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Abstract
We propose an approach to construct realistic 3D facial morphable models
(3DMM) that allows an intuitive facial attribute editing workflow. Current

Montreal, Quebec, Canada face modeling methods using 3DMM suffer from a lack of local control. We
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thus create a 3DMM by combining local part-based 3DMM for the eyes, nose,
mouth, ears, and facial mask regions. Our local principal component analy-
sis (PCA)-based approach uses a novel method to select the best eigenvectors
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from the local 3DMM to ensure that the combined 3DMM is expressive, while
allowing accurate reconstruction. We provide different editing paradigms, all
designed from the analysis of the data set. Some use anthropometric measure-
ments from the literature and others allow the user to control the dominant
modes of variation extracted from the data set. Our part-based 3DMM is com-
pact, yet accurate, and compared to other 3DMM methods, it provides a new
trade-off between local and global control. We tested our approach on a data set
of 135 scans used to derive the 3DMM, plus 19 scans that served for validation.
The results show that our part-based 3DMM approach has excellent generative

properties and allows the user intuitive local control.
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1 | INTRODUCTION

The authoring of realistic 3D faces with intuitive controls is used in a broad range of computer graphics applica-
tions, such as video games, person identification, facial plastic surgery, and virtual reality. This process is particularly
time-consuming, given the intricate details found in the eyes, nose, mouth, and ears. Consequently, it would be convenient
to use high-level controls, such as anthropometric measurements, to edit human-like character heads.

Many methods use 3D morphable face models (3DMM) for animation (blend shapes), face capture, and face edit-
ing. Even though face animation concerns are important, our work focuses on the editing of facial meshes. 3DMMs are
typically constructed by computing a principal component analysis (PCA) on a data set of scans sharing the same mesh
topology. New 3D faces are generated by changing the relative weights of the individual eigenvectors. These methods are
popular due to the simplicity and efficiency of the approach, but suffer from two fundamental limitations: they impose
global control on the new generated meshes, making it impossible to edit a localized region of the face, and the control
mechanism is very unintuitive. Some methods compute localized 3DMMs but those focus on facial animation instead of
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face modeling. We compared our approach to previous works relying on facial animation and saw that their automatic
localized basis construction works well for animation purposes (considering a data set composed of animations for a sin-
gle person), but performs worse than our approach for modeling purposes (considering a data set made of neutral faces
from different persons).

We propose an approach to construct realistic 3DMMs. We increase the controllability of our faces by segmenting
them into independent sub-regions and selecting the most dominant eigenvectors per part. Furthermore, we rely on facial
anthropometric measurements to derive useful controls to use in our 3DMM for editing faces. We propose a measure-
ment selection technique to bind the essential measurements to the 3DMM eigenvectors. Our approach allows the user
to edit faces by adjusting the facial parts using sliders controlling the values of anthropometric measurements. The mea-
surements are mapped to eigenvector weights, allowing us to compute the individual parts matching the values selected
by the user. The reconstructed parts are seamlessly blended together to generate the desired 3D face. We also provide local
editing freedom beyond anthropometric measurements and ensure to generate realistic faces while satisfying user con-
straints. Finally, we verify the realism of 3D facial models and demonstrate how realistic they are. Our main contributions
can be summarized as:

« A process to select how to distribute the budget of eigenvectors across the multiple parts;
« A process to select anthropometric measurements;

« An online editing approach allowing interaction through three strategies to deform the face (measurement sliders,
handles, vertex-based);

« A validation system (face proportions, angles, nose depth).

2 | RELATED WORK

3D morphable models are powerful statistical models widely used in many applications in computer vision and computer
graphics. One of the most well-known previous works in this regard is that by Blanz and Vetter.! Their pioneer work
proposes a model using PCA from face scans. Although they propose a multi-segment model and decompose a face into
four parts to augment expressiveness, the PCA decomposition is computed globally on the whole face. Other global PCA
methods have been proposed.>” A downside of global PCA-based methods is that they exhibit global support: when we
adjust the eye, the nose may also undergo undesirable changes. Another downside is a lack of intuitive user control for
face editing. While the eigenvectors are good at extracting the dominant modes of variation of the data, they provide weak
intuitive interpretation.

To address the former problem, local models have been proposed. They segment the face into independent sub-regions
and select the most dominant eigenvectors per part. Tena et al.® propose a method to create localized clustered PCA
models for animation. They select the location of the basis using spectral clustering on the geodesic distance and a corre-
lation of vertex displacement considering variations in the expressions. Their method requires a manual step to adjust the
boundaries of the segments, making it somewhat similar to ours, where the parts are user-specified. Chi et al.® adaptively
segment the face model into soft regions based on user-interaction and coherency coefficients. Afterwards, they estimate
the blending weights which satisfy the user constraints, as well as the spatio-temporal properties of the face set. Here
too, the required user intervention renders the segmentation somewhat similar to our user-provided segments. SPLOCS!?
propose the theory of sparse matrix decompositions to produce localized deformation from an animated mesh sequence.
They use vertex displacements in the Euclidean coordinates to select the basis in a greedy fashion. We noticed that when
considering variation in identity instead of variation in expression, the greedy selection leads to bases which are far less
local than those obtained from both our method and Tena et al.’s.® These papers address facial animation instead of face
modeling and therefore assume large, yet localized deformations caused by facial expressions, which are different from
our context where each face is globally significantly different from the others.

Like Tenaetal.,® Cao etal.!! segment the face with the same spectral clustering, followed by manual adjustment. While
their method focuses mostly on expression, they also provide some identity modeling, as they rely on the FaceWarehouse?
global model, which they decompose using the segments defined by spectral clustering. In their case, the goal is to adapt
a 3DMM to a face from a video feed, in real time. While their method works remarkably well for the real-time “virtual
makeup” application, it lags behind ours in terms of providing a very detailed facial model, and it does not support a face
editing workflow.
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Other papers supplement decomposition approaches with the extraction of fine details, allowing to reconstruct a
faithful facial model.'>1* The major problem with these approaches is that they work for a specific person and do not
provide editing capabilities. The Phace!'® method allows the user to edit fat or muscle maps in texture spaces on the face.
While this provides a physically based adjustment, the control is implicit. The user modifies the texture and then the
system simulates muscles and fat to get the result.

Wu et al.’® propose an anatomically constrained local deformation model to improve the fidelity of monocular facial
animation. Their model uses 1000 overlapping parts, and then decouples the rigid pose of the part from its nonrigid
deformation. While this approach works particularly well for reconstruction, the parts are too small for editing semantic
face parts such as the nose or the eyes.

Contrary to the methods described thus far, the Allen et al.2 and BodyTalk!” methods greatly facilitate editing by
mapping intuitive features to modifications of global 3DMM eigenvector weights. In particular, BodyTalk!” relates trans-
formations of the meshes to keywords such as “fit” and “sturdy.” While the mapping between the words and the
deformations is not perfect, it still makes it reasonably intuitive to edit the mesh of the body. One problem with this
method is that it provides words for bodies, not faces. A second major problem is the inability to make local adjustments,
and adjustments that increase the length of the legs will result in changes to other regions such as the torso and arms. In
contrast, for our approach, we aim at providing local control in the editing.

A downside of global PCA-based methods is that they exhibit global support: adjusting parameters to change one
part has unwanted effects on other unrelated parts. To address this problem, our approach segments the face into inde-
pendent sub-regions and provides a process to select the best set of eigenvectors, given a target number of eigenvectors.
Other methods that segment the face in sub-regions target facial animation instead of modeling. We demonstrate that
our approach is better-suited to the task of face editing than these methods. Another problem with most of the previous
related works is that they do not allow facial model editing through the adjustment of objective measurements. In contrast,
our approach relies on anthropometric measurements used as controls for editing. Furthermore, we propose a process to
select the right set of anthropometric measurements for each facial part. This article extends our previous work'® in the
area of local editing which is complementary to anthropometric measurements. We provide more degrees of freedom for
the user and ensure to generate realistic facial features besides satisfying the deformation prescribed by the user. We also
propose a validation system that measures the realism of faces and verifies the compliance to many measurements from
the literature.

3 | OVERVIEW

In this article, we introduce a pipeline for constructing a 3DMM. We separate the face into regions and compute inde-
pendent PCA decomposition on each region. We then combine the per-region 3DMMs, paying particular attention to
the selection of the most dominant eigenvectors across the eigenvectors of the different regions. While the eigenvec-
tors are good at extracting the dominant data variation modes, they provide weak intuitive interpretation. We thus use
anthropometric measurements to provide human understandable adjustments of the face. The reconstruction from the
measurements is done through a mapping from the measurements to the weights that need to be applied to each eigen-
vector. From the set of measurements, we extracted from our survey of the literature, we selected a subset which resulted
in the least reconstruction error. An overview of our approach can be found in Figure 1. The remainder of this article
is organized as follows: Section 4 describes how 3DMMs are constructed, including face decomposition and selection
of the most dominant eigenvectors. Afterwards, we discuss how to reconstruct a face by smooth blending of different
facial parts (Section 5). In Section 6, the selection of the anthropometric measurements, and the mapping between these
measurements and the PCA eigenvectors are discussed. We propose an interactive geometry local editing in Section 7 to
complement anthropometric measurements. We demonstrate the results in Section 8, and discuss them in Section 9.

4 | 3D MORPHABLE FACE MODEL

We employ PCA on a data set of faces to construct our 3DMMs. All faces are assumed to share a common mesh topol-
ogy, with vertices in semantic correspondence. We propose to segment the face into different parts in order to focus the
decomposition on a part-by-part basis instead of computing the PCA decomposition on the whole face. We compute the
decomposition separately for the male and female subsets. As shown in Figure 1, we decompose the face into five parts:
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FIGURE 1 Our 3D facial morphable model workflow. In an offline stage, we extract PCA eigenvectors and select the best ones. We also
select the best subset of anthropometric measurements. The relationship between the eigenvectors and measurements is encoded in a
mapping matrix. All of these are used in the online stage, where the mapper collects user-prescribed anthropometric measurement values,
and applies the mapping matrices to reconstruct the parts. The last step provides the edited face through a smooth blending of the parts

eyes, nose, mouth, ears, and what we refer to as the facial mask (which groups the remaining areas such as cheeks, jaws,
forehead, and chin). We further discuss this design choice in Section 9.3. This face decomposition allows us to have eigen-
vectors for each part. The geometry of the facial parts is represented with a shape-vector Sg = [V1 an] € R3, where
n, is the number of vertices of dth facial part,d €{1, ... , 5}, and V; = [x;y:z;] € R® defines the x, y, and z coordinates of the
ith vertex. After applying PCA, each facial part d is reconstructed as

n,
S, =Sa+ ) Pbj, M
j=1

where Sy is the mean shape of dth facial part, n. is its number of eigenvectors, P; is an eigenvector of size 3n,, b is a
n, x 1 vector containing the weights of the corresponding eigenvectors, and S/, is the reconstruction, which will be an
approximation when not using all eigenvectors.

Our approach selects the smallest set of eigenvectors that still reconstructs the shape accurately. We accomplish this
by incrementally adding the eigenvectors, in the order of their significance, to the reconstruction until a certain accuracy
is met. Even though we rely on the eigenvalues to sort the eigenvectors for each part (largest to smallest eigenvalue), we
provide the user with a measurable error (in mm), which is more precise than relying solely on eigenvalues across different
parts. We determine the best set of eigenvectors to achieve a balance between the quality of the per-part reconstruction
and the whole face reconstruction. To evaluate the accuracy of our selection, we construct the facial parts (Equation 1)
and blend them together (Section 5) to generate the whole face. Afterwards, we assess the accuracy of the reconstruction
by calculating the average of the geometric error Dgg between the ground truth and the blended face. In order to avoid
rigid motions in our evaluation, we first do a rigid alignment step (rotation and translation) between the facial parts
of the ground truth and the blended result. We calculate the rotation based on the vertices of the boundary and then
calculate the translation of the rotated part considering all of its vertices. In the case of the eyes and ears, we consider
them independently for the left side and right side. We then record the average per-vertex Euclidean distance over all
vertices and per part:

5
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TABLE 1 Number of eigenvectors selected for

Facial part # Eigenvectors for female # Eigenvectors for male
each part

Facial mask 7 9

Eye 10 5

Nose 6 6

Mouth 9 10

Ear 14 16

where ng is the number of vertices of the face mesh, ng is the number of vertices for part d, V; is on the ground truth,
and Vj’ is the corresponding point on the blended face. We compute averages over all vertices and per part to ensure that
parts with more vertices do not end up using most of the eigenvector budget at the expense of parts with fewer vertices.
We do so for the entire data set and for a set of 19 validation faces that were not part of the training data set. We compute
the median data set error as well as the median validation error, and we average the two in a global error. The process
of reconstructing the parts of validation faces is done by projecting each part onto the corresponding eigenvector basis
(followed by the blending process).

At each step of our incremental eigenvector selection, we decide which of the five parts will get a new eigenvector
added to its set. We compare the geometric errors resulting from each of the five candidate eigenvectors, and we select a
candidate eigenvector which has a great impact on decreasing the error. When eigenvectors from multiple parts result in
decreases of error, instead of systematically picking the eigenvector based on lowest error, we select by sampling from a
discrete probability density function (PDF) created from the respective decreases in error of the five candidate eigenvec-
tors. Each part with a decrease of error is assigned a probability corresponding to the value of the decrease for this part
divided by the sum of the decreases for all parts. Parts with an increase of error are assigned a probability of zero and do
not count toward the sum. This PDF selection process creates a more even distribution of eigenvectors across the parts
and maintains a low error.

As we iterate, the reconstruction error decreases. For the female and male data set faces, the average reconstruction
errors are 2.00 and 2.13 mm when considering zero eigenvectors. The errors decrease to 0.75 and 0.74 mm after 80 itera-
tions, and when considering all eigenvectors the errors are 0 mm. We chose an error threshold of 1 mm which balances
out the cost associated with considering too many eigenvectors and the accuracy of the reconstruction. Table 1 shows the
resulting eigenvector distribution after achieving our 1 mm reconstruction accuracy. We experimented with reconstruct-
ing the female and male validation faces based on using our subset of eigenvectors. The median reconstruction errors are
1.33 and 1.48 mm, respectively.

5 | FACE CONSTRUCTION THROUGH PARTS BLENDING

This step focuses on the problem of constructing a realistic new face by blending the five segmented parts together. As
opposed to methods such as those of Tena et al.® and Cao et al.,!! which handle the transition between the parts by
relying on the adjustment of a single strip of vertices, we spread the transition across three strips of vertices. In contrast
to other methods that adjust the transition by vertex averaging!! or least-squares fitting,® we use Laplacian blending!® of
the parts and the transition, resulting in a smooth, yet faithful global surface. The vertex positions are solved by an energy
minimization which reduces the surface curvature discontinuities at the junction between the parts while maintaining
the desired surface curvature. To this end, we define a transition zone made of quadrilateral strips around the parts. In our
experiments, a band of two quadrilaterals (three rings of green vertices in Figure 2) provides good results. We interpolate
the Laplacian Z (the cotangent weights) of the five facial parts weighted by g3, which has values of f; = 1 inside the part,
fa € {0.75,0.5,0.25} going outward of the part in the transition zone, and g; = 0 elsewhere. We normalize these weights
such that they sum to one for each vertex. These soft constraints allow some leeway in the transition zone. The boundary
conditions of our system are set to the ring of blue vertices in Figure 2, and we solve for the remaining vertices. To this
end, we minimize the following energy function:
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where “inner” is the set of vertices of the five parts, excluding the vertices of the boundary conditions; T; is an appropriate
transformation for vertex V! based on the eventual new configuration of vertices V; and Ry is the rotation of part d.

We solve Equation (5) in a similar fashion to ARAP? by alternating solving for the vertex position and rotation matri-
ces until the change is small. Figure 3 shows that the rotation quickly converges as the Frobenius norm of consecutive
rotations is large only for the first few iterations. Given our experiments, we decided to stop iterating when the Frobenius
norm fell below 0.01 or after six iterations. Figure 4 shows an example of a blended face. In this case, the Frobenius norm
was below 0.01 after five iterations. Figure 5 shows the evolution of the geometric error Dgp between the ground truth
parts and their blended counterparts for the example of Figure 4. As can be seen, the error quickly reaches a plateau as
the rotation stabilizes.

0.04

0.02

Mesh 1 Mesh 2 Mesh 3 Mesh 4

mlter.2 =lter.3 =lter.4 Nlter.5 Olter. 6
Nlter. 7 Nter. 8 Nlter. 9 = lter. 10

FIGURE 3 Graph showing the evolution of the Frobenius norm of the rotation between two consecutive iterations (averaged across
the five rotations R;). For each of the meshes 1-4, we begin with the average parts and change the weight of one eigenvector per part. Each
eigenvector is selected randomly (from the first 10 eigenvectors if there are more than 10 eigenvectors for the part). The new value for the
weight is also randomly selected within the range of —2 and +2 times the standard deviation for this eigenvector

FIGURE 4 (a,b)The generated parts. As in Figure 3, we
modified each average part by changing the weight of one
eigenvector selected randomly. The new value for the weight is also
randomly selected. (c) The result of blending the facial parts

N
~

Dgg(mm)
I
(3]

FIGURE 5 Graph comparing the average geometric error (in
mm) between the ground truth parts and their blended counterparts,
# Iters for different numbers of iterations
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6 | SYNTHESIZING FACES FROM ANTHROPOMETRIC MEASUREMENTS

PCA eigenvectors characterize the data variation space, but do not provide a clear intuitive interpretation. In this
article, we focus mainly on constructing linear regression models from data using a set of intuitive facial anthro-
pometric measurements. Facial anthropometric measurements provide a quantitative description by means of mea-
surements taken between specific surface landmarks defined with respect to anatomical features. We use the 33
parameters listed in Table 2. Each measurement corresponds to either a Euclidean distance or a ratio of Euclidean
distances between surface positions, as specified in each paper cited in Table 2. In this section, we propose a measure-
ment selection technique which assesses the accuracy of each measurement, resulting in the most relevant ones for
each facial part.

6.1 | Mapping method

We compute the measurements on the facial parts of the training data set, yielding fy; = [ﬁ1 ﬁnm] for the dth facial
part of scan S; considering n,, measures. The measures for all of the scans are combined into an n,, X ny matrix, Fy =
[f dTl den ] where n; is the number of scans. We want to determine how to adjust the weights of the PCA eigenvectors

to reconstruct faces having specific characteristics corresponding to the measures. We adopt the general method of Allen
et al..2 However, while that method computes a global mapping that adjusts the whole body, we will compute per-part
local mappings. Furthermore, in Section 6.2, we will derive a process to select the best measures out of the set of all

measures [f,-l fiw] and will proceed independently for each of the five parts.

We relate measures by computing a linear mapping to the PCA weights. With the n,, measures for the dth facial part,
the mapping will be represented as a (n,) X (n,, + 1) matrix, Mg:

Mylf;, ... fi, 11" =b, (6)

where b is the corresponding eigenvector weight vector. Collecting the measurements for the training data set, the
mapping matrix is solved as:

My = By4F*, 7

where By is a (n,) X (ns + 1) matrix containing the corresponding eigenvector weights of the related facial part and F; is
the pseudoinverse of F;. As in Equation (6), a row of 1s is appended to the measurement matrix F, for y-intercepts in the
regression.

To construct a new facial part based on specific measurements, we use b in Equation (1), as follows:

S/, =S4+ Pb, ®

where Sg is the mean shape of the dth facial part and P is the matrix containing the eigenvectors. Moreover, we can define
delta-feature vectors of the form:

Afy = [Afi ... Afy 017, ©)

where each Af contains the user-prescribed differences in measurement values. Afterwards, by adding Ab = MyAf, to
the related eigenvector weights, it is possible to adjust the measure such as to make a face slimmer or fatter.

6.2 | Measurement selection
We propose a novel technique for automatically detecting the most effective and relevant anthropometric measure-

ments. Some might be redundant with respect to others, some might not make sense for a specific part (e.g., the
“Ear Height” might not be relevant for the mouth), and some might even lead to mapping matrices that generate
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Anatomical term

Selected measurements

Nasal Width + Root Width

Nasal Width + Length of Bridge
Nasal Width + Width of Nostril
Nasal Root Width + Tip Protrusion
Length of Nasal Bridge + Tip Protrusion
Nasal Width + Tip Protrusion

Nasal Root Width + Length of Bridge
Nasal Root Width + Width of Nostril
Length of Nasal Bridge + Width of Nostril
Width of Nose + Tip Protrusion
Philtrum Width

Face Height

Orbits Intercanthal Width

Orbits Fissure Length

Orbits Biocular Width

Nose Height

Face Width

Bitragion Width

Ear Height

Bigonial Breadth

Bizygomatic Breadth

Facial Index

Nasal Index

Mouth-Face Width Index

Biocular Width-Total Face Height Index
Lip Length

Maximum Frontal Breadth
Interpupillary Distance

Nose Protrusion

Nose Length

Nose Breadth

Discarded measurements

Eye Fissure Index

Minimum Frontal Breadth

Abbrev

NWRW
NWLB
NWWN
NRTP
NBTP
NWTP
NRLB
NRWN
NBWN
WNTP
PW

FH
OIW
OFL
OBW
NH

BW
EH

BB

MFW
BWFH
LL

Max FB
ID

NP

NL

NB

EF
Min FB

Ref TABLE 2 Anatomical terms and corresponding
abbreviations of our selected and discarded measurements
21
21
21
21
21
21
21
21
21
21
22
23
23
23
23
23
24
24
24
25
25
26
26
26
26
27
27
27
27
27
27

26
27

worst results. During our investigations, we discovered that considering more anthropometric measurements does
not necessarily lead to a lower reconstruction average error. Figure 6 illustrates that a higher error occurs consid-
ering all the measurements in comparison with our selected combination. In order to aggregate the error for the
given part, we reconstruct the face, relying only on the anthropometric measurements of the selected part, and
then calculate the average error, as in Section 4. Figure 7 shows two odd-looking examples from using all the mea-
surements of the nose (Figure 7(a)) and facial mask (Figure 7(b)). We thus evaluate the set of relevant measure-
ments, separately for each part. We begin with an empty set of selected measurements, and we iteratively test which
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FIGURE 6 Using all measurements leads to —~ 6

higher reconstruction errors (mm) as compared to our é s|

set of selected measurements on the data set and \g J_I I_I l_| l_l h n ﬂ
validation faces Q4

Facial Eye Nose Mouth Ear |Facial Eye Nose Mouth Ear
mask mask

Female Male

B All measurements  OOur measurements

FIGURE 7 Using all the semantic measurements of the nose (a) and facial
mask (b) often leads to odd-looking parts when editing through the adjustment
of measurement values

(a) (b)

measurement we should add to the set by evaluating the quality of the reconstructed faces when creating the map-
ping matrix, considering the currently selected measurements together with the candidate measurement. We reconstruct
a face using the mapping matrix (Equations 6 and 8) based only on its measurement values. The reconstructed face
is considered as a prediction, and thus we evaluate the prediction quality in a fashion very similar to that used
for eigenvector selection, by reconstructing all of the faces found in the data set of facial scans, as well as the 19
validation faces.

Each candidate measurement is used together with the current set of selected measurements, and we compute
the candidate mapping matrix from this set of measurements (using the training data set). We use the mapping
matrix on the training and validation data set, and reconstruct all of the instances of the part under consideration
(e.g., all of the mouths). We then evaluate a geometric error, Dgg (Equation 4), with the per-vertex distance between
each predicted instance and its corresponding ground truth instance. Note that we evaluate the whole face by recon-
structing only the desired part (e.g., the mouth) and use the parts of the ground truth for the rest of the face. The
distance is calculated after a rigid alignment of the predicted instance to the ground truth instance is performed.
We can thus ensure that we are evaluating the fidelity of the shape, and not its pose. If one or a few faces result
in a large error, this could lead to the rejection of a measurement, which might still be beneficial for the predic-
tion of most faces. To avoid this, we also measure the percentage Dy; of faces for which an error improvement is
seen. We count the number of faces whose geometric errors have been decreased by considering the candidate mea-
surement. We then normalize Dge and Dy to the [0, 1] range and combine them into a single reconstruction quality
measure:

quality = normalize(Dyy) + 1 — normalize(DgE). (10)

Considering the combined geometric error and percentage of improvement of all candidate measurements, we pick
the one which will be added to the set of selected measurements. We stop adding measurements when we observe all
of candidates measurements lead to an increase of Dgg and a value Dy below 50%. We repeat this process for each part
(eyes, nose, mouth, etc.)

The selected anthropometric measurements are enumerated in Table 3. The description of each measurement, as well
as the reference to the literature from which we obtained the measurement, are shown in Table 2, where we also list the
measurements we rejected (measurements which were never selected for any of the segments).
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TABLE 3 Combinations of anthropometric measurements

Part Selected measures
For female
Facial mask B, BB, BW, BWFH, FH, MaxFB, NBWN, NH, NP, PW, WNTP
Eye B, BB, BW, BWFH, EH, F, FW, ID, LL, NB, NBTP, NH, NRLB, NRTP, NWRW, NWWN, OBW, OFL, OIW, PW
Nose EH, LL, N, NB, NBTP, NBWN, NH, NL, NP, NWTP, NWWN, PW
Mouth BWFH, F, LL, MFW, NP, NRWN, NWTP, PW
Ear EH, FH, FW, MaxFB, NB, NBTP, NBWN, NP, NRLB, NRTP, NWLB, NWTP, OBW, PW, WNTP
For male
Facial mask BW, BWFH, F, FH, FW, MaxFB, NRWN, OBW, OFL, PW
Eye B, BB, BW, F, FW, ID, N, NBTP, NBWN, OBW, OFL, PW
Nose BB, FW, ID, LL, MaxFB, NB, NBWN, NH, NP, NRLB, NRTP, NWLB, NWWN, OBW, OIW
Mouth B, BW, BWFH, F, LL, NBTP, NH, PW
Ear B, BB, BWFH, EH, FH, MaxFB, N, NRTP, NWRW, OBW, OIW
6.3 | Correlation between measurements

Defining the correlation between the measurements is important for the adjustment of faces. Accordingly, if the user
adjusts one measurement, the system automatically calculates the adjustment of the other measurements as well. This
greatly helps to create realistic faces by maintaining the correlation observed in the data set. Similarly to Body Talk,'”
we use Pearson’s correlation coefficient on F to evaluate the relationship between the anthropometric measurements.
Considering a facial part d, the Pearson’s correlation coefficient Corj, for measurements j and k is expressed as:

> Gy = 5= fo
v G = 5 S G — o2

amn

Cory, =

where f;, fik € fq,; are measurements of scan S;, J_§ andfk are the mean values of measurements j and k, respectively, and
ns is the number of scans. The coefficient is a value between —1 and 1 that represents the correlation. When adjusting
measurement k by Afi, we get the change in other measures as Af; = CorjAfi. Accordingly, we can evaluate the influence
of one measurement on the others, as well as the conditioning on one or more measurements, and create the most likely
ratings of the other measurements.

7 | EDITING PARADIGMS FROM DEFORMATION MODES

Complementary to the anthropometric measurements, we propose two editing approaches where the user anchors the
editing at specific locations on the mesh. The handle-based editing provides the user with a visualization of the locations
on the mesh corresponding to the vertices that move the most with respect to eigenvectors. The vertex-based editing allows
the user to select the location where the deformation will take place and our approach uses the eigenvectors to derive
a deformation mostly located in the selected region and matching the displacement desired by the user. Being based on
the eigenvectors, these two approaches make sure to generate realistic facial features beside satisfying the deformation
prescribed by the user.

7.1 | Handle-based editing

We propose handles as a visual cue for editing facial features based on high-variance eigenvectors. We use the first 10
eigenvectors and we find the vertex with the largest magnitude for each of them. Each of these vertices is a candidate
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FIGURE 8 Visualization of the deformation related to an eigenvector.

Blue and red silhouettes show the deformation related to weights corresponding
to —2 and +2 standard deviation

handle. The main idea is to select handles that lead to a big deformation. Consequently, we disregard the handles when
the magnitude of the corresponding vertex movement is smaller than half of the average edge length of the 1-ring neigh-
borhood. We let the user visualize the handles with a line anchored at the vertex. The green arrow in Figure 8 shows the
motion of the handle vertex for the first eigenvector of the facial mask. The extent of the motion corresponds to —2 and +2
standard deviations from the mean. The green, red, and blue silhouettes show the mean, —2 and +2 standard deviation,
respectively.

To ease the visualization, handles which are close to each other (20 mm) will be displayed from the same vertex.
For this purpose, we find the closest vertex to the average of the vertices positions which have a close distance, within
20 mm. We display the direction of each handle using a vector corresponding to the eigenvector deformation anchored at
the corresponding vertex. The size of the vector is adjusted between 5 and 10 mm depending on the norm of the related
displacement. As faces and eigenvectors are mostly symmetric, for each handle we display a corresponding symmetric
handle. Note that both handles have the same effect. When the user interacts with a handle, the amount of pushing or
pulling on the handle determines the adjustment of the weight for this eigenvector.

7.2 | Vertex-based editing

As opposed to selecting predetermined handles, the user can also select any vertex and prescribe a translation for this
vertex. In an energy minimization manner, we define a Gaussian falloff around that vertex, and vertices with a low Gaus-
sian weight want to remain at their current location, while vertices with a high Gaussian weight are more free to move.
As such, the deformation is more localized and we have a smooth transition zone.

The user can move the selected vertex u in any direction, and our approach will aim to find the weights which will
meet the prescribed vertex movement and while keeping fixed the regions with low falloff weight. Our approach finds
the weight b by solving following energy:

E(b) = A|(Pb), — x|*> + |G(Pb — Vo)|> + |b — bo|? + |6(b — b)|*. (12)

The first term aims to move vertex u to the position x prescribed by the user (P is the eigenvector matrix, (Pb), retrieves
the user selected vertex out of the whole mesh Pb, and 4 can be adjusted to conform more or less to the user constraint).
The second term restricts movement of vertices with low Gaussian falloff (G is a diagonal matrix that weights each vertex
according to the Gaussian falloff, V is the vector of previous vertex positions). The third and fourth terms avoid diverging
too much from the current by and average b weights, respectively. The diagonal matrix 6 allows a finer control for each
weight. When a weight b is lower than —2 standard deviation or higher than 42 standard deviation, we increase the cor-
responding entry in §. This automatically prevents having faces too far from the average. Finally, faces being symmetric,
we automatically select the symmetric vertex and apply the corresponding constraints for the mirror vertex movement in
Equation (12).

8 | RESULTS

Compared to global 3DMM methods that compute one set of eigenvectors for the whole face, our 3DMM computes a set of
eigenvectors for each part. This is at the root of one of the advantages of our approach: its ability to locally adjust faces. We
compare our approach to other methods that rely on local 3DMM. We created mapping matrices (Equation 7) for global
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3DMMs, SPLOCS,° clustered PCA,? as well as our part-based 3DMMs, and tested the adjustment of measurements with
these models. We used 46 eigenvectors for global 3DMM, SPLOCS, and our part-based 3DMM. For clustered PCA, we first
tested using 13 clusters, as is reported in the paper, but found that this leads to a non-symmetrical result (Figure 9(b)). By
checking other clusterings, we selected 12 clusters (Figure 9(a)). Because a clustered PCA does not allow for a different
number of eigenvectors for each cluster, and to avoid having too few eigenvectors per part, we used 46 eigenvectors for
each cluster (selecting the 46 with the largest eigenvalues).

To compare our approach and the use of measurements with other methods, we decided on a way to use our mea-
surements with SPLOCS and clustered PCA. We further demonstrate that with SPLOCS and our approach, we can have
more local measurement or global measurement control. For our approach, Table 3shows that some measures influence
more than one part. For example, the “Lip Length” is found in the lists for both mouth and nose. When a measure-
ment is shared between different facial parts, our method allows to decide to have more localized changes by adjusting
the measure for only one part, or to have more coherence across the parts by adjusting all of the parts involved in the
measurement. If comparing with SPLOCS, we can also balance between local measurements and global measurements.
Each measurement is based on computations involving specific measurement vertices (such as the corner of the mouth
and the tip of the nose). To enforce locality, when considering a measurement, we check which SPLOCS “eigenvec-
tors” infer significant movement at the related measurement vertices. We compute this by checking if the eigenvector
displacement vector at a measurement vertex is large enough as compared to the maximum displacement vector of the
eigenvector (we check if it is larger than 1% of the maximum displacement of all vertices of the eigenvector). A SPLOCS
eigenvector is considered for a measurement only if it meets the criterion for one of the measurement vertices of a spe-
cific measurement. To enforce more globality with SPLOCS, we use the mapping matrices for all of the eigenvectors.
Figure 10 shows an example of the globality and locality of the influence of adjusting the “Lip Length.” It compares global
PCA eigenvectors, local measurement and global measurement SPLOCS, clustered PCA, and our local measurement
and global measurement approaches. The color coding shows the per-vertex Euclidean distance. Note that the colors do
not represent errors, but rather, vertex movements. Thus, the goal is to have warmer colors around the location where

FIGURE 9 Automatic part identification of clustered PCA.® Note how the
automatic clustering leads to non-symmetrical clusters (left eye with one cluster

vs. right eye with two clusters) for 13 clusters and required us to manually check
(A) 12 clusters (B) 13 clusters which other clustering would be usable

eeceed

(a) Global (b) Global (c) Ours (d) Local (e) Clustered (f) Ours local
PCA SPLOCS global SPLOCS

FIGURE 10 Comparison of the globality versus locality of the adjustments (editing by increasing the “Lip Length”): (a) global PCA
eigenvectors, (b) global measurement SPLOCS, (c) our global measurement approach, (d) local measurement SPLOCS, (e) clustered PCA,
and (f) our local measurement approach. The colors, respectively, represent per-vertex Euclidean distance (blue = 0 mm, red = 8.5 mm). Note
how our local measurement and global measurement approaches induce significant and local surface deformation to achieve the desired
editing. In comparison, global PCA and SPLOCS induce nonlocal deformation, and clustered PCA induces much less deformation
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the editing is intended, and colder colors in unrelated regions. Our method allows having global measurement influ-
enced by adjusting the measure for both the nose and the mouth parts, as well as more localized changes by adjusting
only the mouth (Figure 10(c-f)). Contrary to our approach, both global measurement and local measurement SPLOCS
resulted in similar deformations all over the face, while the expected result was a modification focused around the mouth
(Figure 10(b-d)).

We will now focus on local measurement editing. Figures 11-13 show the adjustment of the same anthropometric
measurement using global 3DMM, local measurement SPLOCS, clustered PCA, and our local measurement approach.
In Figure 11(f,g), we can see that even though we wanted to adjust the “Nose Breadth,” the adjustment using the global
eigenvectors and local measurement SPLOCS resulted in significant deformations all over the face, while clustered PCA
and our approach could focus the deformation around the nose, as expected (Figure 11(h,i)). We can observe similar
unwanted global deformations of the face in Figure 12(f,g). Also note that the automatic segmentation of clustered PCA
does not provide the desired deformation for some cases, such as in Figures 12(h) and 13(h). This lack of deformation
for clustered PCA (Figures 12(h) and 13(h)) is in part due to the landmarks related to the measurements being close to
the boundary of segments. The largest deformation should happen close to the boundary according to the landmark and
measurement, but the blending can later diminish the deformation. This effect is worst for clustered PCA because of
the larger number of segments (there is always a segment boundary close to a landmark). Accordingly, we consistently
outperform clustered PCA in terms of local deformation where expected. In Figure 13, global PCA works reasonably well
as the measurement has an influence on a large portion of the face. On the other hand, SPLOCS can deform the expected
region, butitis notlocalized. To summarize, the results shown in Figure 11-13 highlight the difficulty of locally controlling
the face deformation, and the power of our approach in locally adjusting the face with respect to the anthropometric
measurements.

Figure 14 and the accompanying video show an implementation of our system for measurement-based editing. In
the accompanying video, we also show multiple edits on multiple parts, starting from the average face, while Figure 15
shows edits starting from four real faces. We can see that our approach allows capturing the essence of the anthropometric
measurements, providing an easy-to-use workflow.

Figures 16 and 17 highlight the fact that our approach is not limited to the measurements and provides more freedom
to the user for adjusting facial features. Figure 16 shows how to edit facial features using handles. Figure 16(a) shows
the location of the handles. The direction for the handle selected by the user is illustrated in Figure 16(b). The arrows of
Figure 16(c) show if the user pulls or pushes the handles. The deformed features are illustrated in Figure 16(d). Figure 17
shows the examples of vertex-based editing where the arrow is showing the vertex selected by the user. Our approach
provides a smooth transition across the boundary of the edited regions.

(b) Global PCA (c) Local (d) Clustered (e) Ours local
SPLOCS

FIGURE 11 “Nose
Breadth” adjustment results: (a)
nose of a female from validation
faces adjusted using (b) global
PCA eigenvectors, (c) SPLOCS,
(d) clustered PCA, and (e) our
approach. The color mapped
renderings (f-i) indicate

respective per-vertex Euclidean
distance (blue = 0 mm, red = 5 (f) Global PCA (g) Local (h) Clustered (i) Ours local
mm) SPLOCS
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(a) (b) Global PCA (c) Local (d) Clustered (e) Ours local
SPLOCS
(g) Local (h) Clustered (1) Ours local
SPLOCS

(a) (b) Global PCA (c) Local (d) Clustered (e) Ours local
SPLOCS

(f) Global PCA (g) Local (h) Clustered (i) Ours local
SPLOCS

)

FIGURE 14 Measurement editing system

raamm

FIGURE 12 “Lip Length”
increase results: (a) mouth of a
male from validation faces edited
using (b) global PCA
eigenvectors, (c) SPLOCS, (d)
clustered PCA, and (e) our
approach. The color mapped
renderings (f-i) indicate
respective per-vertex Euclidean
distance (blue = 0 mm, red = 8
mm)

FIGURE 13 “Bizygomatic
Breadth” (the bizygomatic width
of the face) increase results: (a)
A male from the validation faces
edited using (b) global PCA
eigenvectors, (c) SPLOCS, (d)
clustered PCA, and (e) our
approach. The color mapped
renderings (f-i) indicate
respective per-vertex Euclidean
distance (blue = 0 mm, red = 14
mm)
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FIGURE 15 We generated
random faces (left faces, (a-d)) and
edited them by increasing (“+”) or
decreasing (“~”) the value of some of the
indicated anthropometric measurements

FIGURE 16 Handle-based
editing. The arrows show the directions
of pulling or pushing of desired handles

(a) “Orbits Biocular Width” of eye

(¢) “Philtrum Width” of mouth

90 00

(b) “Nose Protrusion” of nose

A

(d) “Face Height” of facial mask

00
>4

(a) Vertices with
high variance

(b) Handles of
desired vertex

(c) Before editing (d) After editing
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FIGURE 17 Vertex-based editing.
The arrows show the desired locations

(a) Before editing  (b) After editing  (c) Before editing (d) After editing

9 | DISCUSSION

In this section, we discuss different aspects of our approach. We present different comparisons highlighting the impact
of the eigenvector and measurement selection. We then discuss the face segmentation choice, and end by describing the
procedure used to bring all of our scans to a common face mesh.

9.1 | Measurements error

To verify the robustness of our 3DMMs and of our set of selected measurements, we reconstruct real faces, relying on
their anthropometric measurements to compute their eigenvector weights (Equation 6). We then get the face with our
approach, including the blending procedure (Section 5), and compute its resulting anthropometric measurements. In
comparison with Figure 6 which evaluates reconstruction average error, here we compute the quality of the reconstruction
through the absolute value of the difference between the ground truth measurement and the measurement from the
reconstructed face. Since measurements correspond either to a Euclidean distance or to a ratio of Euclidean distances,
we normalized all the measurements to the [0%, 100%] range. Figure 18 shows that the average percentage of error is low
when using “our measurements.”

This means that both the selection of eigenvectors and the mapping matrix work well. Furthermore, it shows that
when using “all measurements” to compute the mapping matrix (Equation 7), we get larger average errors as compared
to ground truth measurements. When calculating the error in Figure 18 for “our measurements,” we calculate the average
error over our selected measurements only (Table 3). The error shown in Figure 18 for “all measurements” also considers
only our selected measurements (if the error across all of the measurements is considered, the comparison is even more
in favor of using our selected measurements).

We evaluated how our approach compared to SPLOCS and clustered PCA with respect to achieving measurement val-
ues prescribed by edit operations. We created a set of 1000 random edits on 135 face meshes. We took the resulting edited
face mesh from our approach, SPLOCS, as well as clustered PCA, and evaluate the difference between the measurement
value prescribed by the editing and the measurement value calculated from the edited mesh. Overall, our approach is the

10

phbhrprnr

Facial Eye Nose Mouth Ear |Facial Eye Nose Mouth Ear
mask mask

%
w

FIGURE 18 Using our subset of measurements
on the data set and validation faces leads to lower errors
® All measurements O Our measurements (percentage), as compared to using “all measurements”

Female Male
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20r 16.595 16.327
< 10 b 8.88 8 6635 9.57 I 9.3165
0 J I I
SPLOCS Tena Ours SPLOCS Tena Ours
Female Male

FIGURE 19 Starting from one face, we adjust one of its measurements to match the value of that measurement for another face. We
then compute the difference between the prescribed measurement value and the measurement value calculated from the mesh. We do so for
1000 such edits. Our approach leads to a smaller error (percentage), as compared to the clustered PCA, and to slightly better results when
compared to local measurement SPLOCS

FIGURE 20 (a)Average male head. Its “Nose Height” is 45.09
mm. (b) A synthesized nose with its “Nose Height” edited to 70.11
mm. (c) Result of blending the nose. While this is an extreme case, it

still reflects the fact that the approach is not always able to achieve (/Z //Z
the prescribed measurement (the value decreased to 58.53 mm for \ = \ -
) = — =
this example)
N\ \
N
(a) (b) ()

one that performed the best, with the resulting measurement being closest to the prescribed measurement. SPLOCS was
second and clustered PCA presented the greatest differences (see Figure 19).

Even though our approach is the one that is closest (on average) to the prescribed measurements, there is a limitation
due to the blending of the synthesized parts. This blending sometimes affects the mesh in a way that prevents it from
achieving the exact prescribed effect for the editing. Figure 20 shows an example where the blending does not maintain
the “Nose Height” of the synthesized nose as it deforms it through the blending process.

9.2 | Validation system

Being based on eigenvectors extracted from a data set, our approach has a strong tendency to generate realistic faces.
Nevertheless, when the realism is of greater importance, we might want to validate how realistic these faces are. In creating
new faces, it is always possible to disrupt facial features and their interrelations, leading to decreased realism. Studying
the literature, we selected two categories of validation approaches. The first category corresponds to metrics. We selected
some of the neoclassical canons of facial proportions? as well as the angles used most frequently in rhinoplasty surgeries®
(Nasfrontal Angle, Facial Convexity, and Total Facial Convexity). The second type of validation considers the depth of the
nose compared to the other features.?’ We validate that the nose is always upfront compared to other parts of the face
(such as the chin, lips, and forehead).

For the metrics, we calculated their minimum and maximum values on a data set of 133 3D scans. We then used a
second data set (358 3D scans) to verify if our ranges of values generalized. The initial percentage of the heads not fitting
in the ranges was 15.5%. We then made slight adjustments to the initial ranges (less than 0.1 for the proportions and less
than 5° for the angles), and the percentage of the heads not fitting in the ranges went from 15.5% to only 1.1%. While the
remaining heads that still failed the test were real ones, it is important to mention that they were having very specific
facial features such as a frown mark or open mouth, which explains why they failed the validation. Table 4 shows the
final determined ranges for these metrics. Apart from the metrics, the nose depth is also a powerful strategy to determine
the realism. All of the heads (from the data set of 133 scans and the data set of 358 scans) all passed this test.

We then created 124 new heads using our pipeline, all with randomly exaggerated features. In creating one such head,
we select a random head from the data set, we randomly select one of the measurements (Section 6.1), and randomly set
the value so that it is 1.5-2 times the maximal value observed in the data set. We ran these randomly edited heads through
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TABLE 4 The ranges for the facial metrics

Metrics Min Max
|len — en||+ ||len — ex]|| 0.95 1.71
|len —en||+ ||al —al|| 0.75 1.284
||n —sn||+ ||sa —sba|| 0.68 1.184
||tr — n||+ ||n —sn|| 0.92 1.366
||tr — n||+||sn —gn|| 0.64 1.086
||n—sn||+ ||sn — gn|| 0.5 0.97
[lal —all|+(|| zy — zpll/4) 0.9 1.471
|lch — ch||= ||al — al| 1.12 1.8
TotalFacialConvexity 127° 158.6°
FacialConvexity 147.46° 178.5°
NasfrontalAngle 127° 167.28°

Note: Specific metrics and symbols are explained in the accompanying video.

(b) (d)

FIGURE 21 Some samples of the heads built using our pipeline which did not pass the validation test. The problematic metrics are as
follows: (a) ||ch — ch||+ ||al — al|| and ||en — en||+ ||len —ex]|, (b) ||en — en||+ ||en — ex|| and ||n — sn||+ ||sa — sbal|, (c) ||en — en||+ ||en — ex||, (d) tip
of the nose, (e) ||al — al||+(|| zv — zy||/4) and ||tr — n||+ ||n — sn||

£ M) s} () G
O O U & =

FIGURE 22 Some samples of the heads built using our pipeline which passed the validation test

our set of rules, and as a result, we had 15.3% of the heads which were not validated as realistic heads (we determine that
a realistic head is within all of the ranges and also passes the nose depth test). Figure 21 shows some of the completely
new created faces which did not pass the test. Conversely, Figure 22 shows faces which passed the test.

9.3 | Face decomposition

Our face segmentation was motivated by several facial animation artists with whom we worked, and who strongly prefer
having control over the face patches in order to make sure they match the morphology of the face and muscle locations.
This type of control is impossible to achieve with an automatic method, which is typically agnostic to the underlying
anatomical structure. It is important to note that this manual way of selecting the regions is no more cumbersome than
the current state-of-the-art methods. The state-of-the-art method of Tena et al.® requires a post-processing step to fix
occasional artifacts in the segmentation method. Furthermore, as illustrated in Figure 9(b), segmentation boundaries
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can occasionally occur across important semantic regions such as the eyes, leading to complications further down the
pipeline.

9.4 | Dataset

The quality of the input mesh data set is important to the reconstruction of good 3D face models. As many existing
methods, we assume that the meshes share a common mesh topology. Mapping the raw 3D scans to a common base mesh
is typically done by a surface mapping method.3’-32 We established this correspondence with R3DS WRAP.

Our data preparation pipeline involves few steps leading to an automatic surface mapping. Since the 3D scans usually
have mesh topology problems such as non-manifold edges, singular vertices, and holes, the first step is to clean the scans.
We then seek to automatically find a good frontal camera alignment. As we do not know where the face of the person
is in the scan coordinate frame, we generate 42 cameras around the cleaned scan using a Fibonacci sphere algorithm.
The frontal pose detector®? reads the images from the 42 cameras and scores each detection. After identifying the camera
with the best score, this camera is rotated every 18° to find a good camera roll and compensate for the error between
the rotation and the detector’s trained angle (detector is trained on upright faces). From this frontal camera, we will use
automatic facial landmark identification to align the scan to the local coordinate space of the base mesh. We automatically
identify a set of 68 facial landmarks utilizing the facial landmark predictor of dlib.3* These landmarks are back-projected
on the 3D scan meshes (as illustrated in Figure 23) and used to do a rigid alignment to the base mesh coordinate space.
In this coordinate space, a frontal pose camera is already set up, providing a very good frontal pose. As the precision of
the landmark position depends on the camera orientation, we rerun the facial landmark identification given the camera
frontal pose in the base mesh coordinate space. Widely used facial landmark detectors, such as those of dlib,>* do not
provide landmarks for the ears. At this point, we rotate the camera 90° to left/right for detecting left/right ears’ bounding
boxes?> and we place an initial guess for the ear landmarks® which we further correct by running an active appearance
model®’ trained on AMI ear database. Finally, we use the landmarks and aligned scans as inputs to wrap a base mesh
with 6014 vertices and 11,964 triangles around the high-resolution scans. We also re-project the textures from the scans
on the wrapped base mesh. Our data set represent a diverse range of ethnicity and ages (Figure 24) which is in contrast
to the Basel Face Model.*

FIGURE 23 We automatically
identify landmarks on the scan which
will be used to establish the
correspondence to the base mesh and

create the final wrapped head 3D Scan Landmark Detection Wrapped Head
60+ [~ 12%
South AsianfJ3% 50-59 ([ 10%
African :l 7% 40-49 12%
South American E 10% 30-39fCiiiiiiiiidls%w
East Asian[[[ 12% 20-29(7 7777777 7]130%

FIGURE 24 Racial and age distribution of our data
set. It includes 135 3D scans consisting of 64 females and 71 ‘ ‘ ‘ ‘ ‘
males. (a) The racial distribution of these heads while (b) 0 1020 30 40 50 60 70 0 10 20 30 40 50
different age groups in the data set (a) Ethnicity (b) Age

Europeanf 77777777777 7168% 10-1981%
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10 | CONCLUSION

In this article, we designed a new local 3DMM used for face editing. We demonstrated the difficulty of locally editing the
face with global 3DMMs; we thus segmented the face into five parts and combined the 3DMMs for each part into a single
3DMM by selecting the best eigenvectors through prediction error measurements. We then proposed the use of estab-
lished anthropometric measurements as a basis for face editing. We mapped the anthropometric measurements to the
3DMM through a mapping matrix. We proposed a process to select the best set of anthropometric measurements, lead-
ing to improved reconstruction accuracy and the removal of conflicting measurements. From a list of 33 anthropometric
measurements we surveyed from the literature, we identified 31 which lead to an improvement of the reconstruction
and rejected 2 as they decreased the quality of the reconstruction. Note that the anthropometric measurement selection
process would apply as well even if using a different 3DMM from the one proposed in this article, as well as when con-
sidering a different set of anthropometric measurements. We demonstrated this by applying our set of measurements
to both SPLOCS' and clustered PCA.® This also demonstrated that our approach produces results superior to those of
established methods proposing automatic segmentation and different ways to construct the eigenvector basis. We also
presented different bits of experimental evidence to demonstrate the superiority of our approach, especially in terms of
local control, as compared to the typical global 3DMM.

Alimitation of our approach lies in the mapping matrices, which assume a linear relationship between anthropometric
measurements and the eigenvector weights. An interesting avenue for future work would be to apply machine learning
to identify nonlinear mappings.

Also, our measurements are based on distances between points on the surface. Future work could consider mea-
surements based on the curvature over the face, such as measurements specifying the angle formed at the tip of the
chin.

Although anthropometric measurements generate plausible facial geometric variations, they do not consider
fine-scale or coarse-scale features. Regarding the fine-scale details, our approach does not model realistic variations
of wrinkles, and that could be an interesting direction for future research. Regarding coarse-scale features, we could
reconstruct a skull based on the anthropometric measurements, and then generate the facial mask based on an energy
minimization of the skin thickness considering the skull and the measurements.
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