
CLIP-Mesh: Generating textured meshes from text using
pretrained image-text models

Nasir Mohammad Khalid
nasirmkhalid24@gmail.com

Concordia University
Montreal, Canada

Mila
Montreal, Canada

Tianhao Xie
tianhao.xie@mail.concordia.ca

Concordia University
Montreal, Canada

Eugene Belilovsky
Belilovsky.Eugene@gmail.com

Concordia University
Montreal, Canada

Mila
Montreal, Canada

Tiberiu Popa
tiberiu.popa@concordia.ca

Concordia University
Montreal, Canada

Figure 1: A 3D scene composed of objects generated using only text prompts: lamp shade, round brown table, photograph of a
bust of homer, vase with pink flowers, blue sofa, pink pillow, painting in a frame, brown table, apple, banana, muffin, loaf of
bread, coffee, burger, fruit basket, coca cola can, red chair, computer monitor, photo of marios cap, playstation one controller, blue
pen, excalibur sword, matte painting of a bonsai tree; trending on artstation. (The 3D positioning in the scene was done by a user)

ABSTRACT
We present a technique for zero-shot generation of a 3D model
using only a target text prompt. Without any 3D supervision our
method deforms the control shape of a limit subdivided surface
along with its texture map and normal map to obtain a 3D asset that
corresponds to the input text prompt and can be easily deployed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9470-3/22/12. . . $15.00
https://doi.org/10.1145/3550469.3555392

into games or modeling applications. We rely only on a pre-trained
CLIP model that compares the input text prompt with differentiably
rendered images of our 3D model. While previous works have
focused on stylization or required training of generative models
we perform optimization on mesh parameters directly to generate
shape, texture or both. To constrain the optimization to produce
plausible meshes and textures we introduce a number of techniques
using image augmentations and the use of a pretrained prior that
generates CLIP image embeddings given a text embedding.

CCS CONCEPTS
• Computing methodologies → Neural networks; Mesh ge-
ometry models.

https://doi.org/10.1145/3550469.3555392

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa

KEYWORDS
CLIP, neural networks, machine learning, geometric modeling
ACM Reference Format:
Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu
Popa. 2022. CLIP-Mesh: Generating textured meshes from text using pre-
trained image-text models. In SIGGRAPH Asia 2022 Conference Papers (SA
’22 Conference Papers), December 6–9, 2022, Daegu, Republic of Korea. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3550469.3555392

1 INTRODUCTION
Gaming, virtual reality, films and other multimedia experiences
rely on the use of 3D models. While there are various methods
of representing these models, many existing games and modeling
software use 3D assets consisting of a polygonal mesh coupled
with texture and normal maps. However, the creation and texturing
of meshes is a time consuming and expensive task that often also
needs specialized software. There has been a lot of research focused
on synthesizing shapes but these look at generation in the form of
point clouds, voxel grids or implicit functions and are restricted to
fixed shape categories. While these provide good results the issue is
they require additional steps to convert to meshes that can be used
in existing software and this conversion can lead to undesirable
results or artifacts.

The ideal scenario would be a technique where a user can gener-
ate any arbitrary 3D shape based on only an abstract text description
of the object. This would greatly increase the use and accessibility
of developing 3D assets. Furthermore, if the shape generated is in
the form of a mesh with corresponding texture maps it would easily
facilitate integration with a large suite of existing game engines
and software that use 3D meshes as primitives.

A big limitation is the lack of large varied datasets of 3D objects
and corresponding natural language descriptions. For example,
datasets such as Shapenet [Chang et al. 2015] and CO3D [Reizen-
stein et al. 2021] provide 50 object categories respectively. In con-
trast there are large datasets containing rich 2D images with a large
variety of objects. For example Imagenet-21K [Ridnik et al. 2021]
has 21,000 object categories. Furthermore, natural image data can
often be accompanied by rich textual descriptions. Recently CLIP
has been trained on a large dataset of 400 million image text pairs
to learn an aligned visual and textual representation [Radford et al.
2021]. This text and image scoring model was trained on text cap-
tions with combinations from a set of 500,000 query words, leading
to a very large diversity in the potential objects it can represent.

We thus consider utilizing the knowledge from a large scale
deep learning model trained only on images and texts. This relies
on the fact that a 3D shape can be projected to a 2D image from
an arbitrary viewpoint through rendering. Using a differentiable
renderer such as [Laine et al. 2020] one can obtain images of a
shape and then use CLIP to get a score between the images and
an input text. Leveraging the differentiability of the renderer and
CLIP, an inverse problem can be solved by optimizing the shape
and texture of a mesh to maximize the CLIP score of rendered
images and input prompt. However, doing this naively can lead to
a tangled and noisy mesh as there are insufficient constraints on
the shape. Therefore we incorporate a number of constraints and
techniques that allow us to generate a plausible shape and texture.

First we use a regularization loss and incorporate limit subdivision
to further smooth the mesh. Even though this helps us maximize
the score it often leads to an undesirable result in terms of texture
as CLIP may prefer "painting" small artifacts in to the texture rather
than deform and globally texture the object. To alleviate this we
use multiple augmentations to render the object dynamically such
that the optimizitation reaches a solution leveraging the shape
information. Additionally to further improve results we introduce
a conditional generative model that uses a pretrained diffusion
prior model, that generates a CLIP image embedding given the
text prompt, this is similar to current state of the art text to image
synthesis work [Ramesh et al. 2022]. Our contributions can be
summarized as followed:

• We introduce a set of techniques that allow zero-shot text-
guided generation with a differentiable renderer.

• We use these techniques to directly generate 3Dmeshes with
their texture maps and normal maps .

• We use the analytical expression of the Loop subdivision
limit surface as an implicit regularizer to improve the quality
of the generated model.

• We improve on our baseline results by introducing a set
of render augmentations and incorporating a text to image
embedding prior.

2 RELATEDWORK
A variety of recent works focus on text driven 2D image manip-
ulation and generation using CLIP [Radford et al. 2021], a model
that learns a joint embedding space for image and text. Leveraging
CLIPs joint embedding, many works such as StyleCLIP [Patashnik
et al. 2021], VQGAN-CLIP [Crowson et al. 2022] and GLIDE [Nichol
et al. 2021] have shown that pretrained image generative models
can be guided by text prompts through distance losses in the shared
embedding space. Additionally, the current state of the art in text
to image generation trains a model directly on CLIP text and image
embeddings [Ramesh et al. 2022].

In contrast to this, text to 3D is an underdeveloped field but a
number of works have previously attempted to generate 3D models
from text by utilizing datasets of text descriptions corresponding
to 3D models. For example [Chen et al. 2018; Fukamizu et al. 2019]
proposed to train a joint embedding between 3D shapes and text
and combine this with generative adversarial networks [Goodfellow
et al. 2014] to produce novel outputs. These approaches however are
not zero-shot and are thus limited by the lack of available matched
3D models and text descriptions. CLIP-Forge [Sanghi et al. 2021]
alleviates the issue of paired text and 3D models by relying only on
the 3D models to train an encoder and decoder and then guiding
generation of the decoder with CLIP to produce results that match
a text prompt, this only partially solves the problem because now
the generation is restricted by the 3D data categories available to
train it. It also doesn’t produce meshes or textures and thus its use
is limited. [Hong et al. 2022; Jetchev 2021] focus on stylization of
predefined human shape to match an input text prompt and [Michel
et al. 2021] generalizes this to any arbritary mesh and text prompt.
Text2Mesh addresses a related but different problem: with a correct
starting mesh each vertex is minimally modified along the normal
direction and its color.

https://doi.org/10.1145/3550469.3555392

CLIP-Mesh: Generating textured meshes from text using pretrained image-text models SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Dreamfields [Jain et al. 2021] proposed a zero-shot text guided
generation using a NeRF model [Mildenhall et al. 2020]. Unlike our
approach this does not allow direct generation of a mesh but instead
trains a neural radiance field. This method requires raycasting and
training a set of neural network parameters which has a large
computation overhead even for low quality generation where as
our figures are all generated on a single 16GB GPU. Additionally
editing of the object and getting a mesh is not straightforward
since the shape is within the weights of a network and extraction
requires a user determined thresholding which can lead to trade
offs. Furthermore, the texture and shape cannot be disentangled.
While in our work the shape, texture and normal can be individually
modified allowing unique application scenarios. For example we
demonstrate multi object optimization within a scene which is
straightforward under our method but the same cannot be easily
applied using [Jain et al. 2021].

3 METHOD
An overview of our method is shown in Figure 2. We represent a
3D model using three components: (1) a 3D mesh whose vertices
𝑽0 ∈ R𝑛×3 are the control vertices of a Loop [Loop 1987] subdivi-
sion surface 𝑽 = 𝑆 (𝑽0), (2) a texture map 𝑇 and (3) a normal map
𝑻̃ . This is a standard way to represent geometric assets in video
games and modeling applications. Furthermore, using a texture
map allows to decouple the appearance from the geometry and the
combination of normal map and subdivision surface control allows
us to reduce the number of optimization parameters of the geome-
try while maintaining rendering details. Our method creates a 3D
model by optimizing these three components using a differentiable
renderer. Our rendering pipeline uses the initial control mesh to
compute the limit surface 𝑉 of the Loop subdivision scheme [Stam
1998]. This limit surface can be computed analytically and it is
a differentiable function. The loop subdivision surface 𝑉 is also,
by construction, smooth. Therefore, this surface definition acts as
an implicit regularizer and helps avoid triangle inversion during
the optimization phase. We render this mesh using a differentiable
renderer 𝑅 [Laine et al. 2020] from several camera positions𝐷 (𝜑, 𝜃).
We uniformly sample a camera azimuth angle 𝜑 from a range of 0◦
to 360◦ and for elevation 𝜃 we sample from a Beta distribution with
𝛼𝑑 = 1.0 and 𝛽𝑑 = 5.0 within a range of 0◦ to 100◦ this allows the
generation to focus on making the object consistent from a single
elevation angle giving it a "front view" but the distribution allows
other elevations so that textures get painted in for triangles in those
regions but the shape does not deform significantly. Using these
camera positions and orientation we render a set of images 𝐼 :

𝑰 = 𝑅(𝐷 (𝜑𝑖 , 𝜃𝑖), 𝑽 , 𝑻 , 𝑻̃)
Images 𝐼𝑖 are encoded using the CLIP image encoder 𝐶𝐼 :

𝑬 = 𝐶𝐼 (𝑰)
Where 𝐸 represents a set of encodings for each image in 𝐼 . The

input to our method is a text prompt 𝒑 that is encoded using the
CLIP text encoder 𝐶𝑇 :

𝒆𝑡 = 𝐶
𝑇 (𝒑)

As the rendered images as well as the text prompt are now encoded
in the same space we can compute the similarity:

𝐿𝐶𝐿𝐼𝑃 (𝑽 , 𝑻 , 𝑻̃ ,𝒑) = − 1
𝐾

∑︁
𝒆𝑖 ∈𝑬

𝒆𝑇𝑖 𝒆𝑡 (1)

Note that the encoder functions, 𝐶𝑇 and 𝐶𝐼 , include a normal-
ization at the end thus these are cosine similarities. As computing
the limit loop subdivision surface is differentiable [Stam 1998] and
the renderer is differentiable, our entire pipeline is differentiable
using the chain rule.

Laplacian Regularizer. We use a laplacian regularizer on the
shape of the mesh to maintain the geometry and keep it intact
as used in other related work [Hasselgren et al. 2021]. We use the
uniformly-weighted Laplacian operator: 𝛿𝑖 = 𝑣𝑖 − 1

|𝑁𝑖 |
∑

𝑗 ∈𝑁𝑖
𝑣 𝑗

where 𝑁𝑖 is the set of one-ring neighbours for vertex 𝑣𝑖 . With this
formulation the laplacian regularizer can be given by:

𝐿𝛿 =
1
𝑁

𝑁∑︁
𝑖=1

∥𝛿𝑖 ∥2 (2)

where 𝑁 is the number of vertices. This minimizes the difference
in position between each vertex and the average position of its
neighbouring vertices.

Diffusion Prior. To further improve results we also train and
incorporate a diffusion prior which attempts to generate image
embeddings following 𝑝 (𝑒𝑖 |𝑒𝑡). We use this to sample image em-
beddings given a text encoding. Our formulation follows that of
[Ramesh et al. 2022] and [Ho et al. 2020]. Once trained, the diffusion
sampling process takes input of noise and the CLIP text embed-
ding 𝒆𝑡 and after applying the forward process for N timesteps the
output is a CLIP image embedding which follows 𝑝 (𝑒𝑖 |𝑒𝑡).

We pretrain this prior on a 400million image and text pair dataset
[Schuhmann et al. 2021] so it can sample a relevant CLIP image
embedding when given a CLIP text embedding and during opti-
mization time we sample from it using the previously obtained
text embedding 𝒆𝑡 to get a relevant CLIP image embedding 𝒆𝒌 . As
the rendered images are encoded in the same space as the output
embedding we can also compute a similarity between them to use
as a loss.

𝐿𝑃𝑅𝐼𝑂𝑅 (𝑽 , 𝑻 , 𝑻̃ ,𝒑) = − 1
𝐾

∑︁
𝒆𝑖 ∈𝐸

𝒆𝑇𝑖 𝒆𝑘 (3)

Since it is conditioned on the text embeding we can use 𝐿𝑃𝑅𝐼𝑂𝑅

without 𝐿𝐶𝐿𝐼𝑃 . Practically, in our preliminary experiments we
found that combining these losses can be beneficial.

We thus formulate our final problem as an optimization problem
with the following objective function:

min
𝑽0,𝑻 ,𝑻̃

𝐿𝐶𝐿𝐼𝑃 (𝑆 (𝑽0), 𝑻 , 𝑻̃ ,𝒑) + 𝜆𝑡𝐿𝛿 (𝑽) + 𝛼𝐿𝑃𝑅𝐼𝑂𝑅 (𝑆 (𝑽0), 𝑻 , 𝑻̃ ,𝒑)

(4)

Practical Considerations and Implementation Details. Our initial
shape is a sphere with 600 vertices. The texture map is initialized
with random values and is set to a resolution of 512x512. The normal
map has the same resolution but is initialized as a uniform blue
image. Adam optimizer is used for the vertices and texture maps
with a decaying learning starting at 0.001 and a batch size of 25. The

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa

Figure 2: Overview of our optimization pipeline. The differentiable renderer creates views which are encoded and compared to
the text encoding as well as the generated image embedding. We optimize for the texture, normal, vertices position.

Figure 3: Results from a wide variety of prompts. Top: rendered result. Bottom: 3D mesh. a) "a coffee" b) "a photograph of a bust
of homer" c) "Globe" d) "a apple" e) "a brown table" f) "an armchair in the shape of an avocado"

diffusion prior follows the same configuration setup as [Ramesh
et al. 2022] except ours is scaled down.

The approach for the laplacian regularization follows that of
[Hasselgren et al. 2021], where the weight, 𝜆, is decayed through-
out the optimization process as the shape stabilizes its final form.
Initially it is set to a high value when the learning rate is high and
then slowly reduces to a minimum value. More specifically, for
an epoch 𝑡 it is defined as 𝜆𝑡 = (𝜆𝑡−1 − 𝜆𝑚𝑖𝑛) · 10−𝑘𝑡 + 𝜆𝑚𝑖𝑛 . The
initial weight and decay parameters are hyperparameters that can
be tuned.

The look-at and up vectors of the cameras are set towards the
origin and the y-axis respectively. Due to the known texture bias of
visual recognition models such as CLIP [Geirhos et al. 2019] naively

performing the optimization can lead to over emphasis on the tex-
ture versus shape. To deal with this we add in some randomization
to the view generation process by randomly selecting a camera field
of view between 30◦ to 60◦ and varying the distance of the camera
from the object to between 3.0 to 7.0. This variance in the field of
view and distance has a zoom in/out effect that encourages changes
in the vertex positions versus only changes in the texture. CLIP
takes 224x224 input images but we find that rendering at a larger
512x512 resolution and down scaling to 224x224 improves results,
it also plays well with the differentiable render we use [Laine et al.
2020] since it relies on anti aliasing for gradients and rendering at
a larger resolution means more pixels are affected by anti aliasing
which reduces gradient noise.

CLIP-Mesh: Generating textured meshes from text using pretrained image-text models SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure 4: Reconstruction of famous landmark around the world: a) "pyramid of giza " b) "Sydney opera house" c) "Eiffel Tower"
d) "lighthouse of alexandria" e) "Burj Al Arab" f) "Taj Mahal"

Figure 5: Multiple object optimization. Prompts: a) "boat and
red lighthouse" b) "office chair and a desk and a computer
monitor"

Random Augmentations. To further improve results we use aug-
mentations throughout the optimization process for Eq. 4. At each
iteration we render images with a random background similar to
[Jain et al. 2021] using either gaussian noise, a solid color or a ran-
dom color checkboard pattern. Additionally, we randomly offset the
object so that it is not always positioned in the center of the image.
These augmentations are used so that the CLIP optimization does
not rely on the background or position of the object to minimize
the loss but is instead forced to generate a shape that is coherent
under all conditions.

4 RESULTS AND EVALUATIONS
We evaluated our methods on a wide variety of prompts and a few
different generation scenarios. We first look at the single object gen-
eration scenario and compare our method with Jain et al. [Jain et al.
2021].We then follow upwith additional modeling scenarios unique
to our method. Finally we provide quantitative evaluations of our

results as well as ablation studies to illustrate the improvement
provided by each step of our method.

4.1 Single Object Generation
In Figure 1 we illustrate a number of household objects generated
using the proposed method. The flexibility of the assets created is
illustrated as we import and place them into a 3D scene. In Figure 3
we further illustrate a diverse set of objects and their corresponding
shape (removing the texture). Finally in Figure 4 we further show
the diversity of possible objects that can be generated using the
knowledge of the CLIP model by producing famous landmarks
which are visually recognizable. In all these figures we use the CLIP
ViT/B-32 model for training.

We also provided visual comparisons to [Jain et al. 2021]. Fig. 7
shows the results of our methods results with five prompts from
[Jain et al. 2021] with the results shared in their paper and project
website. We render the meshes from similar angles. Fig. 7 shows
a second comparison with [Jain et al. 2021] where we chose new
prompts and generated the results using the code available on-
line. Note that because their work uses a NeRF representation and
requires ray casting it comes with a large resource constraint. There-
fore we use the smallest CLIP ViT-B/16 model for the generations
and use the medium quality configuration provided in their code-
base.

In terms of speed our method is much faster than Dreamfields
[Jain et al. 2021] where each shape took over 24 hours to gener-
ate using 4 NVIDIA A100 GPUs. For similar configurations our
experiments revealed that our method is faster by a factor of 100 as
each of our shapes required 50 minutes on a single NVIDIA P100
(16GB) GPU. In short the reason for this is two-fold: 1) the number
of optimizing parameters in Dreamfields is much higher (all the
weights of a complex neural network as opposed to vertex positions,
texture and normal maps) 2) our rasterization based rendering is
much faster.

4.2 Complex Modeling Scenarios
Another powerful feature of our method (and unique among NERF
based approaches such as [Jain et al. 2021]) is the flexibility of our
optimization framework. The texture and shape are decoupled al-
lowing us to selectively optimize them if needed, and to generate

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa

Figure 6: Multiple object optimization where one of the objects has fixed shape. a) initial shapes. The following are results of
the following captions: b) "cactus and sand" c) "wooden boat and blue water" d) "brown wooden table and iranian carpet" e)
"fruit basket on grass"

Figure 7: Comparison with [Jain et al. 2021] results from their paper/project website. Top: results from [Jain et al. 2021].
Bottom: our results. Prompts: a) "matte painting of a bonsai tree; trending on art station" b) "matte painting of a castle made of
cheesecake surrounded by a moat made of ice cream; trending on artstation; unreal engine" c) "a cluster of pine trees are in a
barren area" d) "a cluster of pine trees are in a barren area" e) "a sculpture of a rooster"

multiple objects in context. This provides a number of unique pos-
sibilities for user control of the generation. Additionally since we
use meshes it is trivial to combine multiple meshes in to a single
mesh while also freezing some vertices and allowing others to be
optimized. All this allows us to perform simultaneous optimization
of multiple objects as well as separate the shape and texture opti-
mization. This can be be very useful when modeling a scene where
some objects have fixed shape while other objects are allowed to
vary.

Figure 5 shows an example of this multiple object optimization.
In Figure 5a) the text caption used was "boat and red lighthouse",
the initial setup was a plane with fixed water texture and 2 spheres
on either ends. Vertices and texture for the water were frozen but
spheres allowed to optimize. The final result created two distinct
shapes for each object in the caption that fits the scene. In Figure 5b)
a similar setup is followed where the carpet and table are static,

but the chair and computer monitor are automatically generated
from initial spheres. Note that while the starting position of one of
the sphere was on the table, we did not specify anywhere explicitly
that the monitor should be on the top of the table or that the chair
must face the monitor, all of this was inferred implicitly by the
model. Figure 6 shows another example of our methods diversity
and simultaneous optimization where the sphere allows for shape,
texture and normal map optimization while the plane allows only
for texture and normal map optimization. We show results for
various distinct captions and also note that the texture and normal
map of the plane optimize to support the object such as a picnic
mat texture appearing when the caption is a "fruit basket on grass"

4.3 Quantitative Evaluation
We quantitatively evaluate our method, comparing it directly with
the current closest work of [Jain et al. 2021]. We follow the same

CLIP-Mesh: Generating textured meshes from text using pretrained image-text models SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure 8: Comparison with [Jain et al. 2021]. Shapes generated using CLIP ViT/B-16 Top: results from [Jain et al. 2021]. Bottom:
our results. Prompts: a) "mount everest" b) "a vase with pink flowers" c) "a hamburger" d) "Eiffel tower" e) "a red chair"

Table 1: Quantative comparision of our work with dream-
fields on COCO caption object generation

Generation Model CLIP ViT-B/16 CLIP ViT-B/32
Evaluation Model ViT-B/16 ViT-B/32 ViT-B/16 ViT-B/32
Dreamfields 93.5 59.8 74.2 86.6
[Jain et al. 2021]
CLIP-Mesh [Ours] 96.7 67.8 75.8 91.4

experiment setup outlined in their paper: two shapes are generated
per caption for a set of 153 text captions, for a total of 306 generated
shapes. During evaluation they are rendered from a held-out pose
not seen during training, a CLIP-R precision score [Park et al. 2021]
is then computed between the held-out pose renderings and the
captions used to generate the shapes. The captions used are from
[Jain et al. 2021] and the held out pose is also the same as theirs
at a 45◦ elevation where as training is limited to a 30◦ elevations,
we experiment with different sized CLIP models for generating the
shapes and computing the precision.

Table 1 shows the quantitative results of the evaluation. Note
that in this evaluation we do not include the diffusion prior loss
as the dataset for training the prior contains only CLIP ViT-B/32
embeddings, so we are unable to train a prior that supports the gen-
eration model of CLIP ViT-B/16. Regardless, we find that our work
outperforms [Jain et al. 2021] across the generation and evaluation
models without it.

4.4 Ablation Studies
In Table 2 an ablation study is shown for the various components of
our pipeline. We start from a stripped down version of our method
(baseline) and sequentially add in the components of the method.
We follow the same evaluation methodology as in Table 1 but a
single shape is generated per caption here instead of two as we
found that it does not have a significant impact on the metric and
reduces the time required per evaluation. Our results show that

Table 2: Ablation study on the R-Precision quantitative met-
ric where higher score is better.We observe that starting from
a baseline approach, adding limit subdivision, augmentation,
large rendering, and the generative prior systematically im-
proves performance

Method (CLIP B/16) CLIP R-Precision ↑
B/16 B/32 L/14

Shape Baseline Method 75.8 41.8 50.9
+ Limit Subdivision 77.7 47.7 53.5

Augmentations + Background 81 47.7 58.8
+ Repositon Shape 90.1 60.5 73.2

Render + 5122 renders 92.1 62.7 70.5

Prior + Prior Loss 91.5 77.7 74.5

the limit subdivision provides an improvement across all retrieval
models. We then add the image augmentations which both provide
improvements, offsetting the mesh from the center of the image
provides the largest boost to the final results. Similarly, rendering
the images at a higher resolution and then linearly scaling to the
CLIP 224x224 resolution does improve results in all cases except
for the largest ViT-L/14 model where it hurts performance. We get
our best overall results when adding the prior loss.

5 CONCLUSIONS, LIMITATIONS AND FUTURE
WORK

We have demonstrated a method for generating diverse 3D objects
in different modeling scenarios using only an input text prompt.
The results consist of a mesh, texture map and normal map which
allow them to be directly loaded to be used as assets in games
and modelling applications. While the work we propose provides
interesting results there are some limitations of our method.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa

Genus. The genus of the generated object is set by the initial
template mesh. We address this issue partially by allowing a trans-
parency channel in the texture, but a more principled approach is
desirable.

CLIP Limitations. Using an image model to generate 3D shapes
comes with its own challenges, since the model is trained with
images it often projects artifacts to the mesh. Some examples of
this can be seen in 4 where the pyramid has small people on its side
and 8 where the mount Everest has the text "Everest" on its side
and tip, note that we find using the larger CLIP ViT/B-32 model
alleviates the text issue.

In future work we will aim to further improve shape based con-
straints and explore methods to provide more user control in the
generative process.

ACKNOWLEDGMENTS
We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) [RGPIN-2021-04104
and RGPIN-2021-03477]. This research was enabled in part by sup-
port provided by Calcul Quebec (calculquebec.ca) and the Digital
Research Alliance of Canada (alliancecan.ca).

REFERENCES
Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet:
An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).

Kevin Chen, Christopher B Choy, Manolis Savva, Angel X Chang, Thomas Funkhouser,
and Silvio Savarese. 2018. Text2Shape: Generating Shapes from Natural Language
by Learning Joint Embeddings. arXiv preprint arXiv:1803.08495 (2018).

Katherine Crowson, Stella Biderman, Daniel Kornis, Dashiell Stander, Eric Hallahan,
Louis Castricato, and Edward Raff. 2022. VQGAN-CLIP: Open Domain Image Gener-
ation and Editing with Natural Language Guidance. arXiv preprint arXiv:2204.08583
(2022).

Kentaro Fukamizu, Masaaki Kondo, and Ryuichi Sakamoto. 2019. Generation High
resolution 3D model from natural language by Generative Adversarial Network.
arXiv preprint arXiv:1901.07165 (2019).

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wich-
mann, and Wieland Brendel. 2019. ImageNet-trained CNNs are biased towards tex-
ture; increasing shape bias improves accuracy and robustness.. In International Con-
ference on Learning Representations. https://openreview.net/forum?id=Bygh9j09KX

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine.
2021. Appearance-Driven Automatic 3D Model Simplification. In Eurographics
Symposium on Rendering.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.

Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei
Liu. 2022. AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D
Avatars. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–19.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. 2021.
Zero-Shot Text-Guided Object Generation with Dream Fields. arXiv preprint
arXiv:2112.01455 (2021).

Nikolay Jetchev. 2021. ClipMatrix: Text-controlled Creation of 3D Textured Meshes.
arXiv preprint arXiv:2109.12922 (2021).

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.
ACM Transactions on Graphics 39, 6 (2020).

Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Ph. D. Disserta-
tion. https://www.microsoft.com/en-us/research/publication/smooth-subdivision-
surfaces-based-on-triangles/

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka.
2021. Text2Mesh: Text-Driven Neural Stylization for Meshes. arXiv preprint
arXiv:2112.03221 (2021).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In ECCV.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
McGrew, Ilya Sutskever, and Mark Chen. 2021. Glide: Towards photorealistic
image generation and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741 (2021).

Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell, and Anna Rohrbach. 2021.
Benchmark for Compositional Text-to-Image Synthesis. In NeurIPS Datasets and
Benchmarks.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. 2021.
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 2085–2094.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International Conference on Machine Learning. PMLR, 8748–8763.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022.
Hierarchical Text-Conditional Image Generation with CLIP Latents. ArXiv
abs/2204.06125 (2022).

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick La-
batut, and David Novotny. 2021. Common Objects in 3D: Large-Scale Learning and
Evaluation of Real-life 3D Category Reconstruction. In International Conference on
Computer Vision.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. 2021. ImageNet-
21K Pretraining for the Masses. arXiv:2104.10972 [cs.CV]

Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang, Chin-Yi Cheng, and Marco
Fumero. 2021. Clip-forge: Towards zero-shot text-to-shape generation. arXiv
preprint arXiv:2110.02624 (2021).

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clay-
ton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. 2021.
LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs. ArXiv
abs/2111.02114 (2021).

Jos Stam. 1998. Evaluation of loop subdivision surfaces. In SIGGRAPH’98 CDROM
Proceedings. Citeseer.

https://openreview.net/forum?id=Bygh9j09KX
https://www.microsoft.com/en-us/research/publication/smooth-subdivision-surfaces-based-on-triangles/
https://www.microsoft.com/en-us/research/publication/smooth-subdivision-surfaces-based-on-triangles/
https://arxiv.org/abs/2104.10972

	Abstract
	1 Introduction
	2 Related work
	3 Method
	4 Results and Evaluations
	4.1 Single Object Generation
	4.2 Complex Modeling Scenarios
	4.3 Quantitative Evaluation
	4.4 Ablation Studies

	5 Conclusions, Limitations and Future Work
	Acknowledgments
	References

