
Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

1/23

Gang of Four Patterns

S. Thiel1

1Department of Computer Science
Concordia University

July 20, 2018



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

2/23

Outline

Gang of Four Patterns
Adapter
Factory
Singleton
Strategy
Composite
Facade
Observer/Subscriber

References



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

3/23

[1, p.280,435,436]

I Named after Gamma, Helm, Johnson and Vlissides, who
wrote the mid-90s book ”Design Patterns”

I Covered 23 core design patterns, arguably the most
popular software design pattern language in use today.

I ”15 are common use and most useful.”[1, p.436]

I To fully understand the patterns takes more than what
we cover here (read their book, etc)

I https://sourcemaking.com/design_patterns

https://sourcemaking.com/design_patterns


Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

4/23

Adapter [1, p.436-440]

I Problem: incompatible interface, similar components
with differing interfaces

I Solution: Convert the original interface into another
interface through an intermediate adapter object.

I Polymorphism from GRASP uses the adapter pattern,
the adapter being the common interface.

I Often a common interface will be made, and adapters
implementing that interface will delegate to the varying
objects, hiding the differences.



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

5/23

Adapter Example 1

Client �interface�
Shape

+ display(x1: int, y1: int, x2: int, y2: int)

�adapter�
Rectangle

+ display(x1: int, y1: int, x2: int, y2: int)

LegacyRectangle

+ display(x1: int, y1: int, width: int, height: int)

1sourcemaking.com



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

6/23

Factory [1, p.440-442]

I GoF pattern is actually ”Abstract Factory”

I We’re talking about Simple Factory or Concrete Factory
here, but widespread, so let’s pretend it’s one of the
GoF2

I Problem: Need to create object with special
considerations like complex creation logic, the need to
separate concerns and hide variation in the created
objects, the need to generally maintain high cohesion.

I Solution: Create a Pure Fabrication object called a
Factory that handles the creation

2It is arguably a variation on Abstract Factory



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

7/23

Factory in Action

I In my Masters thesis I advised the use of a Factory to
take care of Domain Object creation because it
impacted database, caching and Unit of Work concerns
that had no business in most areas that would otherwise
take care of creating those Domain Object



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

8/23

Singleton [1, p.442-446]

I Problem: Exactly one instance of a class is allowed.
Other objects need a golbal and single point of access

I Solution: Define a static method of the class that
returns the singleton

I Concurrency control is common around Singletons.



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

9/23

Singleton in Action

I In my Masters thesis I advised the use of a variant on
this pattern to allow the trivial creation of a
single-access point within a web request, the
ThreadLocal Singleton. Each request was guaranteed a
Thread for its sole use for the duration of the request.
Request Attributes, standard fare for web applications,
were readily stored in this ThreadLocal Singleton so did
not have to be passed around through various
Commands and Views, thus greatly reducing coupling
between Commands and Views, while extending
flexibility.



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

10/23

Singleton Example 3

Client Singleton

+ instance()

3sourcemaking.com



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

11/23

Why not make it all static? [1, p.445]

I instance-methods allow subclassing, refinement
(overloading) of the Singleton class for effective reuse.
Static methods aren’t polymorphic, and generally don’t
support overwriting in languages where such things are
allowed (part of the definition of the class)

I Remote access methods generally support only
instance-methods. (e.g. Java’s RMI)

I A class is not always needed as a singleton in all
applications. Sometimes you figure out it’s not a
singleton later. Instance-based, this is an easy fix
(generally you don’t need to do anything).



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

12/23

Strategy [1, p.447-452]

I Problem: Algorithms or policies can or will change,
need to be decided at run-time

I Solution: Define each algorithm/policy/strategy in a
separate class with a common interface

I Often this leads to the instance of the strategy being
created by a Factory that is passed enough info to know
what to do.

I Polymorphism and Protected Variation at work!



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

13/23

Strategy Example 4

Client �strategy�
Abstraction

+ doSomething()

ImplementationOne

+ doSomething()

ImplementationTwo

+ doSomething()

4sourcemaking.com



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

14/23

Strategy in Action

I In my Masters thesis I. . . don’t think I did anything with
the Strategy pattern

I When could this come up with pokemon?



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

15/23

Composite [1, p.452-461]

I Problem: A number of similar objects need to be
treated atomically

I Solution: Define an interface for composite objects
that is shared with the atomic objects it composes

I works well with the strategy pattern, as certain
strategies may just be several simpler strategies applied
together (e.g. discounts)

I Composite of related elements starts looking like proper
object-oriented design? Larmen gives a strange example
called IDs to Objects

I when using composites, it’s generally a good practice to
pass around the composites instead of digging out the
children (components). Composite Pattern done well
supports this.



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

16/23

Composite Example

-innerShapes

*

�interface�
Shape

+ draw()

�regular�
Circle

+ draw()

�regular�
Square

+ draw()

�composite�
MultiShape

+ draw()



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

17/23

Composite in Action

I In my Masters thesis I. . . don’t think I did anything with
the Composite pattern

I Think about applying this with complex pokemon
abilities?



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

18/23

Facade [1, p.461-463]

I Problem: There are many components in a subsystem,
each with some behaviour that is needed, but knowledge
of this subsystem or access to the other behaviour is not

I Solution: Define a single point of access that provides
an interface on the desired behaviours and encapsulates
knowledge of the weird subsystem so nothing else has
to know about it.



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

19/23

Facade in Action

I I once wrote a system for doing Video Annotations in a
popular annotation tool that was a plugin for Chrome.

I We just needed to display and allow the selection of
pieces of clips of video on the web

I Quicktime produced a massive and complex set of
libraries that allowed you to do all this, but it was
spread out and a mess

I The solution was to write a facade that allowed for the
5-10 behaviours that we needed and ignored the literally
hundreds of other things available.



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

20/23

Observer/Subscriber [1, p.463-471]

I Problem: Different things want to know about
different events and will behave in different ways, but
low coupling is desired

I Solution: define subscribers via an interface that listen,
and then have them register to listen to publishers of
events that they care about. The publishers will notify
the correct subscribers at the correct times.



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

21/23

Observer/Subscriber in Action

I Frequently use in UIs

I Many of you have implemented this in your pokemon
game!



Gang of Four
Patterns

S. Thiel

Gang of Four
Patterns

Adapter

Factory

Singleton

Strategy

Composite

Facade

Observer/Subscriber

References

23/23

References I

[1] Craig Larman.
Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative
Development.
Addison Wesley, 3rd edition, 2013.


	Gang of Four Patterns
	Adapter
	Factory
	Singleton
	Strategy
	Composite
	Facade
	Observer/Subscriber

	References

