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Many industries, such as human-centric product manufac-
turing, are calling for mass customization with personalized
products. One key enabler of mass customization is 3D print-
ing, which makes flexible design and manufacturing possible.
However, the personalized designs bring challenges for the
shape matching and analysis, owing to the high complexity
and shape variations. Traditional shape matching methods
are limited to spatial alignment and finding a transformation
matrix for two shapes, which cannot determine a vertex-to-
vertex or feature-to-feature correlation on the two shapes.
Hence, such a method cannot measure the deformation of the
shape and interested features directly. To measure the defor-
mations widely seen in the mass customization paradigm and
address the issues of alignment methods in shape matching,
we identify the geometry matching of deformed shapes as a
correspondence problem. The problem is challenging due to
the huge solution space and nonlinear complexity, which is
difficult for conventional optimization methods to solve. Ac-
cording to the observation that the well-established massive
databases provide the correspondence results of the treated
teeth models, a learning-based method is proposed for the
shape correspondence problem. Specifically, a state-of-the-
art geometric deep learning method is used to learn the cor-
respondence of a set of collected deformed shapes. Through
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learning the deformations of the models, the underlying vari-
ations of the shapes are extracted and used for finding the
vertex-to-vertex mapping among these shapes. We demon-
strate the application of the proposed approach in the or-
thodontics industry, and the experimental results show that
the proposed method can predict correspondence fast and
accurate, also robust to extreme cases. Furthermore, the
proposed method is favorably suitable for deformed shape
analysis in mass customization enabled by 3D printing.

1 Introduction
Mass customization is an emerging paradigm to achieve

variety and customization in product geometry, functional-
ity, and property at near mass production price [1]. The cus-
tomized products are challenging to be mass-produced in tra-
ditional manners due to high geometric variation and prod-
uct functionality. As an emerging disruptive technology, 3D
printing, also known as additive manufacturing, can rapidly
fabricate complex physical object and therefore enables prof-
itable mass customization [2]. For instance, in the orthodon-
tics industry as shown in Figure 1, highly mass-customized
transparent dental aligners are fabricated by 3D printing to
allow the patient to wear on the teeth and progressively move
the misplaced teeth to the desired position and orientation.
The patient typically receives a pair of aligners for upper and
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lower teeth every two weeks during the six-month to twelve-
month treatment period. It is reported that the company runs
the 3D printers 24 hours and produces 40,000 unique align-
ers per day [3]. The need for a large amount of different
complex shapes in a short period requires mass customiza-
tion techniques for aligner production.

Fig. 1. Teeth aligners for orthodontic treatment [4]. Left-top: aligner
before treatment; Left-middle: aligner during treatment; Left-bottom:
aligner after treatment; Right: digital models for the progressively
fabricated transparent aligners.

To promote the broad applications of 3D printing and
fully realize mass customization, one needs to guarantee the
product geometric accuracy during design and manufactur-
ing. This is challenging to achieve due to the high geometric
complexity and large variations. One can imagine that the
teeth model of different people is totally different, though
the general structure looks similar. One of the most com-
mon practices of geometry operation in mass customization
is the shape geometry matching. For the teeth aligner exam-
ple, the shapes of the patient’s teeth during the whole treat-
ment period have to be systemically tracked and recorded
for the aligner design. The dentist firstly needs to manually
mark several ”feature points” on the scanned teeth model.
Then the CAD software is used to match these marked points
of the newly scanned teeth model with the initial one (tem-
plate), based on which each individual tooth can be extracted,
marked, and numbered, allowing them to be individually ad-
justed to a preferable position and orientation. Besides, the
scanned teeth model (patients’ teeth imprint) will be matched
and compared with the most recently used aligner model to
check the effectiveness of the treatment in the prior period.

Based on the similarities of the customized models, al-
gorithms have been proposed to address the computational
reuse problem [5, 6]. These algorithms tend to utilize the
existing geometry and topology for information-reuse in the
mass customization applications. However, these algorithms
assume the matching between the target model and the tem-
plate model is given, which may not be available in real prac-
tice. What is more, the printed aligner needs to be compared
with the target model (prescription from the dentist) to eval-
uate the quality of the printed product, which is again based
on the matching result. It is therefore very desirable to de-
sign an effective shape matching procedure to capture the ge-
ometry variations (e.g., structure deformations, local feature
changes) for mass customization.

For shape matching, the most intuitive way is to find a
transformation to align two shapes together, also known as

(a) (b) (c)

(d) (e) (f)

Fig. 2. Shape alignment versus shape correspondence: (a) teeth
model with wider opening; (b) teeth model with narrower opening,
the dash lines show the correspondence between the two models;
(c) the alignment between the two models in (a) and (b); (d, e) align-
ment between two locally deformed teeth models based on maximum
correspondence level in both 3D and 2D views; (f) alignment between
the two models in (d-e) based on minimum distance error.

rigid registration. The registration method tends to find a
spatial transformation between the input shapes. Based on
the transformation, one can align one shape to the other and
observe the overall spatial difference of two shapes. How-
ever, the rigid shape registration is not an appropriate ap-
proach to depict the deformation and variance between the
models in the mass customization applications in two folds:

1. The rigid registration approach minimizes the error of
the Euclidean distance between the closest points from
the current model to the target model. For the global
deformation, the two models cannot be spatially well-
aligned regardless of the effectiveness of the optimiza-
tion algorithm. As shown in Figure 2 (a-c), the two teeth
models with global deformation need to be well-mapped
through the corresponded individual teeth features; how-
ever, they cannot be well-aligned spatially due to the
large deformation. For the local deformation, the rigid
alignment algorithms tend to align the locally deformed
features by sacrificing the non-deformed features, which
otherwise can be perfectly aligned. As shown in Figure
2 (d-f), the two teeth models with local deformation (the
right-side wisdom tooth is moved) can be well matched
based on the maximum correspondence (d-e); however,
the traditional alignment algorithms optimize the Eu-
clidean distance error between the two models and result
in mismatched alignment (f);

2. The rigid alignment algorithms tend to align the individ-
ual vertices from the two models by optimizing the spa-
tial transformation matrix, and it cannot find a vertex-
to-vertex and feature-to-feature mapping between the
deformed shapes, thus cannot make further analysis of
the deformation behavior in the application of mass cus-
tomization.

Therefore, instead of finding an optimal spatial trans-
formation, we need to determine the mapping relation be-
tween the deformed shapes in mass customization. Such a
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mapping relation is usually represented as a vertex-to-vertex
correspondence, i.e., finding a corresponding vertex on one
shape to the given vertex on the other shape. So this prob-
lem is called shape correspondence problem. The problem
is challenging because the solution space is big and nonlin-
ear. It has O(N!) possibilities for mapping N vertices on both
shapes. What is more, in the scenario of mass customization,
the number of deformed shapes to be matched is enormous,
which makes the problem even more challenging. Currently,
in the teeth aligner industry, the common approaches still pri-
marily rely on manual operations (such as marking the fea-
ture vertices on the teeth model and mapping the patients’
teeth models in different periods) based on the dentists’ ex-
pertise and experience, which is extremely tedious and inef-
ficient, and the time spent on such manually marking tasks
could be 10 minutes to 2 hours and without guarantee of find-
ing the perfect matching to the reference model [7]. This
hugely hinders the digital model prepossessing, especially
for a large number of models, which is common in the appli-
cation of mass customization.

To address this challenge, this paper investigates an au-
tomated way of finding the shape correspondence with an ul-
timate goal of integrating mass customization with 3D print-
ing. The optimization for finding the shape correspondence
of a large number of complex shapes is challenging. In
practice, we observe that the massive databases of the well-
established correspondence results for the treated teeth mod-
els provide valuable resources for us to predict the correspon-
dence features of the new teeth models. Thus, we hypothe-
size that the highly similar yet complex teeth models share
the intrinsic correspondence relation, which can be learned
from the existing models in the databases, and the learning
results can be used to automatically map the corresponded
features between the new models to the existing models. The
objective of this paper is to investigate an effective machine
learning approach to solve the shape correspondence prob-
lem in mass customization. We will explore the emerging
deep learning techniques to extract the intrinsic relation for
the shape correspondence. In particular, we will focus on
a geometric deep learning approach owing to its potential to
extract invariant features among the customized models. The
input data are the vertex coordinates of the teeth models, the
output data are the elements of the canonical label set, and
a new convolution operation is designed based on the met-
ric of geodesic distance, which captures the shape variation.
The main contributions of the work can be summarized as
follows:

1. We identify the shape matching problem in mass cus-
tomization as a correspondence problem, which is more
suitable to depict the relation of deformed shapes and
conduct further analysis of the shape deformation be-
havior.

2. Based on the problem property, in which the established
database of shape correspondence already exists in mass
customization, a learning-based method is proposed for
the correspondence problem.

3. A geometric deep learning method is used for corre-

spondence learning. Experimental results verify that the
proposed method can predict new shape correspondence
for deformed shapes. Also, the proposed method is ro-
bust to extreme cases and efficient for making new pre-
dictions.

We will use the teeth aligner in the orthodontic industry
as an application example to present the proposed approach,
and it should be noted that the approach is generic and can
be easily extended to other applications in mass customiza-
tion, including medical industry (hearing aid) [8], entertain-
ment industry (movie characters) [9], jewelry industry (cus-
tomized rings) [9], and toy industry [10]. The rest of the
paper is organized as follows. Section 2 will briefly review
the related works. The correspondence problem will be dis-
cussed in Section 3. Section 4 will introduce the architecture
of the proposed deep neural network, and it is followed by
the experimental results in Section 5. Section 6 will con-
clude the paper.

2 Literature Review
In this section, we firstly review the related work on tra-

ditional shape alignment in design and manufacturing, the
correspondence problem, and then summarize the 3D deep
learning models applicable for shape matching.

2.1 Shape alignment in design and manufacturing
Shape matching is naturally associated with a classical

problem, shape alignment. Shape alignment is a process
to align different three-dimensional (3D) shapes. Many re-
search works have been explored in diverse aspects, and in-
terested readers are referred to a survey paper [11]. In shape
registration, the input includes two partial scans of the same
object.

However, in many practical applications, the matching
objects are different or include a certain degree of deforma-
tion, even for the same object. In [12], similar but different
shape matching problem is considered. The shape matching
is also widely used for geometric variation modeling in the
manufacturing area. The majority of the matching problems
treat the product as a rigid body. For instance, Tootooni et
al. performed a classification study for the fused deposition
modeling (FDM) printed part geometric integrity variation
using 3D vertex cloud data, which are matched with the CAD
design [13]. These methods did not consider the deformation
of the products. In contrast, many other studies imply the
necessity to investigate the non-rigid bodies in manufactur-
ing [14,15]. For instance, Camelio et al. studied the geomet-
rical variation propagation at the discrete measurement ver-
tices in the automotive body assembly process with a com-
pliant assemble system [14]. Other than just focusing on the
limited discrete measurement vertices, Zhou et al. proposed
the morphing of geometry from stage to stage and learned the
mapping between complex surfaces via affine and non-affine
transformations for the surface quality control [16].

3 Copyright c© by ASME



2.2 Shape correspondence problem
In general, the non-rigid matching can be solved by

shape correspondence problem. The goal of the classical
correspondence problem is to find a vertex-wise matching
between the vertices of two shapes. For example, a theo-
retical and computational framework is proposed for isome-
try invariant recognition of point cloud data in [17]. Mateus
et al. proposed an articulated shape matching using Lapla-
cian eigenfunctions and unsupervised point registration. A
convex optimization and game theory-based method is used
in [18] and [19], respectively. Typically, the computational
complexity of such methods is high, but the scalability is an
essential issue for mass customization. These methods are
thus not suitable within the context of mass customization.

Rather than vertex-wise correspondence, other works
used a soft correspondence approach to assign a vertex on
one shape to more than one vertex on the other. For instance,
a soft mapping between surfaces is proposed in [20], while
Ovsjanikov et al. used a function map to represent the cor-
respondence between shapes [21]. In [22], a matrix com-
pletion method is proposed for solving the shape correspon-
dence problem.

2.3 Deep learning beyond Euclidean data
As an emerging machine learning technique, deep learn-

ing has been widely used in image analysis, computer vi-
sion, and manufacturing areas [23,24], and achieved remark-
able breakthroughs. In order to extend the deep learning
method from 2D learning to 3D learning, many attempts
have been made to extend the convolution operation to 3D
problems. The most direct way is to use a voxel represen-
tation of 3D shapes. Wu et al. represented a geometric 3D
shape as a probability distribution of binary variables on a 3D
voxel grid, using a convolutional deep belief network to learn
the distribution of complex 3D shapes, and achieved object
recognition [25]. Similarly, Brock et al. trained voxel-based
variational autoencoders for object classification [26]. Balu
et al. used voxel data to learn salient features from a CAD
model of a mechanical part and determined the part manu-
facturability [27]. Qi et al. used point cloud as input to deep
net architecture for 3D classification [28].

However, the main drawback of such approaches is rep-
resenting the geometric data in a Euclidean structure. First,
for complex 3D objects, the Euclidean representations such
as depth images or voxels may lose significant parts of the
object or its fine details, or even break its topological struc-
ture. Second, the Euclidean representations are not intrinsic
and vary as the result of the pose or deformation of the object.
Extracting the invariance to shape deformations is extremely
difficult with such methods and requires complex models and
massive training data sets due to a large number of degrees
of freedom involved in describing non-rigid deformations.
In order to extend the convolution operation for intrinsic ge-
ometric deep learning, Bronstein et al. proposed geomet-
ric deep learning, which goes beyond Euclidean data [29].
Masci et al. firstly considered convolutional neural net-
works (CNN) in non-Euclidean domains (surfaces) by us-

ing the geodesic CNN model [30]. The method is improved
by Boscaini et al. [31] and further generalized by Monti et
al. [32].

(a) (b) (c) (d)

Geodesic distance Euclidean distance

A B A’ B’

C

D

C’

D’

Fig. 3. Geodesic distance versus Euclidean distance: (a-b) the
comparison between the geodesic distance and Euclidean distance
for globally deformed teeth models; (c-d) the comparison between
the geodesic distance and Euclidean distance for locally deformed
teeth models.

For the teeth aligner application, the geodesic distance
(distance between geographic vertices along the path con-
forming to the surface) has little or no changes, though
the Euclidean distance (straight-line distance between two
vertices in Euclidean space) has large changes under the
non-rigid deformation. As shown in Figure 3(a-b), under
global deformation, the Euclidean distances between the
corresponded vertices are quite different (‖AB‖ > ‖A′B′‖),
while the geodesic distance are almost the same ( d(A,B) =
d(A

′
,B
′
)). Similarly, under the local deformation ( Fig-

ure 3(c-d)), the Euclidean distances are different due to shape
stretching (‖CD‖ < ‖C′D′‖), while the geodesic distance
are almost the same (d(C,D) = d(C

′
,D
′
)). Therefore, the

geodesic distance will be used as the metric to capture the
invariant features among the shape variations of the mass-
customized models in this paper.

3 Problem Definition
The shape matching includes two different problems:

shape alignment and shape correspondence. In this section,
the shape alignment problem is firstly introduced, then the
shape correspondence problem is defined. In both problems,
the input is two 3D shapes X and Y , typially modeled as
Riemannian manifolds.

3.1 Shape alignment problem
In the shape alignment problem, the objective is to find

a spatial transformation T ∈ R3: T (X )→ Y , to align two
shapes. This transformation usually includes the rotation and
translation components. Furthermore, the alignment is nor-
mally solved through minimizing a specific distance func-
tion:

T ∗ = argmin
T∈R3

E(T (X ),Y ) (1)

The distance function E can be Euclidean distance or any
other application-based distance matrices.
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From Figure 4 (a), it can be seen that the spatial trans-
formation can provide a rough estimate of the similarity be-
tween the two models, but from such rough alignment we
cannot tell the vertex or feature relation between the two
shapes, i.e., given a vertex on one shape, we cannot tell its
corresponding vertex on the other shape. Thus, within the
deformation, it cannot determine how a vertex on the shape
is moved. Thus, a method to extract the vertex-to-vertex or
feature-to-feature relation (mapping between two models) is
needed.

(a) Shape alignment (b) Shape correspondence

Fig. 4. Different shape matching method: (a) minimizing spatial
transformation distance; (b) mapping via shape correspondence

3.2 Shape correspondence problem
Figure 4 (b) shows the correspondence of two models,

in which each vertex on one model is mapped to a corre-
sponding vertex on the other model. In this case, we ex-
tract the vertex-to-vertex relation between two models rather
than finding a spatial transformation between them. Once
we determined such a relation, we can further identify how
each vertex on the model is deformed by comparing the spa-
tial position of the corresponded vertices. Furthermore, we
can also compare a vertex and its neighboring vertices with
the correspondent one on the other model to see how a local
structure is deformed. Thus, shape correspondence is more
suitable for depicting the mapping relationship between two
deformed models.

In shape correspondence problem, the goal is to find a
meaningful vertex-wise correspondence ϕ: X → Y . Specifi-
cally, shape X and Y contain the number of m and n vertices
respectively. Here, the number m and n can be selected as the
vertices on the triangulated mesh model or through a uniform
sampling on the shape. The correspondence of two shapes
(mapping relation) can be described as finding a mapping π:
{x1, . . . ,xm} → {y1, . . . ,yn}. Such a mapping is represented
as a permutation matrix Π ∈ {0,1}m×n. Denoting the space
of m×n permutation matrices as P , the shape matching ap-
proaches frame the correspondence problem as,

π
∗ = argmin

π∈P
F(Π) (2)

where F is the fidelity term intended to align a set of vertex-
wise descriptors encoding the similarity between the ver-
tices [33].

An optimal vertex-to-vertex correspondence is usually
challenging to find because the solution space is big and non-
linear, especially when the m and n are large. In practice,
the problem can be transformed into a soft correspondence
problem, that is for a vertex x on a shape X , the goal of the
problem is to find a m-dimensional output which can be in-
terpreted as a correspondence probability of vertex x to the
vertices on shape Y . Thus each vertex on shape X would
have m outputs indicating the probability of the vertices cor-
responding to point x. The output of all the vertices of the
shape can be arranged as a m×n matrix with the element of
the probability of vertex x mapped to vertex y.

Theoretically, it is very time-consuming to find the op-
timal solution of the correspondence problem because the
problem cannot be solved in polynomial time. Practically,
finding the desired correspondence solution for the mass cus-
tomization problem is very challenging. Firstly, the number
of vertices on the shape is big. For example, an approxi-
mated triangulated teeth aligner model usually has more than
8K vertices. Secondly, in teeth aligners industry, the number
of teeth models that need to be extracted for the correspon-
dence to the template or previous treatment model is vast.
This hugely hinders the computational efficiency of the cor-
respondence extraction. Therefore, a fast and automated way
of finding the correspondence between shapes is urgently
needed in mass customization.

4 Correspondence Learning
As discussed in the previous section, the shape matching

in mass customization is modeled as a correspondence prob-
lem. Inspired by the fact that most of the models are sim-
ilar despite the deformations in the application of the mass
customization paradigm, a learning-by-examples approach
is introduced to find the correspondence of similar shapes
in the same category. In such a scenario, we assume the cor-
respondence of a set of training shapes in the same category
is already known and collected. Our goal is to learn from
these examples on how to match two deformed shapes with
a vertex-to-vertex correspondence. In order to extract the
underlying intrinsic information among these deformations,
a deep learning method is introduced for such information
extraction.

4.1 Overview of the proposed learning-based method
In the learning-based method, the assumption is that the

vertex-to-vertex correspondence of a set of samples is al-
ready collected, i.e., the ground-truth correspondence of such
a group of shapes are already known. From the given data
set, the intrinsic correspondence property of the shapes is
learned from these examples. Moreover, for the learning-
based method, CNN is introduced for correspondence learn-
ing in this paper.

Figure 5 depicts a brief overview of the proposed
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learning-based method. It can be seen that given the ground-
truth correspondence of shapes π∗ : X → Y in the training
examples, our objective is to learn how to match two new
shapes from these ground-truth correspondences. During
the learning stage, the relation between each vertex x on a
query shape X to its corresponding vertex π∗(x) on the refer-
ence shape Y in the collected training dataset are learned.
Accordingly, the vertex-to-vertex correspondence function
fΘ(x) needs to be solved and extracted. Here, Θ is the net-
work parameters to be optimized, f is the network which
outputs a corresponding vertices vector by giving an input
vertex x.

!
"#$!%

!""

&'$!%

(a) Query shape (b) Reference shape

&'()$!% &'(*$!% &'(+$!%

#

Fig. 5. Overview of correspondence leaning. A CNN is used for the
correspondence learning. The goal is to find a n-dimensional output,
which can be interpreted as a correspondence probability of vertex x
from the query shape to vertices on the reference shape.

Once the leaning stage is completed, the correspondence
function f can be learned. Based on the optimized network
parameters, Θ, we can directly use fΘ(x) to infer the vertex
correspondence on the new shapes. During the stage of infer-
ence, we assume there are n vertices on the reference shape
Y . By passing the vertex x as input into the learning-based
function fΘ(x), the output will be an n-dimensional metric,
which represents the probability of vertex x corresponding to
vertices on the reference shape Y .

fΘ(x) = ( fΘ,1(x), ..., fΘ,n(x)) (3)

In summary, the deep learning method, CNN, is intro-
duced for the shape correspondence learning in the mass cus-
tomization application. In the following sections, the details
of how to solve the leaning function fΘ(x) and the detailed
steps of CNN in the learning stage will be introduced.

4.2 Convolution operation on mesh data
One of the key elements for feature learning in CNN

is the convolution operation. However, most of the existing
works are limited to image data, in which the convolution
operation is well defined in Euclidean grid-like data. For the
data in the correspondence problem, the shapes are repre-
sented as a Riemannian manifold with the format of mesh in
the 3D non-Euclidean domain. Given such mesh data, the
convolution operation in the image domain is no longer suit-
able for non-Euclidean manifold data learning. Hence, to

v v

(a) (b) (c)

Fig. 6. Patch operator construction. (a) Local geodesic patch exam-
ples; (b) Geodesic radial weight wρ; (c) Angular weight wθ. (Image
courteous of [30]).

utilize the CNN for mesh data learning, a new convolution
operation should be designed in 3D non-Euclidean domain.

In order to design such a convolution operation and rep-
resent the intrinsic variations of the deformations of the man-
ifolds, Masci et al. [30] proposed a generalization of convo-
lution operation to mesh data. In this generalized method,
the operation is based on the definition of a local charting
procedure in geodesic polar coordinates, named as patch op-
erator.

Patch operator is initially designed for constructing an
intrinsic shape context descriptor by Kokkinos et al. [34]. It
mainly considers the local neighboring area around a given
vertex on the manifold to describe such a vertex. The defini-
tion of the patch operator is

(D(x) f )(ρ,θ) =
∫

X
wρ,θ(x,ξ) f (ξ)dξ (4)

The patch operator maps the values of a function f at a neigh-
borhood of the vertex x ∈ X into the local polar coordinates
ρ,θ. Here dξ denotes the area element induced by the Rie-
mannian metric, and wρ,θ(x,ξ) is a weighting function local-
ized around vertex x with geodesic radius ρ and angle θ. Fig-
ure 6 shows examples of the construction of local geodesic
patches with two different types of weights wρ and wθ.

Intrinsic convolution. D(x) f can be regarded as a patch
on the manifold and (D(x) f )(ρ,θ) is interpolating f in the
local coordinates, which can be used to define the convolu-
tion operator for manifold data.

( f ∗a)(x) =
∫ 2π

0

∫
ρmax

0
a(ρ,θ)(D(x) f )(ρ,θ)dρdθ (5)

Here the convolution operation can be thought of as
matching a template a(ρ,θ) with the extracted patch at each
vertex. In angular coordinate, the patch can be rotated at any
angle, which would lead to angular ambiguities [32]. A max-
imum is taken over all possible rotations of the template to
eliminate such ambiguity.

( f ∗a)(x) = max∆θ∈[0,2π)

∫ 2π

0
∫ ρmax

0 a(ρ,θ+∆θ)(D(x) f )(ρ,θ)dρdθ (6)
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The above operator is used to define an analogy of tradi-
tional convolution operation. For discrete triangulated mesh
data, it can be implemented through a discrete local system
of geodesic polar coordinates containing Nθ and Nρ radial
bins [35].

4.3 Non-Euclidean CNN
With the defined non-Euclidean convolution operation

for mesh data, it can be directly used in the convolution layer
to learn the templates of a in Equation (6). The templates
represent different local features of each vertex on the mesh.
The proposed network consists of various subsequent layers.
The architecture of the proposed network mainly consists of
the following different type of layers.

Intrinsic convolution (IC) layer uses the operator from
Equation (6) to replace the classical Euclidean convolution.
The layer is specified by a certain number of filters, aqp,
along with additive biases b, and it operates by computing
the convolution of the previous layer with each of those fil-
ters, afterwards adding the biases. The IC layer contains PQ
filters arranged in banks (P filters in Q bank), each bank cor-
responds to an output dimension.

gout
q (x) = ∑

P
p=1 ( f in

p ∗aqp)(x)+bq; p = 1, ...,P;q = 1, ...,Q (7)

where aqp is the learnable coefficients of the pth filter in the
qth filter bank. The IC layer is mainly used to extract the hi-
erarchy composites of the feature associated with the vertex
on the mesh data.

Fully connected (FC) layer is a linearly connected
layer to adjust the input and output dimensions. Given a
P-dimensional input X in = (xin

1 , ...,x
in
P ), the fully connected

layer produces a Q-dimensional output Y out = (yout
1 , ...,yout

Q )
by using a learnable weight vector w,

gout
q (x) = η(

P

∑
p=1

wqp f in
p (x));q = 1, ...,Q (8)

The output is optionally passed through a non-linear
function such as the ReLU [36], η(t) = max{0, t}. The
ReLU is an activation function which can have a better gra-
dient propagation and scale-invariant, also have the effect of
sparse activation for the network [37].

Softmax layer is used to classify the output from the
previous layer. In this paper, the output of vertex j is a n-
dimensional probability vector, whose element represents the
probability of vertex j corresponding to vertex i on the other
shape.

(gout
i ) j = so f tmax( f in

i ) =
exp( f in

i )

∑
n
i=1 exp( f in

i )
(9)

where i = 1, ...,n; j = 1, ...,m are the number of vertices on
each shape, respectively.

Dropout layer is a fixed layer to prevent overfitting [38].
The term ”dropout” refers to dropping out units (hidden and
visible) in a neural network. Dropping a unit out means we
temporarily remove the unit from the network, also remove
all of incoming and outgoing connections of the unit. The
selection of which units to drop is random.

Batch normalization layer is another fixed layer to re-
duce the training time of large network [39]. It normalizes
each mini-batch during stochastic optimization to keep zero
mean and unit variance, and then performs a linear transfor-
mation of the form:

gout
p =

f in
p −µ
√

σ2 + ε
γ+β (10)

where µ and σ2 are the mean and the variance of the training
dataset by using exponential moving average method. To
avoid numerical errors, a small positive constant ε is used
here.

4.4 Learning the correspondence
Once the non-Euclidean CNN is constructed, we can ap-

ply it to the collected ground-truth data to train the network.
When training the network, a cross-entropy function is used
as the objective function to be minimized for obtaining the
optimal network parameters.

Let m and n denote the number of vertices of shape X
and Y , respectively. For a vertex x on shape X , the network
produces a n-dimensional output as described in Section 4.1,
which can be interpreted as a correspondence probability on
the reference shape Y . The output of the network is arranged
as a m×n matrix. For each matrix element fΘ(x,y), it means
the probability of vertex x being mapped to y. And y∗(x)
denotes the ground-truth correspondence. The ground-truth
correspondences are collected as T = {(x,y∗(x))}, the op-
timal parameters of the network Θ are determined by mini-
mizing the following logistic regression loss function.

`(Θ) =− ∑
(x,y∗(x))∈T

log fΘ(x,y∗(x)) (11)

which represents the divergence between the probability dis-
tribution produced by the network and the ground-truth dis-
tribution.

5 Experimental Study
In this section, several different types of experiments are

conducted to evaluate the performance of the proposed geo-
metric deep learning method for the correspondence prob-
lem. The method is tested with a set of non-rigid shapes with
various degrees of deformations.

For the training dataset, we collect 100 teeth aligner
models from ten different patients with ten different treat-
ment stages. Since the correspondence is in pair-wise, i.e.,
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Fig. 7. Convergence curve of the proposed learning method

any two shapes can form a correspondence relation. There-
fore, there are C2

100 = 4950 correspondence shapes in total
for the training dataset. Hence the set of models includes
a variety of near-isometric deformations in the same model
category. Each teeth aligner model has 9202 vertices on the
shape of the mesh, and the vertex-wise ground truth corre-
spondence, i.e., the vertex-to-vertex correspondence is al-
ready known between all of the shapes among the dataset.
The CNN is implemented in Theano [40]. The ADAM
stochastic optimization algorithm [41] is used with initial
learning rate of 10−3, β1 = 0.9, β2 = 0.999, and the dropout
probability is 0.5. The input of each vertex in the network
uses a local SHOT descriptor with 544 dimensions [42]. The
output is a soft correspondence matrix, which can be inter-
preted as the probability of the vertex corresponded to each
vertex on the reference shape, and the loss function is shown
in Equation (11) for network training. Typically the training
time on the teeth aligner shapes is approximately 40 seconds
for one epoch. Forward propagation of the trained model
takes approximately 0.5 seconds to produce the dense, soft
correspondence for all the vertices.

5.1 Correspondence learning results
A suitable learning-based method should have a good

learning ability in which the trained model can represent the
intrinsic statistical properties of the training data and also can
fit well the new data. The learning performance of the pro-
posed Non-Euclidean CNN for mesh data is studied in the
first experiment to investigate the effectiveness of the pro-
posed method. In this experiment, for each vertex on the
query shape, the output of the network is a soft correspon-
dence with 9202-dimensional vector, which was then con-
verted to the vertex correspondence. Since the correspon-
dence is in pairs, i.e., the shapes of two models form a corre-
spondence relation. Here we use the correspondences of first
80 models for training, there are C2

80 = 3160 correspondence
shapes in total in the training dataset.

Inspired by [31], the network structure in this experi-
ment is set as FC64 + IC64 + IC128 + IC256 + FC1024 +

FC512 + Softmax. That is, the network architecture begins
with a fully connected layer with 64 neuron nodes, followed
by three convolution layers with 64, 128 and 256 filter bank
sizes, two fully connected layers with dimensions of 1024
and 512 respectively, and lastly, a softmax layer is included.
The main rationale of designing such a structure is based on
the fact that the depth of the network dominantly determines
the training time of the network. Figure 7 shows the conver-
gence curve of the network training process, from which it
can be seen that after 50 epochs, the network is converging
to a small loss (∼ 0.016) for both training and validation set.
It reveals that the proposed geometric deep learning method
can learn the shape correspondence of the ground-truth data
and archive a good fitting performance.

It is worth to mention that in this work, we use a machine
learning method to transform a traditional optimization prob-
lem, which is challenging to solve in polynomial time, into
a fast and solvable problem. The prediction time for finding
a correspondence between two shapes is approximately 0.5
seconds. This is very significant for identifying the shape
correspondences in the mass models and satisfying the time
requirement of mass customization.

Figure 8 visualizes some typical samples of correspon-
dence predicted by the geometric deep learning method us-
ing colorized mapping, where colors are transformed using
raw vertex-wise correspondence as the input to the functional
maps. That is, the corresponded vertices are coded with the
same color, for example, the ith vertex on shape X corre-
sponds to the jth vertex on shape Y , then these two ver-
tices are assigned the same color on both shapes. The align-
ment results of shapes by the registration method are also
presented in Figure 8. It can be seen from Figure 8 (a) that
in the shape registration approach, it attempts to minimize
the distance between the shapes and aims to find an opti-
mal spatial transformation to transform two models as close
as possible. However, a close alignment can only represent
the rough spatial similarity and cannot represent the corre-
sponding vertices relationship between two models. Thus,
the shape registration method cannot reflect the deformation
in deformed shapes. On the other hand, the shape correspon-
dence method can find vertex-wise correspondence as in Fig-
ure 8 (b). Based on such vertex-wise relationship, one can
easily map the information on one model to the other, which
is much more utilizable for deformed shapes analysis, espe-
cially for a large number of shapes in the application of mass
customization.

The shape registration method is used as a comparison
to demonstrate the effectiveness of the proposed method. For
the registration method, the classical iterative closest ver-
tex (ICP) algorithm is applied in the experiment. Figure 9
shows the comparison results of the Non-Euclidean CNN
and the registration method for shape matching. The proto-
col in [43] is applied to plot the percentages of correct corre-
spondence matches under at most r-geodesically distant from
the ground-truth correspondence on the reference shape. In
this protocol, when the network predicts a correspondence of
one vertex to its corresponding vertex on the other shape, we
compute the geodesic distance between this predicted vertex
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(a) Shape alignment by ICP (b) Shape Correspondence

Fig. 8. Comparison between shape alignment and shape correspondence. The level of correspondence is coded with color, i.e., the
same color on the two models represent the corresponded vertices, and the prediction time for a correspondence between two shapes is
approximately 0.5sec.

and the ground-truth corresponding vertex. If this distance d
is smaller than or equal to a predefined threshold of r, i.e.,
d ≤ r, we consider the vertex is correctly corresponded. The
threshold value of r can be determined according to the prac-
tical quality requirement.
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Fig. 9. Shape matching accuracy with geometric deep learning
method and registration method on teeth aligner models.

It can be seen from Figure 9 that the performance
of the proposed geometric deep learning method is much
better than the registration method for shape correspon-
dence matching. It can be seen that when the threshold
geodesic distance is 5% of the diameter of teeth aligner
model (3.11mm), the correspondence of models in testing
achieves a high accuracy of 99% correct matching to the
ground-truth while the registration method can only find ap-
proximately 40% of the correct correspondence. The main
reason is that the registration method can only find a spatial
alignment between shapes, which cannot represent the vari-
ation of the deformations among different shapes. On the
contrary, the geometric deep leaning method learns the ver-
tex local features and matches these features under different
degrees of deformations on the model. Besides, from this ex-
periment, it can be seen the correspondence method is more
suitable for shape matching among non-rigid deformations,
since it can find a vertex-wise correspondence between mod-
els, and such a correspondent relationship between models
can be further utilized for deformation analysis and topology
comparison and reconstruction. Thanks to this characteris-
tic of the proposed method, it can be easily applied to shape
matching in mass customization.

Figure 10 shows three sample models of predicted shape
correspondence by the trained network. Three randomly
chosen models are matched to a reference model. The trained
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Fig. 10. Examples of shape correspondence predicted via the pro-
posed geometric deep learning method. The level of correspondence
is coded with color, i.e., the same color on the two models represents
the corresponded vertices. For example, the ith vertex on shape X
corresponds to jth vertex on shape Y , and then these two vertices
have the same color on both shapes.

network can predict the vertex-wise correspondences, and
the matched results of different aligner models are coded
with colors as presented in the figure, among which the same
color on the two models represents the corresponding ver-
tices. From the results, it can be seen that the trained network
can find a well-matched vertex correspondence between the
selected model and the reference model. This experiment re-
veals that the proposed learning method is effective for shape
correspondence matching, especially for models with defor-
mations.

5.2 Robustness to extreme cases
It is desired that a correspondence method is robust and

stable, however, due to the limitation of the scanning reso-
lution and the reliability of the digital data transfer and pro-
cessing, the digital shapes always suffer from information
missing, resulting in incomplete models. To validate the ro-
bustness of the proposed method and test its performance on
the incomplete models, in this section, we use the trained net-
work to predict the correspondence of the incomplete models
to a complete reference model.

In the experiment, two incomplete models are used, as
shown in Figure 11. In these two models, the first one (Case
1) has a small hole, while the second one (Case 2) only has
a portion of the original model. Then we attempt to match
these two incomplete models to a randomly selected com-
plete reference model in the database. The color-coded re-
sults are represented in Figure 11. It can be seen that the
proposed method can predict well-matched correspondences
for the two incomplete models (Case 1 and Case 2) to the
reference model. It indicates that the proposed method can
predict the correspondence of the incomplete model to the
complete model. It also reveals that the network can learn the
underlying features of the 3D model to predict the correspon-

dence which does not rely on the completeness of the mesh
data. This is mainly because the network is trained on the
correspondence directly based on the intrinsic shape descrip-
tor (input SHOT descriptor) of the vertex on the shape and
output a vertex-to-vertex relation. This experiment demon-
strated that the proposed geometric deep learning method
is effective and robust to extreme cases such as predicting
shape correspondence of the incomplete models to a refer-
ence shape.

Table 1. Prediction results for incomplete models

Number of Vertices Prediction accuracy Time(s)

Case 1 8756 91.2% 0.4

Case 2 6171 89.6% 0.3

Table 1 shows the results of using the trained model
from Section 5.1 to predict the correspondence of the above
two models. It can be seen that the prediction process is
fast by propagating the trained model, which only takes 0.3-
0.4 sec. It is worthwhile to mention that the low computa-
tion cost does not sacrifice the accuracy of the prediction,
specifically both cases achieved around 90% of the ground-
truth correspondence within 2% of the model diameter. The
high efficiency and accuracy demonstrate that the proposed
geometric deep learning method is robust and resilient to
extreme cases, which enables broader practical applications
such as those with severe data noises.

5.3 Application in mass customization
Based on the experiments discussed in Sections 5.1 and

5.2 that the geometric deep learning method can learn the
intrinsic variety of deformation among a collected set of de-
formed shapes. The correspondence can be efficiently pre-
dicted through the trained CNN. The proposed method is
particularly suitable for mass customization applications as
the trained network takes only 0.5s to predict a full vertex-to-
vertex correspondence of two shapes. In mass customization,
we need to process a large number of deformed yet similar
shapes. In this section, we will study a practical application
of the proposed geometric deep learning method for mass
customization in the orthodontics industry.

One common practice in the orthodontics industry is that
the dentist needs to manually choose several landmark ver-
tices on the patient’s teeth model. When a new patient’s teeth
model (or aligner model) arrives, the dentist needs to select
several landmark vertices on this new model manually, then,
according to these selected vertices, matches the new model
to the template (or previous) model. Furthermore, the se-
lected landmarks are mapped to a reference model to deter-
mine a suitable alignment treatment strategy. This process
is manually operated and mainly based on the experience of
the dentist. The time spent on such manually marking tasks
could be 10 minutes to 2 hours and without guarantee of find-
ing the perfect matching to the reference model [7].
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Fig. 11. Correspondence result on two incomplete models: the top row shows the reference model and two incomplete models, the bottom
row shows the correspondence result. The level of correspondence is coded with color, i.e., the same color on the two models represents the
corresponded vertices.

Because of the effectiveness and robustness of the ge-
ometric deep learning method, it can be used for automati-
cally identifying the shape correspondences. Hence, through
this shape correspondence, the dentist can identify all of the
vertex-to-vertex relations on the two shapes and does not
need to select the landmarks to find a mapping manually.
From the previous experiments, when using the proposed ge-
ometric deep learning methods, it takes approximately 0.5s
to predict a soft correspondence to a reference model for a
given model with 9.2K vertices. Table 2 shows the predic-
tion time for generating the full correspondence of a new
model based on the trained network. Assuming there are a
batch (1000) of teeth aligner models, and they all need to be
marked and matched to the reference model. The total time
for manual marking would be at least 1000×0.167 = 167h.
However, with a trained network, the forward propagation
for prediction only needs 1000× 0.5 = 500s. This can sig-
nificantly reduce the landmark marking and mapping time
for massive models.

Table 2. Time comparison of different correspondence methods

Model Vertices Manually marking(min) Time(s)

Teeth 127189 ∼90 ∼2

Aligner 9202 ∼30 ∼0.5

It is worth to remark that our method not only produces
a correspondence of all vertices on the model but also output
a soft-correspondence matrix. Indeed, our method can pre-
dict a vector for each vertex, i.e., each vector element repre-
senting the probability of the vertex corresponding to all of

the vertices on the reference model. According to this infor-
mation, we can output several optional vertices for dentists
rather than only one according to the ranking of the probabil-
ity of the reference model. This would provide more choices
for the dentist to select the desired landmark. Based on the
above analysis, it can be seen that the proposed geometric
deep learning is excessively suitable for the orthodontics in-
dustry and can provide an efficient tool for mass customiza-
tion applications. Furthermore, the proposed method can be
used for the geometry integrity and quality investigation, for
example, we can use the method to predict a shape corre-
spondence between two shapes, then based on this vertex
correspondence relation to measure the deformation of the
vertices. In particular, we can determine whether the criti-
cal vertices on the shape are deformed within an acceptable
distance.

6 Conclusions
The movement towards mass customization poses sig-

nificant challenges to product design and manufacturing. 3D
printing is becoming more and more mature to fulfill the
mass customization. The product’s geometric integrity is
essential to guarantee the proper product design and man-
ufacturing. To investigate the geometric integrity, the shape
matching is the pillar-stone, where researchers propose vari-
ous rigid or non-rigid body matching algorithms. However,
these algorithms do not address the deformation problem.
In this paper, we extend the conventional shape matching
problem to shape correspondence problem, which includes
the larger size of manifold correspondence, to extract the in-
trinsic deformations. A geometric deep learning method is
introduced to learn the correspondence relation among the
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models. The experimental results show the effectiveness and
robustness of the proposed method.

This work is a pioneering work for correspondence
based geometric integrity investigation. In the future, several
directions will be explored. First, quantifiable assessment of
the design and manufacturing after learning the correspon-
dence would be studied. Second, how to get interpretable and
semantics results for dentists/practitioners to understand the
meaning of correspondence results will be explored. Third,
incorporation of dentists/practitioners’ knowledge in deep
learning will be studied.
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