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Four-dimensional (4D) printing is a new category of print-
ing that expands the fabrication process to include time as
the fourth dimension, and its simulation and planning need
to take time into consideration as well. The common tool for
estimating the behavior of a deformable object is the finite
element method (FEM). However, there are various sources
of deformation in 4D printing, e.g., hardware and material
settings. To model the behavior by FEM, a complete under-
standing of the process is needed and a mathematical model
should be established for the structure-property-process re-
lationship. However, the relationship is usually complicated
that requires different kinds of testing to formulate such mod-
els due to the process complexity. With the insight that the
characteristic of shape change is the primary focus in 4D
printing, this paper introduces Geometry-Driven Finite Ele-
ment (GDFE) to simplify the modeling process by inducing
deformation behavior from a few physical experiments. The
principle of GDFE is based on the relationship between ma-
terial structure and shape transformation. Accordingly, a
deformation simulation can be developed for 4D printing by
applying the principles to the GDFEs. The GDFE framework
provides an intuitive and effective way to enable simulation
and planning for 4D printing even when a complete mathe-
matical model of new material is not available yet. The use
of the GDFE framework for some applications is also pre-
sented in this paper.

1 Introduction

Additive manufacturing (AM), a.k.a. three-dimensional
(3D) printing, has been developed with a growing impact
to society since the invention by Charles Hull in 1984 [1].
AM has been widely used in automotive, aerospace, med-
ical, electronics, commercial, and fashion industries [2, 3].
Some attractive capabilities of AM include it can produce
complex, freeform, and custom components without increas-

ing time, material, or cost, which presents to designers “com-
plexity for free” [4]. However, the layer-based 3D printing
technology has some limitations such as slow speed, stair-
case effect, and difficult to fabricate lightweight thin-shell
structures. Inspired by Origami [5,6], a new AM technology
called four-dimensional (4D) Printing [7-10] is developed,
which is roughly defined as 3D printing plus time. In other
words, 4D printing is to 3D-print a structure that evolves its
shape as a function of time. This demonstrates a new possi-
bility for production and manufacturing. 4D printing is also
a first glimpse into the world of evolvable materials that can
respond to user needs or environmental changes. As environ-
mental, economic, human, and other constraints continue to
fluctuate, the adaptive and dynamic responses of 4D printed
structures through external stimuli (e.g., heat, humidity) may
make the products more resilient. 4D printing thus offers
exciting opportunities for future products’ design and manu-
facturing. It has board applications in assembly, packaging,
robot actuator, drug delivery, and biological devices [11-15].

As 4D printing expands the fabrication process over
time, its simulation and planning need to take time into
consideration as well. However, it is challenging to con-
trol the behavior of a 4D-printed part so that it can have
the desired shape-changing performance. The design can
be made possible by integrating simulation into the planning
phase, which allows an iterative process to update the design
and estimate the physical effects of the changes. The com-
mon tool in computer-aided engineering (CAE) for estimat-
ing the behavior of a deformable object is the finite element
method (FEM). However, the shape deformation comes from
many different and complex factors including manufacturing
process, hardware, thermal effect, material properties, etc.;
some of them are even unknown. To include the factors one-
by-one, we need not only a complete understanding of the
manufacturing process to formulate a mathematical model,
but also a set of testings to characterize the materials and



their conditions at different stimuli as well as the interactions
between them. However, such interactions are complicated
that require extensive work in order to formulate such models
due to the nature of the process complexity and the current
limited understanding of AM technologies. For example, the
3D-printed part consists of multiple materials, and the ad-
hesion between materials is different case-by-case. In the
traditional way, the cohesive zone model parameters (and all
other hardware and material characteristics) need to be first
calibrated with high-precision measurement equipment be-
fore FEM can be applied.

Based on the insight that geometric shape change is the
main focus of 4D printing, this paper proposes a Geometry-
Driven Finite Element (GDFE) method to simplify the sim-
ulation model to a geometry optimization problem. The
objective of developing the GDFE framework is to enable
simulation and planning for 4D printing when a complete
mathematical model is not available yet for a full version of
FEA. By inducing deformation behavior from a few physical
experiments, the GDFE framework can convert the compli-
cated model to a geometric optimization problem, and pro-
vide an intuitive and effective tool for utilizing new shape-
shifting materials for 4D printing. The principle of GDFE
is based on the relationship between material structures and
shape transformation. Similar to FEM, the design domain
is subdivided into a set of small elements and the deforma-
tion principles are applied on each element. The analysis
on the elements are then assembled into a larger system to
compute the global shape. GDFE is a sophisticated simu-
lation platform to predict the relationship between the 4D-
printing process, the printed material structure, and the re-
lated shape transformation. This work follows a data-driven
simulation framework [16] presented recently for crease-fold
design. However, when material thickness and fold width are
not negligible (Fig.1), the folds cannot be accurately repre-
sented as creases [17]. The modeling should include thick-
ness in the fold, which is called thick fold here. Therefore,
this research makes use of the experimental studies from a
recent 4D printing system [9] to develop a thick-fold sim-
ulator using GDFE. The system [9] can quickly and easily
fabricate “smart” structures with negative thermal expansion
(i.e., contract upon heating). The goal of this paper is to de-
velop an easy-to-use method to predict the behavior of shape
deformation for the 4D printing process using thick fold. Al-
though there are many active materials that can be used in 4D
printing, studying the property of all the materials is beyond
the scope of this paper. Instead, we focus on the contraction-
based 4D printing system [9] because their experimental data
and test cases are publicly available. Deformation principles
are drawn by studying their test cases. Similar derivation
could be applied to other systems and materials in future re-
search.

4D printing is a general term that describes all the struc-
tures are initially 3D-printed and then evolve over time. The
shape-shifting behaviors considered in the literature [18] in-
clude 1D-to-1/2/3D, 2D-to-2/3D, and 3D-to-3D deforma-
tions. Each of which has its own importance and applica-
tions, for example, 1D cases have artificial protein structure

Thick fold

Crease fold

Fig. 1. Difference between a crease fold and a thick fold. Thickness
(t) and fold width (L) are negligible (e.g., paper material) in crease
fold, but not in thick fold.

and responsive smart valve to control flow, 2D cases have
robot origami and flat-packaging, and 3D cases have smart
gripper and angioplasty. In this paper, our primary appli-
cation is to fabricate lightweight thin-shell structures with
freeform shapes, we mainly focus our discussion in the 1/2D-
to-2/3D shape-shifting behaviors.

The rest of the paper is organized as follows. The related
works are reviewed in this section. It is followed by the 4D
printing system with material study in section 2. The details
of GDFE and the related simulation framework will be pre-
sented in section 3. Section 4 will discuss the possible use of
the GDFE framework in some applications. Finally, the pa-
per is concluded by discussion and future work in section 5.

1.1 Related Works

There is research that focuses on the development of
self-folding, self-assembly, or programmable materials for
fabricating smarter materials and better products. A number
of prototypes have been developed with different materials,
fabrication technologies, and external energy sources [19].
However, many of these prototypes require an additional pro-
duction step to embed the ‘programmability’ and the po-
tential energy for transformation, e.g., adding magnets and
elastic strands. This leads to the development of 4D Print-
ing, which streamlines the process of production for pro-
grammable and adaptive materials (see reviews [18,20,21]).
The 4D printed materials are designed to deform their shapes
in a pre-defined way, where the shape variation can be
induced by different physical stimulation to fold, expand,
shrink and curl. They can be triggered by different con-
ditions, including temperature [7, 22], microwaves [23], or
moisture content [24, 25], which can be used to fabricate
personal and responsive products adapting to users demands,
biometric information, body temperature, sweat and internal
pressures. Different self-folding mechanisms have been de-
veloped in the form of planar sheets by using varying folding
principles — e.g., shape memory materials [26], bilayer struc-
tures [27-29], inhomogeneous materials [30], and Shrinky-
Dinks films [31]. Nevertheless, the previous works mainly
focus on the transformation of simple shapes, in which man-
ual modeling was used in their construction (e.g., [8]). Re-
cently, Raviv et al. [32] showed how to construct and simu-
late a complex solid structure that bends and stretches over



time, but the work only considers a 2D grid skeleton.

A major challenge in any 4D-printed system is how to
design structures that can transform from one shape into an-
other. This requires sophisticated simulations to predict the
properties between process, structure, and shape. Schenk
and Guest [33] proposed a model for origami structures with
elastic creased folds via truss representations. Their model
is based on the introduction of torsional spring behavior at
the creases. Tachi [34] used a similar approach to model
the elastic behavior of sheets with creased folds by also ide-
alizing the folds as torsional springs and solving equations
of mechanical equilibrium under constraints assuring that no
fold line or boundary edge is elongated. Zhu et al. [35] de-
veloped a method for analyzing surfaces under creased and
bent folds. Their tool allowed for the superposition of folds
with arbitrary sharpness and angle that collectively dictated
the ultimate shape of the analyzed surface. Belcastro and
Hull [36] used affine transformations to compute the valid
origami structures and the mappings between unfolded and
folded configurations. The model provided the theoretical
basis for origami simulation tools, e.g., the Freeform Rigid
Origami Simulator [37], to compute the unfolded patterns
for a given folded target shape. Kwok et al. [16] has em-
ployed kirigami to release the surface energy by topological
transform (i.e., cutting) when the given shape is highly non-
developable. These simulation systems are mainly based on
the folding that happens along the creased lines similar to
the origami. However, a developable surface can be a col-
lection of planar, cylindrical, conical, and other ruled surface
sub-domains [38]. To fully utilize the capability of the pro-
grammable material, this paper presents a novel simulation
framework to model more general shapes.

2 4D Printing and Material

At the core of the 4D printing technology are three key
capabilities: the machine, the material, and the geometric
‘programme’. The 4D printing machine developed by Deng
and Chen [9] offers a duplex printing to fabricate smart struc-
ture, which is a sandwich structure consists of two different
materials: active and passive. The active material is a pre-
strained polystyrene film [31], the polymer of which is frozen
in its elongated state. When heat is applied, the molecular
motion is increased, and the elongated polymer shrinks uni-
formly back to its preferred configuration. Therefore, the
deformation is actually caused by the internal contraction of
the active material. The printing is based on the Digital Light
Processing (DLP) using light source to solidify the Acrylate
resin as the passive material [39,40]. By the cross-linking
of polymer chains, the process has a high-resolution con-
trol cost-effectively. An example of the fabrication is shown
as the thick-fold case in Fig.1. Together with the contract-
ing active material, the heterogeneous material distribution
gives both structure and potential energy for folding. When
a part is printed, it has an initial position, and then the active
material contracts under heat, forcing the whole structure to
transform. The structure reaches the final-state configura-
tion when the active material finishes contracting. The self-

Table 1. Folding test data with different (L, d) values [9]
L(mm) | 1.50 3.27 342 345 549 503 1.80 340 5.08
d(mm) | 0.11 0.15 0.12 0.18 0.14 0.13 024 024 0.24
ofrad) | 1.75 227 236 1.70 2.71 2.88 092 1.44 1.34
L(mm) | 542 5.60 530 3.14 1.64 132 338 145 1.22
d(mm) | 024 0.26 0.29 031 0.34 0.35 036 040 0.51
o(rad) | 1.92 1.83 1.70 1.05 0.74 0.65 0.87 0.65 0.52

3.0 a )
..
)
2.5 ....-"-‘
o * _Ty=03706x
2.0 2 R?=0.7957
° e
1.5 ,
1.0 . :
e . h
0.5 o —
d3 L
0.0
0 1 2 3 4 5 6 7 8

Fig. 2. The datasets in Table 1 are plotted by the fold angle against
the design parameters, and a linear fitting finds K = 0.3706.

folding mechanism is mainly based on the contraction of the
film under heating with a negative thermal expansion (i.e.,
the expansion ratio R < 1.0). The passive material does not
contract under heat, and coating the passive material on the
active one can alter the linear contraction of the active mate-
rial. Therefore, a proper designed placement of the passive
materials can create an overall anisotropy material property,
which can generate shape-shifting behaviors such as bend-
ing. The spatial arrangement of the active and passive ma-
terials encompasses an embedded geometric programme to
transform the structure from one shape to another with the
activation energy.

2.1 Experimental study

Deng and Chen [9] have studied the material perfor-
mance under thermal stimuli on the crease-fold designs, and
found that there is difference between small and large fold
angles. Thus, they modeled the deformation for these two
cases separately. Their assumption is that a small fold angle
is caused by elastic deformation while a large fold angle is
caused by plastic deformation. However, this assumption is
only valid for creased fold. The reason for different behav-
iors of small and large fold angles is that the thickness of
the material is not considered in the crease-fold design. A
thick fold forms a fold angle (o) is based on its fold width
(L). The larger the fold width is given, the larger the fold
angle can be achieved. In other words, a large fold angle is
formed by a long fold with consecutive small deformations,
instead of a large plastic deformation. Therefore, this pa-



per reanalyzes the experimental data reported in their paper
and derives deformation model for thick-fold designs. To
be complete, their folding test data are included in Table 1,
where d is the thickness of the passive material.

Following their idea in modeling the deformation of the
passive material as large deflections of a wide beam [9], the
deformation is caused by the energy generated in the contrac-
tion of the active material, and thus the relationship between
the fold angle (o) and the design parameters (e.g., fold width:
L, the thickness of active and passive materials: A, d) can be
summarized by

h
7h ey

oa=K
where K is a coefficient related to the temperature and ma-
terial properties. Instead of finding all the parameters to cal-
culate K, we can treat it as an constant in a similar manufac-
turing pipeline and calibrate its value by the physical exper-
iments done by Deng and Chen [9]. As the thickness of the
active material is constant (h = 0.29mm), the experiment was
done by testing different values for fold width (L) and thick-
ness of passive material (d). The data in Table 1 are plotted
in Fig.2 by the fold angle (o) against the design parameters

( ‘;%L), and a best-fit straight line is drawn on the data sets.

The fitting is reasonably good having the coefficient of deter-
mination around 0.8, and it is found that K = 0.3706. Here,
only 18 experiments are conducted to build the mathematical
model for the deformation. If the thickness of passive mate-
rial (d) is also fixed, the number of testings can be further
reduced.

2.2 Deformation principle

After finding the relationship between the fold angle and
the design parameters, the next question is how it can be used
in modeling thick folds. The hinge-based design of Deng and
Chen [9] is actually a special case in thick-fold design that
maximizes the fold angle with a given fold width (i.e., maxi-
mized curvature), where one side of the hinge is coated with
passive material while another side is empty with no passive
material. To generalize the design for arbitrary curvature or
freeform shape, the underlying deformation principle of ma-
terial should be induced. Here, as the deformation is caused
by the contraction of material under heat, the major principle
is the ratio of negative thermal expansion (R). Therefore, our
goal here is to find out the value of R from the hinge-based
design.

Refer to the notation in Fig. 3, a hinge of length L is
composed of an active layer and a passive layer with thick-
ness h and d, respectively. The passive layer constrains one
side of the active layer from contraction, and thus only an-
other side of the active layer contracts. The contraction of
material creates a moment to bend the hinge. The resultant
fold angle is directly related to the length of hinge, the thick-
ness of layers, and the contraction ratio. To calculate the
expansion ratio R, the bending result is approximately de-
scribed as a circular arc, so that the concepts from geometry

h Active layer

d Passive layer

Fig. 3. When an active material contracts in one side by a shrinkage
ratio R with another side constrained by a passive material, it self-
transforms to an arc under heat with a bending angle L.

can be applied. Assume the fold angle is o, the hinge forms
an arc of length L with radius r + & and subtending an angle
a with a center (Fig. 3 right). The inner arc is of a smaller ra-
dius r and having a length of R - L, where R is the expansion
ratio. From geometry, the arc length equals to the central
angle times the radius, i.e.,

L=oa(r+h) and R-L=ar

By eliminating r, the ratio R can be expressed as

R=1-—. @

Substituting Eq.(1) to Eq.(2), it becomes
hiis
R= 1—0.3706(2) . 3)

It can be seen that R is actually a variable of the thickness of
the active and passive layers (%, d), and it will be used for the
development of simulation.

3 Geometry-Driven Finite Element

An important component for the viability of 4D printing
is the design and placement of the passive material that em-
beds the complex state-changing capability directly into the
heterogeneous material in the designed structure. Instead of
constructing hinges to create the crease-fold design resulting
in piecewise linear surfaces, this paper proposes Geometry-
Driven Finite Element (GDFE) to generalize the crease-fold
design to smooth curvatures and general shapes. Making use
of the deformation principle induced from the previous sec-
tion, it can be converted to a geometric optimization problem
assuming model is fabricated by the aforementioned manu-
facturing process. A sophisticated simulation can then be
developed to predict the deformation behavior of the printed
part with heterogeneous material distribution.

Similar to the concept of FEM, a hinge of length L can
be subdivided into a set of small elements, i.e., L = nl where
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Fig. 4. Similar to FEM, the GDFE framework subdivides the design
domain into a set of GDFEs, so that the deformation principle is ap-
plied locally in each element.

n is the number of cells with length /. The expansion ratio
R can also be seen as applying on each small element sep-
arately, i.e., R-L = R-nl = n(R-1). When the elements are
sufficiently small, the contraction and deformation can be ap-
proximated linearly. Therefore, a whole design domain can
be subdivided into a set of elements (Fig. 4), and a simpler
case is considered locally in each of the elements. Given
the expansion ratio R, the final shape of each element can be
computed based on its own configuration (refer to the bot-
tom of Fig. 5 for an illustration in 2D). One can see that
the final shapes of the element are computed geometrically
based on R, which is calculated from the experimental data.
Therefore, the small cell is named Geometry-Driven Finite
Element (GDFE) in our research. Based on the possible con-
figurations, they can be summarized into two types of GDFE:

Rigid GDFE (R-GDFE): both sides of this element are
coated with the passive material. This element will stay
in same shape throughout the transformation.

Contract GDFE (C-GDFE): one side of this element is
empty and another side is coated with the passive mate-
rial. The empty side will contract linearly by R.

The GDFE with both sides empty can be treated as a spe-
cial case of R-GDFE that starts with longer material and
uniformly shrink throughout the transformation. Although
it may provide extra design flexibility, this type of GDFE is
not discussed explicitly in this paper.

3.1 Simulation

With the definition of GDFE, this section presents a sim-
ulation framework using GDFE. The formulation used in the
simulation is derived based on each GDFE in the design do-
main, and a GDFE here is represented by (but not limited to)
a hexahedron defined by eight vertices Vi = (vi1,...,vig),
where the subscript i indicates that they are from the i-th
element. As the active material contracts uniformly in a
plane when heat is applied, the expansion ratio R in Eq.(3)
can be generalized for 2D cases. Therefore, the final shape
of a GDFE can be computed based on its rigid or contract
configuration, and it is also represented by eight vertices
Vi= (vlf L3 7v{ ¢)- The algorithm of simulation is described
as follows. First, the optimal orientation of each GDFE is
determined according to its current shape V;j and the final
shape Vif, i.e., finding a rotational matrix to align Vif to V;.
This is the geometric optimization that can be formulated as

Current Shape V;
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Fig. 5. The final shape of a C-GDFE can be computed by linear
contraction on one side while another side is constrained. It is used
to compute the target shape and optimize the current shape to it.

a minimization of the difference between the current and fi-
nal shapes. After that, they are then assembled into a larger
system that models the entire domain for the whole structure.
Final, the orientation step and the assembly step are iterated,
and the solution can be efficiently approximated by minimiz-
ing the aforementioned error for each GDFE.

Orientation step

Given the current shape V; = (vi1,...,v;g) and the final
shape VI = (V{H...,V{:S) for a GDFE, this step is to find
a rotational matrix for computing the target position V: =
(Vi ,v;g) to construct the orientation equation (see Fig. 5
for an illustration in 2D). First, a linear transformation be-
tween the final and the current shapes can be defined by
a transformation matrix T and a displacement vector d as
TVif +d = V;. There are eight vertices and this system is
overdetermined, so T is computed by least square method
and results in an affine transformation including both the
scaling and the rotation. To find the optimal orientation for
the target shape, the pure rotation has to be extracted from
T. One can decouple the scaling and the rotation by the sin-
gular value decomposition (SVD) into T = ULV'. As T is
a square matrix with positive determinant, U and V are the
rotational matrices, and ¥ is a scaling matrix. Then, the pure
rotational matrix is L = UV . Final, the target shape of the
GDFE is computed by V! = LVf +d.

Assembly step

The orientation step computes the target shapes Vit for all the
GDFE, and they are used to formulate the equations that will
be assembled into a larger system (the whole structure). To
minimize the difference between the current shape V; and the
target shape V} of a GDFE, an energy function is developed
for the simulation:

E; = A;|DV; —DV{|3, 4



where A; is the volume of the GDFE, and N is a 8 x 8 matrix
in which the off-diagonal elements are all —% while the main
diagonal entries are %, i.e., D= (d; ) is defined as

{7

For an example, expanding DV; for the first vertex is

if i=j

it i vi,je{1,2,...,8}

7 R
gVl T g A Vi = Vil — g X Vil
j=2 j=1

where %):?:1 v j is the average (center) of Vj. Therefore,
the effect of D is to shift the center of the GDFE to the origin
eliminating the translational constraint, so that the translation
can be computed implicitly during optimization. This has a
great improvement to the speed of convergence.

As V! is defined from the orientation step, DV! is known
and the only unknown is V;. Comparing FEM with Eq.(4),
it is possible to view D as the element stiffness matrix, and
DV; as the element force vector. Let V be a vector that stacks
all the vertices (vy,...,v,) from the whole design domain,
where V; C V, and there are m GDFEs. Assembling Eq.(4)
from all m GDFEs, the master system for the optimization
can be written as:

E =Y Aj|DV; —DV}|3 = |AV —p|}3, Q)

m
i=1

where A is a 8m X n matrix combines all the mean-centered
matrices and p is the assembly of all the projections from
the target shapes. By setting the derivative of Eq.(5) equals
to zero, it can be solved as ATAV = ATp to update V. Re-
marked that A depends only on N, which never changes, so
ATA can be pre-factorized and reused for all the iterations.
Hence, the solving is efficient with only backward substi-
tutions. ATA is a n x n matrix instead of 3n x 3n as used
in FEM, because the three degrees of freedom (DOF) of a
vertex are decoupled in GDFE, and they can be computed
separately with the same master matrix.

The simulation is dynamics, and the geometric opti-
mization alternates these two steps: orientation and assem-
bly, to approach the final solution. The alternating optimiza-
tion scheme for each iteration is summarized as: (1) For
given V, find the orientation for each GDFE to compute and
assemble the projection vector p; and (2) For given p, solve
ATAV = A p for V by backward substitution.

3.2 Validation

To validate the correctness of the simulation based on
GDFE, two types of validation have been performed. The
first type is to compare the simulation result with the angle-
width relationship found by the experimental study in Eq.(1).
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Fig. 6. The GDFE framework is validated by comparing the simu-
lated bending angle o with the calculated angle & by the analytical
model in Eq.(1). Different fold widths L are tested, and the results
show good matches.

Fig. 7. The test cases (Courtesy Deng and Chen [9]) in (a) and (c)

are reconstructed by the GDFE simulator in (b) and (d). The red
and black lines are just used to facilitate alignment during fabrication
without any effect on the deformation.

Three cases are tested: L = {1,1.6,2.6}mm, and the pre-
sented GDFE framework is applied to simulate the folded
shapes (Fig.6). The fold angles are measured for all three
cases: o = {1.04,1.66,2.70}rad. The thicknesses of the ac-
tive and passive layers used in practice [9] are & = 0.29mm
and d = 0.33mm, so the ratio of negative thermal expansion
in Eq.(3) is R = 0.7. Then, the calculated angle by Eq.(1)
are & = {1.05,1.68,2.73}rad. It can be seen that the pre-
sented GDFE framework can simulate the folding with the
maximum error of only 0.03 rad for an angle close to 7.
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Fig. 8. Comparison between the physical fabrication and the simu-
lation result by GDFE on two freeform surfaces.

The second type of validation is to reconstruct the test
cases shown by Deng and Chen [9] using the GDFE simula-
tor. Two cases are picked including a rolled tube and a crane
design. The same settings are used to design the unfolded
patterns, and the GDFE framework does the deformation
simulation. The simulated shapes match well with the phys-
ical test cases as shown in Fig.7. All the test cases validate
that the GDFE simulator developed based on the physics of
4D printing process can capture the contraction-based shape
deformation. As a future work, we will quantitatively mea-
sure the accuracy and tolerances with precision 3D scanning
instruments.

4 Application

Based on the GDFE simulation system, it can predict the
behavior of more complex deformation and has the potential
to plan the material distribution in the 4D printing process.
This section discusses some applications as well as the re-
lated extensions that are enabled by the GDFE simulator.

4.1 Freeform shape

GDFE framework is an element-based simulation. It
can simulate the crease-fold design (e.g., Fig.7); in addition,
it can also be used to simulate freeform shape deformation.
Passive materials can be specified element-by-element, and
it is possible to distribute the Rigid (R-GDFE) and Contract
GDFEs (C-GDFE) in a more intelligent way. For example,
Fig.8 shows two different 2D patterns that are used as the
passive layer. Upon heating, they can achieve curvy and
smooth freeform shapes that are very difficult to achieve by
crease folding. This shows a great opportunity in designing
freeform and complex shapes based on the 4D printing pro-
cess, and this framework is an effective tool for the digital
material design on 3D printed structures.

4.2 Design for 4D printing

The GDFE-based simulation solves a forward problem
that determines the final shape with given material structures
and deformation principles. Based on it, we can now work
towards a solution for another major challenge in the 4D

printing system, which is how to design the material struc-
ture that can be transformed into a desired shape. This is an
inverse problem, which is the determination of the material
distribution in a structure based on the final desired shape
and the deformation principle. Such a reverse problem is
critical for 4D printing despite it is quite challenging. This
paper presents a preliminary study on this inverse problem
using the GDFE-based simulator for one-dimensional (1D)
case. Borrowing the concept from Fig.3, an arc can be repre-
sented by a given length L and curvature 1/r. Given the input
(L,r), the angle is oo = L/r and the contracted length is AL =
L—R-L = oh. In order to achieve the contracted length, the
required length of the C-GDFEs is L, = o/(1 — R). Fig-
ure 3 is actually the case of maximum curvature as explained
before, where an arc is constituted totally by C-GDFE. If a
lower curvature (1/r) is desired with the same length, i.e.,
L. is smaller, both C-GDFEs and R-GDFEs should be in-
corporated, where the length of C-GDFEs must equal to L,
and should be distributed uniformly and alternated with R-
GDGEs along the whole length L. Therefore, an input of the
couple (L, r) can define a curve segment with a length L and
curvature 1/r. By inputting a series of couple (L;,r;), the
final shapes and the patterns can be generated. The exam-
ples of some English letters (e.g., “Concordia”) are shown in
Fig.9. All the letters are generated by a maximum of three
input couples.

To generalize the design to more freeform shape, e.g.,
the hand sketching letter ‘S’ shown as the blue line in Fig. 10,
the shape has to be segmented and approximated by a se-
quence of geometric primitives — e.g., straight line and circu-
lar arc. Let p;, where i = 0,...n, be the vertices of the input
shape, the segmentation is done as following:

1. For vertex p;, find its tangent T; by p;—; and/or p;11.

2. Build a graph 1(s) with the y-axis is the angle T; and x-
axis is the distance s; calculated from the beginning of
shape py to the current vertex p;.

3. Segment graph T(s) into m straight segments by mini-
mizing a functional F (m,A) = ):;":1 €j+m-A, where €;
is a summed square residual of the approximation for
the j-th segment, and A is the penalty for each segment
as a control for the number of segments. (See [41] for a
detail explanation)

4. For a straight segment on T(s), the differences in the x-
and y-axes define the length and curvature of its corre-
sponding circular arc, or a straight line if there is no dif-
ference in the y-axis.

5. Each segment results in a couple (L;,r;), and the col-
lection of them is inputted to generate the approximated
shape using the method described above.

There are three levels of approximation for the hand-
sketching ‘S’ shown in Fig.10. The left of the figure shows
the graphs t(s) as “Orig” with the approximated straight seg-
ments as “Approx”, and the right shows the comparison of
the sketching and the approximated shapes generated by the
couples converted from the straight segments. In the first
level of approximation, A = 1 is used, and it is approximated
by two segments, i.e., m = 2. Therefore, the shape is approx-
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Fig. 10. A hand-sketched letter ‘S’ is reproduced by 4D printing.
Increasing the levels of polyline fitting on the tangent graphs can im-
prove the shape approximation.

imated by two circular arcs with different radius and lengths.
With the higher level of approximation A = 0.3 and 0.1, there
are more segments m = 5 and 7 for the approximation. When
the orientation of the neighboring circular arcs are not com-
patible, the straight segments on t(s) are connected by a ver-
tical line, which means there is a sharp change in angle at a
particular point without length change. These are the hinges
that can only be achieved by creased fold, and it is approx-
imated by the maximized curvature thick fold here. Fortu-
nately, the magnitudes of the sharp changes are not large, and
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Fig. 11. All the results here are approximating a same circle, but

different results are obtained with different properties of hardware
(minimum fabrication width) and material (contraction ratio).

the approximation in the third level fits well to the sketched
shape.

4.3 Design Validation

Ideally, if there is an infinite number of infinitely small
GDFEs, the curves can be infinitely smooth (i.e., the higher
resolution, the better approximation). However, depends the
hardware, there is always fabrication limitation that leads to
an approximation error. While a design can be very com-
plicated, the fabricated result may be different. The design
has to be validated before fabrication. The presented GDFEs
framework and the design for 4D printing can be used to vi-
sualize the deformed shapes. Therefore, it can help designers
to understand how good an approximation is based on a het-
erogeneous material design.

For example, there are two factors studied in Fig.11: the
minimum size that can be fabricated wy,;, by hardware and
the expansion ratio R of the given material. All the tests are to
fabricate a same circle, but they have different approximated



results. When w,,;, is small, it can achieve a higher resolu-
tion, and thus the circle can be smoother in shape. Therefore,
it is always better if the printer has a higher resolution. On
the other hand, when R is large, it means the material has
low contraction rate, and thus it needs a larger length L, of
C-GDFEs to achieve the same contraction length. Although
larger L, can give a smoother shape, there is a trade-off that
the minimum feature size that can be fabricated by the 4D
printing process is also larger. However, if R is small and L,
is also small, the approximation will be worse. In the worst
case when the minimum fabrication width is large and the
expansion ratio is small, e.g., Wy, = 2mm and R = 0.8 in
Fig.11, the circle is approximated by a triangle. This study
shows that the developed simulation framework can validate
the material design and generate the related fabrication pro-
cess plan as well.

5 Conclusion

The growth of 4D printing demonstrates the importance
of expanding the concept of fabrication process to include
time as a design factor. This paper introduces Geometry-
Driven Finite Elements (GDFE) as a new simulation and pro-
cess planning framework for the 4D printing process based
on thermal-shrinking structures. GDFE simplifies the math-
ematical model of accounting for complex sources that may
cause the deformation of a structure into a geometric opti-
mization problem. The GDFE framework provides an in-
tuitive and effective way to enable simulation and planning
for 4D printing even when a complete mathematical model
of new material is not available yet. The experimental stud-
ies of the crease-fold design are reanalyzed, and the defor-
mation principles are induced for the thick-fold design. In
this paper, the negative thermal expansion ratio is used as
the deformation principle. The deformation is applied on
each GDFE, which is then assembled into a larger system
that describes the overall deformed shape. The framework is
validated by repeating the crease-fold designs as well as gen-
erating freeform shapes. A number of applications enabled
by the GDFE framework have also been shown.

5.1 Future Work

The 2D-to-3D shape-shifting behaviors are studied in
this paper, a more challenging case is the evolution of 3D
structures. We will study the deformation principles of and
extend this framework to 3D-to-3D deformations in the near
future. While the 1D case can be designed inversely by math-
ematical expression of geometric primitives, it is much more
challenging for a 2D-to-3D and 3D-to-3D cases. The inverse
problem is far more complex in determining a discrete small-
scale material distribution that yields the desired self-folding
behavior. In order to solve this problem, we are studying
a new pattern learning and synthesis framework with the
data-driven approaches. Another future work is to apply the
GDFE framework to more complex deformation principle
other than expansion or contraction.
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