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Wireframes have been proved useful as an intermediate
layer of the neural network to learn the relationship be-
tween the human body and semantic parameters. However,
the definition of the wireframe needs to have anthropologi-
cal meaning and is highly dependent on experts’ experience.
Hence, it is usually not easy to obtain a well-defined wire-
frame for a new set of shapes in available databases. An
automated wireframe generation method would help relieve
the need for the manual anthropometric definition to over-
come such difficulty. One way to find such an automated
wireframe generation method is to apply segmentation to
divide the models into small mesh patches. Nevertheless,
different segmentation approaches could have various seg-
mented patches, thus resulting in various wireframes. How
do these different sets of wireframes affect learning perfor-
mance? In this paper, we attempt to answer this research
question by defining several critical quantitative estimators
to evaluate different wireframes’ learning performance. To
find how such estimators influence wireframe-assisted learn-
ing accuracy, we conduct experiments by comparing differ-
ent segmentation methods on human body shapes. We sum-
marized several meaningful design guidelines for developing
an automatic wireframe-aware segmentation method for hu-
man body learning with such verification.

1 Introduction
The synthesis of the human body model is widely used

in various types of applications such as the fashion indus-
try [1], medical [2], and wearable products [3]. An accu-
rate and robust synthesis method for human body modeling
is critical prior to these applications. In order to find such
a human body synthesis method, many works have studied
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the statistics of the human shape database [4, 5]. To improve
the accuracy and robustness of the human model synthesiz-
ing from semantic parameters [6], the concept of applying
feature wireframe in the learning is introduced [7]. The wire-
frame is defined as a set of feature curves on the human body
model based on the anthropometric rules. Such a feature
wireframe has proved to be useful for decomposing the orig-
inal complex problem into solvable sub-problems. Never-
theless, anthropometric experts usually define the wireframe
manually, which is highly dependent on the experience, and
it is usually not available to acquire such wireframes when a
new dataset is available. As a result, an automatic wireframe
generation method for a set of models is highly preferred, es-
pecially when three-dimensional (3D) scanning devices be-
come ubiquitous nowadays.

To find such an automatic feature wireframe generation
method, we rethink the wireframe’s role on the human body
shape. In [7], the defined wireframe is used to separate the
whole human body into small mesh patches so that the learn-
ing can focus on each mesh patch, and the original learning
problem can be decomposed to two levels of relationship:
from the parameters to the wireframe and from the wireframe
to the mesh. In other words, the wireframe serves a function
to decompose the human model into small components. This
is very similar to the mesh segmentation approach, which
aims to partition a 3D mesh into sub-meshes. Since mesh
segmentation is a well-studied problem in computer graph-
ics, and many automatic segmentation methods have been
developed [8, 9], the objective here is to apply segmentation
to generate the wireframe. Specifically, when a human shape
is segmented into different partitions, the boundaries be-
tween these partitions can be used as the feature wireframe.
In this way, an automated wireframe generation method can
be developed utilizing the mesh segmentation approach.
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Different segmentation approaches will lead to different
segmented results and resulting wireframes. As the wire-
frame serves an intermediate layer role in the learning frame-
work, it is crucial to understand how different wireframes
would affect the learning performance. To allow the devel-
opment and optimization of an automatic wireframe genera-
tion for semantic learning, we define a set of quantitative fac-
tors and investigate their relationship to the learning perfor-
mance. We have formulated hypotheses on the quantitative
criteria for applying the segmentation method to wireframe
generation. To test these hypotheses, various segmentation
approaches with distinct properties are selected, and the cor-
relation between the extracted criteria and learning perfor-
mance is studied. From experimental results, we find how
the criteria are beneficial to improving the learning perfor-
mance when developing an automated wireframe generation
method by using segmentation. Based on this, we summarize
several design guidelines for the automatic learning-aware
feature wireframe generation. Thus, the main contributions
of this paper are summarized as follows.

1. The mesh segmentation is utilized for the feature wire-
frame construction, and a segmentation-based feature
wireframe generation framework is proposed for human
body learning.

2. A set of quantitative factors affecting the learning per-
formance are defined, and the corresponding hypotheses
are proposed based on such factors.

3. The proposed factors are verified with the comparison
of different wireframes generated from various segmen-
tation approaches, and their effects on the learning per-
formance are studied.

4. From the correlation study between the proposed factors
and the learning performance, several wireframe design
criteria are concluded for developing an automated way
of wireframe generation.

This paper is organized as follows. The rest of this sec-
tion reviews some related works and briefly introduces the
wireframe-based learning framework. Section 2 gives an
overview of the segmentation-based wireframe generation
methodology. The quantitative estimators for the learning
performance as well as the segmentation methods selected to
test the hypotheses are presented in Section 3. The exper-
imental results are reported in Section 4, and they are dis-
cussed in Section 5. Finally, Section 6 concludes the paper.

1.1 Literature review
Human body modeling is one of the fundamental prob-

lems in the computer graphics area. Previous works stud-
ied the human body modeling mainly based on the statisti-
cal properties of an available dataset of human body mod-
els [4,10–12]. Recent works [13,14] tried using the parame-
terization approach for the modeling task. For example, au-
tomatic modeling of human bodies from sizing parameters
was studied in [15]; and a feature-based parameterization
modeling method from the unorganized point cloud was pre-
sented in [16]. This method was further optimized with cross

Fig. 1: The wireframe-assisted semantic learning methodol-
ogy. Reprinted from [7], with permission from Elsevier.

parameterization in [17]. In [18], a tensor decomposition-
based method was developed for modeling 3D human body
with variations on both human shape and pose. While
in [19], an example-guided, anthropometry-based modeling
method was proposed for creating 3D human body models,
and took partial anthropometric measurements of users as the
input. Most of these methods relied on the available human
shape dataset and represent the human shape with a group of
anthropocentric parameters. To utilize such parameters for
the human body modeling, generating the human shape from
semantic parameters was studied in [6]. It has been demon-
strated that such a generation process could lose important
information and affect the modeling quality. However, this
issue can be relieved mainly by introducing a set of defined
wireframes on the human shape model [7]. Thus the genera-
tion of the wireframe is the focus of this paper.

1.2 Wireframe-assisted human body learning

To be self-contained, the wireframe-assisted human
body learning method [7] is briefly summarized here. The
principle workflow of the method is illustrated as in Fig. 1.
There are three primary layers in the learning method: se-
mantic parameters (SP), feature wireframe (WF), and mesh
patches (MP). By introducing the WF layer, the human
model is separated by the wireframe into K patches. The
wireframe can then be separated into K sets accordingly,
each of which is the feature curves that are interpolated by
the corresponding patch, i.e., the patch’s boundary. In this
framework, two correlations need to be learned: SP→WF ,
and WF→MP. These two correlations are acquired through
a deep neural network (DNN) and a linear regression (LR).
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Human Model WireframeMesh Segmentation

Fig. 2: Segmentation-based wireframe generation

Specifically, the relations are modeled as follows:

WF = Ψ(SP, ψ).

mpk = ϒk(w fk, υk),

where w fk ∈WF, mpk ∈MP (k = 1, . . . ,K).

(1)

Ψ and ϒk represent the two learning relations of DNN and
LR, while ψ and υk are the vectors of unknown variables
that need to be solved. w f and mp are the sets of separated
wireframes and patches, and K is the number of separated
patches. In practice, to extract the most important compo-
nents from the data for the learning, a principal component
analysis (PCA) is first applied separately to SP, WF as well
as each mpk and w fk.

By dividing the whole learning problem into sub-
problems, the proposed method can avoid losing feature in-
formation of the human shape model and is much faster
by solving smaller sub-problems with wireframe assistance.
Therefore, in this framework, the critical step is the defini-
tion of the wireframes. Since such a wireframe can capture
a human body’s features and affect the relations of separated
mesh patches and their boundaries, it is pivotal to determine
a set well-defined wireframe to separate the human model
properly. Thus the divided sub-problem can be easily stud-
ied, i.e., the learning performance of the hierarchy method
described as in Fig. 1 can be secured. The anthropocentric
rules were used to define the wireframe [7], and this paper
aims to automate it by using segmentation.

2 Segmentation-Based Wireframe Generation
The overview of the proposed segmentation-based wire-

frame generation is illustrated as in Fig. 2. Although only
one model is shown in the figure, it represents a set of hu-
man body models. There exists a bijective mapping among
all the models, i.e., their meshes have the same connectivity
and the same number of vertices with correspondences, but
just the vertex positions are different. Therefore, when one

model is segmented, the results can be directly transferred
to all the other models consistently. After segmentation, the
boundary of the segmented patches is extracted as the wire-
frame of the human shape. Due to the nature of segmenta-
tion methods, the extracted boundary may not be smooth and
have jagged shapes. Hence, a post-processing step is intro-
duced to smooth the boundaries. After that, the wireframe is
procured for the learning. The technical details of these steps
are presented in the following.

2.1 Mesh segmentation
Mesh segmentation has been a classical fundamental

problem in geometry processing and computer graphics.
The objective of segmentation methods is to decompose the
whole mesh into small regions. Typically, the mesh is rep-
resented with a triangulated mesh, which is defined as M =
(V,E,F), where V , E, and F are the vertices, edges, and
faces of the mesh model respectively. A standard segmen-
tation partitions M with K disjoint subsets P1, ...PK ∈M ,
where Pk is a subset of vertices Pk ∈V . Two patches Pi and
P j are neighbours if they contain vertices ∃i∈ Pi and ∃ j ∈ P j
that are connected by an edge {i, j} ∈ E. The partitioning
process is usually implemented through a clustering method
by defining a similarity or distance function D for adjacent
vertices or faces, as follows:

x = argmin
K

∑
k=1

∑
xi,x j∈Pk

D(xi,x j), i 6= j,

where x is the optimal segmentation, xi and x j are the ver-
tices or faces on the mesh M . Different segmentation meth-
ods include distinct clustering principles [20–24]. The read-
ers are referred to two recent survey papers [8, 9] for the
classification of these clustering principles. An example is
shown in Fig. 2 (middle). In this paper, the mesh segmen-
tation is mainly used for generating the wireframe on the
human model. It is expected that the segmenting principle
can produce the wireframes which are amiable for improving
the learning performance on human body shape. Therefore,
a clustering method that can find a set of meaningful wire-
frames similar to the anthropocentric one is preferred. Thus,
to develop an automated segmentation-based wireframe gen-
eration method, the main focus of this paper is to explore the
inherent factors that bridge the segmenting principle and the
wireframe-assisted learning performance.

2.2 Wireframe smoothing
Since segmentation results are the clusters of triangle

faces, the boundaries of these clusters usually are rough due
to the triangles. To obtain smooth wireframes, a Laplacian
smoothing operation [25] is applied to the segment bound-
aries on the triangulated surface. The smoothing process
is illustrated in Fig. 3. In each iteration, a vertex v on the
wireframe is moved along a direction to shorten the length
between its predecessor vertex v− and successor vertex v+
(Fig. 3a). To preserve the shape as much as possible, the new
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Fig. 3: Illustration of smoothing the wireframe (bold curve).
(a) In each operation, a vertex v is moved on the surface to
shorten the curve length between its predecessor and succes-
sor vertices: v− and v+. (b) The operation is applied to ev-
ery vertex on the wireframe subsequently. (c) The smoothed
wireframe is obtained.

position is restricted to be on the original surface. After up-
dating v, its successor vertex v+ becomes the next vertex v′

to be updated (Fig. 3b), and this operator is applied to all ver-
tices on the wireframe in one iteration. Through several (5 in
this paper) iterations of this Laplacian smoothing, the wire-
frame are smoothed. In this way, the topology of the mesh
is not altered but just the vertex positions, and thus it can
be conducted on all models separately after segmentation.
Once this smoothing process is finished, the wireframes can
then be used for semantic learning. Note that the smoothing
operation is directly conducted to wireframes on the whole
surface, and the wireframe in Fig. 2 is already smoothed.

3 Characterization Methodology
In our proposed segmentation-based wireframe genera-

tion framework, the wireframe is coming from the automa-
tion segmenting principles. Simultaneously, the primary
purpose of the segmentation method is to separate the in-
put mesh into small regions with similar geometric features,
e.g., curvature, normal, and convexity. It does not consider
the effects on the generated wireframe and the correspond-
ing learning performance. Therefore, to evaluate the learn-
ing performance of wireframes generated from different seg-
menting principles, a set of quantifiable criteria must be es-
tablished. Different segmentation approaches would lead to
diverse wireframes. How would the segmenting principles
involved in these approaches affect learning performance?
This is the main research question we want to investigate
for the segmentation-based wireframe generation. To fairly

evaluate multifarious wireframes’ learning performance, we
quantitatively extract the standard comparable criteria and
factors of the wireframe. Then we propose a set of hy-
potheses based on these characteristics that may influence
the learning performance.

3.1 Quantifiable criterion of the wireframe
To establish the wireframe’s quantifiable criteria that

may affect the relation learning performance, the features of
the wireframe are examined, and the standard statistical at-
tributes of these features are extracted in this section.

3.1.1 Number of points on wireframe and mesh patches
One of the essential attributes in statistical learning is

the dimensions of inputs and outputs. When there is an im-
balance between the data, the problem becomes either over-
determined or under-determined. In the parametric learning
framework, the wireframe separates the human shape into
small mesh patches. The relation (ϒk) between the mesh
patches (mpk) and their corresponding boundary wireframes
(w f k) is learnt through Eq.(1). Therefore, the inputs and the
outputs are the positions of the points on the wireframe and
the mesh patch. More accurately, it should be their princi-
pal components (PCs) since PCA is applied before learning.
It is expected that these two dimensions to be close so that
the impact of dimensional imbalance can be minimized, and
hopefully, the learning performance is improved. As such,
we have the following hypothesis.

Hypothesis 1: The dimension ratio of boundary wireframe
(w f k) to mesh patch (mpk) in a segmented mesh patch is bet-
ter to be close to one.

Note that this measurement can also be applied to the
relation Ψ between SP and WF . However, SP to WF only
has one ratio for one segmentation method on one number
of resulting mesh patches. It may not be fair and is statis-
tically invalid to compare different segmenting methods on
this ratio, so it is not studied in the paper.

3.1.2 Smoothness of the wireframe
The wireframes are the boundary of the mesh patches,

and it is expected that the boundary wireframes can depict
the outline and represent the shape profile of the bounded
patches. While the segmentation approaches separate the hu-
man shape with an automatically segmenting rule, the gen-
erated wireframes may contain irregular curves even after
boundary smoothing. This is like the statistical noises in
signal processing. If a boundary wireframe includes such
noises due to the curves’ non-smoothness, the noises may
disturb the learning process. Therefore, we propose another
hypothesis.

Hypothesis 2: A smoother boundary wireframe is beneficial
to the learning performance.

To quantitatively measure the boundary wireframes’
smoothness, the integral of absolute Gaussian curvature is
applied as the smoothness measurement for each closed
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2 closed boundary wireframes

1 closed boundary wireframes

Fig. 4: Illustration of the topology of segmented mesh
patches.

curve on the boundary wireframes of a mesh patch. Since
the representation of the human shape is in a triangulated for-
mat, the average point curvature on the wireframes is used to
indicate the smoothness of the wireframe w f k:

sk =
1
nk

nk

∑
i=1

κi, (2)

where sk is the smoothness measure of wireframe w f k, κi is
the Gaussian curvature of ith vertex on the wireframe, and nk
is the total number of vertices on the wireframe w f k. It is
expected that the value sk is the smaller the better.

3.1.3 Topology of mesh patches
Topology refers to an object’s inherent structural con-

nectivity, and it is often described by the genus number. One
way to classify models into topological classes is to count the
number of holes contained in shape. When the wireframes
segment the human shape into disparate mesh patches, each
patch could contain one or more boundary wireframe loops.
Figure 4 is an example demonstrating how to use the number
of closed rings to represent the topology of segmented mesh
patches, i.e., if a mesh patch has one boundary wireframe, its
genus number is equal to one. These loops act as handles to
describe the whole mesh patch, and thus they can reflect the
complexity of the shape geometry within the mesh patch. A
larger number of closed rings means that a mesh patch has
more handles, which can depict the contour of the bounded
shape geometry, and thus it may be easier for the learning
of the relations between the boundary wireframe and mesh
patch. Based on this observation, we have the following hy-
pothesis.

Hypothesis 3: The larger genus number (i.e., the number
of closed boundary wireframes) of a mesh patch, the more
effective in learning its geometry.

3.1.4 Uniformity of mesh patches
Previous criteria are mostly related to the learning per-

formance in individual mesh patches, and here we also want
to look into how the distribution of data would affect the
learning. The wireframe partitions the human shape into var-
ious mesh patches and the resulted patches would have dis-
tinct shapes and sizes. This variety would affect the learning
of both relations (Ψ and ϒk). For example, if the patches have
significantly distinctive sizes, the results would be weighted

more heavily on one than another. Although some patches
may be learned better, the others may be worse. Uniformly
distributing the data may help to reduce such variety, and we
have the following hypothesis.

Hypothesis 4: The segmentation being more uniform im-
proves the overall quality of parametric modeling.

We use the following uniformity measuring method for
all segmented mesh patches.

uni(mp1,mp2, ...,mpK) =
1√

K−1
× stdevk(size(mpk))

meank(size(mpk))
,

(3)

where K is the number of mesh patches segmented by the
wireframe, and size(mpk) returns the size of patch mpk,
which is the sum of areas for all faces inside the mesh patch.
The coefficient of variation is a standardized measure of dis-
persion and thus provides a scale-invariant uniformity index.
According to this uniformity estimation, if the sizes of seg-
mented mesh patches are close, the variety would be small.
Thus the value is expected to be the smaller, the better.

3.2 Segmentation methods
There is an enormous amount of literature on mesh seg-

mentation approaches developed based on the different types
of segmenting principles [8,9]. This paper aims to find which
segmenting rule can generate wireframes beneficial to the re-
lations learning on human shape. To test the hypotheses in
the previous section, we select four segmentation approaches
mainly based on the discussed quantifiable criteria such as
curvature and uniformity that may affect the relations learn-
ing. They are curvature-based, uniformity-based, convexity-
based, and consensus segmentation. These four approaches
segment the input human shape according to the clustering
of different features. Such various features would generate
distinctive wireframes and further affect the learning perfor-
mance. Then we could explore how the features influence
the aforementioned criteria and find out which factors are
beneficial to the wireframe-assisted learning by employing a
comparative study of the generated wireframe. The four seg-
mentation approaches are visualized in Fig. 5, and the details
of each method are briefly introduced as follows.

3.2.1 Curvature-based segmentation
The first selected approach is a curvature-based segmen-

tation [26]. The main reason to select such a curvature-based
method is to provide homogeneous segments for input hu-
man shape w.r.t. the predetermined curvature. Besides, it
can affect the smoothness of the generated wireframe. The
selected method [26] combines the Fast Machining [27] and
Farthest Point Sampling [28], which is named FMFPS here
for simplicity. FMFPS is implemented based on sampling
seed points and updating a Voronoi diagram, equivalent to
segmenting the sampling domain, i.e., assigning the labels
(segmented region number) for each input point. To deter-
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Fig. 5: Illustration of different segmentation approaches with
resulting 15 segments.

mine the stopping criterion, FMFPS formulates a cost func-
tion based on the shape’s local curvatures that regulate an
incremental and decremental strategy for the segmentation.
The implementation of the FMFPS method [26] is repro-
duced in our experiments, and the Gaussian curvature is ap-
plied here.

3.2.2 Uniformity-based segmentation
Since one of the hypotheses is related to the uniformity

of segmented mesh patches, we select a uniformity-based
segmentation method that tends to segment the human shape
into similar sizes. Specifically, we use the uniform patch
growing algorithm [29] here. In this algorithm, K random
vertex seeds are firstly generated, then the patches are grown
by computing distances of neighbouring vertices to the cor-
responding seed, and the seeds are updated in the growing
procedure. The uniformity metric is used as a stopping cri-
terion for the growing. The implementation of [29] is repro-
duced and applied in our experiments.

3.2.3 Convexity-based segmentation
The convexity-based method tends to segment the shape

into convex or nearly convex regions. In this type of method,
the approximate convexity (AC) segmentation [30] is se-
lected here. In the AC method, the shape is firstly decom-
posed into a large number of small and near-convex com-
ponents by a spectral clustering of the vertex-connectivity
graph. Then, the mutual visibility of adjacent patches is es-
timated as a merging criterion. After this initial merging,
each patch’s volumetric profile is computed with a shape
diameter function (SDF) [31]. Based on their volumetric
profiles, the patches are merged according to their similar-
ity which is calculated based on the Earth Mover’s Distance
(EMD) [32], e.g., two adjacent patches with small EMD dis-
tance are likely to be merged together. Finally, a point-level
graph cut optimization on the merged components is con-
ducted to refine the segments’ boundaries. The original im-
plementation of [30] is applied here in our experiments.

3.2.4 Consensus segmentation
Consensus segmentation tends to acquire a stable seg-

mentation for the input shape. Here, a stable region detection
(RRD) [33] method is applied for the wireframe generation.
In the RRD method, firstly, a set of over-segmentation for
the given shape is produced with random cut algorithm [34]
as well as Global Point Signature (GPS) [35] clustering of
vertices on the shape. After groups of initial segmentation
are created, RRD uses an optimization algorithm to find the
optimal consensus segmentation, which is defined as the seg-
mentation is as close as possible to all the ones in the initial
groups of ensemble segmentation. This means that the fi-
nal detected segmentation is the most stable (consensus) one
across the groups of initial segmentation. The details of this
optimization procedure are referred to [33]. In this paper,
implementation of RRD is reproduced and applied for gen-
erating the wireframes on the human shape.

4 Results
Based on the presented methodology, the results are re-

ported in this section. The same database of the human body
used in the previous work [7] is applied, which has 77 sub-
jects of woman model. Each model contains 11,072 mesh
vertices and has its corresponding defined semantic parame-
ters. There are 8 semantic parameters used in the study, e.g.,
body height, neck girth, bust, and waist. To assess the learn-
ing performance, the first 67 subjects from the database are
used for training, and the remaining ten subjects are used for
testing. For the testing, the framework synthesizes the shape
of the models using the ten human shapes’ semantic param-
eters and compares the synthesized results with the actual
models. The synthesis error is measured by comparing the
distances between the corresponding vertices. Specifically,
the synthesized human model error (errh) is defined as

Eh = ‖h, ĥ‖2 =
nh

∑
i=1
‖xi− x̂i‖2, xi ∈ h, x̂i ∈ ĥ, (4)

where xi and x̂i are the vertices from the original h and the
synthesized ĥ human models, and nh is the number of the
vertices on the human models. Similarly, the synthesis er-
ror can also be defined for each mesh patch to study how the
boundary wireframe affects each patch’s learning. Since the
number of points among the mesh patches varies, the synthe-
sis error of a mesh patch (errmpk ) is averaged by the number
of vertices to normalize the error:

Empk =
‖mpk, ˆmpk‖2

nk
=

∑
nk
i=1 ‖xi− x̂i‖2

nk
, xi ∈mpk, x̂i ∈ ˆmpk

(5)

where mpk is the original kth mesh patch, ˆmpk is the pre-
dicted kth mesh patch, and nk is the number of the points
within the patch. In this paper, the segmentation and wire-
frame generation are implemented with Matlab R2017b.
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4.1 Dimension ratio of wireframe and mesh patch
This section tests hypothesis 1 that the dimension ratio

of boundary wireframe to mesh patch in terms of the num-
ber of their corresponding PCs is better to be close to one.
To compare different segmentation methods, they are set to
produce the same number of mesh patches (i.e., segments).
Generally, more patches would lead to a smaller mesh patch
size and less variance within each patch. To make the ef-
fect of point ratio prominent, the number of patches is set
to ten, and the synthesis error of the ten patches are plotted
against their dimension ratios in Fig. 6. The error is the aver-
age point prediction error within each mesh patch for the ten
synthesized human shapes, i.e.,

Emp =
∑

K
k=1 Empk

K

where K is the number of synthesized models.
From the correlation results, we can observe several in-

teresting patterns. Firstly, if we divide the charts into two
parts by the ratio of one, we can see the points on the right
part are generally much higher than those on the left part.
This reveals that the ratio smaller than one would lead to
a smaller mesh patch synthesis error. As in the synthesis
framework, we use the wireframe to predict the mesh patch
with the learned relation ϒk. A ratio larger than one means
that the dimension of the boundary wireframe is higher than
the mesh patch dimension. In other words, the boundary of
a patch has more features than the patch itself. This would

lead to an over-fitting situation and result in a higher predic-
tion error. Secondly, the trend of the data points in the two
parts is symmetric to some extent. As can be seen from the
figure that there is a decreasing pattern on the left part, and
an increasing pattern for the right part. The pattern on the
right further verifies that a higher dimension of the bound-
ary wireframe to mesh patch would increase the over-fitting
effect. On the contrary, when the ratio is less than one, we
can see that the average point prediction error is increased
with the decrease of the ratio. This indicates that a lower di-
mension of the boundary wireframe does not contain enough
information to describe a higher dimensional bounded mesh
patch in the relation learning. This can also be seen from
the outlier points in the AC and the UnF methods. The seg-
mented hand patch only has one wireframe on the wrist, but
the hand shape is very different from its boundary. The ratio
is not too small in this case because the hand shape is like
a cylinder, and the dimension is largely reduced after PCA.
Although the dimension ratio of the boundary wireframe to
the mesh patch is close to one, such limited wireframe infor-
mation cannot fully represent the hand patch’s full-shaped
profile. Therefore the learned relation has a high prediction
error. Despite the outliers, the symmetric pattern reveals that
the learning performance is generally better with the dimen-
sion ratio getting closer to one. However, it may not be the
only factor to find an optimal wireframe generation method.
The shape difference between the boundary wireframe and
the mesh patch should probably be considered too.
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Fig. 7: The correlation between the average curvature of the boundary wireframes and the reconstructed mesh patch error.

4.2 Smoothness of the wireframe
Here, we test hypothesis 2 that a smoother wireframe is

beneficial to the learning. To conduct the experiment, firstly,
one of the ten synthesized human models is randomly cho-
sen. The reason for using only a single shape is that the mod-
els have different shapes and so do the wireframes. The cur-
vatures and errors can vary distinctly model-by-model. Av-
eraging the curvatures and the errors among different models
is not meaningful, so a single model is studied instead. The
average point prediction errors (Eq.(5)) for each mesh patch
is plotted against the curvature of its boundary wireframe, as
shown in Fig. 7. As the boundary wireframe has many points
and each point has its curvature, all points’ average curvature
on the boundary wireframe is used here. All four segmenta-
tion methods are applied, and the number of segments is set
to 20 in this experiment. The segmentation results are also
presented in Fig. 7.

It can be seen that with the increasing of the average
curvature, the average point error of the synthesized mesh
patch presents an increasing pattern, no matter which seg-
mentation method is used. This reveals that the wireframe’s
curvature indeed influences the relation learning, and gener-
ally, a smoother wireframe can lead to better learning perfor-
mance. Nonetheless, the slope of the increasing line in each
segmentation is small. This indicates that the learning perfor-
mance is not significantly affected by the curvature. Differ-
ent segmenting rules will lead to totally different wireframes,
thus generating various segmented mesh patches. These vari-
ances among the patches bring a large variety to the curva-
ture on the wireframes, and this variety also influences the

learning performance. Thus, the pure curvature information
on the wireframe cannot represent the entire learning perfor-
mance, although it can influence the relation learning. This
justifies the use of boundary smoothing after segmentation,
but it is probably already sufficient for the sake of smooth-
ness. We circled the data points that correspond to the mesh
patch with the highest prediction errors. Although different
segmentation approaches generate different segmentation re-
sults, the patches with the highest errors are located at either
the hands/arms or the feet. This further supports the im-
portance of the shape difference between the patch and its
boundary.

4.3 Topology of mesh patch
From Hypothesis 3, the topology of the separated mesh

patch from the wireframe could affect the learning perfor-
mance. In this section, the correlation between a mesh
patch’s topology and the learning performance is studied. As
discussed in Section 3.1, the number of closed rings (i.e., the
number of closed boundary wireframes) is applied here to es-
timate the topology of a mesh patch. To study the correlation
between the number of closed rings and the learning accu-
racy, all the ten synthesized models are applied to the com-
parison. Firstly, we calculated the number of closed bound-
ary wireframes for each mesh patch, separated from the
generated wireframes by different segmentation approaches.
Then for each synthesized shape, we compute the average
predicted point error within the mesh patch through Eq. (5).
The average point error within each mesh patch across ten
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Fig. 8: The correlation between the topology of mesh patch and the reconstructed error.

predicted models are collected, and the correlation between
the average point prediction error (Emp) and the topology are
mapped out in a box plot. The number of segments is set to
50 so that there are more boundaries to study the effect of
topology.

A clear trend can be observed that with the increasing
number of boundary wireframes, the average predicted error
decreases. The UnF method has the most apparent pattern
that the average error is largely decreased when the mesh
patch’s number of boundary wireframe is greater or equal to
3. This verifies that a larger number of boundary wireframes
can depict a more informative mesh patch contour, which
helps learn the relation between the boundary wireframe and
the mesh patch. This is mainly because the boundary wire-
frame serves as the handles. More boundary loops mean
more distributed handles throughout the mesh patch, which
is more helpful for the learning method to find the relation
between the boundary wireframe and mesh patch.

4.4 Uniformity of mesh patches
In this section, we test hypothesis 4 related to the uni-

formity of patches. A set of wireframes separates the human
shape into small mesh patches. It can be seen from Fig. 5 that
the sizes of the patches are varied. To see how the mesh patch
size variation affects the learning performance, we conduct
the uniformity experiment. A randomly chosen shape from
the ten synthesized models is applied to conduct this experi-
ment. Firstly, the distribution of the size of segmented mesh
patches on this synthesized shape is extracted. Then, each
set of mesh patches’ uniformity is calculated with Eq.(3).
To comprehensively compare the different sets of generated
wireframes from four segmentation approaches and see how
the different number of resulting separated mesh patches
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Fig. 9: The correlation between the number of mesh patches
and uniformity

would affect the uniformity, we set each segmentation-based
wireframe generation approach to produce 10, 20, 30, 40,
and 50 mesh patches. For the new synthesized shape, its
predicted model error is computed using Eq.(4). We com-
pare the learning performances of different segmentation ap-
proach among the different number of mesh patches.

Figure 9 shows the correlation between the number of
mesh patches and the uniformity for each segmentation ap-
proach. From which it can be seen that with the increasing of
the number of segmented patches, the uniformity value de-
creases, i.e., the variation of the patch size becomes smaller
(meaning more uniform). This is an intuitive observation
since when we have more patches, each patch’s size would be
smaller, then the sizes among mesh patches would be closer
to each other, and thus the uniformity value would be de-
creased. It should be noticed that when FMFPS and AC ap-
proach increased the mesh patches from 40 to 50, the uni-
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formity is slightly increased. This reveals that due to differ-
ent segmenting principle, the separated mesh patch sizes are
not always decreased. For example, in the AC method, the
mesh patch needs to satisfy the approximately convex seg-
menting rule. Although we increased the segmented number
of patches, some patches’ shape would not always be de-
creased as it needs to be nearly convex and satisfying other
segmenting rules. From this uniformity observation, we can
see in general, the segmented mesh patches would be more
uniform with the increasing of wireframes, and specific seg-
menting rules may slightly affect the uniformity value.

We plot the relationship between uniformity and the syn-
thesized model error for the learning performance with dif-
ferent uniformity values. We collect the uniformity of all
mesh patches separated from four segmentation approaches
and five patch numbers. For all the combinations, the syn-
thesized human shape errors are also collected. Figure 10 is
the correlation between the uniformity value and the synthe-
sized human shape error. It can be seen that a larger unifor-
mity value leads to a larger prediction error. This reveals that
a more uniformly distributed size of the mesh patches has a
small variety. Then the learned relations can better depict the
real relationships of the SP→WF and w fk→ mpk.

4.5 Number of mesh patches
In the previous sections, it can be seen that a different

number of patches would lead to different learning accuracy.
Therefore, we also study the correlation between the num-
ber of mesh patches and the learning performance, and we
plot the relationship between the number of mesh patches
and predicted model error, as shown in Fig. 11(a). It can
be observed when the mesh patches number is less than 50,
and there is a trend of more number of mesh patches lead-
ing to the smaller predicted mean patch error. Nevertheless,
when the mesh patch number reaches 50, it would be slightly
increased. This reveals that when using the wireframes sepa-
rating the human model into small parts, many mesh patches
could have the smallest learning error for the human model.
Among the methods tested, the optimal number of patches
should be around 40. When a different segmentation ap-
proach is used to generate the wireframe as the intermediate
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Fig. 11: The correlation between the number of mesh patches
and reconstructed model error.

layer for the relation learning, it is suggested to test different
segments to find the best learning performance.

If we split such correlation to each segmentation ap-
proach, as shown in Fig. 11(b), we can observe that the learn-
ing accuracy varies for different segmentation approaches.
This is mainly because these segmentation approaches are
based on distinct segmenting principles, and the resulting
generated wireframes would be diversified, leading to dif-
ferent learning performance. From Fig. 11(b), it can be seen
with different segmenting principles, each method has the
smallest prediction model error, but the corresponding num-
ber of patches varies, e.g., FMFPS is at 50, and UnF is at
20. Generally, FMFPS method performs better on a larger
number of patches, and UnF performs better on a smaller
number of patches. This is because FMFPS considers curva-
ture, which decreases the feature complexity within a patch.
However, it generally results in irregular shapes, so it per-
forms worst when the patch number is low. Nonetheless,
the patches will become smaller and more uniform when the
patch number is increasing, and thus its performance gets
improved. While in the UnF method, with the increasing
number of mesh patches, many mesh patches would bring
more irregular boundary wireframes even though the mesh
patches are distributed more uniformly. This would increase
the complexity for learning the relation of SP→WF , thus
worsening the learning performance. Among all the meth-
ods, the UnF method performs more steadily with relatively
lower errors.
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Table 1: Wireframe comparison with manually defining

Wireframe Method Uniformity Model Error

Manually defining [7] 0.2815 219.739

FMFPS 0.1296 301.775

AC 0.4561 230.886

RRD 0.1251 261.304

UnF 0.0909 206.445

5 Discussion
From the experimental results in the previous section, it

can be seen that the proposed factors are indeed affecting the
relation learning performance. However, different segment-
ing rules would have a distinct influence on the factors. They
could also lead to various shapes of each mesh patch, which
also seems important. Therefore, to develop a segmentation-
based wireframe generation method, the segmenting princi-
ple is critical since it directly determines the above criteria.
In this section, we firstly compare the automated wireframe
generation with the manually defining one, then based on the
comparison and the experimental results in Section 4, sev-
eral design guidelines for the segmentation-based wireframe
generating are summarized.

5.1 Comparison to previous work
The segmentation-based wireframe generation is com-

pared with the manual wireframe defining in the previous
work [7], which manually defined a wireframe on the human
shape based on the anthropocentric rules resulting in 39 mesh
patches. To fairly compare with it, the results of the 40-patch
generated by the four segmentation approaches are employed
here. The uniformity value of these five sets of mesh patches
are computed, and the synthesis experiment is conducted.
Table 1 shows the results of uniformity and the model er-
ror, from which it can be seen that the manually defining
method has a relatively larger uniformity value. This is be-
cause the manually defining method is based on the knowl-
edge of human shape, and the wireframe does not separate
the shape evenly. Also, we can see that the AC approach
has a larger uniformity value, mainly because of the AC ap-
proach partitions the shape into nearly convex regions. Thus,
the resulting size distribution of mesh patches is far from uni-
form. However, we can see that the model prediction error
of manually defining and AC are smaller than FMFPS and
RRD. This reveals that although uniformity is an essential
factor (UnF has the lowest value of uniformity and model er-
ror), if the separated mesh patches include specific meaning
or knowledge, the learning performance could be improved.
It should be noticed that manually defining takes tedious ef-
fort to define a set of meaningful wireframes and usually not
available for a new arrival dataset. At the same time, the
segmentation-based method can generate wireframes auto-
matically.

From this comparison, we can see it is preferred that a

segmenting approach can generate meaningful mesh patch
geometry and satisfy the criteria as mentioned earlier for
wireframe generation. Besides the aforementioned criteria,
other factors also need to be considered. For example, the
hand shape appeared many times in the previous experi-
ments. This reveals the difference between the mesh patch
and its boundary wireframe needs to be considered when de-
veloping a segmentation-based method since the boundary
wireframe is used to describe the shape of the mesh patch in
the wireframe-assisted learning framework. Besides, how to
develop a quantifiable criterion to depict the anthropocentric
meaning of the wireframe is another direction. For example,
the AC method uses the convexity as such a quantifier: when
segmenting the human body shape, a quantifiable and mean-
ingful criterion would be better for the wireframe generation.

5.2 Wireframe design guidelines
It is desired that an automatic and robust wireframe

generation methodology can be developed for human body
shape learning. Such a wireframe not only provides an in-
termediate layer for the parametric human body modeling,
but it can also be extended for extracting the wireframe net-
work for a three-dimensional digital model. Such a curve
network has been widely applied in various applications such
as sketch modeling and generative design. Therefore, it is
necessary to establish the design guidelines for developing
the segmenting principles for generating the expected wire-
frame of the human body shapes. To develop an automatic
wireframe generation method, we conclude the following de-
sign guidelines for the segmentation algorithm development
based on the experimental studies.

In practice, there could be circumstances that different
guidelines have conflicting relationship. For example, more
uniformity may lead to less topological variation on simple
geometries. Therefore, we rank the guidelines in terms of
their impact to the learning performance. For example, the
topology criterion is the most preferred since the shape learn-
ing is highly dependent on the bounded geometry profile. In
contrast, the dimension ratio cannot always guarantee a bet-
ter learning performance, so it should have a less preference.
In the following, we list the design guidelines by their im-
portance and discuss them one by one.

1. More boundary wireframes per mesh patch. It was
shown in Section 4.3 that the more closed wireframes in a
mesh patch, the lower the learning error. These close bound-
ary loops serve as the handles describing the shape profile of
the patch. More closed loops of boundary wireframe are ex-
pected for a better relation learning in a mesh patch. Thus, in
the segmentation method design, it can be used as a heuris-
tic quantifier to guide the clustering or region growing algo-
rithms.

2. Partition uniformly: From Section 4.4, the learning per-
formance is relevant to the uniformity of the segmented mesh
patches. If the knowledge such as the anthropocentric rules
of the human shape data is not available, it is expected the
size of the resulting mesh patches distributed close to uni-
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form. This can be integrated as another designing guideline
for the automatic segmentation method developing for wire-
frame generation.

3. Dimension ratio in the interval [0.8,1.0): It can be seen
from Section 4.1 that for most segmentation-based wire-
frame generation approaches, the dimension ratio of bound-
ary wireframe to mesh patch can affect the relation learn-
ing. Without any pre-knowledge of the dataset, it is expected
that the dimension ratio is slightly less than one, in the in-
terval [0.8,1.0), when designing a segmenting principle for
the wireframe generation. This can be applied as a heuristic
principle for the segmentation algorithm designing.

4. As smooth as possible: As it can be seen from Section 4.2
that the smoothness affects the learning performance. Gen-
erally, a smaller curvature of the wireframe is expected. This
can be deployed as an optimizing criterion when developing
a segmentation method for the wireframe generation. It can
also be used as a wireframe post-processing guideline, and
the wireframe can be processed with a smoothing operator
after its generation.

6 Conclusion
In this work, the wireframe automation is studied to re-

place the manually defining, which was mainly based on
anthropocentric experiences. Aiming at develping an au-
tomatic wireframe generation method for the human body
shape modeling, this paper proposes a segmentation-based
wireframe generation methodology. The mesh segmentation
is introduced to produce the wireframes on the human body
shape. The automation methodology mainly relies on the
segmentation algorithm, and thus the quality of the wire-
frame largely depends on the segmenting principle. This
paper studied several quantifiable criteria for evaluating dif-
ferent segmenting principles to evaluate whether the pro-
duced wireframe is favorable for wireframe-assisted learn-
ing. The quantifiable criteria are used to measure the perfor-
mance of the methodology. Based on these criteria, the cor-
responding hypotheses are proposed accordingly. To test the
proposed hypotheses, four different segmentation algorithms
with unique segmenting principles are applied to produce the
wireframe, and the synthesizing experiments are conducted.
Experimental results show that most hypotheses are verified,
and the criteria are obviously correlated with the learning
performance. From the results, several design guidelines
and heuristic rules are summarized for the development of
a segmentation algorithm to produce wireframes on human
body shape. The work’s future direction includes the seg-
mentation algorithm development for generating a meaning-
ful wireframe for the human body shape and extraction of
knowledge from anthropocentric experiences for wireframe
automation.
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