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Abstract

Although additive manufacturing can produce nearly any geometry, users have limited choices in
the designs. Topology optimization can create complex shapes, but it provides only one solution for
one problem, and existing design exploration methods are ineffective when the design space is huge
and high-dimensional. Therefore, this paper develops a new generative design method to improve
the diversity of topology-optimized designs. Based on the observation that topology optimization
places materials along the principal directions to maximize stiffness, this paper creates a rule of
principal direction and applies it to swarm intelligence for form-finding. The shapes got by the swarm-
ing process possess both randomness and optimality. After they are further optimized, the final
designs have high diversity. This is the first time integrating structural stiffness as a swarm prin-
ciple to influence the collective behavior of decentralized, self-organized systems. The experimental
results show that this method can generate interesting designs that have not been seen in the lit-
erature. Some results are even better than those got by the original topology optimization method,
especially when the problem is more complex. This work not only allows users to choose unique
designs according to their preference, but also helps users find better designs for their application.

Keywords: Generative design, Form-finding, Swarm intelligence, Principal stress, Topology optimization,
Additive manufacturing

1 Introduction

Additive manufacturing (AM) technologies enable
the fabrication of complex geometries that are
difficult to produce with traditional methods.
This gives unprecedented flexibility to the design
of high-performance products. One method that
uses this flexibility is topology optimization (TO),
which optimizes the spatial-material distribution
in a design-domain to maximize the structural
performance. However, TO provides only one opti-
mized solution for one problem, and designers
have limited control in creating original designs.

Regarding this lack of diversity, generative design
(GD) has been proposed to explore innumerable
solutions, some of which may not have been seen
or thought of before. GD uses a set of parametric-
defined rules to generate solutions and optimizes
them with certain analysis methods, such as TO.
This is illustrated in Fig. 1 using one degree-
of-freedom (DoF) and two DoF solution spaces.
Ideally, the generated solutions should be scat-
tered around different local optima so that the
optimized results have high diversity. This design
method has the potential not only to find better
solutions but also to create aesthetic designs.
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Fig. 1 Generative design explores solutions in different
design spaces.

Finding an effective scatter may be easier when
the search space has a lower dimension. However,
GD constructs free-form geometry and topology,
and thus many problems for GD have a high-
dimensional search space. Exploring such a large
design space to get meaningful results is challeng-
ing, and the designs generated by the current GD
algorithms still look similar in terms of human per-
ception [1]. To explain this insufficient diversity, a
design-domain of 120×80 unit squares (i.e., 9, 600
DoF) is employed, see Fig. 2. If the volume frac-
tion is 0.4 (or 40%), the solid isotropic material
with penalization (SIMP) method [2] initializes all
the cells with 0.4 density and iterates to find the
optimal structure. Here, 100 random material dis-
tributions are used as the inputs for the SIMP
method to mimic the generative process, and they
are generated by assigning materials randomly to
the cells until the volume fraction reaches 0.4. The
three results that are the most different from the
SIMP result and from each other are shown in
Fig. 2 (see Fig. A1 for all results). The difference
is measured by treating each material distribu-
tion as a high-dimensional point and calculating
the distance between them. Apparently, different
inputs lead to different optimized designs (local
optima). However, even though these three are the
most diverse results, their overall shapes still look
quite similar. In fact, all 100 results are similar
to each other. Although one may test more com-
binations and hope to see some diverse results,
there are 9600C3840 = 7× 102803 combinations, so
it would take a long time to test even a fraction of
them. Therefore, there is a need to develop some
intelligent ways to generate meaningful solutions
in order to better use the potential of GD.

The above testing reveals that randomness
alone is not enough to have high diversity, and
the generated initial shapes must also be at

Fig. 2 Optimized results from random material distribu-
tions. c is the compliance (proportional to the amount of
deformation) and d is the percentage pixel-wise difference
from the original SIMP result.

least suboptimal. As TO focuses on the mate-
rial layout, the generation should find a set of
random forms that are already structurally mean-
ingful. Although there are GD algorithms for
form-finding [3], they have minor consideration
for structural optimality, and thus their uses are
mostly in architectural applications. This moti-
vates the present research to include structural
concerns in the generative process, aiming to
create structurally suboptimal initial shapes. In
studying the fundamentals in both fields of TO
and GD, two observations are made. First, in
order to maximize structural stiffness, materials
should be placed along the direction of principal
stresses [4, 5]. Second, among various form-finding
techniques, swarm intelligence is good at creating
free-form and non-repeated geometries, when the
swarm was seen as the motion of particles and
their paths are connected to each other forming
a structure-like system [6]. Both share some simi-
larity in terms of directions or trajectory, and this
paper hypothesizes that combining them balances
randomness and optimality in GD. Therefore, the
objective of this paper is to apply principal stress
from mechanics to the form-finding process in
swarm intelligence, with the goal of increasing the
diversity of the topology-optimized designs. The
contributions are summarized as follows:

1. Using the same inputs for topology optimiza-
tion, a physical field is generated for swarm
intelligence. A set of swarming parameters that
can consider both randomness and optimality
is then defined for design generation.

2. With the physical field, a rule of principal
direction is created for swarm intelligence as a
steering force driving particles to move along
the principal directions.
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3. The trajectory of particles is converted to the
inputs for topology optimization, and a means
of diversity measure is used to sort the opti-
mized results for design inspiration.

The main outcome of this paper is to gener-
ate diverse designs, but it will show that the
present method can also find better designs than
the original SIMP method. This is the first time
fully integrating structural stiffness into swarm
intelligence for generative design.

1.1 Why diversity?

TO enforcing discrete 0/1 solutions is inherently
a non-convex problem [7], which may have mul-
tiple feasible regions and multiple locally optimal
solutions within each region. The global optimum
can only be known after finding all the local
optima, but it usually cannot be found in a rea-
sonable amount of computing time, and thus we
are contented with sufficiently good solutions. The
diversity of topology-optimized designs thus refers
to how the locally optimal designs differ from each
other, and there are many reasons to increase
this diversity, just to name a few: First, human
has both needs and wants. For example, human
only need water but want all kinds of drinks;
mass-produced goods are effective, but many want
one-of-a-kind products. Similarly, we may only
need one design to work, but we also want the
freedom to choose from the qualified options. It
does not have to be the best design to satisfy
all the requirements, and there could be multiple
(locally) optimized designs that have similar per-
formance. Increasing the diversity helps provide
these options as many and as distinct as possi-
ble. Second, TO and GD have different purposes
– the present work is a GD method. While they
may have the same goal – to provide the opti-
mal design for a set of requirements, TO is used
in later phases of design where an initial design
is already set, but GD is used in the early phase
of design to give initial design possibilities for
automated ideation. In other words, GD uses TO,
but not the other way around, and GD builds on
the foundation of TO to arrive at smarter and
more innovative solutions. It is well known that
diversity is the key to innovation. Third, seeking
globally optimal solutions for non-convex prob-
lems can take exponential time with the number of
variables, and many global optimization methods

(e.g., branch and bound) use random or statistical
sampling to improve performance. Diversity sam-
pling is one of the effective ways to speed up the
searching process.

The rest of the paper is organized as fol-
lows. Section 2 reviews the related works. Section
3 presents the methodology and implementation
details. The experimental results are presented in
Section 4. Finally, Section 5 concludes the paper
and discusses the future works.

2 Literature review

This paper is mainly related to generative design
and topology optimization. Their closely related
works are reviewed.

2.1 Generative design (GD)

The five classic GD techniques are swarm
intelligence [6], cellular automata [8], genetic
algorithms [9], shape grammars [10], and L-
system [11]. They are mostly rule-based methods
that create new generations based on some rules to
determine the new state of each parameter accord-
ing to its current states as well as the neighbors’.
One the one hand, if a solution is represented
as a point in a n-dimensional space, where n is
the number of parameters, the generative process
can be used to search for solutions. For example,
Felkner et al. [12] encoded the shape, topology,
and sizing variables in a particle and generated
architectural designs of truss structures. This class
of works is mainly used to find the best solution,
such as particle swarm optimization [13]. On the
other hand, if the generations are done in the
Euclidean space, they can be used to create emer-
gent geometries as a form-finding process [14].
Agirbas [6] further created non-Euclidean geome-
tries by substituting the particles using metaballs
or Voronoi cells. These methods are mainly used
in architecture, like façade designs considering the
level of daylight [15], but not so much for engineer-
ing performance. Although Tsiliakos [16] took the
stress into account during the material growth, he
only put more materials in the high-stress area,
and the results were not optimized.

With the growth of machine learning, it is also
applied to GD constructing a generator that learns
the probability distribution of data and generates
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new data based on the learned probability dis-
tribution. For example, Yoo et al. [17] integrated
deep learning in the conceptual design phase to
generate wheel designs and evaluate their engi-
neering performance. The learning-based meth-
ods can find the hidden representations (latent
variables) from the high-dimensional data, and
sampling in the latent space is one way to gen-
erate different but reasonable results. This has
been employed in the generation of product pro-
files [18, 19], lattice structures [20], and human
body models [21]. Other related works include
exploring design spaces for manufacturing con-
siderations [22] and generating free-form grid
shells [23].

2.2 Topology optimization (TO)

TO answers the fundamental engineering ques-
tion [24]: “how to place material within a pre-
scribed design domain in order to obtain the best
structural performance?” Bendsøe [25] stated it
as “optimizing the spatial material distribution
in a design domain for given loads and boundary
conditions.” There are various TO methods, such
as ground structure [26], homogenization [27],
SIMP [28, 29], and level set [30–32]. The popular
TO methods are often gradient-based optimiza-
tion methods, which start with an initial material
distribution and update it repeatedly according
to the finite element analysis (FEA) result until
the convergence is reached. Anisotropic material
properties can also be considered in TO using
non-homogeneous failure criteria [33]. To speed up
the process, Kwok et al. [34] converted the opti-
mization problem to a design problem by drawing
lines along the direction of principal stress. While
FEA only has low-order continuity (C0), research
has applied isogeometric analysis (IGA) to TO
problems, getting more effective results [35].

When the problems are more complex, meta-
heuristic algorithms can often find a sufficiently
good solution with less computational effort [36].
For example, research used genetic algorithm [37],
ant colony optimization [38], differential evolu-
tion [39], harmony search [40], bat algorithm [41]
to search for a design with higher structural
performance. Recently, there are many uses of
machine learning for TO problems too, e.g., gener-
ative adversarial network (GAN). A GAN model
involves a generator and a discriminator, and they

are trained together in a zero-sum game until the
discriminator is fooled about half the time, mean-
ing the generator is generating good designs. To
take advantage of GAN in TO applications, Oh et
al. [1] generated a set of results by running TO
under different parameters and used the results
to train the generator. When the discriminator
cannot identify the TO results and the generated
ones, the generator is able to create near-optimal
topological design in one-shot without any itera-
tion [42, 43]. The methods were further extended
to generate optimal results even when the bound-
ary conditions are different. Nie et al. [44] devel-
oped TopologyGAN that takes an additional input
of physical field to the generator of a conditional
generative adversarial network (cGAN) to predict
the result under unseen boundary conditions. Sim-
ilarly, Hertlein et al. [45] used a cGAN trained
on randomized boundary conditions, which can
also consider build orientations and overhangs in
additive manufacturing. These methods applied
generative methods to create designs, but they
focused on finding the best structure rather than
generating diverse solutions.

2.3 Diversity in TO

When there is a well-defined measure of diversity,
the optimization can include a constraint based on
the diversity metric. For example, Wang et al. [46]
used cross-correlation (CC) and sum of squared
differences (SSD) to make sure the newly gener-
ated design has a minimum difference from an
existing design. Li et al. [47] developed a diversity
metric based on Gaussian process model to maxi-
mize the number of independent designs among a
population. However, the new design depends on
previous designs, and thus these methods cannot
run fully in parallel. In addition, it is sometimes
difficult to define a metric for perceptual diversity.
Instead of adding an extra constraint, Deng and
To [48] presented a parametric level set method
using deep learning for TO and generated differ-
ent designs by changing the parameters. Similarly,
Watson et al. [49] generated different topology-
optimized designs by changing the TO settings
(e.g., volume fraction), but the results were not
comparable (e.g., different volumes), and the num-
ber of permutations was small. He et al. [50]
integrated genetic algorithms (GA) into TO, alter-
ing the initial and the intermediate structures
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Fig. 3 Overview of the present method. The same conditions for topology optimization are used to generate a physical
field, which alongside with other swarming parameters is inputted to swarm intelligence for form-finding. The generated
forms are converted to material distributions, which are then optimized for the results. Depending on the metrics evaluating
the results, design inspiration and design optimization can be done.

during optimization. While GA generates new off-
spring from the existing population, the present
work uses swarm intelligence to create new designs
directly from the underlying physical field. Sun
and Ma [51] applied reinforcement learning to
alter the search direction in the TO problem,
and their method can generate various acceptable
design options, but the diversity is not high, as
shown in the result section.

In summary, although GD techniques can syn-
thesize various geometries directly, previous works
mostly employed them for optimization, treating
each design as a point in the solution space, like
using bit-array representations. This creates dif-
ficulties in generating diverse designs even when
the optimization has considered the diversity.

3 Methodology

With the goal of creating diverse designs, this
study applies form-finding using swarm intelli-
gence to the generation of various initial geome-
tries for TO. The forms need to be both random
and suboptimal in order to capture as many local
optima as possible. These two distinct objectives
are achieved by using a physical field to influence
the swarm behavior. Figure 3 shows an overview
of the method. To start with, it uses the same
loading and boundary conditions in the TO prob-
lem to generate the physical field through a stress
analysis. The direction of this field is defined by
the principal directions where the normal stress
vector is maximized. Then, it inputs the physical
field along with other parameters to the swarming

process, and it converts the motion paths of the
swarm into a material distribution, satisfying the
prescribed volume fraction. Next, it randomly gen-
erates various parameters within certain ranges,
and each set of parameters results in different
material distributions. Last, these material dis-
tributions serve as the inputs for TO, and it
evaluates the optimized results for design inspira-
tion (the least similar ones) or design optimization
(the least compliant ones).

The key component is the form-finding with
the help of the physical field. It will be presented
first, followed by the generative parameters and
the rasterization process.

3.1 Form-Finding

Inspired by nature like ant colonies and bird flock-
ing, swarm intelligence is the global collective
behavior where the agents interact with each other
and their environment locally without a central-
ized control. Each agent can be seen as a vehicle
moving within the design-domain, and they have
their own velocity (v) at every time instant. The
agents navigate by some basic rules, which are
mathematically represented in steering forces. The
net steering force is the sum of all forces, i.e.,

F =
∑
k

wkFk, (1)

where wk are the weights to balance the impor-
tance of forces. The net force is applied to an
agent (i) producing a proportional acceleration
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Fig. 4 Four rules of local behavior: (a) alignment, (b)
cohesion, (c) separation, and (d) principal direction.

(a), which changes the agent’s velocity:

i.v← i.v + a, with F = ma. (2)

The mass (m) of an agent in this context is con-
sidered non-essential and set to 1. Each agent has
its own trajectory, and the aggregation shows a
global intelligent pattern, which will be converted
to a material distribution.

In the literature, the rules come from the nat-
ural principles. For example, the agents would like
to move in a similar direction (alignment) and
remain close to each other (cohesion) but avoid
collisions (separation). This paper also introduces
a principal direction rule, which is defined on top
of a physical field. According to the current posi-
tions (p) and velocities (v) of the agents, each rule
applies a force to change their motion path, as
shown in Fig. 4. The following lists the mathemat-
ical formulations of the forces, which are tailored
with the consideration of structural stiffness.

Alignment:

Fa =

 1

| Na(i) |
∑

n∈Na(i)

n.v

− i.v (3)

with Na(i) = { n | ∥n.p−i.p∥ ≤ da and ∥i.v∥·
∥n.v∥ > ϵ}

Cohesion:

Fc =

 1

| Nc(i) |
∑

n∈Nc(i)

n.p

− i.p− i.v (4)

with Nc(i) = { n | ∥n.p− i.p∥ ≤ dc and ∥i.v∥·
∥n.v∥ > ϵ}
Separation:

Fs =

 1

| Ns(i) |
∑

n∈Ns(i)

(i.p− n.p)

− i.v (5)

with Ns(i) = { n | ∥n.p− i.p∥ ≤ ds}
Principal direction:

Fp =
ps(i.p)

psmax
pd(i.p, i.v)− i.v (6)

The major difference from the literature is the def-
inition of neighborhood. This paper also considers
their instantaneous motion, besides they need to
be close to each other (∥n.p−i.p∥ ≤ da/c/s). Con-
tinuum mechanics shows that changes in a normal
stress do not affect the other orthogonal ones.
Therefore, when applying the rules of alignment
and cohesion, it does not consider the agents that
are moving in the orthogonal or opposite direc-
tion as neighbors, i.e., the dot product of their
velocity vectors (∥i.v∥ · ∥n.v∥) needs to be greater
than a threshold, e.g., ϵ = 0.2. For the separation
rule, it moves an agent away from its immediate
nearby neighbors, so the neighborhood distance
of separation (ds) should be smaller than that
of alignment and cohesion (da, dc). In addition,
the principal direction rule urges the agents to
follow the physical field, i.e., the principal direc-
tions (pd). The magnitude of force depends on the
value of the principal stresses (ps) at the agent’s
location. psmax is the maximum value of princi-
pal stresses throughout the domain. The following
presents the method of computing the principal
stresses and directions in real-time.

3.1.1 Field of principal direction

Without loss of generality, this work assumes
the design-domain to be a two-dimensional (2D)
quadrilateral finite mesh, and the loads and sup-
ports apply to the nodes of the mesh in a form
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of nodal forces and nodal boundary conditions. It
can then perform a stress analysis by solving the
linear equation system: f = Ku, where f is the
global nodal force vector, K is the global stiff-
ness matrix based on the Hooke’s law, and u is
the output – the global nodal displacement vec-
tor. To compute the principal directions for an
agent, it is basically the stress recovery process
for the element (e) where the agent is located.
Given the global displacement vector, it can get
the element displacement vector (ue ⊂ u). As a
quadrilateral has four vertices and each has two
degrees-of-freedom (DoF), ue is a 8 × 1 vector.
The Hooke’s law for a plane stress problem is as
follows: σ1

σ2

τ

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

Be(x, y)ue (7)

where σ1 and σ1 are the normal stresses, τ is the
shear stress, E is the Young’s modulus, ν is the
Poisson’s ratio, and Be is the strain-displacement
matrix, i.e., [ε1 ε2 γ]⊤ = Be(x, y)ue. Mapping
the element to a unit square with the bottom-left
corner at the origin, Be is a 3×8 matrix as follows:

Be(x, y) = y − 1 0 1− y 0 y 0 −y 0
0 x− 1 0 −x 0 x 0 1− x

x− 1 y − 1 −x 1− y x y 1− x −y


where (x, y) is the coordinate of any location
inside the unit square, i.e., 0 ≤ x, y ≤ 1. Then,
it can get the stresses at the agent’s location via
Eq. 7 by mapping i.p to the local coordinate (x, y)
of the element where the agent is located.

The principal direction is the orientation at
which the shear stress is zero by rotating the stress
tensor through an angle (θp). The only stresses
at this orientation are the normal stresses, which
are known as the principal stresses. The angle
(anti-clockwise) can be found based on the original
stresses:

θp =
1

2
tan−1(

2τ

σ1 − σ2
).

Thus, one of the two principal directions is at the
angle θp and the other one is at the angle θp +

π
2 ,

i.e.,

−→
θp1 = [cos θp, sin θp],

−→
θp2 = [− sin θp, cos θp].

Correspondingly, the two principal stresses are
computed via the transformation equations:

σp1 = σ1 cos
2 θp + σ2 sin

2 θp + 2τ cos θp sin θp

σp2 = σ1 sin
2 θp + σ2 cos

2 θp − 2τ cos θp sin θp

The only exception is when σ1 − σ2 = 0, there
are no principal directions, and the stresses in all
directions are the same. Here, the principal direc-
tion rule does not result in any steering force,
i.e., Fp = 0. Otherwise, pd() returns the principal
direction that is the closest to the agent’s mov-
ing direction and ps() returns the corresponding
principal stress:

pd(i.p, i.v) ={
sgn(i.v ·

−→
θp1)
−→
θp1 , if | i.v ·

−→
θp1 |≥| i.v ·

−→
θp2 |

sgn(i.v ·
−→
θp2)
−→
θp2 , else.

ps(i.p) ={
| σp1 | , if | i.v ·

−→
θp1 |≥| i.v ·

−→
θp2 |

| σp2 | , else.

Let it be noted that
−→
θp1,
−→
θp2, σp1, and σp2 are cal-

culated based on i.p. This is done in real-time, and
the only required input is the global displacement
vector u.

3.1.2 Generative parameters

GD creates and explores solutions based on a set
of input parameters, so it is important to set up
these parameters properly. From the above, the
variables in the form-finding process include the
weights among the steering forces (alignment: wa,
cohesion: wc, separation: ws, principal direction:
wp), the distances defining an agent’s neighbor-
hood (da, dc, ds), the number of agents (m), and
their initial position and velocity ({p}, {v}). In
addition, there are two maximum bounding val-
ues: one on the speed and one on the steering force.
The maximum speed controls how far an agent can
move in one step. To balance the piecewise linear-
ity of the trajectory and the computation time, it
has the size of a quadrilateral (q), i.e., smax = q,
and q = 1.0 in this paper. This is applied to Eq. 2:
whenever | v |> smax, v is scaled by smax/ | v |.
The maximum steering force limits the accelera-
tion of an agent and thus prevents sudden turns
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Variable Value/Range Note
L, q, vf ∼ 100, 1.0, 0.4 problem defined
smax q speed limit
fmax 0.1q force limit

wa, wc, ws, wp [0.5 1] weights,
∑

k wk = 1
da, dc [0.06 0.1]L neighbor distances
ds [0.02 0.06]L neighbor distance
m [vf 1]L number of agents

Table 1 List of variables and generative parameters

or potential oscillations. To have a smooth trajec-
tory, a steering force can change the direction of
an agent at most about 0.2 rad (weak constraint).
If the average speed of an agent is 0.6, it can calcu-
late the maximum force via the arc length formula,
i.e., fmax = 0.6 × 0.2 ≈ 0.1. This applies to the
total force in Eq. 1 and each of the forces in Eq. 3–
6. Whenever the magnitude of a force is greater
than fmax, the limit scales it down to fmax.

Some variables are fully random, like the ini-
tial location (p) and velocity (v). The agents are
spread freely throughout the design-domain and
take an arbitrary direction to start with in each
generation. The relative weights of the steering
forces (wa, wc, ws, wp) are random too, as long
as none of them overwhelm the others and they
sum to unity. Therefore, they are given a value
between 0.5 and 1.0, and their sum is normal-
ized to 1.0. Generally speaking, high alignment
weight (wa) gives more parallel struts; high cohe-
sion weight (wc) leads to more main struts; high
separation weight (ws) introduces more branches;
and high physical weight (wp) results in prin-
cipal stress lines. The neighborhood distances
(da, dc, ds) should be related to the domain size
such that the collective behavior can be observed.
If the distances are too small, the agents are inde-
pendent of each other – creating many branches
in the design; but if the distances are too large, all
agents are interrelated and there will be only one
global behavior – resulting in a few main struts
in the design. In addition, the separation distance
should be smaller than the other two, as men-
tioned before. They have a value less than 10%
of the size (L) of the design-domain, i.e., the dis-
tances of alignment and cohesion (da, dc) have a
floating-point value between 0.06L to 0.1L, and
the separation distance (ds) has a value between
0.02L to 0.06L. To account for irregular shapes of
the design-domain, the size L is the square root of
the domain’s area, e.g., for a 120 × 80 rectangu-
lar domain, L =

√
120× 80 ≈ 100. The number of

Fig. 5 An operation flow chart of generating one material
distribution by swarming.

agents (m) controls the topological complexity of
the initial shape, i.e., the more agents, the more
branches. Although increasing the complexity can
explore more interesting results, too many agents
will lead to a high volume. It should relate to the
size of the design-domain and the volume fraction
(vf), but since the length of each agent’s trajec-
tory is unpredictable, it prefers a large enough
range that can produce different volumes. This
paper sets m to be between (vf)L and L. Table 1
summarizes the values/ranges for each variable,
and Fig. 5 shows the operation flow chart of the
algorithm for a set of generative parameters.

The termination condition for the motion of
the agents is when they reach the boundary of
the design-domain, and then they become inac-
tive. After all agents are no longer active, the
present method collects and converts their trajec-
tories to the initial shapes for optimization, which
is detailed in the following.

3.2 Rasterization and volume
control

The TO tool used in this paper is the SIMP
method [2], which computes the optimal material
density for each quadrilateral element. Therefore,
the trajectories of agents need to be converted to
the material density in the elements (see Fig. 3).
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In 2D cases, it is like the rasterization process
that turns curves into pixels, where the trajecto-
ries are the curves and the quadrilateral mesh is
an image. By checking which elements the agents
have passed by, it assigns these elements with solid
materials, while the rest empty. This material dis-
tribution has an arbitrary volume, and it is most
likely not the same as the desired volume fraction.
Although the volume difference is not a prob-
lem for the TO method, as the process can add
or remove materials automatically, the difference
cannot be large. Especially, if the initial volume
was much lower than the desired volume, the opti-
mization would evenly put materials in the whole
domain, which would lessen the influence of the
initial shape to the result and thus lower the diver-
sity. Here, this method applies a dilation operation
repeatedly to the rasterized image until the vol-
ume is equal to or larger than the required volume.
When the input volume is higher than desired,
the method proportionally scales the density of all
elements down to reduce it.

3.3 Design inspiration and
optimization

As mentioned above, GD is used in the early phase
of design to give initial design possibilities for
automated ideation, and thus its major goal is to
generate multiple design suggestions, allowing the
designers and engineers to try out quickly different
designs and make changes. This is design inspira-
tion, and the present framework lists out the most
diverse designs for the purpose. To measure the
diversity of the generated results, it quantifies the
similarity between two structures (ρ, ϱ) in terms
of a distance measure that is defined on a high-
dimensional feature space, i.e., each quadrilateral
element is a dimension, using the Frobenius norm:

δ(ρ, ϱ) = ∥ρ− ϱ∥F =

√∑
e

| ρe − ϱe |2 (8)

where ρ and ϱ are in a form of density vector.
Diversity is a measure of how an individual design
differs from the others. Therefore, while sorting
the designs by diversity, each successor needs to
compare with all its predecessors. Searching for
the next most diverse design is to find the one
that has the maximum cumulative distance from

all the designs in the sorted list (A), i.e.,

argmaxρ : ζ(ρ) =
∑

ϱ∈A δ(ρ, ϱ)

The concept is like from a set of 3D points, finding
the largest triangle for an edge, then the largest
tetrahedron for the triangle, and so forth. The
sorting gives the ordering of diversity according
to the quantitative point of view, and users can
choose the inspiring ones from the top of the
sorted list. The first design on the list is the result
generated by the original SIMP method.

The magnitude of this distance measure (δ) is
different per problem. It depends on the dimen-
sion of the design-domain and the volume fraction
(vf). To make it comparable among different
problems, this paper normalizes the value and
reports it as a percentage via dividing by the
possible maximum difference. For example, two
material distributions on a 120×80 design-domain
with vf = 0.4 are the most different from each
other when none of their materials share an ele-
ment, meaning that there are 120 × 80 × 0.8
distinct elements between them. Using the Frobe-
nius norm, the possible maximum difference is the
square root of the number of distinct elements
(each has a difference of 1), and the normalized
value is

d(ρ, ϱ) =
δ(ρ, ϱ)√
A · vf

× 100% (9)

where A is the area of the design-domain.
Although this measurement may not be the same
as the perceptual difference and their relationship
is probably neither linear nor proportional, the
larger the value, the more likely to be perceptually
different.

GD can also find the best option based on cer-
tain metrics for design optimization. For example,
it can use the same goal as in TO to find the stiffest
structure. Recall that the objective of a common
TO problem is to minimize the compliance of the
structure, and its mathematical formulation reads
as:

argminρ c(ρ) = u⊤Ku =
∑

e E(ρe)u
⊤
e keue

s.t. f = Ku,
0 ≤ ρe ≤ 1,∑

e ρe = V.
(10)
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where V is the desired volume, and E(ρe) returns
the value of Young’s modulus based on the den-
sity of the element, e.g., E(ρe) = (ρe)

pE0, with
E0 being the Young’s modulus of the material
and p being a penalization power to favor binary
outputs. Each generated design has a compliance
value c(ρ), and sorting them in an ascending order,
the first one is the best design for the problem.

4 Results

The common practice of GD uses the power of
cloud computing to generate many shapes at once,
i.e., one set of generative parameters corresponds
to one design, and there is no interrelationship
between the designs. The generator can create
distinct sets of parameters and pass them to inde-
pendent processors to compute the designs in
parallel. Therefore, generating multiple designs is
essentially taking the same time as generating one
design plus some overheads.

The present method is implemented in Python,
and the Python version of SIMP method [2] for
TO is used. It is tested on a PC running 64-
bit Windows 10 equipped with Intel Core i5-6500
CPU@3.20GHz, and 8GB RAM. The swarming
step takes only 3 seconds on a 120 × 80 design-
domain, and TO takes 128 seconds on average,
which is the bottleneck. The contribution of this
paper is introducing physical meaning into the
swarming process but not developing new TO
methods, and this work only uses publicly avail-
able codes for the TO. If a more efficient TO solver
[52] is used, it can speed up the entire process.

As a proof-of-concept, this paper focuses on
studying the diversity of the optimized designs
and does not implement cloud computing or 3D
examples, but it is not hard to estimate the per-
formance in those situations. With the overhead
time, using cloud or parallel computing would take
about 140 seconds to generate all designs. For 3D
cases, the swarming time increases proportionally
with the size of domain because the agents need to
travel longer, but the computational complexity is
the same. The bottleneck is still the TO step, e.g.,
a high-performance solver [53] takes 146 seconds
on a 200× 100× 100 design domain.

The following will first validate the use of prin-
cipal direction and then evaluate the performance
of the present generative method in improving

Fig. 6 Applying only the steering force of the principal
direction rule. (a) The problem definition and the agents
are initialized at the location of fixed supports. (b) The
analytic optimum for the cantilever beam problem. (c) The
trajectories of the agents following only the principal direc-
tion.

diversity. It will also study a couple of test exam-
ples to show the capability of the framework, and
all are on macroscale. Unless otherwise stated,
all experiments use the volume fraction 0.4, the
penalization power 3.0, and the density filter-
ing with the filter radius 1.5 (by the element
size), which controls the minimum size of the fea-
tures in the optimized design to make sure it is
printable by additive manufacturing. The Young’s
modulus of the material uses E = 1 Pa, and
each applied force has a magnitude of 1 N. This
paper only generates 100 designs for each exam-
ple, but the present method can generate far
more designs than that. One can always generate
more and more designs to improve diversity, but
using a relatively small number here can show the
effectiveness of the present generative method in
creating diverse results.

4.1 Validation of principal direction

Part of the hypothesis in this paper is that using
principal direction as a steering force considers
optimality and helps get close to different local
optima. To check its validity, the present method
first applies only the steering force of the principal
direction rule without randomness. This experi-
ment is on the symmetric cantilever beam problem
as shown in Fig. 6a. The design-domain is a
120× 80 rectangle, with the top-left and bottom-
left corners fixed and a downward force at the
middle of the right edge. This problem has an
analytic optimum, which is shown in Fig. 6b.
Without randomness, the agents need to be initial-
ized meaningfully in this experiment. The analytic
optimum shows that all the curves of the structure
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Fig. 7 Line plots of differences against generations created
by (a) random material distribution and (b) the present
method.

Fig. 8 Top four inspiring designs generated by the present
method for the asymmetric cantilever problem shown in
Fig. 2. c is the compliance and d is the percentage difference
from the original SIMP result.

connect to one of the fixed supports. Therefore,
this experiment also places the agents at the
location of the fixed supports and assigns their
directions at every π/36 rad. Since the support
points are at the corners (right angle), there are
in total 34 valid agents. All of them come out
from the supports and end at the domain bound-
ary. The trajectories of the agents are shown in
Fig. 6c. From the result, here makes two obser-
vations. First, given the symmetric nature of the
problem and initialization, the trajectories are also
symmetric. This reveals that the method is reli-
able and repeatable, and using the rule of principal
direction is a valid add-on to the swarming pro-
cess. Second, the trajectories have a similar shape
to the analytic optimum. In fact, the curves in the
analytic optimum are a subset of the curves in the
trajectories. Although they are not the same, this
can already disclose that the principal directions
indeed relate to optimality, and including this rule
is a rational choice.

4.2 Effectiveness of inspiration

As the main purpose of this paper is to improve
the diversity of designs generated, this section
looks more closely into the generative process
to evaluate its effectiveness. This paper stud-
ies the diversity by two trends of data plotted
against each generation as shown in Fig. 7, which
compares the performance between (a) random

material distribution and (b) the present genera-
tive method. The data comes from the asymmetric
cantilever beam problem used in Fig. 2. The first
trend (dotted curve) shows the maximum differ-
ence between all generated designs, including the
latest one, e.g., the generation #40 considers all
the designs from 1 to 40 and the SIMP one. Its
mathematical formulation is

f1(xi) = max
j,k

d(xj , xk), s.t. j, k ≤ i. (11)

Whenever there is a rise in this trend, it means
that the newly generated design has increased the
overall diversity because of the extended range of
difference. The second trend (solid curve) repre-
sents the minimum difference between the latest
design and all the previous designs, i.e.,

f2(xi) = min
j

d(xi, xj), s.t. j < i. (12)

It measures how much difference comparing the
new one with its fellow designs. If the value of a
design is zero, it is the same as one of the previ-
ously generated designs. The larger the value for
each design, the more varieties there are in the
results. By analogy with finding a triangle from a
set of points, the maximum and minimum differ-
ences (f1, f2) are like the longest and the shortest
lengths of the triangle. If both lengths are large,
the size of the triangle is large.

Overall, the differences of the designs gen-
erated by the present method are much higher
than that of the random distribution, and in fact
the maximum difference of the random distri-
bution is only at a similar level to the present
method’s minimum difference. For the random
distribution, the first generation has a 47% dif-
ference from the SIMP result. The maximum
difference has increased to 50% at the generation
#9 and reaches a plateau (52%) at the generation
#26. Although the maximum difference settles
in the early generations, the minimum difference
maintains a level of 30%–40% throughout all the
generations. This reveals that random inputs can
indeed generate various designs, but there is not
much further inspiration after the generation #26.
In the present method, the first generation already
has a 62% difference comparing with the SIMP
result, which is even greater than the highest from
the random distribution. Its maximum difference
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Fig. 9 Comparison of generated designs by (top) reinforcement learning [51] and (bottom) the present method . c is the
compliance and d is the percentage difference from the original SIMP result (leftmost).

keeps increasing the whole time and achieves 72%
at the generation #98. This is a 40% improvement
in diversity compared with the random distri-
bution. The minimum difference is also higher
and around 40%–55% in the majority. Figure 8
shows the four most diverse designs sorted by the
method detailed in Sec. 3.3. They are obviously
different from the results generated by the ran-
dom distribution as shown in Fig. 2. As a result,
the present generative method can indeed explore
more diverse designs efficiently and effectively by
swarming.

Here also makes a comparison with another
generative algorithm developed by Sun and
Ma [51]. They applied exploration algorithms of
reinforcement learning (RL) to TO problems. One
method is to use the upper confidence bound
to change the sensitivity analysis of the SIMP
method for obtaining different results. The opti-
mized result got by the original SIMP method
has four thick struts on the perimeter and four
thin struts between the thick ones (see Fig. 9).
Although it does not have the same complexity as
the analytic optimum in Fig. 6, it is the optimal
solution under the domain resolution and settings,
and it has a compliance of 58.62. Both methods
can also generate a variety of designs, and Fig. 9
shows six of them. While the designs generated
by the RL-based method [51] still look like the
original SIMP result in terms of the overall shape
and complexity, the present method has created
plenty of interesting features, many of which have
never been seen in the literature. Although the
designs may look unusual, they are indeed the final
optimized designs, and they have similar compli-
ance to those generated by the RL-based method.
The compliance values are mostly between 60 and
65, and with this around 10% increase only, users

Fig. 10 Design optimization on a L-shape domain. c is
the compliance and d is the percentage difference from the
original SIMP result (top-right).

can select their preference from a bunch of inspir-
ing designs. The maximum difference (f1) among
all 100 generated designs is 68%. One may also
notice that the results from the RL-based method
are always symmetric. This is because that the
sensitivity only changes the way of updating the
solution, but a symmetric problem will always
result in a symmetric design. In contrast, the
present method inputs different material distribu-
tions, and thus it has more control of the results.
If symmetry is necessary, one can apply symmetry
boundary conditions to half of the design-domain
or make a mirror copy of the inputs, and then the
outputs will be symmetry. A shows another com-
parison between the generative methods on the
asymmetric cantilever problem.



Springer Nature 2021 LATEX template

13

4.3 Design optimization

In the previous examples, the compliance value
is always higher when the generated designs dif-
fer from the result produced by the original SIMP
method. This is because the previous cases are
relatively simple, e.g., the design-domain is just
a rectangle, and thus a uniform material distri-
bution is a good initial guess to reach the global
optimum. To show the capability of the present
method in finding better solutions, this section
tests a slightly more complex situation – a con-
cave design-domain shaped like the letter ‘L’. The
concavity comes from assigning 60×60 passive ele-
ments in the top-right of a 100 × 100 domain, as
shown in Fig. 10. It fixes the two corners at the top
of ‘L’ and applies a downward force at the middle
of the bottom-right end. Under this configuration,
the result produced by the original SIMP method
has a compliance value of c = 263.75 according to
Eq. 10.

The compliance values of 100 designs gener-
ated by the present method are plotted as a line
chart in Fig. 10 too. By drawing a horizontal line
at the value of 263.75, it finds three designs having
a lower compliance value than the original SIMP
result. The lowest one is 257.60 at the genera-
tion #34, which is visualized in Fig. 10 alongside
with other two from the generations #26 and #64.
Although it is not a vast improvement, this shows
that the original SIMP method does not always
get the optimal result, and the present method
can find better solutions. In terms of diversity,
the three results are only about 50% different
from the original SIMP result, which is not high,
meaning that they share some common features
in supporting the loads effectively. The maximum
difference (f1) among all generated designs is 72%.

4.4 Other examples and statistics

This section tests the present method on other
examples, including the symmetric cantilever
beam, a bridge, a bicycle, a chair, and a skate-
board truck. Figure 11 shows the problem def-
initions, the original SIMP results, and the top
twelve diverse designs generated by the present
method. It is worthy to remind that the TO set-
tings (e.g., penalization and filter radius) are the
same for all results and the only difference is the
input material distribution, which is generated
by various swarming conditions. Each generated

Example Size f1 f2 cbest
Sym. Cantilever 120× 80 68% 46% 58.62
Asym. Cantilever 120× 80 72% 46% 65.87
L-shape 100×100 -

60× 60
72% 48% 257.6*

Bridge 100× 50 76% 40% 11.98*
Bicycle 160× 80 72% 49% 188.01
Chair 100×100 -

50× 50
69% 46% 135.93*

Skateboard Truck 120 × 60 -
2(40× 30)

77% 37% 121.4*

Table 2 Statistics for various examples. f1 is the
maximum difference among all designs, and f2 is the
mean of minimum differences from each design. cbest is
the lowest compliance obtained, and the values with an
asterisk * meaning that they are better than the original
SIMP result.

design is a final optimized design instead of an
intermediate one during the optimization itera-
tions. This means that even though they may
not be the global optimum, they are indeed the
local optima. Table 2 lists the statistics, and it
uses two metrics to measure the diversity. One is
the maximum difference f1 from Eq. 11 includ-
ing all designs (i.e., i = 100), and the other one
is the minimum difference f2 from Eq. 12, but
since f2 has one value for each design, it reports
the mean value f2. The table also lists the best
compliance (cbest) got in each example.

L-shape

Besides the optimized designs shown in Fig. 10,
there are also inspiring designs as shown in
Fig. 11a. This is a challenging problem because of
the eccentric load and the passive region imped-
ing direct connections between the load and the
fixed points, and the original SIMP result has
a compliance value of c = 263.8. Even though
the passive elements largely reduce the DOF and
the domain is essentially a long rectangle with a
small width, the present method can still generate
diverse designs visually and quantitatively. The
maximum difference (f1) among all 100 generated
designs is 72% and the mean of minimum differ-
ences (f2) is 48%. However, any designs that do
not share similar features with those in Fig. 10 are
having a much higher compliance value (up to a
60% increase) in this challenging problem.

Bridge

This problem has a 100 × 50 rectangular design-
domain with the bottom-left and bottom-right
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Fig. 11 Design inspiration on various examples. c is the compliance and d is the percentage difference from the original
SIMP result (leftmost).
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corners fixed and a force being applied at the mid-
dle of the bottom edge (see Fig. 11b). The original
SIMP result has a thick arc connecting the two
fixed points, and there are four struts linking the
load to the middle of the arc. It has a compli-
ance value of c = 11.99. The results generated by
the present method have different topology and
shapes: some of them have two arcs, and some
look like a spider net. In this example, f1 = 76%,
f2 = 40%, and the lowest compliance found among
all generated designs is cbest = 11.98 – a bit better
than the original SIMP result.

Bicycle

To mimic the situation where a person sitting on
a bicycle frame and holding the front handles,
this example uses a 160 × 80 design-domain with
two loads applied: one at the top-middle pointing
down and one at the top-left with both x and y
directions (see Fig. 11c). It also fixes the domain at
two points on the bottom to simulate the centers
of the wheels. The original SIMP result is basically
a set of straight struts connecting the four load/-
fixed points. This is neat and rigid (c = 188.0) but
does not have much sense of aesthetic. In contrast,
the generated designs have different styles and
interesting shapes. For example, the 3rd design has
a smile like that on a comedy drama mask, and
the 7th one looks like the supertree from Singa-
pore. The maximum and minimum differences are
f1 = 72% and f2 = 49%.

Chair

The design-domain of this test case is a 100× 100
square (see Fig. 11d), with a 50×50 passive region
defined in the top-left for the sitting space. There
are two loads simulating a person sitting and lean-
ing back in the chair: a downward load of 2 N
in total distributed uniformly in the seat, and a
load applied at the top-middle to the right. The
original SIMP result has an organic shape in this
example, combining tree branches under the seat
and fan shapes in the back, and it has a compli-
ance value of c = 137.4. The present method can
further improve both diversity and stiffness. The
generated chairs have round, triangular, and var-
ious polygonal shapes. The differences are f1 =
69% and f2 = 46%. The lowest compliance got is
cbest = 135.9.

Skateboard truck

A skateboard truck is used to attach the wheels
to the skateboard deck, and it is fastened to the
underside of the board (see Fig. 11e). The skate-
board truck must be durable to withstand high
impact landings, yet lightweight to perform ollies
and flip tricks in mid-air. Therefore, the skate-
board truck should be both optimal and stylish.
This example uses a 120×60 design-domain, with
two 40 × 30 passive regions specified in the top-
left and top-right corners. Two downward loads
apply at the position of fasteners serving as the
weight of skaters, and two fixed points are at the
wheel positions. The original SIMP result has a
ladder structure in the top and a trapezoid with
two triangles in the bottom. It has a compliance
value of c = 123.3. To avoid uneven balancing of
weight, the present method enforces a y-axis sym-
metry at the middle by mirror copying the input
material distributions before TO. All the outputs
are symmetric, expect the 10th design has a small
strut in the middle, causing a slight asymmetry.
The results can be regular, like the 4th and 6th

designs, and they can be animated, e.g., the 3rd

design looks like cat ears, and the 12th resembles a
bat. The differences are f1 = 77% and f2 = 37%,
and the lowest compliance is cbest = 122.9.

5 Conclusion

This paper presents a new generative method
to improve the diversity of topology-optimized
designs by capturing as many local optima as pos-
sible in the topology optimization (TO) problem.
The method is developed based on two observa-
tions: (1) topology optimization places materials
along the principal directions to maximize the
overall stiffness, and (2) swarm intelligence gen-
erates forms using the trajectory of agents. This
paper applies the rule of principal direction to
the swarm intelligence, so that the form-finding
process can also consider the structural stiffness
and balance randomness and optimality. It varies
the swarming parameters to get different input
material distributions, which are then optimized
to get the final designs. The experiments have
used various examples of both convex and concave
domains, including the benchmarking cantilever,
L-shape, and bridge problems, as well as a bicy-
cle, a chair, and a skateboard truck. The results
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show that the present method can generate diverse
designs that have not been seen in the literature. A
means of measuring diversity by calculating their
difference is also used to sort the designs, so that
users can view the designs that are the most dif-
ferent from each other and select their preference
among them. In terms of optimality, the present
method can also find a few designs that have
lower compliance than the results generated by the
original solid isotropic material with penalization
(SIMP) method.

Despite the promising results, the present
method has a few limitations. To begin with, the
current generator is completely random, and it
could produce some similar input material distri-
butions, which should be filtered or avoided to
have more diverse results. Certain design explo-
ration methods, like a data-driven approach [54],
will make the present method more effective. Next,
the current measure of diversity is using a pixel-
wise comparison, which may not be the same
as the perceptual difference. A future work is
to develop a more accurate aesthetic measure,
e.g., based on user survey. It can then create a
recommendation system to predict the user pref-
erence. In addition, the current swarming can take
structural stiffness into account with the rule of
principal direction, but it has not yet consid-
ered other structural performance, like strength,
stability, and failure mode, and manufacturing
criteria. Future work should explore other rules
for the swarm intelligence to consider various
structural performance and free-of-supports for
additive manufacturing. Finally, this paper only
shows that the present method can work with the
SIMP method, but the trajectories need not to be
converted to pixels only. Extending it to other TO
methods will be another future work.
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using a multi-agent system approach. Int.
J. Archit. Comput. 16 (4), 248–270 (2018).
https://doi.org/10.1177/1478077118805874 .

[16] Tsiliakos, M. Achten, H., Pavlicek, J., Hulin,
J. & Matejovska, D. (eds) Swarm materiality:
A multi-agent approach to stress driven mate-
rial organization. (eds Achten, H., Pavlicek,
J., Hulin, J. & Matejovska, D.) Digital Physi-
cality, Proceedings of the 30th eCAADe Con-
ference, 301–309 (Prague, Czech Republic,
2012).

[17] Yoo, S. et al. Integrating deep learning into
CAD/CAE system: generative design and
evaluation of 3D conceptual wheel. Struct.
Multidisc. Optim. (2021). https://doi.org/10.
1007/s00158-021-02953-9 .

[18] Dogan, K. M., Suzuki, H., Gunpinar, E. &
Kim, M.-S. A generative sampling system
for profile designs with shape constraints and
user evaluation. Comput.-Aided Des. 111,
93–112 (2019). https://doi.org/10.1016/j.
cad.2019.02.002 .

[19] Gunpinar, E., Coskun, U. C., Ozsipahi, M. &
Gunpinar, S. A generative design and drag
coefficient prediction system for sedan car
side silhouettes based on computational fluid
dynamics. Comput.-Aided Des. 111, 65–79
(2019). https://doi.org/10.1016/j.cad.2019.
02.003 .

[20] Gupta, A. et al. Programmed-lattice edi-
tor and accelerated processing of paramet-
ric program-representations of steady lat-
tices. Comput.-Aided Des. 113, 35–47 (2019).
https://doi.org/10.1016/j.cad.2019.04.001 .

[21] Huang, J., Kwok, T.-H. & Zhou, C. Para-
metric design for human body modeling by
wireframe-assisted deep learning. Comput.-
Aided Des. 108, 19–29 (2019). https://doi.
org/10.1016/j.cad.2018.10.004 .

[22] Mirzendehdel, A. M., Behandish, M. & Nela-
turi, S. Exploring feasible design spaces for
heterogeneous constraints. Comput.-Aided
Des. 115, 323–347 (2019). https://doi.org/
10.1016/j.cad.2019.06.005 .

[23] Wang, Q.-S., Ye, J., Wu, H., Gao, B.-Q.
& Shepherd, P. A triangular grid gener-
ation and optimization framework for the
design of free-form gridshells. Comput.-Aided

https://doi.org/10.1016/j.cad.2018.12.007
https://doi.org/10.1016/j.cad.2018.12.007
https://doi.org/10.1016/j.foar.2020.09.001
https://doi.org/10.1016/j.foar.2020.09.001
https://doi.org/10.1016/j.cirp.2020.04.091
https://doi.org/10.1016/j.cirp.2020.04.091
https://doi.org/10.1016/j.neucom.2013.07.005
https://doi.org/10.1016/j.neucom.2013.07.005
https://doi.org/10.1177/1478077118805874
https://doi.org/10.1007/s00158-021-02953-9
https://doi.org/10.1007/s00158-021-02953-9
https://doi.org/10.1016/j.cad.2019.02.002
https://doi.org/10.1016/j.cad.2019.02.002
https://doi.org/10.1016/j.cad.2019.02.003
https://doi.org/10.1016/j.cad.2019.02.003
https://doi.org/10.1016/j.cad.2019.04.001
https://doi.org/10.1016/j.cad.2018.10.004
https://doi.org/10.1016/j.cad.2018.10.004
https://doi.org/10.1016/j.cad.2019.06.005
https://doi.org/10.1016/j.cad.2019.06.005


Springer Nature 2021 LATEX template

18

Des. 113, 96–113 (2019). https://doi.org/10.
1016/j.cad.2019.04.005 .

[24] Sigmund, O. &Maute, K. Topology optimiza-
tion approaches. Struct. Multidisc. Optim.
48 (6), 1031–1055 (2013). https://doi.org/
10.1007/s00158-013-0978-6 .

[25] Bendsøe, M. P. Optimal shape design as a
material distribution problem. Struct. Optim.
1 (4), 193–202 (1989). https://doi.org/10.
1007/BF01650949 .

[26] Zhang, X., Ramos, A. S. & Paulino, G. H.
Material nonlinear topology optimization
using the ground structure method with a
discrete filtering scheme. Struct. Multidisc.
Optim. 55 (6), 2045–2072 (2017). https://
doi.org/10.1007/s00158-016-1627-7 .

[27] Bendsøe, M. P. & Kikuchi, N. Generat-
ing optimal topologies in structural design
using a homogenization method. Com-
put. Methods Appl. Mech. Eng. 71 (2),
197–224 (1988). https://doi.org/10.1016/
0045-7825(88)90086-2 .

[28] Zhou, M. & Rozvany, G. I. N. The
coc algorithm, part ii: Topological, geo-
metrical and generalized shape optimiza-
tion. Comput. Methods Appl. Mech. Eng.
89 (1), 309–336 (1991). https://doi.org/10.
1016/0045-7825(91)90046-9, second World
Congress on Computational Mechanics .

[29] Bendsøe, M. P. & Sigmund, O. Material inter-
polation schemes in topology optimization.
Arch. Appl. Mech. 69 (9), 635–654 (1999).
https://doi.org/10.1007/s004190050248 .

[30] Sethian, J. A. & Wiegmann, A. Structural
boundary design via level set and immersed
interface methods. J. Comput. Phys. 163 (2),
489–528 (2000). https://doi.org/10.1006/
jcph.2000.6581 .

[31] Wang, M. Y., Wang, X. & Guo, D. A level
set method for structural topology optimiza-
tion. Comput. Methods Appl. Mech. Eng.
192 (1), 227–246 (2003). https://doi.org/10.
1016/S0045-7825(02)00559-5 .

[32] Allaire, G., Jouve, F. & Toader, A.-M. Struc-
tural optimization using sensitivity analysis
and a level-set method. J. Comput. Phys.
194 (1), 363–393 (2004). https://doi.org/10.
1016/j.jcp.2003.09.032 .

[33] Mirzendehdel, A. M., Rankouhi, B. & Suresh,
K. Strength-based topology optimization
for anisotropic parts. Addit. Manuf. 19,
104 – 113 (2018). https://doi.org/10.1016/j.
addma.2017.11.007 .

[34] Kwok, T.-H., Li, Y. & Chen, Y. A structural
topology design method based on principal
stress line. Comput.-Aided Des. 80, 19–31
(2016). https://doi.org/10.1016/j.cad.2016.
07.005 .

[35] Gao, J., Xue, H., Gao, L. & Luo, Z. Topology
optimization for auxetic metamaterials based
on isogeometric analysis. Comput. Methods
Appl. Mech. Eng. 352, 211–236 (2019). https:
//doi.org/10.1016/j.cma.2019.04.021 .

[36] Bianchi, L., Dorigo, M., Gambardella, L. M.
& Gutjahr, W. J. A survey on metaheuris-
tics for stochastic combinatorial optimiza-
tion. Nat. Comput. 8, 239–287 (2009). https:
//doi.org/10.1007/s11047-008-9098-4 .

[37] Wang, S. & Tai, K. Structural topology
design optimization using genetic algorithms
with a bit-array representation. Comput.
Methods Appl. Mech. Eng. 194 (36), 3749–
3770 (2005). https://doi.org/10.1016/j.cma.
2004.09.003 .

[38] Kaveh, A., Hassani, B., Shojaee, S. &
Tavakkoli, S. Structural topology optimiza-
tion using ant colony methodology. Eng.
Struct. 30 (9), 2559–2565 (2008). https://
doi.org/10.1016/j.engstruct.2008.02.012 .

[39] Wu, C. Y. & Tseng, K. Y. Topology optimiza-
tion of structures using modified binary dif-
ferential evolution. Struct. Multidisc. Optim.
42, 939–953 (2010). https://doi.org/10.1007/
s00158-010-0523-9 .

[40] Lee, S.-M. & Han, S.-Y. Topology optimiza-
tion based on the harmony search method.
J. Mech. Sci. Technol. 31, 2875–2882 (2017).

https://doi.org/10.1016/j.cad.2019.04.005
https://doi.org/10.1016/j.cad.2019.04.005
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/s00158-016-1627-7
https://doi.org/10.1007/s00158-016-1627-7
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1016/0045-7825(91)90046-9
https://doi.org/10.1016/0045-7825(91)90046-9
https://doi.org/10.1007/s004190050248
https://doi.org/10.1006/jcph.2000.6581
https://doi.org/10.1006/jcph.2000.6581
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1016/j.addma.2017.11.007
https://doi.org/10.1016/j.addma.2017.11.007
https://doi.org/10.1016/j.cad.2016.07.005
https://doi.org/10.1016/j.cad.2016.07.005
https://doi.org/10.1016/j.cma.2019.04.021
https://doi.org/10.1016/j.cma.2019.04.021
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1016/j.cma.2004.09.003
https://doi.org/10.1016/j.cma.2004.09.003
https://doi.org/10.1016/j.engstruct.2008.02.012
https://doi.org/10.1016/j.engstruct.2008.02.012
https://doi.org/10.1007/s00158-010-0523-9
https://doi.org/10.1007/s00158-010-0523-9


Springer Nature 2021 LATEX template

19

https://doi.org/10.1007/s12206-017-0530-5 .

[41] Jaafer, A. A., Al-Bazoon, M. & Dawood,
A. O. Structural topology design optimiza-
tion using the binary bat algorithm. Appl.
Sci. 10 (4) (2020). https://doi.org/10.3390/
app10041481 .

[42] Yu, Y., Hur, T., Jung, J. & Jang, I. G. Deep
learning for determining a near-optimal topo-
logical design without any iteration. Struct.
Multidisc. Optim. 59 (3), 787–799 (2019).
https://doi.org/10.1007/s00158-018-2101-5 .

[43] Cang, R., Yao, H. & Ren, Y. One-shot
generation of near-optimal topology through
theory-driven machine learning. Comput.-
Aided Des. 109, 12–21 (2019). https://doi.
org/10.1016/j.cad.2018.12.008 .

[44] Nie, Z., Lin, T., Jiang, H. & Kara, L. B.
Topologygan: Topology optimization using
generative adversarial networks based on
physical fields over the initial domain. J.
Mech. Des 143 (3), 031715 (2021). https:
//doi.org/10.1115/1.4049533 .

[45] Hertlein, N., Buskohl, P. R., Gillman, A.,
Vemaganti, K. & Anand, S. Generative
adversarial network for early-stage design
flexibility in topology optimization for addi-
tive manufacturing. J. Manuf. Syst. 59,
675–685 (2021). https://doi.org/10.1016/j.
jmsy.2021.04.007 .

[46] Wang, B., Zhou, Y., Zhou, Y., Xu, S. & Niu,
B. Diverse competitive design for topology
optimization. Struct. Multidiscipl. Optim.
57 (2), 879–902 (2018). https://doi.org/10.
1007/s00158-017-1762-9 .

[47] Li, Z., Liu, H., Cheng, G. & Zhou, Y.
A diversity metric based on gaussian pro-
cess model for diverse and competitive
design. Struct. Multidiscipl. Optim. 64 (5),
2975–2997 (2021). https://doi.org/10.1007/
s00158-021-02967-3 .

[48] Deng, H. & To, A. C. A Parametric Level
Set Method for Topology Optimization Based
on Deep Neural Network. J. Mech. Des.
143 (9), 091702 (2021). https://doi.org/10.

1115/1.4050105 .

[49] Watson, M., Leary, M. & Brandt, M. Genera-
tive design of truss systems by the integration
of topology and shape optimisation. Int. J.
Adv. Manuf. Technol. (2021). https://doi.
org/10.1007/s00170-021-07943-1 .

[50] He, Y., Cai, K., Zhao, Z.-L. & Xie, Y. M.
Stochastic approaches to generating diverse
and competitive structural designs in topol-
ogy optimization. Finite. Elem. Anal. Des.
173, 103399 (2020). https://doi.org/10.
1016/j.finel.2020.103399 .

[51] Sun, H. & Ma, L. Generative design by
using exploration approaches of reinforce-
ment learning in density-based structural
topology optimization. Designs 4 (2) (2020).
https://doi.org/10.3390/designs4020010 .

[52] Gao, J., Wang, L., Luo, Z. & Gao, L.
IgaTop: an implementation of topology opti-
mization for structures using IGA in MAT-
LAB. Struct. Multidiscipl. Optim. 64 (3),
1669–1700 (2021). https://doi.org/10.1007/
s00158-021-02858-7 .

[53] Wu, J., Dick, C. & Westermann, R. A
system for high-resolution topology optimiza-
tion. IEEE Trans. Vis. Comput. Graph.
22 (3), 1195–1208 (2016). https://doi.org/
10.1109/TVCG.2015.2502588 .

[54] Kang, S., Deng, X. & Jin, R. A Cost-
Efficient Data-Driven Approach to Design
Space Exploration for Personalized Geomet-
ric Design in Additive Manufacturing. J.
Comput. Inf. Sci. Eng. 21 (6), 061008 (2021).
https://doi.org/10.1115/1.4050984 .

Appendix A 100 results

This section lists all the 100 results generated
by three different methods on the asymmetric
cantilever problems. The results from random
material distributions are shown in Fig. A1, by the
reinforcement learning [51] is shown in Fig. A2,
and by the present method (swarm intelligence) is
shown in Fig. A3. It can be seen that the present
method has much more diverse designs.
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Fig. A1 100 results from random material distributions. 10 of the inputs are shown in the top.
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Fig. A2 100 results generated by the reinforcement learning method (SIMP UCB) [51].
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Fig. A3 100 results generated by the present method. 20 of the inputs are shown in the top.
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