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The simulation of complex geometries and non-linear defor-
mation has been a challenge for standard simulation meth-
ods. There has traditionally been a trade-off between perfor-
mance and accuracy. With the popularity of additive man-
ufacturing and the new design space it enables, the chal-
lenges are even more prevalent. Additionally, multiple ad-
ditive manufacturing techniques now allow hyperelastic ma-
terials as raw material for fabrication and multi-material ca-
pabilities. This allows designers more freedom but also in-
troduces new challenges for control and simulation of the
printed parts. In this paper, a novel approach to imple-
menting non-linear material capabilities is devised with neg-
ligible additional computations for geometry-based meth-
ods. Material curves are fitted with a polynomial expression,
which can determine the tangent modulus, or stiffness, of a
material based on strain energy. The moduli of all elements
are compared to determine relative shape factors used to es-
tablish an element’s blended shape. This process is done
dynamically to update a material’s stiffness in real-time, for
any number of materials, regardless of linear or non-linear
material curves.

Nomenclature
χ System Energy
E Young’s Modulus
QΣDT Matrices obtained by singular value decomposition
U Strain Energy

1 Introduction
The Finite Element Method (FEM) has been used for

decades to simulate deformations of solids, flows of liquids
and gases, as well as thermal responses of systems. The
applications also include the simulation of soft robots, sur-
gical processes, and animation. This has allowed medical
fields, exploration, and video games to simulate more realis-
tic behaviors and phenomena. Additionally, this has enabled
designers to simulate before needing to fabricate, allowing
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for a more freeform understanding of their tasks and solu-
tions. Current research aims to increase the performance
of FEM solvers to allow for realistic deformations at real-
time speeds. This, in part, is done by simplifying or reduc-
ing the computational costs. Current solutions aim to either
reduce the computational load by linearizing complex ma-
terial properties [1, 2] or simplifying the three-dimensional
(3D) models [3, 4]. All of these aim to have real-time simu-
lation for their respective applications while maintaining ro-
bustness. However, the need for interactive, complex, and
non-linear simulation has made current solutions unintuitive
or unable to incorporate both accuracy and speed.

New methods of simulation have been proposed to in-
crease simulation speed, but at the cost of accuracy, such as
position and projection dynamics [5]. These simulations en-
sure visual plausibility while decreasing computational cost.
Dealing directly with nodal displacements instead of clas-
sical Newtonian methods limits the number of calculations
required. Mostly used in computer graphics, they have also
been adapted for engineering practices as well for the simu-
lation of smart materials and more intuitive actuation of soft
robots [6, 7]. However, these simulations mainly deal with
linear phenomena. Some material’s behavior depends on
their deformed state, meaning their properties and relations
need to be updated at every time-step to match their current
state. Hyperelastic materials are a class of elastomers that ex-
hibit non-linear material properties and rely on their instan-
taneous rigidity as a function of strain to dictate their stiff-
ness. This directly applies to soft robots as they are mainly
made using hyperelastic material such as silicone, rubbers,
or 3D printed polymers [8–11]. This is also true for surgi-
cal simulations requiring the modeling of flesh [12]. Their
deformation is dictated by the actuation mechanism and the
material distribution within the robot. It is currently possible
to simulate specific deformations of soft robots given proper
constraints and inputs. However, generally, simulations are
not fast enough to be all encompassing or able to interact
in real time. Some methods proposed faster simulation but
failed to depict large deformation accurately or are limited in
applications [13].

Recently, Kwok et al. [6] proposed using geometry-
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defined finite elements (GDFE) to express actuations of
smart materials in a geometric form. The traditional FEM,
the global matrix in GDFE is not updated during the defor-
mation, which is a key for fast computational speed. This
concept was then adapted by Fang et al. [7] to show that
actuations typically used for soft robots can be treated as
changes in geometry. Their work demonstrated the approach
could lead to a real-time simulation of soft robots and signif-
icant performance increase over FEA while maintaining the
current state-of-the-art stability and speed. Although their
work proved that geometry could exhibit the behaviours of
two materials simultaneously, it is also the maximum num-
ber of materials the method can handle and the property
of the materials must be linear. Despite the current limita-
tions, we observed that the method is promising in terms of
versatility. It can represent different actuations and mate-
rial properties by only changing the geometric target shapes.
This motivates our research to answer the following research
question: how to express the non-linear material behavior
through the shape functions on a local level, such that the
computational speed is not affected? If it is possible, the
framework can also work for multiple materials. Since hy-
perelastic materials’ property changes with strains, they vir-
tually are different materials time-by-time during the defor-
mation. To properly simulate hyperelastic materials, every
element needs to be treated individually and have its cor-
responding stiffness. Thus the number of materials is only
limited by the size and density of the mesh. Additionally,
since the material properties are dependent on current defor-
mation, the initial material ratios cannot be assumed to be
constant at the start of the simulation. The shape blending
method prescribes a shape factor for each element based on
relative properties, as such the shape factor of one element
depends not only on their material characteristics but also on
the current state of other elements. This needs to be imple-
mented on a time-step or deformation dependent algorithm to
ensure proper estimation of properties. This paper proposes
a novel method to address the non-linear material proper-
ties and true multi-material capability. Utilizing the GDFE
framework, it is possible to translate material models into a
relation between two target shapes, a rigid shape based on the
previous state of the element and volume conservation of the
current shape, that better reflect realistic deformation. This
is done by comparing each element’s rigidity relative to one
another and setting a ratio between a soft configuration and
hard configuration. Insight on utilizing multiple materials
allows for efficient implementation of hyper-elastic material
models within the framework. The contributions are:

1. A mathematical model between the shape factor and ma-
terial properties is defined and calibrated, which can be
applied to convert stiffness into a geometric quantity for
simulation.

2. By computing the deformation’s strain energy for each
element, their instantaneous stiffness can be determined
to obtain its corresponding shape factor in each step.
Therefore, the framework can virtually work for infinite
materials.

3. Hyper-elasticity is incorporated in the geometric com-
putation by controlling each element’s shape factor,
allowing the global stiffness matrix to stay constant
throughout and thus maintaining the fast simulation
speed.

The rest of the paper is organized as follows. In Section
2, related works will be presented. Section 3 will outline the
geometry-based approach. The methodology of hyperelas-
ticity through geometry is discussed in Section 4. Finally,
Section 5 will go over the results and validation of the paper,
followed by a conclusion and discussion in Section 6.

2 Related Works
As the complexity of designs and the need for more ac-

curate simulations increase, simulation solutions will have to
adapt and increase their performance for non-traditional ac-
tuations and use cases. When modelling the human body,
many parts can be treated as non-linear materials for more
accurate simulation, such as the extensors and tendons in
the human hand [12]. Some soft robots also utilize the non-
linear behaviour to enable unique deformations [14], while
others require accurate, fast simulation for topology opti-
mization [15]. With the complexity of near-infinite degrees
of freedom allowed by soft robots, fast and accurate simula-
tions must be developed to enable non-heuristic control [16].

The traditional analysis methods for physical systems
involved using Newton’s second law to accumulate forces
and solve for accelerations. This translates into veloci-
ties and, finally, positions of nodes. This process is time-
consuming and requires a deep understanding of all the in-
puts and phenomena happening in the simulation. This
has lead to the pursuit of different discretization methods
and simulation frameworks. There have been some voxel-
based approaches [3, 17], others try to simplify the calcu-
lations by implementing various forms of mass-spring sys-
tems [2, 18]. Model reduction techniques which mapped
larger, more complex meshes to reduced meshes, increased
performance with minimal loss of accuracy [4, 13, 19]. Al-
though these methods improve the traditional approach in
terms of speed, many sacrifice accuracy or robustness in
terms of material properties in exchange for visual plausi-
bility.

Work has also been done in terms of material research
and quantification. Some research has focused on simplify-
ing non-linear material behaviour and developing new mod-
els to reduce the computational cost. Some models have been
created using principle stretches to generate spline-based
material curves [20]. Others have used linear regression of
hyperelastic materials to better estimate the Hessian matrix
for optimization, which would reduce the number of times
the global stiffness matrix would need to be recomputed [1].
Smith and al. [21] propose a new method to get a more sta-
ble energy term from the Neo-Hookean formulation, which
results in more stable and probable deformations for hypere-
lastic material. With the advancement in neural networks and
deep learning, non-linear material behaviour has also started
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being modelled and studied to reduce computation time [22].
A simpler approach to FEM coined in 2007, position dy-

namics, was proposed to deal with nodal positions for sim-
ulation directly [23]. This would remove much of the cal-
culations and enable a new way of thinking about interac-
tions, dynamics and simulations. A subdivision of position
dynamics is the interpretation of the nodes or elements as
geometry constraints that can be mixed and solved. This al-
lowed to quickly characterize a designer or modeller’s under-
standing of deformation without requiring in-depth knowl-
edge on what forces would cause this [24]. This was fur-
ther extended upon with the notion of as rigid as possi-
ble deformation, geometric elements that purely focused on
maintaining their initial shape [25]. A survey on position-
based dynamics highlighted the use of goal positions instead
of internal constraints to match initial shapes to deformed
configurations [5]. Shape functions for target deformations
were introduced for further applications of the geometry-
based approach [26]. The approach also led to new opti-
mization frameworks such as the local-global approach [27]
which was fine-tuned by Bouaziz et al. [28] and presents
new constraints based on geometry. This enabled the sim-
ulation of smart materials through a shape matching algo-
rithm [6] and coining of the term Geometry-Driven-Finite-
Element. A more interactive and intuitive way of modelling
soft robot interactions was developed, showing a perfor-
mance leap for the state of the art simulation through the help
of GDFE [7]. Although these methods provide a new way of
defining deformations, they cannot simulate non-linear ma-
terial behaviours without utilizing traditional FEA methods.

3 Background: Geometry-based Computing
To be self-contained and to facilitate the explanation of

our developments, the geometry-based approach [7] is sum-
marized in this section. The approach utilizes a mesh M
which is composed of m elements and n vertices. Each el-
ement’s shape, a hexahedron for this paper, is described by
8 vertices stored in matrix Vi. The subscript i represents the
element to which these vertices belong. Each element has
a desired shape or configuration. This is determined by a
blending operation based on the material, which will be de-
tailed later. For clarity, this blended shape will be denoted as
VB

i and referred to as the desired shape of an element. When
constraints or forces are applied to mesh M, they are trans-
ferred into each element, which is then deformed, increasing
the energy of the system. The energy is calculated as the dif-
ference between the desired shape VB

i , and the current shape
Vi defined as

χ(M) =
m

∑
i=1

di f f (VB
i ,Vi). (1)

The algorithm tries to minimize the entire system’s energy
while obeying all constraints using a two-step solver. The
first step is a local step where each element Vi is used to

orient their corresponding desired shape VB
i . A global step

then aims to solve an over-constrained linear problem.

3.1 Local Step
There exists a relationship between the current shape Vi

and the desired shape VB
i . This step aims to solve for a rota-

tional matrix Ri which can orient the element’s original rigid
shape VR

i with the current shape Vi, minimizing the differ-
ence in shape and energy. The equation characterizes the
difference between both shapes:

U = Ωi||NVi−Ri(NVR
i )||, (2)

where Ωi represents the weight of the element based on its
volume. Typically to match two elements a full transforma-
tion matrix would be required. Here, matrix N is used to
center an element and remove the translation aspect of the
comparison:

N(i, j) =
{

7/8 if i = j
−1/8 if i 6= j ∀i, j ∈ (1,2, ...,8).

N relates each vertex to one another. In this sense, it is pos-
sible to compare the N matrix to a traditional FEM local
stiffness matrix. The transformation matrix T can then be
reduced to a simple rotation and scaling matrix. Consider-
ing there are 8 vertices in an element, the problem is over-
constrained and can be solved by the least squared method
to obtain the affine transformation, including both the scal-
ing and rotation elements. Since the blended shape will en-
force the scaling, the only characteristics of interest in T are
the rotational properties. These can be found through singu-
lar value decomposition (SVD). This results into SV D(T) =
QΣDT, where Q and D are the rotational components and
Σ is the scaling matrix. Matrix Ri from Eq. 2 can then be
defined as R = QDT, keeping only the rotational elements.
Multiplying R with VR

i determines the rigid configuration
used in the shape blending process to determine the desired
shape VB

i .

3.2 Global Solve
The summation of all the local steps creates an over-

constrained system of linear equations that can be efficiently
solved for shown by this equation:

χ =
m

∑
i=1

Ωi||NVi−R(NVB
i )||= ||AV−p||. (3)

V is a 3D vector of all the current position of all vertices in
the mesh, while p is a 3D vector of the local solutions for
each element. Equation 3 can be solved iteratively [28] by
firstly constraining V and solving for p, and then constrain-
ing p and solving for V. This leads to a least square problem
in the form of ATAV = ATp. It is to be noted that matrix A
is composed of solely matrix N, which means it is constant.
This allows for the matrix ATA to be precomputed at the
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Fig. 1. Visualization of physical properties with relation to shape
factor. A larger shape factor results in less deformation, similar to
having a larger Young’s Modulus.

start of the simulation, making it extremely efficient. Addi-
tionally, where typical FEM requires a 3n×3n for ATA, this
approach is only n×n since each axis can be solved individ-
ually using the same global matrix. These two properties are
part of the reason why this method is attractive for simula-
tion.

3.3 Shape Blending
The geometry-based formulation allows for setting a tar-

get shape VB
i for each element. In some instances, like as

rigid as possible (ARAP) [29], an element will try to stay
rigid or similar to its original shape. In others, they might
mimic a smart material where they change shape to mimic
deformation of a shape memory polymer (SMP) [30]. When
there are two different materials in consideration, an ele-
ment’s stiffness is formulated based on how much it cares
about its original shape compared to simply conserving its
volume. As such, if one element cares about its original
shape more than another, it will better maintain its shape dur-
ing the energy minimization process. In the work of Fang et
al. [7], two materials were stretched using a tensile test. They
had their relative elongation compared and fitted to a general
equation which assigned their relative stiffness using a shape
factor ω as depicted in Fig. 1.

Equation 4 depicts how the stiffness of an element i is
defined in the geometry-based approach. If the mesh is made
of a singular material all ωi will be equal. If there are two
materials, than all elements of the first material will have its
corresponding ω1, while the second material will have ω2,
both of which are determined experimentally.

VB
i = ωi ∗VR

i +(1−ωi)Vv
i . (4)

Figure 2 depicts the reasoning behind this approach.
Suppose the total strain energy U given a certain elongation
is determined. In that case, it could be reasoned that un-
der uniform loading conditions, two materials with different
stiffness would take an equal part in dividing the total strain
energy when simulated together UT = US +UR. As such, a
rigid material that is twice as stiff as a softer material should
have a strain εR half as large as the other’s εS, while main-
taining the area under the curve equal, UR =US.

Fig. 2. Multi-material strain energy formulation.

The current limitation is that the calibration method of
the previous work only works for two materials. Addition-
ally, the materials have to be linear, as the shape factor is
determined and set at the start of the simulation.

4 Methodology
A simple visual approach to calibrating relative mate-

rial properties has been developed under the assumption the
materials behaved linearly [7]. This gave similar results to
the real-world examples and demonstrated potential for the
shape blending approach. In simple deformation cases under
minimal deformation, a linear model for a single material
could be used with high fidelity to define deformation. How-
ever, hyperelastic materials present non-linear mechanical
behaviour and cannot be adequately defined using Hookes
law. Due to most materials used in soft robotics, e.g., ex-
hibiting hyperelastic material properties, a new formulation
and approach need to be developed to deal with non-linear
material models. If the geometry-based approach can extend
to make every element have its own material, then it would
be possible to model hyperelasticity. However, when deal-
ing with non-linear material models and large deformation,
the global stiffness matrix typically needs to be updated to
reflect the state of the deformation. This is a computation-
ally expensive task that must be performed after every step
of the simulation. Therefore, the challenge here is to accu-
rately reflect material properties and non-linear phenomena
without recomputing the global stiffness matrix A to ensure
the performance benefits this method offers persist.

Looking at Eq. 4 it can be seen that the shape factor ω

can determine how rigid or soft an element is and directly
dictate its stiffness. As such, introducing several materials
with different shape factors ω is similar to having elements
with different stiffness E, creating a link between geome-
try and mechanical representations. This allows tuning of an
elements properties locally without touching the global stiff-
ness matrix. A rigid element will try to maintain its previous
shape during iterations, while a soft element will simply try
to keep its volume; thus, its shape may change more freely.
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Nevertheless, another challenge is how ω should be defined
when there are multiple materials. For hyperelastic materi-
als, the stiffness of a material will change based on its current
deformation. As such, the shape factor ω needs to be modi-
fied at every step to reflect the non-linear material mechanics
properly. Additionally, due to the framework utilizing rela-
tive properties, the correlation between elements will have to
be updated as well.

If both these concerns are addressed, then any number of
materials can be simulated and easily incorporated into the
framework. The only metrics that change between materials
are the constants used to characterize the non-linear material
models; the outputs and inputs are still the same and thus
require no additional time for new materials. Two aspects
are required to implement non-linear material mechanics to
the framework properly:

1. Obtaining the tangent or Youngs modulus of a material
at any given deformation

2. Efficiently normalize the relative material properties and
assign an appropriate ω

4.1 Capturing Hyperelasticity
Material models for hyperelastic materials typically uti-

lize strain-energy density to describe mechanical behaviour
and the relation between stress and strain. One of the
unique properties of hyperelastic materials is to undergo
large strains under relatively low stress and return to their
original configuration with minimal plastic deformation [31].
Additionally, a hyperelastic material’s properties are depen-
dent on the current deformation of the material [32]. As
each element of a discretized model will experience differ-
ent strain, a unique stiffness is required for each, resulting in
different responses to loads and actuations. The phenomenon
is further amplified when multiple hyperelastic materials are
simulated together as their individual non-linear deforma-
tions will be based and compounded relative to one another.
This necessitates a more profound understanding of the ma-
terial’s mechanics and how to emulate them better.

The derivation of the strain energy can be obtained
by the principal stretches of the deformation gradient [33],
which are then used to obtain the tangent modulus of a hy-
perelastic material required for geometric models. The de-
formation gradient tensor F represents all the required in-
formation for transforming an elements’ initial shape to the
current configuration. The determinant of F is the Jacobian
J which represents the change in volume of the element. To
obtain the equivalent strain of an element, the deformation
gradient can be found by comparing the current shape of the
element Vi and the initial shape VR

i .
The process is similar to the local step of the geometry-

based framework, but the scaling matrix is of interest here,
i.e., SV D(F) = QΣDT, with

Σ =

λ1 0 0
0 λ2 0
0 0 λ3



Taking the principle diagonal of the Σ matrix gives the strain
tensors in each axis which are used to calculate the Von
Mises equivalent strain:

εeq =
1

(1+ν)

√
(λ1−λ2)2 +(λ2−λ3)2 +(λ3−λ1)2)

2
(5)

where ν is the Poisson’s ratio. The tangent modulus can then
be obtained by taking the stress-stain curve’s derivative at
εeq. Solving for every elements’ tangent modulus allows for
comparing elements and calculating relative material proper-
ties, creating the inputs for the second criteria.

4.2 Geometric Modeling of Hyperelasticity
As mentioned in Section 3.3, the stiffness of an element

is done within the blended shape by selecting a rigidity shape
factor ωi between a rigid shape VR

i and a volume conserv-
ing shape Vv

i . However, this is a geometric representation
of stiffness with a constant global stiffness matrix. Material
mechanics and physical stiffness are typically handled in a
global stiffness matrix that can be updated or modified dur-
ing a simulation to express non-linear phenomenons such as
material properties, load distribution or large deformations.
The mechanical stiffness is typically reflected through the
Young’s Modulus, E, of the material. However, the geomet-
ric definition of rigidity has a normalized scale from 1 for
perfectly rigid, to 0 for an element that solely cares about its
volume; requiring mapping to reflect the mechanical impli-
cations accurately. By that token, an element with a shape
factor ωi of 0.9 compared to an element with ωi equal 0.1
will not perform with the naive ratio of being 9 times stiffer.

Γ(RM) 7→ RG (6)

The mapping function Eq. 6 is required for both the
mechanical and geometrical stiffness to perform identically.
The ratio of the two shape factors (i.e., RG = ωx/ωy) corre-
sponds to the desired ratio of its physical counterpart (i.e.,
RM = Ex/Ey), where Ex and Ey are the Young’s modulus of
two theoretical materials. Once developed, the number of
materials the software can handle can be endless. In this
sense, hyperelastic elements can also be modelled since ev-
ery element will have a unique stiffness based on its current
deformation.

4.2.1 Mapping
The mapping process involved stretching a rectangular

mesh to a pre-defined length. The left half of the mesh has
one shape factor ωle f t , and the right side has another shape
factor ωright assigned to it. The input RG =

ωle f t
ωright

was set
from 1 to 90. For example, RG = 30 means that the left side
is 30 times stiffer than the right, which can be achieved by
setting the left side to 0.9 and the right side to 0.03. Af-
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Fig. 3. Calibration of Young’s modulus ratio and geometric stiffness
ratio.

ter both sides have a shape factor assigned, it is stretched
to 100% elongation and the equivalent strain energy of both
halves are recorded. The output is the ratio between strain
energies and is equivalent to the ratio of physical stiffness
RM .The input for the mapping is RG, and the strain energy
obtained after a simulation is the output RM . The right side’s
ω is modified, and the process is restarted. This generates
an uncalibrated relationship between the mechanical ratios
and geometric ratios for each case, that is plotted and fitted.
The results of the uncalibrated simulation are shown in Fig. 3
and demonstrate that the geometric stiffness is stiffer than
the desired mechanical response when comparing two linear
materials. Comparing the geometric ratio RG to the desired
mechanical ratio RM showed a non-linear relation between
the two. Curve fitting was performed on the data to obtain a
correlation. Eq. 7 is used to map the ratio between Young’s
Modulus RM , and the equivalent geometric ratio RG which is
used for the simulation.

RG = 0.0017R2
M +1.42245RM−0.4141 (7)

Elements are given their own relative stiffness ratio for
the current step represented by RM,i = Emax/Ei, where Emax
is the largest tangent modulus, and Ei is the tangent mod-
ulus of an element at its current deformation. Given that
the relative properties must be normalized, the maximum
and minimum are identified and are at the extremities of
the weighting, whose ratio between Emax and Emin is given
by rmax = Emax/Emin. To center and normalize the local
stiffness of elements around a shape factor ω = 0.5, ratio
h = rmax/(rmax +1) is derived. Using the above notations
and equations, the geometric shape factor ωi for each ele-
ment is calculated by

ωi =
h

RG,i
, (8)

where RG,i is obtained from the calibration Eq. 7. An outline

ALGORITHM 1: Hyper-Elastic Calculation

Input: The rest shape VR and current positions Vi
for investigated elements and material.
Number of elements m

Output: The local stiffness ratio ω for blended shape
VB

1 while i < m do
/* Calculate Equivalent Strain */

2 Compute F between VR
i and Vi

3 Apply SVD to obtain principle strains λ1,2,3
4 Use Eq. 5 to obtain equivalent strain
5 Record min and max tangent modulus, Ei,min,max

6 end
7 while i < m do

/* Match Stiffness Ratio */
8 Calculate minimum and maximum modulus ratio

r
9 Compare element Ei to Emax

10 Solve for ωi using Eq. 8
11 end

of the process to compute this shape factor is presented in Al-
gorithm 1. It is to be noted that the geometric formulation’s
least square problem ATAV = ATp in the global step (3.2)
has a constant global matrix ATA regardless of the number
of materials. The changes in the shape factor ωi only update
the right-hand side of the equation, i.e., the vector p. This
is because every element already requires its own ωi, and all
the ωi can be the same or different with no additional compu-
tational cost. The only added computation is Algorithm 1 for
non-linear materials. This step is equivalent in time to a sin-
gle local solve and is only performed periodically to ensure
an accurate representation of the material properties. Thus,
it has a negligible impact on the overall performance.

4.2.2 Integration of non-linearity
Since the current rigidity is based on instantaneous de-

formation for hyperelastic materials, the converged deforma-
tion state of the previous step needs to be reflected in the
shape blending algorithm as well. To do this, an intermedi-
ary shape VP

i can be calculated at each step to represent the
previous deformation:

VP
i = (1−α)VR

i +α∗Viv, (9)

which denotes the relationship between the current volume
conserved shape Vv

i and the initial rigid shape VR
i . The ratio

α is defined as α = εp/εc, where εp is the strain of the pre-
vious step, while εc is the strain of the current shape. This
allows the blending method to capture an element’s state as
a new reference point without overemphasizing the captured
shape, thus reducing path dependency and risk of divergence.
The more a shape deforms, the lower the impact of the rigid
shape, but it also prevents a shape from completely diverging
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Fig. 4. Visual representation of the blended shape V B and how it is
composed. The previous shape V P is based on a composition of the
rigid shape V R and Volume preserved shape VV .

during an iteration as the energy will increase proportionally
if it changes too much. A modified version of Eq. 4 incor-
porates the new metric. The blended shape is then defined
as the shape factor ω balancing both VP

i and Vv
i as shown

below:

VB
i = ωi ∗VP

i +(1−ωi)Vv
i . (10)

VB
i is a blend of the element’s initial shape and the de-

formed shape. Here, α represents the instantaneous state of
the element, while ω is the relative stiffness of the element.
In this sense, a stiffer material will always try to maintain
its shape, while the softer will care more about volume with
an approximate shape. An illustration of the relationship be-
tween the shapes and physical meaning is shown in Fig. 4.

5 Results
Three tests were performed to validate the framework

and its ability to simulate non-linear material properties. The
first demonstrates the ability to simulate multiple linear ma-
terials simultaneously. The second experiment compared the
ability of the software to simulate non-linear materials and
its performance. Finally, the last experiment validated the
framework’s ability to simulate two 3D printed hyperelastic
filaments in a tensile test while highlighting linear models’
inadequacy for such material. The first and second tests are
compared to an industry FEA solver Abaqus. All simula-
tions were performed on the same machine with an Intel i7-
7700HQ CPU at 2.80GHz, and 16GB of DDR4 RAM. The
framework was coded in C++ and utilizes the open-source
Eigen library [34] for solving.

The hyperelastic materials used for validation are Chee-
tah and NinjaFlex filaments. The physical samples were
printed on an Ender 5 printer using the Flexion Extruder.
The extruder is specifically designed for direct drive extru-
sion of flexible filaments. These filaments were then printed
into a standard shape to be passed through tensile tests us-
ing the ESM 750S. These tests generated the stress-strain
curves for each material. The pieces were printed at 100%
infill, with 3 walls and grid infill. The printing parameters
for the Cheetah were 60mm/s, at 230 degrees, while the Nin-

Fig. 5. Stress-strain tensile test data of NinjaFlex and Cheetah fila-
ments

jaFlex was printed at 40mm/s and 240 degrees and 105%
flow. Both were printed at 0.2mm layer height. Fig. 5 shows
the stress-strain curves for the tensile tests for both NinjaFlex
and Cheetah. To capture the material properties from the
stress-strain data, it is fitted to different hyperelastic models.
The third-order Ogden model [35] was used to fit the data,
depicted as follows:

W =
3

∑
i=1

2µi

α2
i
(λαi

1 +λ
αi
2 +λ

αi
3 −3), (11)

and the constants found for each material is listed in Table 1.
This model is used in Abaqus to simulate hyperelastic mate-
rials. To allow a direct and simple calculation of the tangent
modulus at any given strain to be used in our method, a poly-
nomial was also fit to the test data for each material. The
polynomial fitting equation for NinjaFlex and Cheetah are
presented in the following respectively.

σNin ja =−0.13ε
6
eq +1.53ε

5
eq−6.91ε

4
eq

+15.02ε
3
eq−15.7ε

2
eq +8.67εeq

σCheetah =−0.11ε
6
eq +1.49ε

5
eq−7.69ε

4
eq

+19.9ε
3
eq−26.6ε

2
eq +19.13εeq

Both the polynomial fit and the Ogden model fit the test data
with high similarity. Additionally, both the geometric frame-
work and Abaqus utilized linear Hexadra (”brick”) elements.

5.1 Multi-material Linear Comparison
Our work proposes a new method to address multiple

materials simultaneously that extends past a two material
limit. This is important as hyperelastic materials, when dis-
cretized, represent individual non-linear material properties
for every element, meaning the number of elements repre-
sents the number of individual materials to be simulated. The
framework is validated by simulating five different linear ma-
terials in bending and comparing it to the same simulation in
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Fig. 6. Multi-material validation for linear materials comparing our framework with Abaqus. a) A 50×5×5 bar is displaced vertically from
the right while maintaining orientation and planerity. The bar is subdivided into 5 different materials with different Young’s Modulus; from left to
right: 100KPa, 80KPa, 60KPa, 40KPa, and 20KPa. b) Results of our framework; c)Results from Abaqus; d)Overlaid results of our framework
in color and Abaqus outlined in black.

Table 1. Ogden Constants for Abaqus

Constants NinjaFlex Cheetah

µ0 0.187297 −5.497378

µ1 0.091893 2.499418

µ2 3.397167 12.259373

α0 1.940480 3.303409

α1 4.009788 3.722506

α2 −1.512803 −4.762911

Abaqus, as shown in Fig. 6. A bar measuring 50× 5× 5cm
composed of 1250 elements is bounded on the left and dis-
placed vertically on the right. The right-hand side is con-
strained to prevent rotation but allow horizontal displace-
ment. The bar’s material distribution, starting from the left,
is: 100KPa, 80KPa, 60Ka, 40KPa, and 20KPa; each rep-
resenting a unique stiffness. The expected result is for the
softer materials to exhibit more significant deformation and
curl than the stiffer materials on the left. Fig. 6 d) shows a
good correlation with the commercial software. The simu-
lation demonstrates the ability to handle multiple materials
without the need to calibrate each one individually. When
comparing displacement of every node, a 3% average dis-
placement error is observed. The Abaqus simulation took
71.4 seconds to perform, while our framework took 11.3
seconds. It is to be noted that as the deformation was in-
creasing the convergence time for the Abaqus simulation also
increased, demonstrating one of the issues with traditional
FEA. Computation time in our framework stayed relatively
constant throughout. Its been demonstrated, that the materi-
als’ mechanics were directly converted to geometric stiffness
and into a shape factor for each material. This example could
be repeated with as many simultaneous materials as desired,
demonstrating new capabilities compared to previous work.

Fig. 7. Rotation comparison between (a) Abaqus and (b) the frame-
work. Left half is composed of Cheetah, right half is composed of
NinjaFlex. The colors represent displacement.

5.2 Rotational Comparison
The geometric framework’s hyperelastic capabilities

were compared to Abaqus in this example. A rotation sim-
ulation shown in Fig. 7 was performed where the left half
of a bar was characterized as Cheetah, while the right side
was formed of NinjaFlex. Both simulations had a size of
20×5×5cm and an element count of 500. A 90-degree ro-
tation of the right plane was performed in both Abaqus and
the geometry-framework, matching nodes were compared to
verify accuracy. An average difference in nodal placement
after deformation was noted to be only 3%, with a maximum
difference between both simulations of 6%. The Abaqus
simulation took 19.35 seconds to perform, while our method
took only 4.19 seconds. This demonstrates agreeable re-
sults between both cases, while having a significant speed
increase.

5.3 Multi-Material Hyperelastic Tensile Test
To validate the material models and the simulation

framework for hyperelasticity, a tensile test with multiple
materials: Cheetah and NinjaFlex, was performed. Both
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Fig. 8. Experimental set-up for multi-material tensile test. The
gauge length of each material is 20mm; NinjaFlex in orange, Chee-
tah in white.

specimens are joined together thermally and mechanically
during the printing process and are of equivalent length. The
percent elongation of both materials is measured by keeping
track of the joining line between the materials using visual
processing. Figure 8 shows the experimental set-up and re-
sults. Two simulations were performed to show the effects
of hyperelastic properties on a mesh of 500 elements. The
first with linear behaviour using the tangent modulus at rest.
The second test used the polynomial material curves outlined
earlier. The simulation results of both linear and hyperelas-
tic materials are depicted in Fig. 10. A clearer picture can be
seen of non-linear material properties when observing Fig. 9,
where the strain of the hyperelastic Cheetah seems to be on
an up-turn near the end, and the trend of the hyperelastic
NinjaFlex is on a down-turn. This signifies the NinjaFlex is
at a point of stiffening in its material curve, while the Chee-
tah’s stiffness is relaxing. Compared to the linear simula-
tion, where there is no change throughout the deformation.
This kind of interaction becomes all the more prevalent as
the number of materials increase. This leads to potentially
drastic different configurations for soft robots compared to
linear material modelling. This will change the final posi-
tioning but also the path the robot will follow.

From Table 2, the difference between the hyperelastic
simulation and the experiment is only -1.3% in terms of the
location of the material joint, the linear simulation shows a
difference of 25.4%. When looking at individual strain, the
difference for Cheetah is -10.8%, while the linear simula-
tion shows an error of 112.3%. This can be explained by
the quick softening of the NinjaFlex relative to the Cheetah,
illustrating the non-linear behaviour. When comparing to
the experimental results, Abaqus performed worse than our
framework. Through simulating this experiment on Abaqus,
it was clear that the interface between materials became
problematic when large deformations occurred. Abaqus took
27.2 seconds for the simulation, while our framework took

Fig. 9. Graphical representation of the multi-material hyperelastic
tensile test. Red depicts NinjaFlex, gray is cheetah.

Fig. 10. Cheetah(white) and NinjaFlex(orange) filaments in tension
at 100% elongation. a)Linear simulation of our framework; b) Hy-
perelastic simulation in our framework; c) Experimental results; d)
Hyperelastic Abaqus results.

Table 2. Comparison of Multi-Material Tensile Test

Tests Position
(Error)

Cheetah
Strain
(Error)

NinjaFlex
Strain (Error)

Experimental 31.5% 26.8% 168.8%

Linear Sim 39.5%
(25.4%)

56.9%
(112.3%)

142.3.8%
(-15.7%)

Hyperelastic Sim 31.1%
(-1.3%)

23.9%
(-10.8%)

174.8%
(3.6%)

Abaqus Hyper 34.7%
(11.6%)

38.8%
(62.3%)

161.2%
(-7.8%)

18.3 seconds. A 1.49x speed increase is observed. However,
the error for Abaqus is 11.6% compared to -1.3% for our
method.

6 Conclusion and Discussion
This paper has formulated a novel method for charac-

terizing non-linear and hyperelastic material properties to a
geometry-based approach. In this method, material prop-
erties can directly and efficiently be integrated into a local
shape blending technique dynamically with negligible per-
formance decrease. The calibration for multiple materials
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was done based on the equivalent strain energy experienced
during uni-axial tensile tests. As such, a direct relation with
the mechanical properties of the material could be estab-
lished and used in the geometry framework. This allowed
for a more complete understanding and selection of the shape
factor, enabling the direct implementation of material curves.
Through the multi-material tensile test, 3D printed speci-
men were deformed and fitted to obtain material properties.
These were compared to a linear model and demonstrated
significant differences in results between the two. This fur-
ther highlights the need for non-linear models for 3D printed
filaments and their incorporation in simulation. Compared
with standard FEA, the rotational test also showed agreeable
results while still maintaining previous performance bench-
marks established by the geometry-based approach.

There are, however, some limitations to the current im-
plementation. The current approach uses a polynomial def-
inition of the stress-strain data to obtain Young’s modulus
from tensile test data. For future consideration, additional
material identification tests will be used to obtain a more ac-
curate material model and characterize more complex mate-
rial behaviours in shear. This would lead to the need for mul-
tiple local stiffness metrics that would be balanced to reflect
more complex loading scenarios. Additionally, anisotropic
properties would require a geometric stiffness for each axis,
requiring further consideration in defining a single target
shape for an element. An optimization that would discount
elements which are not relevant to the actuation and defor-
mation of the model needs to be investigated to ensure the
method functions as intended even with non-uniform load-
ing.

Some future considerations would also be investigating
using the performance enabled by GDFE to enable design
optimization and control of soft robots. Additionally, the
possibility of expressing 3D printed parts and their complex
geometries and infills as meta-materials to be characterized
and implemented in GDFE could lead to the fast computa-
tion of optimal material distribution based on actuation and
desired deformation. Furthermore, there is research that has
developed a formulation for digital materials [36] that are
applied on elements directly to assign properties to achieve
specific deformations. This can be further extended to an it-
erative algorithm to achieve material or topology optimiza-
tion. The current framework would be ideal for dynami-
cally changing material properties with minimal computa-
tional overhead.
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