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Abstract

This paper applies the topology optimization (TO) technique to the design of custom compression casts/braces on two-manifold
mesh surfaces. Conventional braces or casts, usually made of plaster or fiberglass, have the drawbacks of being heavy and
unventilated to wear. To reduce the weight and improve the performance of a custom brace, TO methods are adopted to optimize
the geometry of the brace in the three-dimensional (3D) space, but they are computationally expensive. Based on our observation
that the brace has a much smaller thickness compared to other dimensions and the applied loads are normal forces, this paper
presents a novel TO method based on thin plate elements on the two-dimensional manifold (2-manifold) surfaces instead of 3D
solid elements. Our working pipeline starts from a 3D scan of a human body represented by a 2-manifold mesh surface, which
is the base design domain for the custom brace. Similar to the concept of isoparametric representation, the 3D design domain is
mapped onto a two-dimensional (2D) parametric domain. An Finite Element Analysis (FEA) with bending moments is performed
on the parameterized 2D design domain, and the Solid Isotropic Material with Penalization (SIMP) method is applied to optimize
the pattern in the parametric domain. After the optimized cast/brace is obtained on the 2-manifold mesh surface, a solid model is
generated by our design interface and then sent to a 3D printer for fabrication. Compared with the optimization method with solid

elements, our method is more efficient and controllable due to the high efficiency of solving FEA in the 2D domain.
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1. Introduction

A Compression cast/brace is a garment that is worn and
tightly fitted with the human body. It provides support for peo-
ple to heal from injury or to protect the body during heavy use.
The Compression cast/brace has many benefits such as improv-
ing circulation to a given area, protecting skin, moderating tem-
perature, speeding up recovery, improving performance, reduc-
ing soreness, and preventing the muscles from tightening up.
As it is such a great tool to get in better health, it has been
used in many applications. For example, the orthotic brace is
used for scoliosis treatment or in rehabilitation to provide com-
pression to the bones and ligaments as well as to immobilize
the joint in a neutral position, which “theoretically minimizes
stress at the repair site” [1]. An ankle brace is worn around
the ankle for immobilization while allowing it to heal from
sprains and other injuries [2]. A compression belt is a spinal
brace worn around the waist that compresses the abdomen, cen-
ters the body mass, and effectively decompresses the spine [3].
Similarly, a belly band is a compression garment which resem-
bles a tube top worn over the abdomen of pregnant women.
Although they have so many usages, traditional compression
braces are customized in a non-effective way and they do not
fit the individual human body completely. The main purposes
of orthopedic cast/brace consists of immobilizing injured body,
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and providing steady compression for treatment, which both re-
quire that the cast/brace tightly fits the patent’s body. How-
ever, the traditional casts/braces can’t fit to the patients accu-
rately, as they are made manually by the orthopedists based on
their experience. Another drawback of traditional casts/braces
is that the materials to make the casts/braces are usually more
than needed due to the lack of optimization. As a result, the
traditional casts/braces are heavy to wear [4], and not good
ventilation[5, 6], and thus bring uncomfortableness to patients
during the rehabilitation [4, 5, 7, 6].

With the growth of Additive Manufacturing (AM), it enables
the production of custom products without increasing in time,
material, or cost. Compression casts/braces can also be com-
pletely customized based on the shape of the patient’s body as
well as the corrective needs, such that they are more effective
and more comfortable to wear. However, the customization can
only be done empirically with the current Computer-Aided De-
sign (CAD) tools. The design process is complicated and time
consuming, not even mentioning the challenges in design opti-
mization. With one requirement is light-weight and the func-
tion is to provide compression, the goal of this paper is to ap-
ply Topology Optimization (TO) in the design of compression
casts/braces. TO is a mathematical method that minimizes the
weight of a structure and meanwhile maximizes the stiffness.
However, applying TO in a three-dimensional (3D) space is
computationally expensive, and thus the resolution of result is
normally very limited.
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We observe that compression is the forces that are normal
to the body surface, and most compression garments are tight-
fitting with a small thickness compared to other dimensions.
This condition fits very well to the thin plate theories from
continuum mechanics, so we borrow and take advantage of
its theories to reduce the full 3D solid mechanics problem to
a two-dimensional (2D) one with bending moments. Specifi-
cally, the 2D quadrilateral finite elements are used in this pa-
per to represent the human body surfaces, which constitute a
two-dimensional manifold (2-manifold) design domain with a
freeform shape. We reformulate the TO in this 2-manifold do-
main using the thin plate theory. This is a novel and efficient
framework to design compression cast/braces using TO. Our
technical contribution is summarized as follows:

1. A workflow for 3D scan to 3D printing is developed for
an interactive design of custom compression casts/braces
considering the light-weight, fitness, and ventilation.

2. An easy-to-use user interface based on curves is adopted to
define the design domain on a 2-manifold surface, which
guarantees the fitness of the final product. The interface is
also used to define the boundary conditions and loads, and
convert the optimized design into a printable solid.

3. The plate theory is applied to map the 3D cast/brace design
into a 2-manifold domain, in which a bending-based TO is
formulated such that the optimized light-weight structure
can be computed efficiently.

Several examples are shown in this paper to demonstrate the
proposed design framework for compression casts/braces.

The rest of this section briefs the related works. Section 2
gives the problem definition and the overview of the proposed
framework. Section 3 presents the interactive design tools on
2-manifold surface, and the details of converting the 3D shapes
to 2-manifold domains as well as the TO in 2-manifold domain
is discussed in Section 4. Results and examples are shown in
Section 5, and the paper is concluded in Section 6.

1.1. Related Works

This paper focuses on the customization and topology opti-
mization of compression braces, and the related works are clas-
sified into computational design for custom product, 3D printed
orthopedic brace, and structural analysis and optimization.

Computational Design for Custom Product

Recently, custom product design has become a research fo-
cus. Customized products outperform over their mass-produced
counterparts, as they provide more comfortableness, unique
aesthetic appearance, and/or better performance. However,
due to the lack of computational tools to support product cus-
tomization, it requires unnecessary cost and complexity. To
improve the efficiency and reduce the cost of customization,
computational tools are developed to support custom product
design. Wang et al. [8] proposed a volumetric parameteriza-
tion based method for design automation of custom wearable
products. Interactive systems are developed for designing cus-
tom wetsuits [9] and regular garments [10], while a curve edit-
ing tool [11] enables users to design custom products on 2-
manifold mesh surfaces for 3D printing. To ease the effort of

the user, the emerging human computer interaction technique —
augmented reality — is adopted to design custom glasses [12],
footwear [13], and wearable artifacts [14]. We employ the
curve-based tool in this paper to the complete the interaction
on 2-manifold surface and the specification of the domain.

Non-conventional Orthopedic Cast/Brace

Supported by 3D printing techniques, new 3D printed
brace/cast is developed to overcome the limitations of conven-
tional counterparts. These customized 3D printed casts/braces
have more fitness, better ventilation and lighter weight [4], and
thus bring more comfortableness to the patients who wear them.
Cortex [5] is designed as a web-like hollowed cast. A simi-
lar design, named Osteoid [7], is combined with low intensity
pulsed ultrasound (LIPUS) bone stimulator system. Kim and
Jeong [15] proposed a hybrid cast model consisting of an in-
ner structure produced by 3D printing and an outer cover pro-
duced by injection molding, while Lin et al. [4] customized a
cast with evenly distributed holes and validated their design us-
ing FEA. Besides waist cast, Mavroidis et al. [16] developed
a pipeline for 3D printing customized ankle-foot orthoses. Al-
though these methods explored the new possibility of custom
design brought by 3D printing techniques, they lack the au-
tomation in the design process and require heavy manual de-
sign operations by experienced CAD users. Moreover, the ob-
tained shapes in existing works cannot be guaranteed to be op-
timal. The main reasons for these existing method not being
optimal are: 1) The existing works require the designers to
design the custom cast/brace manually based on their experi-
ence, and none of them have the computational design tool as
we have, which allows an automatic design with guaranteed fit-
ness; 2) The lightweight structures are again generated based
on the designers’ experience for the exiting works, while our
method determines the material distribution based on the TO
results. Therefore, the computational method is in demand to
automate the design process of customizing casts and determine
the optimal structurally-sound shapes of the casts. Recently,
Zhang et al. [6] proposed a computational method for generat-
ing custom cast with awareness of thermal-comfortableness. A
thermal image is taken and used to guide the distribution and
size of centroidal Voronoi cells on the base design domain of
the cast. Their work significantly improved the thermal com-
fortableness of the customized cast. Different from their work,
this work is built upon topology optimization method with the
focus on reducing the weight and meanwhile maintaining good
structurality for compression braces.

Structural Analysis and Optimization

Topology optimization is a mathematical method to optimize
material distribution in a given design domain, for the goal
of minimizing the weight and maximizing the stiffness of the
structure. The common techniques include solid isotropic
material with penalization parameterization (SIMP) method
[17, 18], level-set method [19], and ground structure method
[20]. All these methods highly rely on Finite Element Analysis
(FEA). For models with detailed geometric features, FEA re-
quires high computational power and is very time consuming.
Research efforts have been made to reduce the computational



N '

Design for

Domain

=BaRog=
—
22

|

Topology
Optimization

Figure 1. This figure shows a typical workflow for designing a custom compression cast/brace with custom-fit, light-weight and good ventilation,
which consists of (a) a laser scanning to acquire the point cloud data of the human body, (b) a surface reconstruction to obtain a 2-manifold mesh
surface of the human body, (c) the design domain is interactively defined with the user interface; a base domain parameterization with boundary
conditions (indicated as red dots) and distribution loads (indicated as green dots) can also be specified; and the proposed topology optimization is
applied on the 2-manifold surface. (d) Three optimized designs: an arm cast, a leg cast and a scoliosis cast.

power consumption and improve the computational efficiency.
Some works focus on distributing uni-structures, and optimiz-
ing the size and shape of the uni-structures to optimize the struc-
turality of the model [21, 22, 23], while others simplify the for-
mulation of FEA or reformulate it for more efficient solving and
lower computation cost [24, 25, 26, 27]. Wu et al. [28] imple-
mented a highly efficient multi-grid FEA solver based upon the
Graphics Process Unit (GPU) for high-resolution topology op-
timization. In this paper, we focus on formulating an efficient
TO method on 2-manifold surface for optimizing custom com-
pression cast/brace design. The GPU solver can be integrated in
the future to increase the domain resolution and design details.

A recent work [29] proposed a TO framework for 2-manifold
surfaces. In their work, they theoretically proved the validity of
the idea of solving TO problem on 2-manifold surface. They
employed the conformal mapping to map a 2-manifold surface
onto a 2D rectangular parametric domain, extended the level-
set TO method from 3D Euclidean space to the 2-manifold,
and solved the level-set problem in the 2D domain. Actually,
our work is motivated by this work, that mathematically proved
that a 3D Euclidean TO problem on a 2-manifold surface can be
mapped to a 2D parametric domain. While they focused on the
development of level-set method, our work aims at the deriva-
tion of SIMP method in compression cast/brace design. In ad-
dition, ours is an easy-to-use design tool for combining TO and
interactive customization on 2-manifold surfaces, which is the
first time, to the best of the authors’ knowledge.

2. Overview

Currently, most existing Topology Optimization (TO) meth-
ods solve the 3D design problem based on 3D solid repre-
sentations in a 3D Euclidean space R* (e.g. volumetric mesh
or voxel). However, solving in 3D is computationally expen-
sive, and thus the optimized results have very limited details.
In our study, we have two observations: (1) The compression

cast/brace are usually made with smaller dimension in thickness
than other dimensions, which can be described as a thin plate;
(2) The brace generates compression that is normal to the body
surface, which can be described as normal loads in the opposite
direction. Different from 3D solid representation, 2-manifold
defined in the 2D topological space E? is another representation
of a 3D shape. Actually, the 2-manifold in most cases can be
considered as a synonym of a 3D surface [30]. Compared to the
computational methods based on 3D solid representation, the
ones based on 2-manifold are usually more efficient and require
less computational power, due to much less data is required to
represent the same shape [31]. With these observations, we hy-
pothesize that if the 3D TO problem for compression cast/brace
is solved with a 2-manifold shape representation, the optimiza-
tion will be more efficient and controllable.

To test our hypothesis, this paper develops a design workflow
for customizing compression casts/braces on a 2-manifold hu-
man mesh model, from 3D scanning to 3D printing (Fig.1). As
TO requires the given design domain, boundary conditions, and
applied loads; to apply TO on the 2-manifold domain, there are
two challenges: (1) how to interactively specify the design do-
main on the 2-manifold surface and the loading conditions? (2)
how to adapt the existing TO techniques to solve the optimiza-
tion problem on the 2-manifold surface instead of on 3D solid
elements? To address the challenges, briefly, we apply our pre-
vious interactive curve-based editing tools [11] to develop an
easy-to-use user interface that can support the specification of
design domain and loads in arbitrary shapes on the 2-manifold
surface; we also apply the thin plate theory of continuum me-
chanics and the geodesic curve from differential geometry to
modify the original TO formulation for the 2-manifold design
domain (the geodesic curve is a generalization of a straight line
to curved spaces).

The overview of our approach is demonstrated in Fig.1.
Firstly, the point cloud data of the body shape is acquired
through a 3D scanning (Fig.1(a)). Afterwards, the 3D mesh



model is reconstructed from the point cloud data (Fig.1(b)).
Noted that, although a full body scan is used in this paper, it
only needs a local scan on the regions of interest if the applica-
tion does not require a full body scan. Once the 2-manifold sur-
face is obtained, it comes to our major technical contributions as
shown in Fig.1(c). The designer can create the design domain
by interactively defining curves onto the human model using
our user interface. In addition, the boundary conditions and
loads can be specified. By applying our TO method onto the 2-
manifold surface of the design domain, a customized cast/brace
design can be generated with lighter weight, better ventilation,
and satisfying designer-specified compression loads. Finally,
a ready-to-fabricate solid model can be generated from the 2-
manifold domain with our fabrication tool (Fig.1(d)). The tech-
nical details of the user interface and the TO formulation are
given in the following two sections.

3. User Interface and Fabrication Tools

The prerequisite for applying TO on a 2-manifold surface is
the input design domain and boundary conditions defined on the
surface, which should be specified by the user. However, dif-
ferent from the Euclidean space R? with three orthogonal axes,
a 2-manifold E? is a topological space defined by the surface
of the human body, the interaction of which is not intuitive.
A design domain is normally a patch enclosed by its bound-
aries. Therefore, one way to define the design domain on 2-
manifold surface is to specify its boundaries on the surface. As
the boundaries can be viewed as a set of curves, we adopt the
curve-based interactive tools [11] in this paper to allow users
to design custom shapes on a freeform 2-manifold surface via
simple interactions. What is needed from the user is just some
mouse clicks to define the control points, and the system will
automatically complete the curves on the 2-manifold surface.
Interested readers can refer to the previous paper [11] for the
technical details. This section presents how this tool is applied
in the creation of base design domain. The conversion from the
zero-volume a 2-manifold design into a printable solid is also
presented.

3.1. Design domain on 2-manifold surface

In the Euclidean space, a point is defined by its 3D coor-
dinates (x,y,z), but an alternative representation is required to
define a point on a 2-manifold surface. The attribute node [32]
is applied here, which is associated with not only the 3D posi-
tion, but also the topology information of the reference model.
The attribute node can be classified into attribute edge node
Pedge and attribute face node pyqc.. Each attribute edge node
Pedge s defined at the a mesh edge e of the reference model
with a parameter u € [0, 1] associated, and the 3D position of
Pedge 1S computed by interpolating the two endpoints (pg, p2)
of e as Pegee = (1 — uw)p1 + upz. Similarly, the face node
Pace 18 associated with a mesh face with the barycentric co-
ordinates (u,v,w) for a quadrilateral face, where u,v,w > 0
and u + v+ w < 1. Its 3D position is computed by interpolat-
ing the four vertices (p1, P2, P3, P4) of the quadrilateral face as
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Figure 2. Four steps to specify design domain: (a) A curve is created
by picking control points on the reference model. (b) The shape of
curve can be edited by changing the positions of control points. (c)
The clipping and extending tools make sure each curve touches other
curves at its end point. (d) Te design domain can be extracted from the
reference model with the curves as the boundaries.

Pface = Up1 +vp2 +wps + (1 —u — v —w)py. Therefore, a curve
defined by attribute edge and face nodes is not only a 3D curve,
but also a 2-manifold curve. With this representation, the spec-
ification of design domain on 2-manifold surface can be done
in four steps as shown in Fig.2.

Via simply interactions, a smooth curve tightly fitting to
the 2-manifold surface is created by picking control points
and conducting the four points interpolation scheme (shown in
Fig.2(a)). The created curves can be edited by moving the po-
sition of control points on the 2-manifold surface via simply
drag-and-drop on a local frame interface (Fig.2(b)). Our de-
sign system also provides editing tools such as clipping and
extending, to make sure curves touch to each other properly
(shown in Fig.2(c)). Once the boundaries are well-defined, the
design domain can be extracted from the 2-manifold surface
(Fig.2(d)). Here, we apply Constrained Delaunay Triangula-
tion (CDT) [33] to triangulate the facets by the points on the
curves.

All these operations are simple, easy-to-use, and can be done
with an interactive speed [11]. The resultant design domain is
well-defined on the 2-manifold surface, so that the fitness of
final product is guaranteed.

3.2. From 2-manifold to 3D solid

With the design domain and boundary conditions well-
defined on the 2-manifold surface, the design and optimiza-
tion process can then be conducted, which will be presented
in Section 4. However, the result will be defined on this 2-
manifold surface, which has zero-volume and is not printable.
To introduce a thickness for the result, we applied a thicken-
ing operation to convert it into a volumetric model. Briefly, the
thickening operation offsets the surface design along the normal
direction with a user specified thickness in a Signed Distance
Field (SDF) [11]. Note that, during the thickening operation,
the original surface design is kept as the interface between the
volumetric model and the reference human body, and thus the



tight-fitness of the volumetric model to the reference human
model is not affected.

Moreover, depending on the mesh resolution of quadrilateral
elements, the optimized result may have zigzag regions. Sharp
corners and features of compression casts/braces may not be
preferred in both structural and aesthetic viewpoints. There-
fore, an optional smoothing operation is also supported in our
fabrication tool, which should be performed before the thicken-
ing operation. The Laplacian operator can be applied to smooth
the shapes by moving each vertex to the average position of its
neighboring vertices. To make sure the tight-fitness of the final
result, the surface-preserved Laplacian smooth is used, i.e., the
vertex is moved only if the new position still lies on the original
surface.

4. Topology Optimization on Two-Manifold Surface

One of the most commonly used TO technique is the Solid
Isotropic Material with Penalization (SIMP) method [18]. Our
framework is also built upon SIMP, but it is adapted onto the 2-
manifold surface using thin plate theory and geodesic filtering.
Before that, the formulation of SIMP is detailed.

4.1. Solid Isotropic Material with Penalization

The SIMP method generates an optimal material distribution
in the design domain with respect to the FEA results and to-
tal volume constraints. The mathematical formulation of SIMP
method can be represented as follows:

argmin, c(x) = Zi\lzl E.(x.)ulkou,
st. V) IVo=f

KU=F M
0<x<1,
and
E.(x.) = Epin + xS(EO - Emin)v (2)

where c(x) is the total compliance of all elements in the design
domain, N is the total number of elements, u, is the element dis-
placement vector, Ky is the is the element stiffness matrix for an
element with unit Young’s modulus, x, is the variable to deter-
mine the element e’s density, Ej is the Young’s modulus of the
material, E,,;, is a very small value to prevent stiffness matrix
becoming singular, p is a penalty factor, K is the global stiffness
matrix, U = {u,} is the global displacement vector, V(x) and V}
are the optimal volume of material and design domain volume,
respectively, and f is the volume fraction set by the user. In
order to immobilize the injured body or generate steady com-
pression, the deformation of the cast/brace is undesirable, and
therefore, the compliance energy needs to be minimized during
the TO computation.

In this formulation, the displacements u, and the Young’s
modulus of elements E, are dependent on each other, so the
minimization is non-linear. This optimization iteratively com-
putes the displacements through KU = F using FEA and then
updates the Young’s modulus distribution. The solution will
converge if the compliance c(x) decreases in each step of the

iteration. The existing TO methods for 3D solid design domain
usually adopt 3D elements for FEA [34], which is computa-
tionally expensive. For the design problem of a compression
cast/brace, it is possible to map the 2-manifold surface of the
brace into a 2D domain, and simplify the general 3D solid FEA
problem into a 2D FEA problem. In the next section, the Kirch-
hoft thin plate theory is applied for FEA using 2D quadrilateral
element with normal loads.

.

Figure 3. In orthopedic practice, normal load is applied to a arm cast
for immobilization (image courtesy of [35]), and a scoliosis brace for
the treatment of spine deformation (image courtesy of [36]).

(b)

Figure 4. The arm brace design has a front and back pieces, and they
are assembled via snap-fits.

4.2. Thin Plate Theory for Two-Manifold Surface

Our target is to design and optimize the compression
cast/brace. For the compression cast/brace, we have the follow-
ing observation: 1) The thickness of the compression cast/brace
is far smaller than its other dimensions; 2) As the compres-
sion cast/brace is additive-manufactured using PLA materials,
which is hardly compressed when wearing the cast/brace, the
thickness of the cast/brace is considered to be unchanged; 3)
According to the orthopedics practice [35, 36], the compres-
sion cast/brace is designed and fabricated to tightly fit to the
human body, which generates the steady compression for im-
mobilization of the injured human body or for the treatment of
certain orthopedic problems. Therefore the load applied onto
the cast/brace in the optimization is normal to the surface of the
cast/brace. An efficient way to solve such a FEA problem is
the kirchhoff’s thin plate theory, which has the following three
assumptions:



e The line normal to the neutral axis before bending remains
straight after bending. The transverse shearing strains are
assumed to be zero, i.e., shear strains v, and y,, are zero.

o The thickness changes can be neglected, and in normal di-
rection, there is no extension. This means normal strain,
€ =0.

e The normal stress o, has no effect on in-plane strains €,
and ¢, in the stress-strain equations, and is considered neg-
ligible.

The properties of the compression cast/brace satisfy the three
assumptions of Kirchhoff’s thin plate theory. Moreover, with
only normal load applied onto the the compression cast/brace,
only in-plane stress and strain exist, which is the same case as
that of the 2D plate element. Therefore, we solve the 3D FEA
problem using 2D thin plate element.

The boundary conditions of this thin plate based FEA prob-
lem also come from the practical requirements of cast/brace.

e Load As our work focuses on designing and optimizing
compression cast/brace, the load applied to base design
domain in the optimization is assumed to be normal to the
surface of the design domain but in the opposite direction
of the compression.

e Fixing points In order to join the two pieces of the
cast/brace together, a snap-fit design (see Fig.4)) is
adopted. Therefore, the fixing points on the the base de-
sign is determined based on the position of the snap-fit.

o Setting up of the BCs The normal distribution load is au-
tomatically generated by computing a Centroidal Voronoi
Diagram (CVD) [37] on the design domain, and then the
loads are set onto the site point of each Voronoi region
(see green dots in Fig.10). We do allow the user to add
extra load after the distribution load applied, by sketch-
ing a curve onto the design domain (see the blue dots in
Fig.10(b)). This tools improves the flexibility of our sys-
tem, and enables users’ intent of customizing the reinforce
regions of the cast/brace design.

The way to specify the loads is important to make loads match
the real situation. In the specific examples in our paper, it is
assume that the compression forces generated by the cast/brace
are evenly distributed. To ensure the evenness, we applied CVD
to generate the distributed loads. However, it is not guaranteed
that the generated loads best respect the real situation in the
current work, as we mainly aim to prove the concept of the
presented framework. The study of how the load should be
specified would be an interesting future direction to follow up.
We plan to set up a physical testing platform to measure the
compression forces and their distribution when a person wears
a cast/brace.

4.3. Formulation Details of FEA

In this work, we adopt a 4-node quadrilateral element for the
discretization of thin plate structures. This element has 4-node
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Figure 5. The thin plate element is shown on left-hand side with
much smaller dimension of thickness compared to its other dimen-
sions. Based on the Kirchhoff thin plate theory, each element node
of an element with only bending has 3-DoFs (w, ,, 6,), where w is w
is the transverse displacement, and 6, and 6, are the rotations along
Y-axes and X-axes respectively.

and 12 degrees of freedom (shown in Fig. 5). The displacement
components of the plate based on Kirchhoff thin plate theory
can be expressed with a transverse shear strain [38, 39]

u= —z(;—v:, v= —z(;—vyv, w = w(x, ), 3
where u and v are the displacement in the x and y axes respec-
tively, w is the transverse displacement, z is the distance from
the middle surface (-h/2 < z < h/2), and h is the thickness
of the plate. With the displacement defined in Eq.3, the stain
matrix can be derived as:
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Based on the Kirchhoff thin plate theory, the two transverse
strain y,; and y,, can be neglected. The curvature vector « is
related to strain as € = z«x. Furthermore, the curvature vector
k is represented as « = Bu, where B is the strain-displacement
matrix and u is the vector of nodal displacement. Therefore, the
stiffness matrix k¢ of each 4-node quadrilateral element can be
expressed as follows based on the bending strain energy of the
plate:

k¢ = f B DBdA )
A
h3

D= —C 6
2 (6)

1 v O
C= E v 0 1 (7)

1-12 1-v

0 0 L

where A, E and v are the area of the element, the Young’s mod-
ulus, and the Poisson’s ratio, respectively. The details for the
derivation of the stiffness matrix of the 4-node quadrilateral el-
ement are described in Logan’s book [40].

To do FEA on the 3D cast/brace model using Kirchhoff thin
plate theory, the isoparametric representation [40] is applied
to map the 3D element into the 2D parametric domain. For
a quadrilateral element of the 3D brace model (highlighted in
Fig.6(a)), isoparametric representation maps it from the global
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Figure 6. (a) The highlighted element on a 2-manifold surface is trans-
ferred to (b) a local coordinate system, and then mapped to (c) the
natural coordinate system with two axes ¢ and 7 in the range of [0,1].

3D coordinate system to the so-called natural coordinate sys-
tem (Fig.6(c)), which is 2D coordinate system with two axes &
andn (-1 < ¢ < 1and -1 <7 < 1). In the mapping of the el-
ement from global 3D coordinate system to natural coordinate
system, there is an intermediate step that firstly maps the 3D el-
ement to a local coordinate system defined in the normal plane
of the element (Fig.6(b)), and afterwards the mapping between
the local coordinate system and the natural coordinate system is
established. There exists a point-to-point mapping between the
two coordinates, i.e., any point in the natural coordinate system
has a corresponding point in 3D global coordinate system on
the element, and vice versa. By mapping the 3D quadrilateral
elements into 2D natural coordinate system, the Kirchhoff thin
plate theory can be applied to solve the FEA on the cast/brace
design. This mapping is valid based on the fact that both the
element’s geometric shape and the displacement use the same
shape function (or interpolation function). With the isoparamet-
ric representation, the stiffness matrix computed in Eq.5 can be
reformulated into

1 1
K¢ = f f (BIDB,, - det(J) - h)dé&dn, (8)
-1J-1

where J is the Jacobian matrix between the local coordinate sys-
tem and the natural coordinate system, det(J) is the determinant
of J, and B, shown in Eq.9 is the strain-displacement matrix in
terms of £ and 7 [40].
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Each partial derivative of Nj ,j € [1,4] wrt. x and y can be
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The four shape functions used in Eg.9 are given as follows:

1 1
Ni(¢.n) = 7 -od-m. N3 m) = (ol =m,

Figure 7. The geodesic filtering computes the weight factor H,; for
element i neighboring to element e. Element i is defined as a neighbor
of element e if the geodesic distance of between i’s centroid and e’s
centroids is within the user design radius 7,,,.

1 1
N3(&.m) = 7L +OA +m), Ni(&.m) = 7 -Hd +n).

We integrated the thin-plate FEA solver into the SIMP opti-
mization framework, and therefore K in Eq.1 is obtained by as-
sembling the element stiffness matrices computed in Eq.8, and
F is the vector of the loads normal to design domain.

4.4. SIMP with Geodesic Filtering

The optimization problem in Eq.1 is solved by a heuristic
updating scheme of density variable x, [18]. This updating
scheme relies on the computation of sensitives of cost function
c(x) with respect to density variable x,, which can be repre-

sented as
dc

0x,

To ensure the existence of solutions to the TO problem and to
avoid the formation of checkerboard, filters are applied to mod-
ify either the sensitive 5’—)2 or the density x,. The filtered sensi-
tivity and density are defined as follows [18]:

= —pxl"(Ey = Epin)u! kou,. (10)

5\6 1 aC
0x, max(y, x,) ZieNBRg H,; ieNZB]Re 0x;
and 1
% H.ix;, (12)

Diensr, Hei NBR.

where NBR, is the set of neighboring elements to element e, y
is a small positive number to avoid the division by 0, and H,; is
the weight factor defined as:

H,; = max(0, ryin — Ale, 0)). (13)

Fmin 18 the user-specified radius to determine element e’s neigh-
bors, and A(e, i) measures the center-to-center distance between
element e and each of its neighboring element i. The original
SIMP method is developed based on a rectangular design do-
main, and the design domain is discretized to uniform square
quadrilateral element, so the search of neighboring element and
computation of the H,; are trivial. However, the weight factor
I-’I:i on 2-manifold surface can not be determined by the center-
to-center Euclidean distance. To apply SIMP correctly on the
2-manifold mesh surface, this computation of filtering needs to
be reformed.



Figure 8. (a) The material density map on the two-manifold brace surface, where the red color means density variable x, to be 1, and blue means
x, to be 0. (b) Then, the optimized surface design is extracted, (c) smoothed and converted to a volumetric design. (d) The optimized design is
prototyped using an Ultimaker2 Fused Deposition Modeling (FDM) printer, and the customized brace is worn by the user with a good fit.

In this paper, we apply the geodesic distance A/(eg\i) between
the center of element e and element i (Fig.7) — named geodesic
filtering. To determine @, we compute a Discrete Exponen-
tial Map (DEM) [41] centered at the element e. Based on a Di-
jkstra’s algorithm [42], DEM efficiently computes the geodesic
distance between the center element e and its neighboring ele-
ments until the distance exceeds r,,;,. The original H,; defined
in Eq.13 is then replaced by

H,i = max(0, ryin — Ae, 1)), (14)

such that the filtering of sensitivity and density of SIMP method
on 2-manifold mesh surface can be realized.

5. Results

We implemented the proposed method using Visual C++ and
OpenGL. The linear equation systems in FEA are solved by
SuperLLU package [43]. All the testing is conducted on a lap-
top with Inter (R) Core (TM) 17-6600U 2.6-2.8GHz CPU and
a 16G RAM, running a 64-bit Windows 10 Enterprise operat-
ing system. In all tested examples, we set up the thickness to
be 2mm. To test the proposed geodesic filtering algorithm for
SIMP on 2-manifold surface, we set the radius r,,;, of neighbor-
ing search on the 2-manifold surface to be 1.2 times the average
edge length of the all the elements. For all the physical exam-
ples, they are fabricated by an Ultimaker2 FDM printer using
Polylactic acid (PLA) as building materials with the Young’s
modulus of 3500M Pa and the Poisson ratio of 0.36 [44].

5.1. Customization and tight-fitting

For a compression cast/brace to be effective, it is important
being customized to fit the human body. Thanks to the direct
design interface on the 2-manifold surface, the resultant product
is guaranteed to exactly fit to the human body. The example we
tested here is a custom arm cast design. An orthotic arm brace
provides compression to the bones and ligaments, and immobi-
lize the joints in a neutral position. The base design domain is

obtained using our design tools, and it follows the shape of the
human body. Then, the proposed TO method is applied onto
the base design domain. To achieve a cast/brace design with
light-weight and good ventilation, we set the volume fraction to
be 30%, which means only 30% of the material is kept for the
optimized design. Following the setting used in Osteoid cast
[71, we set up 10N distributed load onto the base design do-
main, and set up the fixed boundary conditions on the boundary
to reflect the snap-fit design (see Fig.1(c)). The SIMP result is
shown in Fig.8(a) as a density map (red means the density is
1 and blue means 0), which verifies the correctness of the pro-
posed algorithm. As the density value of each element is not
a 0-1 binary value, we set a cutoff value 0.01 to remove those
elements with a density value less than 0.01. For the converge
of the optimization, we adopt the same criteria as [18], and that
is: If the change of x, between two steps is smaller than 0.01,
the optimization is considered to be converged, where X, is the
mean of all element density. This criteria works well for all the
examples shown in the paper, and the optimization usually con-
verges within 500 steps except the scoliosis brace (converged at
step 764). The customized brace is prototyped using 3D printer
and worn on the user’s hand as shown in Fig.8(d), which is
a perfect fit and validate our framework can customize tight-
fitting casts/braces.

5.2. Controllability

We tested the controllability of the proposed method on a
leg brace design and a scoliosis design. Although, in general,
the applied load is uniformly distributed onto the base design
domain, it is possible to have extra load applied onto certain re-
gions for more reinforced structures. For example, we specified
some extra loads along a line onto the leg brace to protect the
tibia of the leg. As shown in Fig.9(b), besides the distributed
load (indicated by green dots), a curve is specified to define ex-
tra load (indicated in blue). In our test, we set the distributed
load to be 10N, and the extra load to be 30N. Compared to
the result generated with only distributed load (Fig.9(a)), our
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Figure 9. (a) The 10N loads are distributed as sampled points on the
surfaces of leg cast (indicated by green dots), and the fixed boundary
conditions are set on the boundaries of the surfaces (indicated by red
dots). (b) A blue curve with 30N extra loads is specified by user, and
the optimized result well reflects the effect of the extra load.
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Figure 10. (a) For the design of a scoliosis cast, the volume fraction is
set to be (b) 0.5 and (c) 0.3 respectively.

method effectively grows more materials in the region with ex-
tra load to reinforce the whole structure, which again affirms
the validity and effectiveness of our method for compression
cast/brace designs.

We also tested the control of ventilation and material con-
sumption on a scoliosis brace design, through the volume frac-
tion f. The scoliosis brace is used to straighten the spine
or trunk deformation on a patient during the phases of rapid
growth [45]. The conventional scoliosis brace covers a large
area of the patient’s upper body, which is heavy and unventi-
lated to wear. Therefore, it is desired to minimize the material
consumption of the scoliosis brace to reduce the weight and im-
prove the ventilation. For the scoliosis brace example shown in
Fig.10, we set f to be 0.5 (Fig.10 (b)) and 0.3 (Fig.10 (c)).

Both test results verify that our method can effectively adjust
the material distribution and ventilation through our easy-to-
use user interface. It supports our hypothesis that it is easier
to interact and control the optimized shape in the 2-manifold
domain.

For the leg cast model with extra load (Fig.9(b)), it takes
longer time to converge (2.17 mins) than the one without ex-
tra load (1.33 mins). For the scoliosis cast model with 19272
quad elements, it takes 30 mins with the volume fraction of 0.5

and 42 mins with the volume fraction of 0.3.

Table 1. Time statistic of tested models

Model # Element Time (mins)
Arm Cast (Front) 4804 1.15
Arm Cast (Back) 4910 1.23
Leg Cast (Front) 4949 1.33]2.17%
Leg Cast (Back) 4446 1.06
Scoliosis Cast 19272 30 | 42°

2 Time for the one with extra line load.
b Time for the one with 0.3 volume fraction.

5.3. Validation&Comparison

To benchmark our method’s performance, we conducted a
3D element based TO onto the arm cast model using the Das-
sault TOSCA system [46]. It takes 2.5 hours to complete the
whole computation on the two pieces with 5432 and 5571 hex-
ahedron elements (Fig.11(b)). In Table 1, the time statistic of
all the tested models using our method is listed. For the arm and
leg cast examples with around 5000 quad elements, it only takes
1 to 2 minutes to process each piece. As TOSCA takes hexa-
hedron elements as input and our method takes quadrilateral
elements, the computation comparison may not be an apple-
to-apple comparison. We managed to control the number the
hexahedron elements to be similar to the number of 2D quadri-
lateral elements, so that this comparison can reflect the benefit
of adopting 2D elements over 3D elements. Compared to the
3D element based TO method, our method has a speedup of
around 60 times in computational time. It supports our hypoth-
esis that optimization on 2-manifold surface is more efficient
than the one in 3D domain. In order to validate our method, we

l 1.0 MPa

I 0.0

i

Ve’

(\'{f

£4
Normal load
Fixing points Fixing points
(a) (b)
Maximum Stress: 2.3MPa Maximum Stress: 4.1MPa

Figure 11. With a normal load and both of the two sides fixed, the FEA
[28] is applied onto the result generated by our method (a) and the one
by TOSCA (b). A maximum von mises stress 2.3MPa is obtained on
(a), while 4.1MPa on (b).

conducted the FEA analysis on both the results generated by
our method and the one generated by Dassault TOSCA system.
Following [6], we use the 3-point bending test , which requires
a normal load applied, and two sides of the model fixed (see
Fig.11). To get the high resolution results, we employ the voxel
based FEA system [28], with a 256Xx256 resolution and Imm



voxel size for the voxelization. As shown in Fig.11, a 30N nor-
mal load is applied onto the cast, and both of the two sides of
the models are fixed. The color code indicates the von mises
stress at each vertex of the voxel, while blue means OMPa and
red means 1.0MPa. Both the color map and maximum stress
values suggest our method is superior to the one of TOSCA
(2.3MPa vs. 4.1MPa).

6. Conclusion

We proposed a TO method for design and optimization
of customized compression casts/braces represented by 2-
manifold mesh surfaces. Different from the existing 3D solid
element based TO approaches, we observe the thickness of the
cast/brace product is much smaller than its other dimensions,
and the loads for a compression cast/brace is applied normal to
the points on the surface. Based on these two observations, we
formulate a 2D thin plate bending FEA to describe the behav-
ior of the compression casts/braces. Compared to the general
3D solid element based FEA, our bending FEA is more com-
putationally efficient. We also adapted the SIMP method, orig-
inally based on the regular and planar design domain, to solve
the TO problem on 2-manifold surface by proposing a geodesic
filtering for the sensitivity and density of SIMP. We tested our
method with an arm cast, a leg cast, and a scoliosis brace. The
results show our method can successfully and efficiently cus-
tomize tight-fitting design, reduce the material consumption,
and improve ventilation.

In the future, we plan to test our system with more design
applications including both compression braces and casts, and
adopting GPU based solver [28] to work on designs with even
higher resolution. Currently, we don’t consider about the win-
dow edema caused by wearing a cast/brace for long time. In
deed, both the traditional cast/brace and the 3D printed ones
usually cause window edema due to the generated compression.
A possible way to solve this problem is to add an interior layer
made of elastic fabric into the cast/brace. Another future di-
rection could be to incorporate the thermal transmission in the
optimization for the better ventilation of the cast/brace. Our
method is not applicable to the cast/brace for immobilize or
treating joints or other body parts with large relative motion.
Therefore, other deformations such as out of plane bending, the
membrane, and shear deformations are not considered, but will
be in the future. A possible direction to solve these problems
is to develop similar objective functions as [29] did for other
boundary conditions. A physical platform is also planned to
develop for studying the specification of load and verifying the
fabricated results.

Acknowledgement

We acknowledge the support of the Natural Sciences & Engi-
neering Research Council of Canada (NSERC) grant # RGPIN-
2017-06707. We would also thank Jun Wu from TU Delft for
sharing the executable voxel based FEA program.

10

References

(1]
[2]
[3]

[4]

(5]
(6]

(71

(8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

D. J. Slutsky, Techniques in Wrist and Hand Arthroscopy, Elsevier Health
Sciences, 2016.

M. Radomski, C. Latham, Occupational Therapy for Physical Dysfunc-
tion, Lippincott Williams & Wilkins, 2008.

K.-Y. Chang, S.-C. Chon, The effect of abdominal-compression belt on
balance ability with one leg standing, Journal of the Ergonomics Society
of Korea 31 (2012) 337-343. doi:10.5143/JESK.2012.31.2.337.

H. Lin, L. Shi, D. Wang, A rapid and intelligent designing technique for
patient-specific and 3d-printed orthopedic cast, 3D Printing in Medicine
2 (1) (2015) 4.

Cortex: Exoskeletal cast, http://www.evilldesign.com/cortex.

X. Zhang, G. Fang, C. Dai, J. Verlinden, J. Wu, E. Whiting, C. C. L.
Wang, Thermal-comfort design of personalized casts, in: Proceedings of
the 30th Annual ACM Symposium on User Interface Software and Tech-
nology, UIST ’17, 2017, pp. 243-254. doi:10.1145/3126594.3126600.
Osteoid medical cast, https://competition.adesignaward.com/
design.php?ID=34151.

C. C. L. Wang, K.-C. Hui, K.-M. Tong, Volume parameterization for de-
sign automation of customized free-form products, IEEE transactions on
automation science and engineering 4 (1) (2007) 11-21.

C. C. L. Wang, From designing products to fabricating them from planar
materials, IEEE computer graphics and applications 30 (6) (2010) 74-85.
S. Lu, P. Mok, X. Jin, A new design concept: 3d to 2d textile pattern
design for garments, Computer-Aided Design 89 (2017) 35-49.

Y. Zhang, T. H. Kwok, An interactive product customization framework
for freeform shapes, Rapid Prototyping Journal 23 (6) (2017) 1136-1145.
S.-H. Huang, Y.-I. Yang, C.-H. Chu, Human-centric design personaliza-
tion of 3d glasses frame in markerless augmented reality, Advanced En-
gineering Informatics 26 (1) (2012) 35-45.

Y.-I. Yang, C.-K. Yang, C.-H. Chu, A virtual try-on system in augmented
reality using rgb-d cameras for footwear personalization, Journal of Man-
ufacturing Systems 33 (4) (2014) 690-698.

M. Gannon, T. Grossman, G. Fitzmaurice, Exoskin: On-body fabrication,
in: Proceedings of the 2016 CHI Conference on Human Factors in Com-
puting Systems, ACM, 2016, pp. 5996-6007.

H. Kim, S. Jeong, Case study: Hybrid model for the customized wrist
orthosis using 3d printing, Journal of mechanical science and technology
29 (12) (2015) 5151-5156.

C. Mavroidis, R. G. Ranky, M. L. Sivak, B. L. Patritti, J. DiPisa, A. Cad-
dle, K. Gilhooly, L. Govoni, S. Sivak, M. Lancia, et al., Patient specific
ankle-foot orthoses using rapid prototyping, Journal of neuroengineering
and rehabilitation 8 (1) (2011) 1.

O. Sigmund, A 99 line topology optimization code written in matlab,
Structural and multidisciplinary optimization 21 (2) (2001) 120-127.

E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, O. Sigmund,
Efficient topology optimization in matlab using 88 lines of code, Struc-
tural and Multidisciplinary Optimization 43 (1) (2011) 1-16.

M. Y. Wang, X. Wang, D. Guo, A level set method for structural topology
optimization, Computer methods in applied mechanics and engineering
192 (1-2) (2003) 227-246.

W. Dorn, E. Gomory, H. Greenberg, Automatic design of optimal struc-
tures, Journal de Mecanique 3 (1964) 25-52.

J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, D. Zorin, Elastic
textures for additive fabrication, ACM Transactions on Graphics (TOG)
34 (4) (2015) 135.

C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, M. Gross,
Microstructures to control elasticity in 3d printing, ACM Transactions on
Graphics (TOG) 34 (4) (2015) 136.

J. Martinez, J. Dumas, S. Lefebvre, Procedural voronoi foams for additive
manufacturing, ACM Transactions on Graphics (TOG) 35 (4) (2016) 44.
Q. Zhou, J. Panetta, D. Zorin, Worst-case structural analysis., ACM Trans.
Graph. 32 (4) (2013) 137-1.

D. Chen, D. I. Levin, S. Sueda, W. Matusik, Data-driven finite elements
for geometry and material design, ACM Transactions on Graphics (TOG)
34 (4) (2015) 74.

P. Musialski, C. Hafner, F. Rist, M. Birsak, M. Wimmer, L. Kobbelt, Non-
linear shape optimization using local subspace projections, ACM Trans-
actions on Graphics (TOG) 35 (4) (2016) 87.

T. Langlois, A. Shamir, D. Dror, W. Matusik, D. I. Levin, Stochastic struc-



[28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

(36]
(37]
(38]
[39]
[40]

[41]

(42]

[43]

(44]

[45]

[46]

tural analysis for context-aware design and fabrication, ACM Transac-
tions on Graphics (TOG) 35 (6) (2016) 226.

J. Wu, C. Dick, R. Westermann, A system for high-resolution topology
optimization, IEEE transactions on visualization and computer graphics
22 (3) (2016) 1195-1208.

Q. Ye, Y. Guo, S. Chen, N. Lei, X. D. Gu, Topology optimization of con-
formal structures on manifolds using extended level set methods (x-1sm)
and conformal geometry theory, Computer Methods in Applied Mechan-
ics and Engineering 344 (2019) 164-185.

M. P. Do Carmo, Differential Geometry of Curves and Surfaces: Revised
and Updated Second Edition, Courier Dover Publications, 2016.

M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, B. Lévy, Polygon mesh pro-
cessing, CRC press, 2010.

C. C. L. Wang, Cybertape: an interactive measurement tool on polyhedral
surface, Computers & Graphics 28 (5) (2004) 731-745.

J. Mitani, A simple-to-implement method for cutting a mesh model by a
hand-drawn stroke, in: Proceedings of the 2nd EUROGRAPHICS Work-
shop on Sketch-Based Interfaces and Modeling, 2005, pp. 35-41.

K. Liu, A. Tovar, An efficient 3d topology optimization code written
in matlab, Structural and Multidisciplinary Optimization 50 (6) (2014)
1175-1196.

M. A. Keller, P. M. Montavon, Conservative fracture treatment using
casts: indications, principles of closed fracture reduction and stabiliza-
tion, and cast materials, COMPENDIUM.

M. Rigo, M. Jelaci¢, Brace technology thematic series: the 3d rigo
chéneau-type brace, Scoliosis and spinal disorders 12 (1) (2017) 10.

Q. Du, V. Faber, M. Gunzburger, Centroidal voronoi tessellations: Appli-
cations and algorithms, SIAM review 41 (4) (1999) 637-676.

E. Reissner, On the theory of transverse bending of elastic plates, Inter-
national Journal of Solids and Structures 12 (8) (1976) 545-554.

R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions
of isotropic, elastic plates, J. appl. Mech. 18 (1951) 31.

D. L. Logan, A first course in the finite element method, Cengage Learn-
ing, 2011.

R. Schmidt, C. Grimm, B. Wyvill, Interactive decal compositing with
discrete exponential maps, in: ACM Transactions on Graphics (TOG),
Vol. 25, ACM, 2006, pp. 605-613.

E. W. Dijkstra, A note on two problems in connexion with graphs, Nu-
merische mathematik 1 (1) (1959) 269-271.

X. S. Li, An overview of superlu: Algorithms, implementation, and user
interface, ACM Transactions on Mathematical Software (TOMS) 31 (3)
(2005) 302-325.

J. Torres, J. Cotelo, J. Karl, A. P. Gordon, Mechanical property optimiza-
tion of fdm pla in shear with multiple objectives, Jom 67 (5) (2015) 1183—
1193.

H. Weiss, S. Seibel, M. Moramarco, A. Kleban, Bracing scoliosis: the
evolution to cad/cam for improved in-brace corrections, Hard Tissue 2 (5)
(2013) 43.

Tosca, https://www.3ds.com/products-services/simulia/
products/tosca/structure/topology-optimization/.

11



