static void main(String[] args) {

method(42);
}

}

Static features
• Static features are used

outside of the context of
any instances.

• Static blocks: As soon as
the class is loaded, all
static blocks are run
before main()

• Static methods:
– Static methods can be

accessed from any object;
– They can be called even

without a class
instantiation, e.g. main()

– Java’s equivalent of global
functions.

inside static block
12
x = 42

8

15

Accessing static features
• Instance variables and methods can be accessed only

through an object reference (You cannot access
instance variables or call instance methods from static
methods!)

• Static fields and methods may be accessed through
either an object reference or the class name.

objectReference.staticMethod(parameters)
objectReference.staticField

ClassName.staticMethod(Parameters)
ClassName.staticField

16

Example on accessing static
features

• Each time a Counter object is created, the static
variable howMany is incremented.

• Unlike the field value, which can have a
different value for each instance of Counter, the
static field howMany is universal to the class.

public class Counter {
public Counter() { howMany++; }
public void reset() { value = 0; }
public void get() { return value; }
public void click() { value = (value + 1) % 100; }
public static int howMany() {return howMany;}
private int value;
private static int howMany = 0;

}

9

17

public class Book {

String author;
String title;
String year;

Book (String author, String title, String year) {
this.author = author;
this.title = title;
this.year = year;

}

public void display () {
System.out.println ("Author: " + author + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n");

}

}

Book

author
title
year

display()

Defining a Book class

18

public class TestV01 {
static public void main(String args[]) {

Book MyBook = new Book ("Timothy Budd",
"OOP",
"1998");

}
}

Creating a Book instance (object)

• The new operator
creates an instance of
a class (object).

10

19

Sending messages
• A message represents a

command sent to an
object (recipient or
receiving object, or
receiver of the message)
to perform an action by
invoking one of the
methods of the recipient.

• A message consists of
the receiving object, the
method to be invoked,
and (optionally) the
arguments to the method.
– object.method(arguments);

public class TestV01 {
static public void main(String args[]) {

Book MyBook = new Book ("Timothy Budd",
"OOP",
"1998");

MyBook.display();

}
}

20

public class TestV01 {
static public void main(String args[]) {

Book MyBook = new Book ("Timothy Budd", "OOP", "1998");
MyBook.display();

}
}

Book

author
title
year

display()

Author: Timothy Budd
Title: OOP
Year: 1998

display

Sending a message to a Book
instance

11

21

Defining a Journal class
public class Journal {

String editor;
String title;
String year;
String month;

Journal (String editor, String title, String year, String month) {
this.editor = editor;
this.title = title;
this.year = year;
this.month = month;

}

public void display () {
System.out.println ("Editor: " + editor + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n" +
"Month: " + month + "\n");

}

}

Journal

editor
title
year
month

display()

22

Creating a Journal object and
sending a message

Editor: David Parnas
Title: Computer Journal
Year: 2003
Month: November

display

public class TestV02 {
static public void main(String args[]) {

Journal MyJournal = new Journal ("David Parnas", "Computer Journal", "2003", "November");
MyJournal.display();

}
}

Journal

editor
title
year
month

display()

12

23

Extending classes: Inheritance
relationships

• Inheritance defines a relationship between classes.

• When class C2 inherits from (or extends) class C1, class
C2 is called a subclass or an extended class of C1.

• C1 is the superclass of C2.

• Inheritance: a mechanism for reusing the implementation
and extending the functionality of superclasses.

• All public and protected members of the superclass are
accessible in the extended class

24

Extending classes: Inheritance
relationships (cont.)

• A subclass extends the capability of its
superclass.

• The subclass inherits features from its
superclass, and may add more features.

• A subclass is a specialization of its superclass.

• Every instance of a subclass is an instance of a
superclass, but not vice-versa.

13

25

Classes and types
• Each class defines a type. All instances of the class constitute the

set of the legitimate values of that type.

• As every instance of a subclass is also an instance of its superclass,
the type defined by the subclass is a subset of the type defined by
its superclasses.

• The set of all instances of a subclass is included in the set of all
instances of its superclass.

Shape

Line Rectangle

26

Creating an inheritance hierarchy in
the library information system

PrintedItem

title
year

display()

Book

author

Journal

editor
month

14

27

Defining a PrintedItem parent class

PrintedItem

title
year

display()

public abstract class PrintedItem {

String title;
String year;

PrintedItem (String title, String year) {
this.title = title;
this.year = year;

}

public abstract void display ();

}

28

Abstract classes

• Abstract classes cannot be directly instantiated.

• Any class that contains abstract methods must
be declared abstract.

• Any subclass of an abstract class must either
implement all of the abstract methods in the
superclass, or itself be declared abstract.

15

29

Redefining the Book class:
Constructors of extended classes

public class Book extends PrintedItem {

String author;

Book (String author, String title, String year) {
super(title, year);
this.author = author;

}

public void display () {
System.out.println ("Author: " + author + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n");

}

}

Book

author

The keyword super refers
directly to the constructor of
the superclass.

30

Redefining the Book class (cont.)

• The initialization of an
extended class consists
of two phases:

1. The initialization of the
fields inherited from the
superclass (one of the
constructors of the
superclass must be
invoked)

2. The initialization of the
fields declared in the
extended class.

public class Book extends PrintedItem {

String author;

Book (String author, String title, String year) {
super(title, year);
this.author = author;

}

…

}

16

31

Order of field initialization
• The fields of the superclass

are initialized, using explicit
initializers or the default initial
values.

• One of the constructors of the
superclass is executed.

• The fields of the extended
class are initialized, using
explicit initializers or the
default initial values.

• One of the constructors of the
extended class is executed.

public class Super {
int x = …; // first

public Super() {
x = …; //second

}
…

}

public class Extended extends Super {
int y = ..; // third

public Extended() {
super();
y = …; // fourth
…

}
}

32

Redefining Journal class
public class Journal extends PrintedItem {

String editor;
String month;

Journal (String editor, String title, String year, String month) {
super(title, year);
this.editor = editor;
this.month = month;

}

public void display () {
System.out.println ("Editor: " + editor + "\n" +

"Title: " + title + "\n" +
"Year: " + year + "\n" +
"Month: " + month + "\n");

}

}

Journal

editor
month

17

33

Creating a Book and a Journal
object and sending a message

public class TestV03 {
static public void main(String args[]) {

Book MyBook = new Book ("Timothy Budd", "OOP", "1998");

Journal MyJournal = new Journal ("David Parnas", "Computer Journal",
"2003", "November");

MyBook.display();
MyJournal.display();

}
}

34

Creating a Book and a Journal
object and sending a message

Editor: David Parnas
Title: Computer Journal
Year: 2003
Month: November

display

Author: Timothy Budd
Title: OOP
Year: 1998

display
Book

author

Journal

editor
month

18

35

Creating Book and Journal objects
and sending messages

public class TestV04 {
static public void main(String args[]) {

Book Book1 = new Book ("Timothy Budd", "OOP", "1998");
Book Book2 = new Book ("Mark Grand", "Design Patterns", "2000");

Journal Journal1 = new Journal ("David Parnas", "Computer Journal", "2003", "November");
Journal Journal2 = new Journal ("Edger Dijkstra", "Electronic Journal", "2004", "January");

Book1.display();
Book2.display();

Journal1.display();
Journal2.display();

}
}

36

Creating Book and Journal objects
and sending messages

Author: Timothy Budd
Title: OOP
Year: 1998

displayBook

author

Journal

editor
month

Author: Mark Grand
Title: Design Patterns
Year: 2000

display

Editor: David Parnas
Title: Computer Journal
Year: 2003
Month: November

display

Editor: Edger Dijkstra
Title: Electronic Journal
Year: 2004
Month: January

display

19

37

Another example of abstract class
public class Account {

Account() {this.balance = 0;}

Account(String name, String account, double balance){
this.name = name;
this.account = account;
this.balance = balance;

}

public void getBalance () {System.out.println(balance);}

public void deposit (double amount) {balance = balance + amount;}

public void withdraw (double amount) {balance = balance - amount;}

String name;
String account;
double balance;

}

38

Type signatures
• The type signature of a method or constructor is a

sequence that consists of types of its parameters.
• Note that the return type, parameter names, and final

designations of parameters are not part of the signature.
• Parameter order is significant.

Method Type signature

String toString() ()
void move(int dx, int dy) (int, int)
void move(final int dx, final int dy) (int, int)
void paint(Graphics g) (Graphics)

20

39

Method overloading
• If two methods or

constructors in the same
class have different type
signatures, then they may
share the same name;
that is, they may be
overloaded on the same
name.

• The name of the method
is said to be overloaded
with multiple
implementations.

public class Account {

Account () {
…

}

Account (String name,
String account,
double balance) {

…
}

…
}

40

Method overloading
• When an overloaded

method is called, the
number and the types of
the arguments are used
to determine the
signature of the method
that will be invoked.

• Overloading is resolved
at compiled time.

public class Account {

Account () {
…

}

Account (String name,
String account,
double balance) {

…
}

…
}

21

41

Instantiating the Account class

public class AccountTest {
static public void main(String args[]) {

Account a = new Account("bob", "BOB2003", 1000);
a.deposit(150);
a.withdraw(50);
a.getBalance();

a.withdraw(2000);
a.getBalance();

}
} 1100.0

-900.0

42

Introducing SavingsAccount class

public abstract class Account {..}

public class SavingsAccount extends Account {
SavingsAccount(String name, String account, double balance){

super(name, account, balance);
}
public void withdraw(double amount){

if (amount > balance)
System.out.println ("ERROR");

else
super.withdraw(amount);

}
}

22

43

Executing the code
public class AccountTest {

static public void main(String args[]) {

SavingsAccount s = new SavingsAccount ("Joe Smith", "JOESMITH2004", 1000);
s.getBalance();
s.withdraw(2000);
s.getBalance();

}
} 1000.0

ERROR
1000.0

44

An intuitive description of
inheritance

• The behavior and data associated with child
classes are always an extension of the
properties associated with parent classes.

• A child class will be given all the properties of
the parent class, and may in addition define new
properties.

• Inheritance is always transitive, so that a class
can inherit features from superclasses many
levels away.

23

45

An intuitive description of
inheritance (cont.)

• A complicating factor in our intuitive
description of inheritance is the fact that
subclasses can override behavior inherited
from parent classes.

46

Method overriding

• Overriding refers to the introduction of an
instance method in a subclass that has the
same name, type signature and return
type of a method in the superclass.

• The implementation of the method in the
subclass replaces the implementation of
the method in the superclass.

24

47

Method overriding (cont.)
public class Employee {

public Employee (String name, double salary) {
this.name = name;
this.salary = salary;

}

public void display() {
System.out.println("Name: " + name + " Salary: " + salary + "\n");

}

public void raiseSalary (double byPercent) {
salary = salary + (salary * byPercent / 100);

}

private String name;
private double salary;

}

48

Method overriding (cont.)
public class Test {

static public void main(String args[]) {
Employee e = new Employee ("Janis Joplin", 1000);
e.display();

e.raiseSalary(10);
e.display();

}
}

Name: Janis Joplin Salary: 1000.0

Name: Janis Joplin Salary: 1100.0

25

49

Method overriding (cont.)

public class Manager extends Employee {

public Manager (String name, double salary) {
super(name, salary);

}

public void raiseSalary (double byPercent) {
double bonus = 200;
super.raiseSalary (byPercent + bonus);

}

}

50

Method overriding (cont.)
public class Test {

static public void main(String args[]) {
Employee e = new Employee ("Janis Joplin", 1000);
e.display();

e.raiseSalary(10);
e.display();

Manager m = new Manager ("John Lennon", 1000);
m.display();
m.raiseSalary(10);
m.display();

}
}

Name: Janis Joplin Salary: 1000.0
Name: Janis Joplin Salary: 1100.0

Name: John Lennon Salary: 1000.0
Name: John Lennon Salary: 3100.0

26

51

Inheritance hierarchies

• Inheritance does not
stop at deriving one
layer of classes.

• For example, we can
have an Executive
class that derives
from Manager.

Employee

Manager Secretary Programmer

Executive

52

Inheritance hierarchies

• The collection of all classes extending
from a common parent is called an
inheritance hierarchy.

• The path from a particular class to its
ancestors in the inheritance hierarchy is its
inheritance chain.

27

53

Overriding and hiding

• When a subclass
declares a field or
static method that is
already declared in its
superclass, it is not
overriden; it is hidden.

class A {
int x;
void y() {...}
static void z() {...}

}

class B extends A {
float x; // hiding
void y() {...} // overriding
static int z() {...} // hiding
}

54

Overriding versus hiding
• Overriding and hiding are different concepts:
• Instance methods can only be overriden. A method can

be overriden only by a method of the same signature
and return type.

• When an overriden method is invoked, the
implementation that will be executed is chosen at run
time.

• Static methods and fields can only be hidden. A static
method or field may be hidden by a static method or a
field of a different signature or type.

• When a hidden method or field is invoked or accessed,
the copy that will be used is determined at compile time.

• In other words, the static methods and fields are
statically bound, based on the declared type of the
variables.

28

55

Overriding versus hiding (cont.)
class Point {

public String className ="Point";
static public String getDescription() {

return "Point";
}
// other declarations

}

class ColoredPoint extends Point {
public String classname = "ColoredPoint";
static public String getDescription() {

return "ColoredPoint";
}
// other declarations

}

Hides field of same name
of Point class.

Hides method of same name
in Point class.

56

Overriding versus hiding (cont.)
• Although both p1 and p2 refer to the same object, the

binding of the static methods and fields is based on the
declared types of the variables at compile time.

• The declared type of p1 is ColoredPoint, and of p2 is
Point.

ColoredPoint p1 = new ColoredPoint(10.0, 10.0, Color.blue);
Point p2 = p1;

System.out.println(p1.getDescription());
System.out.println(p2.getDescription());
System.out.println(p1.className);
System.out.println(p2.className);

ColoredPoint
Point
ColoredPoint
Point

29

57

Object reference with “this”
• Keyword this is used inside

instance methods to refer to
the receiving object of the
methods, i.e. the object
instance through which the
method is invoked.

• Keyword this may not occur
inside static methods.

• The two common uses of this
are
1. to pass the receiving object

instance as a parameter
2. to access instance fields

shadowed, or hidden, by local
variables.

public class Faculty {
protected Department dept;
protected String name;
public Faculty(String n, Department d) {

name = n; dept = d;
}
public Department getDepartment() {

return dept;
}...}

public class Department {
protected String name;
protected Faculty facultyList[] = new Faculty[100];
protected int numOffaculty = 0;
public Department(String n) {name = n;}
public void newfaculty(String name) {

facultyList[numOffaculty++] =
new faculty(name, this);

}...}

58

Accessing shadowed fields

• A field declared in a
class can be
shadowed, or hidden,
inside a method by a
parameter or a local
variable of the same
name.

• The hidden variable
can be accessed as
this.var

public class MyClass {
int var;
void method1() {

// local variable shadows instance variable
float var;
...

}
void method2(int var) {

// var also shadows the instance variable
}

}

30

59

Preventing inheritance
• Use the final modifier in the class definition to prevent

a class from ever becoming a parent class.
– final class MyClass {…}

• You can also make a specific method in a class final in
which case no class can override this method.

• All methods in a final class are automatically final.
• The modifier final is the opposite of abstract.
• When applied to a class, it implies that the class can not

be subclassified.
• When applied to a method, the keyword indicates that

the method cannot be overriden.

60

Subtype relationships
• The subset relation between the value set of

types is known as the subtype relationship.
• Type T1 is a subtype of Type T2 if every

legitimate value of T1 is also a legitimate value
of T2. In this case, T2 is the supertype of T1.

• The inheritance relationship among classes is a
subtype relationship. (Also, each interface
further defines a type.)

• A value of a subtype can appear wherever a
value of a supertype is expected.
– An instance of a subclass can appear wherever an

instance of a superclass is expected.

31

61

Subtype relationships
• The conversion of a subtype to one of its

supertypes is called widening; It is carried out
implicitly whenever necessary.

• In other words, a reference to an object of class
C can be implicitly converted to a reference to
an object of one of the superclasses of C.

• The conversion of a supertype to one of its
subtypes is called narrowing.

• Narrowing of reference types requires explicit
casts.

62

Abstract classes and subtypes
• The class hierarchy that

results from the use of
inheritance creates a
related set of types.

• Instances of any subclass
of a given superclass
may be referenced by a
superclass variable.

• For example, an object of
type Counter may be
referenced by a variable
of type
AbstractCounter.

abstract public class AbstractCounter {
abstract public void click();
public int get() {return value;}
public void set(int x) {value = x;}
public String toString() {

return String.valueOf(value);
}
protected int value;

}

public class Counter extends AbstractCounter {
public void click() {

value =(value + 1) % 100;
}

}

32

63

Abstract classes and subtypes

• A subtype can be used anywhere the supertype is
expected.

• This principle holds because all the methods needed for
the superclass are available for the subclass object.

• The following code fragment shows a method that
expects a parameter that is any subclass of
AbstractCounter:

void sampleMethod (AbstractCounter counter) {
…
counter.click();
…

}

64

Polymorphic assignments

• The type of the expression at the RHS of
an assignment must be a subtype of the
type of the variable at the LHS of the
assignment.

• For example, if class E extends class B,
any instance of E can act as an instance
of B.

33

65

First example of polymorphic
assignment

class Student {
public Student (String name) {this.name = name;}
public String toString() {return "Student: " + name;}
protected String name;

}

class Undergraduate extends Student {
public Undergraduate (String name) {super(name);}
public String toString() {return "Undergraduate student: " + name;}

}

class Graduate extends Student {
public Graduate(String name) {super(name);}
public String toString() {return "Graduate student: " + name;}

}

66

First example of polymorphic
assignment (cont.)

Student student 1, student2;

student1 = new Undergraduate(); // polymorphic assignment
student2 = new Graduate(); // polymorphic assignment

Graduate student3;
student3 = student2; // compilation error;

In last statement, RHS not a subtype of LHS.

Type checking is carried out at compile time and it is based on the
declared types of variables. An explicit cast is necessary here:

Student3 = (Graduate) student2; // explicit cast; downcasting

34

67

First example of polymorphic
assignment (cont.)

Student3 = (Graduate) student2;

• Validity of explicit cast is checked at run-time. A run-time check will
be performed to determine whether student2 actually holds an
object that is an instance of Graduate or its subclasses.

Student3 = (Graduate) student1; // compilation ok

• The statement will throw a run-time exception as student1 actually
holds an instance of Undergraduate (which is not a subtype of
Graduate)

68

First example of polymorphic
assignment (cont.)

• In order to prevent a run-time exception, use the instanceof
operator:

• The expression exp instanceof Type returns a boolean
indicating whether exp is an instance of a class or an interface
named Type.

if (student1 instanceof Graduate) {
Graduate gradStudent = (Graduate) student1;

}
else {

// student1 is not a graduate student
}

35

69

First example of polymorphic
assignment (cont.)

Let’s assume that the Graduate class defines a method
getResearchTopic() that is not defined in the Student class.

Student student1 = new Graduate();
// …
student1.getResearchTopic(); // compilation error

The declared type of student1 is Student, not Graduate, even though
Student1 holds an instance of Graduate.

The validity of method invocation is checked statically (at compile
time) and it is based on the declared types of variables, not the actual
classes of objects.

70

First example of polymorphic
assignment (cont.)

Thus, student must be downcast to Graduate before invoking
getResearchTopic()

Student student = new Graduate();
…
if (student instanceof Graduate) {

Graduate gradStudent = (Graduate) student;
gradStudent.getResearchTopic();
…

}
…

• Why not declare student to be Graduate in the first place?
• student is a parameter; actual object referred to by student was
created in some other part of the program.

• student is an element of a collection (see later)

36

71

First example of polymorphic
assignment (cont.)

• Instance method toString() is overriden in both
subclasses.

• The partivular implementation of toString() cannot be
determined at compile time:

Student student;
// student is asigned some value
Student.toString();

• The implementation to be invoked depends on the actual
class of the object referenced by the variable at run-time
(and not the declared type of the variable). This is called
polymorphic method invocation.

72

First example of polymorphic
assignment (cont.)

• For a polymorphic method invocation

var.m();

dynamic binding proceeds as follows:

• STEP 1
– currentClass = the class of the object referenced by var.

• STEP 2:
IF (method m() is implemented in currentClass)
THEN

the implementation of m() in currentClass is invoked.
ELSE {

currentClass = the superclass of currentClass;
repeat step 2

}

37

73

Second example on polymorphic
assignment

Student

Undergraduate Graduate

Course

Student[] students
int count
static final int CAPACITY

void enroll (Student s)
void list()

* *

74

Second example on polymorphic
assignment (cont.)

public class Course {
public void enroll(Student s) {

if (s != null && count < CAPACITY)
students[count++] = s; // polymorphic assignment

}
public void list() {

for int i = 0; i < count; i++)
System.out.println(students[i].toString()); // polymorphic invocation

}
protected static final int CAPACITY = 40;
protected Student students[] = new Student[CAPACITY];
protected int count = 0;

}

38

75

Second example on polymorphic
assignment (cont.)

Cource c = new Course();
c.enroll(new Undergraduate(“John”);
c.enroll(new Graduate(“Mark”);
c.enroll(new Undergraduate(“Jane”);
c.list();

Undergraduate student: John
Graduate student: Mark
Undergraduate student: Jane

76

More on polymorphism
• What happens when you send a message to a

subclass?
• The subclass checks whether or not it has a method with

that name and with exactly the same parameters.
• If so, it uses it.
• If not, the parent class becomes responsible for handling

the message and looks for a method with that name and
those parameters. If so, it calls that method.

• This message handling can continue moving up in the
inheritance chain until a matching method is found or
until the inheritance chain is exhausted.

39

77

Dynamic method dispatch
• When you call a method using the dot operator

on an object reference, the declared type of the
object reference is checked at compile time to
make sure that the method you are calling exists
in the declared class.

• At runtime, the object reference could be
referring to an instance of some subclass of the
declared reference type.

• In these cases, Java uses the actual instance to
decide which method to call in the event that the
subclass overrides the method being called.

78

Dynamic method dispatch example

• Java compiler: has to
verify that indeed A has a
method named
callme()

• Java runtime: notices that
the reference is actually
an instance of B, so it
calls B’s callme()
method instead of A’s.

• The output is “Inside B”

class A {
void callme() {

System.out.println(“Inside A”);
}

}

class B extends A {
void callme() {

System.out.println(“Inside B”);
}

}

class Dispatch {
public static void main(String args[]) {

A a = new B();
a.callme();

}
}

40

79

Implementing interfaces
• Interfaces declare features but

provide no implementation.
• An interface encapsulates abstract

methods and constants.
• Interface methods cannot be

static.
• An interface can extend other

interfaces (not classes).
• Classes that implement an

interface should provide
implementation for all features
(methods) declared in the
interface.

• Java allows only single inheritance
for class extension but multiple
inheritance for interface extension.

interface MyInterface {
// an abstract method
void aMethod (int i);

}

class MyClass implements MyInterface {
public void aMethod(int i) {…}

}

80

Interfaces and types
• Each interface defines a type.
• The interface extension and implementation are also

subtype relations.
• Let us define the complete subtype relations in Java:

– If class C1 extends class C2, then C1 is a subtype of C2.
– If interface I1 extends interface I2, then I1 is a subtype of I2.
– If class C implements interface I, then C is a subtype of I.
– For every interface I, I is a subtype of Object (the parent class of

the entire Java class hierarchy).
– For every type T (reference or primitive type) T[] is a subtype of

Object.
– If type T1 is a subtype of T2, then T1[] is a subtype of T2[].

41

81

A first example using interfaces
• You can declare variables as

object references which use an
interface as the type rather
than a class.

• Any instance of any class
which implements the declared
interface may be stored in
such a variable.

• Variable c was declared to be
of interface Callback, yet it
was assigned an instance of
Client.

• This way, c can only be used
to access the callback method,
and not any of the other
aspects of the Client class.

interface Callback {
void callback(int param);

}

class Client implements Callback {
void callback(int p) {

System.out.println(“callback called +
with “ + p);

}
void callme() {

System.out.println(“Inside client”);
}

}

class TestIface {
public static void main(String args[]) {
Callback c = new Client();
c.callback(42);
}

}

82

A second example using interfaces

• Implementing multiple interfaces allows a class
to assume different roles in different contexts.

interface Student {
float getGPA();
// …other methods

}

interface Employee {
float getSalary();
// … other methods

}

public class FullTimeStudent
implements Student {

public float getGPA() {
// calculate GPA;

}
protected float gpa;
// ..other methods and fields

}

public class FullTimeEmployee
implements Employee {

public float getSalary() {
// calculate salary;

}
protected float salary;
// ..other methods and fields

}

42

83

A second example using interfaces
(cont.)

• The StudentEmployee class is a subtype of
both Student and Employee.

• Instances of StudentEmployee can be treated
either as students or as employees.

public class StudentEmployee implements Student, Employee {
public float getGPA() {

// calculate GPA;
}
public float getSalary() {

// calculate salary;
}
protected float gpa;
protected float salary;
// ..other methods and fields

}

84

A second example using interfaces
(cont.)

• In one context, a student employee can be
viewed as a student:

Student[] students = new Student[…];
students[0] = new FullTimeStudent();
students[1] = new StudentEmployee(); // student employee as a student
// …
for (int i = 0; i < students.length; i++) {
.. Students[i].getGPA()...
}

43

85

A second example using interfaces
(cont.)

• In the other context, a student employee can be
viewed as an employee:

Employee[] employees = new Employee[…];
employees[0] = new FullTimeEmployee();
employees[1] = new StudentEmployee(); // student employee as a employee
// …
for (int i = 0; i < employees.length; i++) {
.. employees[i].getSalary()...
}

86

A second example using interfaces
(cont.)

• The implementation in
StudentImpl and
EmployeeImpl can
be directly reused in
the full-time student
and employee
classes by class
extension:

public class StudentImpl
implements Student {

public float getGPA() {
// calculate GPA;

}
protected float gpa;

}

public class EmployeeImpl
implements Employee {

public float getSalary() {
// calculate salary;

}
protected float salary;

}

public class FulltimeStudent
extends StudentImpl{…}

public class FulltimeEmployee
extends EmployeeImpl{…}

44

87

Delegation
• In addition, a student employee class can be

implemented as follows to reuse the implementation in
StudentImpl and EmployeeImpl:

public class StudentEmployee implements Student, Employee {
public StudentEmployee() {

studentImpl = new StudentImpl();
employeeImpl = new EmployeeImpl();
// ...

}
public float getGPA() {

return studentimpl.getGPA(); // delegation
}
public float getSalary() {

return employeeImpl.getSalary(); // delegation
}
protected StudentImpl studentImpl;
protected EmployeeImpl employeeImpl;
// ..other methods and fields}

88

Delegation (cont.)
• The implementation technique used in the getGPA() and

getSalary() methods is known as delegation.
• As the name suggests, delegation implies that the method simply

delegates the task to another object, studentImpl and
employeeImpl, respectively.

• The implementation on the StudentImpl and EmployeeImpl
classes is reused through delegation.

public float getGPA() {
return studentimpl.getGPA(); // delegation

}
public float getSalary() {

return employeeImpl.getSalary(); // delegation
}

45

89

Resolving name conflicts among
interfaces

• Names inherited from one interface may collide with
names inherited from another interface or class.

• How do we resolve name collisions? If two methods
have the same name, then one of the following is true:
– If they have different signatures, they are overloaded.
– If they have the same signature and the same return type, they

are considered to be the same method.
– If they have the same signature but different return types, a

compilation error will occur.
– If they have the same signature and the same return type but

throw different exceptions, they are considered to be the same
method, and the resulting throws list is the union of the two
throws lists.

90

Resolving name conflicts among
interfaces (cont.)

interface X {
void method1(int i);
void method2(int i);
void method3(int i);
void method4(int i) throws Exception1;

}

interface Y {
void method1(double d);
void method2(int i);
int method3(int i);
void method4(int i) throws exception2;

}

public class MyClass implements X, Y {
void method1(int i) {...} // overrides method1 in X
void method1(double d) {...} // overrides method1 in Y
void method2(int i) {...} // overrides method2 in X and Y
void method4(int i) // overrides method4 in X and Y

throws Exception1, Exception2 {...}
}

Same type signature,
different types;
compilation error

Overloaded methods

46

91

Constants in interfaces

• Two constants having the same name is always
allowed, as they are considered to be two
separate constants

interface X {
static final int a = …;

}

interface Y {
static final double a = …;

}

public class MyClass implements X, Y {
void aMethod() {
…X.a… // the constant in X
…Y.a… // the constant in Y
}

}

92

Forms of inheritance

1. Specialization
– The new class is a specialized variety of the

parent class.
– It satisfies the specifications of the parent

class in all relevant aspects.
– This form always creates a subtype.
– The most common use of inheritance.

47

93

Forms of inheritance (cont.)
2. Specification

– Use of inheritance to guarantee that classes
maintain a certain common interface.

– Child implements the methods described but not
implemented in the parent.

– Subclass is a realization of an incomplete abstract
specification (parent class defines the operation but
has no implementation).

– Two different mechanisms to support inheritance of
specification:
1. Through interfaces
2. Through inheritance of abstract classes

94

Forms of inheritance (cont.)

3. Construction
– A class inherits almost all of its desired functionality

from a parent class, even if there is no logical
relationship between the concepts of parent and
child class.
• For example, the concept of a stack and the concept of a

vector have little in common;
• However, from a pragmatic point of view using the vector

class as a parent greatly simplifies the implementation of a
stack.

– Principle of substitutability does not always hold;
subclasses are not always subtypes.

48

95

Forms of inheritance (cont.)

4. Extension
– A child class only adds new behavior to the

parent class and does not modify or alter
any of the inherited attributes.

– As the functionality of the parent class
remains available and untouched, the
principle of substitutability holds and
subclasses are always subtypes.

96

Forms of inheritance (cont.)

5. Limitation
– The behavior of the subclass is smaller or more

restrictive than the behavior of the parent class.
– For example, you can create the class Set in a

fashion similar to the way the class Stack is
subclassed from vector.

– You have to ensure that only Set operations are
used on the set, and not vector operations. One way
to accomplish this would be to override the
undesired methods to generate errors.

– Subclasses are not subtypes.

49

97

Forms of inheritance (cont.)

6. Combination
– When discussing abstract concepts it is common to

form a new abstraction by combining features of two
or more abstractions.

– The ability of a class to inherit from two or more
parent classes is known as multiple inheritance.

– In Java, this is accomplished through a class to
extend an existing class and implement an interface.

– It is also possible for classes to implement more
than one interface.

98

Example: Inheritance vs.
Composition

• Inheritance describes an is-a relation.

class Stack extends Vector {
public Object push (Object item) {
addElement(item); return item;
}
public Object top() {
return elementAt(size()-1);
}
public Object pop() {
Object obj = top();
removeElementAt(size()-1);
return obj;
} }

50

99

• Composition describes a has-a relationship.

class Stack {
private Vector theData;
public Stack() {theData = new Vector();}
public boolean empty() {return theData.isEmpty();}
public Object push(Object item) {
theData.addElement(item); return item;}

public Object top() {return thedata.lastElement();}
public Object pop() {
Object result = theData.lastElement();
theData.removeElementAt(theData.size()-1);
return result;

} }

100

Composition and inheritance
contrasted: Substitutability

• Inheritance: Classes formed with inheritance
are assumed to be subtypes of the parent class.
– As a result, subclasses are candidates for values

to be used when an instance of the parent is
expected.

• Composition: No assumption of substitutability
is present.
– With composition, the data types Stack and

Vector are entirely distinct and neither can be
substituted in situations where the other is
required.

51

101

Composition and inheritance
contrasted: Ease of use

• Inheritance
– The operations of the new data structure are a

superset of the operations of the original data
structure on which the new object is built.

– To know exactly what operations are legal for the new
structure, the programmer must examine the
declaration for the original.

– To understand such a class (Stack), the programmer
must frequently flip back and forth between
declarations.

– For this reason, implementations using inheritance
are usually much shorter in code than are
implementations constructed with composition

102

• Composition: Simpler than inheritance.
– It more clearly indicates exactly what

operations can be performed on a particular
data structure.

– Looking at the Stack data abstraction with
composition, it is clear that the only
operations provided for the data type are the
test for emptiness, push, top and pop.

– This is true regardless of what operations are
defined for vectors.

52

103

Composition and inheritance
contrasted: Semantics

• Inheritance: It does not prevent the users
from manipulating the new structure using
methods from the parent class even if
these are not appropriate.
– For example, nothing prevents a Stack user

from adding new elements using
insertElementAt() which would be
semantically illegal for the Stack data
structure.

104

Composition and inheritance
contrasted: Information hiding

• Inheritance: A component constructed
using inheritance has access to fields and
methods in the parent class that have
been declared as public or protected.

53

105

• Composition: A component constructed using
composition can only access the public portions
of the included component.
– In the example, the fact that the class Vector is used

is an implementation detail.
– It would be easy to re-implement the class to make

use of a different technique (such as a linked list) with
minimal impact on the users of the Stack abstraction.

– If users counted on the fact that a Stack is merely is
specialized form of Vector, such changes would be
more difficult to implement.

106

References

• Timothy Budd, “Understanding Object-
Oriented Programming with Java (Updated
Edition)”, Addison-Wesley, 2000.

• Xiaoping Jia, “Object-Oriented Software
Development Using Java”, Addison-
Wesley, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

