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Abstract—Robots fabricated with soft materials can provide
higher flexibility and thus better safety while interacting in
unpredictable situations. However, the usage of soft material
makes it challenging to predict the deformation of a continuum
body under actuation and therefore brings difficulty to the
kinematic control of its movement. In this paper, we present
a geometry-based framework for computing the deformation
of soft robots within the range of linear material elasticity.
After formulating both manipulators and actuators as geometry
elements, deformation can be efficiently computed by solving
a constrained optimization problem. Because of its efficiency,
forward and inverse kinematics for soft manipulators can be
solved by an iterative algorithm with low computational cost.
Meanwhile, components with multiple materials can also be
geometrically modeled in our framework with the help of a
simple calibration. Numerical and physical experimental tests
are conducted on soft manipulators driven by different actuators
with large deformation to demonstrate the performance of our
approach.

Index Terms—Kinematics, soft robotics, deformation predic-
tion, geometric computing.

I. INTRODUCTION

W ITH the excellent behavior of continuum bodies, soft
robotics have attracted a lot of attention in research.

Mainly inspired by nature, designers have come up with a
variety of novel designs for soft robots to achieve different
tasks (see [1], [2] for a comprehensive survey). By using soft
materials and specially designed structures, continuum bodies
enable these robots to generate large and complex deforma-
tions with an infinite number of Degrees-Of-Freedom (DOFs).
Highly dexterous tasks like human-interactive grasping [3]
and exploration in confined regions [4] can then be realized
with soft robots. In the meantime, 3D printing with multiple
materials [5]–[8] has been utilized to fabricate soft robots,
providing flexibility in the complexity of the geometry as well
as the material properties.
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Fig. 1. Example soft robotic systems that actuation can be represented as
geometric changes: (a) a soft finger actuated by stepper motor with cable
length shortening, (b) a soft crawling robot driven by dielectric elastomer
actuation (DEA) can achieve locomotion by the area change using different
voltage input [9], and (c) a pneumatic driven soft manipulator controlled by
syringe actuation system with the volume change in chambers.

A. Problems of Kinematics

While soft matter and 3D printing open up many opportu-
nities in developing new soft robots, these advanced designs
along with the high amount of DOFs also bring challenges
to develop efficient and reliable algorithms for kinematics.
Unlike robots with rigid bodies for which the position and
velocity of the end-effector can be directly computed with
joint parameters, it is almost impossible to explicitly formulate
the kinematic function for soft manipulators. Although some
reduced analytical models have been developed for specific
designs, they are usually based on a particular type of soft
body and therefore not general enough to model robots with
complicated shapes.

A numerical approach can also be used to predict the
deformation of soft robots by approximating a continuum
body with discretized finite elements. With precise modeling
formulation of soft materials, Finite element analysis (FEA)
has proved its effectiveness in simulating the behavior of soft
robots [10], [11]. However, when dealing with large rotational
deformation, the high cost of computation by using enterprise-
level FEA software (e.g. Abaqus and ComSol) can hardly meet
the required efficiency in kinematics applications.

Our research is inspired by the fact that many forms of
actuation in soft robotic systems can be directly transformed
into geometric changes (see Fig. 1). In this paper, we tackle the
problem of kinematics computing by presenting an efficient
approach where soft robots with multiple materials and their
actuation are systematically modeled in a geometry-oriented
formulation. Comparing to other methods, our kinematic al-
gorithm shows better convergence and keeps a good balance
between the computational efficiency and the numerical accu-
racy. Both forward kinematics (FK) and inverse kinematics
(IK) can be efficiently computed in our framework. Case
studies with physical experiments have been conducted to
demonstrate and verify the effectiveness of our approach.
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B. Related Work

Efficient computation for simulating the deformation of soft
robots under different types of actuation is a fundamental
technique to solve the problems of kinematics, which is needed
in many applications – e.g., adaptive grasping of soft objects
in the food industry [12] and auxiliary systems for soft tissues
in medical surgery [13]. Prior research works can be classified
into three groups: 1) analytical methods, 2) numerical methods
and 3) model-free methods (mainly using machine-learning
and computer vision).

When dealing with soft robots having simple (particularly
symmetric) structures, analytical methods based on mechan-
ics or differential geometry have been commonly used. In
the early stages, the backbone curve approach [14] and the
constant curvature assumption [15] were applied to build
the kinematics of multi-section soft robots. By using work-
energy principle, Trivedi et al. [16] developed a geometric
model for pneumatic-driven soft manipulators that has better
accuracy than the constant-curvature model. Michele et al.
conducted a series of work [17]–[19] to build forward and
inverse kinematics for bio-inspired manipulators by apply-
ing the Jacobian method of statics models to compute the
equilibrium status of conical shaped manipulators under cable
forces. Recently, efforts have also been made to use analytical
methods for soft robotic systems with high DOFs or hyper-
elastic materials. For example, Panagiotis et al. [20] presented
their analysis for fiber-reinforced bending pneumatic actuators.
A teeth-structure soft gripper was studied by using a simplified
skeleton model [21]. However, the equilibrium of a static
model requires specific approximations and assumptions of
shape and material properties, which can hardly be generalized
to soft robots with freeform shapes fabricated by 3D printing.

While using the numerical method, the deformation of a
continuum body is usually simulated by FEA with given
material properties and the boundary conditions of actuation. A
deformed shape can be computed in general and this method
has been used to help select the optimal design parameters
of soft robot to meet specific performance (e.g., providing a
faster actuation behavior [22] or making the bending curvature
conformable to a design surface [23]). Conversely, the trade-
off between computing time and accuracy needs to be made
when applying a numerical method on real examples with
more than 10k elements. Commercial FEA software like
Abaqus and ComSol can generate precise calculations of
forward kinematics for soft robots [10], [20]; however, small
time-steps are needed when confronted with situations of large
deformation. For these softwares, high computation cost and
slow simulation speed restrict its usage for further solving
the IK problem. To speed up numerical methods, Allison and
Okamura [24] presented a closed-loop control of a haptic jam-
ming deformable surface by a mass-spring system. Hiller and
Lipson [25] developed a multi-material simulation library for
general static and dynamic analysis – called Voxelyze, where
the voxel representation and beam theory were used. Based
on a physics-based simulation engine SOFA [26], Duriez et
al. [27] simulated the behavior of soft robots by progressively
solving a quasi-static equilibrium function for every sample

time. This method can achieve real-time computing speed with
a reduced model [28]. However, the progressive computation
accumulates numerical errors along time steps, which brings
in the accuracy problem for the case with large rotational
deformation (see the comparison given in Section V-A).

In the absence of analytical and numerical models, model-
free methods based on learning or vision, have been employed
to solve the challenge of computational kinematics for soft
robots. Machine intelligence approaches can generate forward
and inverse mappings with limited samples obtained from
either physical experiments [19] or precise numerical simu-
lations [29]. The accuracy of training-based kinematic com-
putation however mainly relies on the quality and quantity of
the training datasets. Visual servoing has been used to control
the manipulation by calculating the Jacobian of deformation
between the control point and an unknown elastic body [30],
[31]. Similarly, Li et al. [32] employed an adaptive Kalman
filter to estimate the Jacobian and only required data input
from the vision tracking system. Zhang et al. [33] built a
closeloop tip position control strategy for specific soft robot
design by combining the numerical simulator with a visual
servoing system. The vision-based methods are efficient and
robust after adjusting the control law. However, the require-
ment of vision hardware and the complex calibration process
prevents the usage of this method in many scenarios.

C. Contributions

The technical contributions of our work are summarized as
follows:
• A novel method of geometric computing is presented

to predict the deformation of continuum soft bodies
under geometric actuations – this results in an efficient
forward kinematic computation. Physical actuations are
directly transformed into geometric constraints that can
be intrinsically integrated into the framework.

• An image-based calibration method is introduced to en-
able the simulation of multiple materials in our compu-
tational framework by learning the relationship between
material properties and shape parameters.

• A Jacobian-based iterative algorithm is developed to
compute the IK solution with the help of our efficient
deformation computing framework. The Jacobian matrix
is calculated by numerical differences, which relies on a
highly efficient simulator.

Our method is direct and efficient. It has been verified on
3D printed soft robots driven by different types of actuation
within the deformation range of linear material elasticity.
Applications of trajectory following have been conducted to
demonstrate the performance of our method.

An early version of this study, which focused on predicting
the deformed shape of cable and pneumatic driven soft manip-
ulator under single actuation in 2D domain, has been presented
in [34]. In this paper, our approach has been enhanced in the
following aspects:
• The method is extended to support kinematic computing

with multiple actuators in 3D, and has its correctness
verified in the deformation range of linear elasticity.
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TABLE I
LIST OF SYMBOLS

Symbol Description Symbol Description

M Volumetric mesh represents for soft robot model Vt
i ,V

d
i Target shape and current shape for the i-th element

Ω Material distribution of given soft robot design D(·, ·) Shape difference of two corresponding elements
C Set of geometry-defined actuation parameter {s, λ, α} Ei, E Geometry-elastic energy for i-th element and whole domain

s, λ, α Length, area and volume change ratio for actuation element N ∈ Rk×k Transformation matrix to move element center to its mean
V Set of vertices in mesh M Ri ∈ R3×3 Rotational matrix between two status for the i-th element
n Number of body element J(·) Objective function for inverse kinematics computing
m Number of actuation element Rω Shape parameter presenting material behavior
k Number of vertices in single element V Fdk(·) Forward kinematics implicit function

v ∈ R3 Position vector of single vertices in set V L Desired motion trajectory
V ∈ Rk×3 Single element and its shape matrix [v1 v2 ... vk]T P Sampling point set of the trajectory {p1,p2, ...,pN}

• An algorithm of inverse kinematics (IK) is developed by
using Jacobian-based iterations.

• The generality of our method has been further verified
on additional distinct designs of soft robots.

The rest of our paper is organized as follows. Section II
presents the mathematical modeling of our geometry comput-
ing approach. Both forward and inverse kinematic problems
are formulated and solved with a corresponding algorithm pre-
sented in Section III. In Section IV, we study the correctness
of using linear material elasticity for 3D printed soft robots and
also introduce a method of physical calibration to transform
multi-material properties into geometric parameters. Experi-
mental results are given in Section V, where the effectiveness
of our method has been validated on different applications
and physically fabricated soft robots. Finally, our paper is
concluded in Section VI.

II. GEOMETRY-BASED FORMULATION

In this section, we present the formulation of our geometry-
based modeling framework. The notations used in this paper
are first presented. Then, deformation energy is defined based
on the shape variation of elements. After that, bodies and
actuators of soft robots are modeled as two types of elements
in the formulation. Lastly, the methods for computing target
shapes of different elements are presented in detail.

A. Notations

The small and capital bold letters are used to present column
vectors and matrices respectively, e.g., v ∈ R3 and N ∈ Rk×k.
The subscript of a variable presents its order in corresponding
set, meanwhile the superscript present is for the status of
meshes or elements. Particularly, the superscript d denotes the
deformed (or current) shape and t means the target status. The
identity matrices are denoted by Ik×k ∈ Rk×k, and 1k×k is a
matrix of k × k ones.

A volumetric meshM = (V, E) is used in our framework to
represent the body of a soft robot, where V and E stand for the
sets of vertices and elements in the mesh. We define the shape
of each element by a k×3 matrix Vi = [v1 v2 . . . vk]T with
k being the number of vertices on an element. In this paper,
tetrahedron (k = 4) and prism elements (k = 6) are used to
model soft robots with general 3D geometry and thin-shell
structure respectively.

In our method, the status of actuation is described by a set
C of geometric parameters:

1) Length shortening ratio s for cable actuation
2) Area stretching ratio λ for DEA
3) Volume expanding ratio α for pneumatic actuation.

This can also be extended to support other types of geometry-
oriented actuation. Meanwhile, other notations used in this
paper are summarized in Table I.

B. Elastic Energy Function
The general purpose of an elastic deformation simulator

is to determine a new shape Md for a soft body that
best mimics the physical behavior of deformation under the
actuation of C with reference to the initial shape M and
the input material distribution Ω. When different boundary
conditions (or external loads) are applied to deform an object,
the elastic energy is transferred by the corresponding work and
distributed internally in M. Here the elastic energy is caused
by the shape deformation, which can be evaluated from the
strains (i.e., local deformations throughout M). In this sense,
the total elastic energy should be minimized when the original
shape is preserved as much as possible. To mimic this physical
phenomenon, we formulate the difference between Vd

i (current
shape under deformation) and Vt

i (target shape) for a single
element by discretized geometry-elastic energy as

Ei = D(Vd
i ,V

t
i). (1)

To measure the shape difference D(·, ·) of Vd
i and Vt

i , they
have to be properly aligned in terms of both position and
orientation. Therefore, both shapes are centered at the origin
and a rotation is applied to match Vt

i with Vi, such that the
above energy for the i-th element can be further defined as

Ei = ωi||NiV
d
i −Ri(NiV

t
i)||2F . (2)

ωi is a weight for each element which is normally set as the
element’s volume (ref. [35]). || · ||F is the Frobenius norm,
Ri is the pure rotational matrix between two status for the
i-th element. Ni is used to transfer an element’s center to the
origin and Ni = Iki×ki

− 1
ki
1ki×ki .

Remark 1 Only elastic deformations are considered in our
framework.

As a result, we can assume that every soft model will come
back to its initial rest shape after releasing all the constraints
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Fig. 2. Conceptual representation of our geometry-based framework for soft robotic systems with different types of actuation. The light-gray region presents
the body elements and the region in red denotes actuation elements. Three different types of actuation are transformed into the shape change of actuation
elements: a) cable-drive actuation is formulated as the edge-length shortening of cable elements, b) dielectric elastomer actuation is presented as the area
stretching of prism actuation elements, and c) pneumatic actuation is defined as the volume expansion of internal tetrahedral chamber elements.

(i.e. actuations and handles). The energy function defined
in (2) consists of three sets of variables, including:

1) Vertex positions of target shape Vt
i ,

2) Rotation matrices Ri for individual elements and
3) Vertex positions of current shape Vd

i under deformation.
How to determine these variables is presented below.

We first consider the target shape, which presents the ability
of a soft body to resist deformation under actuation. It is
determined commonly by the initial model M, the set of
constraints C and the coefficients for material properties Ω. As
shown in Fig. 2, two types of elements defined in our system –
body elements and actuation elements, are modelled by using
the same formulation of elastic energy. However, their target
shapes are defined in different ways.
• For a body element Vi, the target shape Vt

i is computed
with a shape blending function by combining its initial
rest shape and the coefficient Rω reflecting its material
property (i.e., the stiffness). Ideally, Vt

i is a blended shape
between a super-elastic material and a completely rigid
material, where Rω indicates the level of blending (see
Section II-C for the details of blending and Section IV
for coefficient calibration).

• Target shape of an actuation element Vt
j is determined

according to the different types of actuations. All actua-
tion elements together actually serve as the driven handles
to deform a soft body. Detailed formulation can be found
in Section II-D.

The final energy function is determined by integrating all the
elementary elasticity together. By minimizing the integrated
energy function for the whole design domain together with
actuation constraints, the deformed shape of soft robots under
actuation can be computed. As shown in Equation (2), Ri

and Vd
i are unknown variables to be determined during

the optimization computation, and the numerical method for
solving this nonlinear optimization problem will be presented
in Section III. We first present the details of how to compute
the target shapes for body and actuation elements below.

C. Modeling for Body Elements

For the soft robots fabricated by multiple materials, regions
with different materials will deform in different ways, thus

the target shape should be computed disparately based on the
input material distribution Ω. In this section, we propose a
method to formulate soft objects with multiple materials by
using linear blending method with a shape parameter.

To model the different properties of materials, a simple way
is to assign different weights ωi for each element in (2). The
rigidity of an element will be preserved differently through the
optimization when different weights are assigned. This mimics
the deformation of multiple materials. However, handling the
material difference in this way will lead to large approximation
errors. In order to gain a better control and reinforce the physi-
cal property in large deformations, we control the deformation
behavior of elements at the local region by altering their target
shapes, Vt, according to different material properties.

Remark 2 When the material of an element is extremely hard,
it will be rigid during the deformation; respectively, an element
with extremely soft material will deform to the shape which
conforms to its neighbors while preserving its volume.

Based on the above remark, we came up with a method
to compute two different target shapes for body element as
shown in the left side of Fig. 3. Here the target shape of a
rigid element Vr comes from the rigid transformation of its
original shape. This method thoroughly preserves the initial
shape V and keeps the same orientation as the current shape,
which leads to

Vr = RV (3)

R is the rotation matrix between current and initial element,
and can be obtained by applying SVD to the affine transfor-
mation between Vd and V.

For a soft element, its target shape Vs comes from scaling
the current shape back to its original volume (see Fig. 3)
and we call this volume preservation. The shape comes from
current element shape Vd and can be calculated as

Vs = SVd, (4)

where S = diag(r, r, r) with r = Vol(V)/Vol(Vd).
For a material in-between, the rigid and soft target shapes

are aligned by using a blending method with a shape parameter
Rω to get the target shape as shown in the right of Fig. 3. Here
linear shape blending method [36] was used after centering
both shapes onto the origin with N matrix for a general case
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Fig. 3. The shape blending method for controlling the material stiffness in
our framework. (Top-left) The target shape for rigid material is computed by
rotating the initial shape to align with the current shape. (Bottom-left) The
target shape for extremely soft material is computed by scaling the current
shape to preserve the volume of the initial shape. (Right) The shape blending
method is applied to align the rigid and the soft materials, and merge their
shapes to obtain the target shape for an intermediate material.

as:
Vt = RωN(RV) + (1−Rω)N(SVd). (5)

In this way, the target shapes of elements according to different
materials can be properly controlled during the deformation.

To verify the correctness of above method for controlling
the relative stiffness of materials, we have tested a variety of
polymer materials widely used in 3D printing. In Section IV-B,
we present an image-based calibration process to determine the
shape parameter – the ratio Rω – for controlling the material
behavior. Our linear shape blending method works very well
when the deformation of each element is within the range of
linear material elasticity. The correctness of our method will
be verified in Section IV-A with the help of FEA simulation.

D. Modeling for Actuation Elements

Soft robots are deformed by applying external actuations
such as cable shortening, elastomer stretching or pneumatic
expansion of a chamber – these are all based on geometric
metrics. When being at an equilibrium state, the geometry
of an actuation must completely satisfy its given length,
area or volume constraints. A straightforward method is to
formulate them as hard constraints in a numerical optimization
framework. However, it is hard to converge because of its high
non-linearity – especially when the initial values are far away
from the feasible regions.

To solve this problem of numerical computation, we formu-
late the deformation of an actuator as the collected function of
a set of actuation elements (as shown in Fig. 2). The geometric
constraints for an actuator are then converted into target shapes
computed at each iterative step for these elements. The target
shape of an actuation element is achieved by integrating it
into the same elastic energy minimization framework. Larger
weights are given to the actuation elements to make the actua-
tion parameters satisfied effectively. As a result, the geometric
actuation can be seamlessly integrated to our geometry-based
simulation framework. Details of how we define the actuation
elements and compute their target shape Vt according to the

Fig. 4. An illustration of how the target shape of actuation element is
computed based on the input parameter. The initial shapes are presented by red
dot lines and the target shapes are displayed by black solid lines. Notice that
the number of vertices k is different for different types of actuation elements.
Specifically, k = 3 for (a) cable actuation, k = 6 for (b) dielectric elastomer
actuation, and k = 4 for (c) pneumatic actuation.

input actuation parameter C are given below. Note that, after
reshaping from the rest shape, each actuation element should
be transformed to a position and orientation according to its
current shape – i.e., the similar step as body element. Three
different types of actuation elements are considered.

Cable-driven actuation: A typical cable-driven soft gripper
with design similar to [37] is as shown in Fig. 2(a), which has
three soft ‘knuckles’. A cable fixed on one side of the gripper
is passed through the holes along the gripper. While pulling
the cable (i.e., by shortening its length), the gripper bends
towards one side. To integrate this actuation into simulation,
the V-shaped ‘knuckles’ are modeled as a set of triangular
elements. One edge of each triangle is aligning exactly with
the cable, the deformation of which drive the simulations.

The total length L of a cable equals to the length of the
gripper. It includes the inside portions LR and the tooth length
{li} – i.e., L = LR+

∑k
i=1 li, where k is the number of teeth.

The shortening factor s is also given together with a cable
constrain. The constraint function can be defined as

fc(C) = sL− (LR +

k∑
i=1

sili) ≡ 0, (6)

where si is a local shortening factor for the i-th tooth. Directly
imposing this constraint to the optimization framework will
lead to a computation very hard to converge.

It is more efficient to transform this function of constraint
to a target shape for each actuation element. For a cable-
driven actuation element, we place its rest shape into a position
with its cable-driven face located in the xy-plane, the cable
coincident with the x-axis and the opposite vertex on y-axis
(see Fig. 4(a)). After that, the target shape can be computed
by shrinking the element along x-axis by the factor si.

Dielectric elastomer actuation:
With voltage input, dielectric elastomers can effectively

generate large deformation [38]. Driven by DEA, soft robots
with specific design can perform locomotion by the areal
stretching within the elastomer region. As show in Fig. 2(b),
a thin-layer soft robot is modeled by prism elements where
the inner red region is formed by the actuation elements. The
total surface area A of the elastomeric region can be computed
by A =

∑k
i=1 ai where ai is the average area of the top and

bottom triangles of a prism element. To satisfy the stretching
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ratio λ for a DEA, the constraint function can be defined as

fd(C) = λA−
k∑

i=1

λiai ≡ 0, (7)

where λi is a local expansion ratio of an actuation element.
Similar to the cable-drive actuation, this constraint should also
be transformed to the target shape of DEA elements.

When computing the target shape for a prism element from
its rest shape, the top and bottom triangles are scaled in their
own planes with the scaling ratio

√
λi. The center of each

triangle is chosen as the center of scaling (see Fig. 4(b) for an
illustration). After scaling, the triangles are shifted along their
normal vectors so that the “thickness” of an actuation element
is scaled to 1/λi to preserve the original volume.

Pneumatic actuation: A pneumatic actuator usually drives
soft robots by pumping pressurized air into a bellow formed
by soft materials. An example is shown in Fig. 2(c), where
the left part is fixed when pumping air along the direction
of white arrow into the bellows. The internal tetrahedra that
fill the chamber are modeled as the actuation elements, which
have been highlighted in Fig. 2(c). These actuation elements
are used to model the expansion of air inside the bellows.

Given the volume ui of each pneumatic actuation element,
the total volume of a bellow is then U =

∑k
i=1 ui. To achieve

the volume expansion ratio α for a pneumatic-driven soft
robot, the geometric constraint can be described by:

fp(C) = αU −
k∑

i=1

αiui ≡ 0. (8)

where αi is a local expansion ratio of each element.
The target shape for a pneumatic actuation element with the

volume expansion ratio αi can be determined by scaling its
rest shape with the ratio 3

√
αi. The scaling is conducted at the

center of tetrahedron (see Fig. 4(c)). After scaling, the target
shape should be transformed to a position and orientation
according to the element’s current shape.

There is a remaining problem to be solved – how to determine
the scaling ratios on every elements (i.e. {si, λi, αi}) by a
global actuation parameter such as s, λ or α. We determine
them proportionally to the ratios of an element’s current shape
w.r.t. its rest shape. The newly determined ratios must also
satisfy the geometric constraints defined in (6), (7), and (8).
In our implementation, a least-norm solution is employed to
compute their values on all the actuation elements.

III. ALGORITHM FOR KINEMATICS

The kinematics of soft robots are hard to be solved analyt-
ically. In this section, we present the algorithms characterized
by our geometry-based formulation to solve both the forward
and the inverse problems of kinematics for soft robots. As a
general framework, our algorithms for kinematics can intrin-
sically handle the different configurations of actuation with
different material-distributions as long as the actuation can be
converted into geometric inputs.

Fig. 5. An illustration of the local-global optimization process on a simple
model where the whole mesh is actuated by shrinking elements in the red
region.

ALGORITHM 1: ForwardKinematicComp
Input: The initial shape V , the actuation C and the material

distribution Ω.
Output: The deformed shape Vd

1 Initialize the weights {wi} and volumes Vol(Vi) for all
elements;

2 Apply factorization to the normal equation of (10);
3 repeat

/* Local / global optimization */
4 Compute the target shape for each element;
5 Applying SVD to obtain the rotation matrix {Ri};
6 Determine {vj} by solving the linear system where the

factorization can be re-used;
7 Update Vd by the new positions of vertices {vj};
8 until the position change is less than 10−5 on all vertices;
9 return Vd;

A. Forward Kinematics

The forward kinematics for the soft robots can simply
be described as the computation of the deformed shape VD

from the initial shape V given the actuation in the form of
constraints, C. As formulated in Section II, the deformed shape
of a soft body can be computed by minimizing the elastic
energy after converting the actuation constraints into a set
of target shapes for the actuation elements. This leads to a
solution of forward kinematics in our framework by solving
the unconstrained optimization problem below.

min
V
E(M, C) =

m+n∑
i=1

wiVol(Vi)‖NiV
d
i−Ri(NiV

t
i)‖2F (9)

where the variables of optimization are the vertices {Vd
i } of

a deformed shape. In this framework, the final shape of a soft
body under actuation is determined by the initial shape of n
body elements and the target shape of m actuation elements.

In the formulation of (9), both the local rotation Ri and
the vertex positions Vd

i are unknowns to be determined. As
a result, the objective function of optimization is highly non-
linear which may lead to a very slow convergence and high
computation time. In order to solve it efficiently, a local /
global scheme akin to [39] is employed. In the step of local
projection, the initial shapes of actuation elements are first
deformed according to the actuation parameters (as introduced
in Section II-D). After that, the target shapes of all elements
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are independently transformed by applying the rigid transfor-
mation determined between their target shapes and the current
positions (i.e., the rotation matrices as discussed in Section
II-C). Then, the new positions of vertices can be computed in
the global blending step by minimizing the energy. Letting

∂E(M, C)
∂vj

= 0 (∀vj ∈ V) (10)

leads to a least-square problem that can be solved efficiently.
Through this global blending step, the incompatible posi-

tions of a vertex in different elements are “glued” together. An
illustration of this local-global computation can be found in
Fig. 5. Notice that, wi, Vol(Vi) and Ni are constant during
the iterations for minimizing E(M, C), factorization of the
normal equation defined by (10) can be pre-computed and
reused to accelerate the computation of optimization. In order
to well-preserve the constraints of actuation, a larger weight
as wi = 5.0 are employed for the actuation elements while
keeping wi = 1.0 for all other body elements. The pseudo-
code of our algorithm can be found in Algorithm 1.

B. Inverse Kinematic Problem

The computation of forward kinematics is able to generate
the deformed shape Vd from the given actuation C. In many
robotic applications, it is also demanded to obtain the needed
actuation by the given deformed shape. This is an inverse
kinematic problem where only a portion of the deformed shape
is usually given as an input.

Remark 3 As the forward kinematics can be computed
efficiently, the deformed shape Vd can be considered as the
output of an implicit function Fdk(·), that is

Vd = Fdk(C,V,Ω) (11)

with the initial shape V , the actuation C and the material
distribution Ω as the input.

Note that the material distribution Ω specifies the values of
Rω on every soft body elements. In our current work, it is
given by designers after the calibration of material properties.

For articulated robots, the inverse kinematics can be de-
scribed as calculating joint status. Given a subset of vertices
V̄ = {vp} (V̄ ⊂ V), IK of soft robots can be considered as
finding the proper parameters of actuation to drive the soft
body into a shape that {vp} match their desired positions –
defined as {vc

p}. Different from low DOFs articulated robots
where analytical IK can be obtained, IK of soft robots cannot
be directly calculated as C = F−1

dk (V̄,Ω). It needs to be solved
via numerical computation (ref. [40]). This heavily relies on
the efficient computation of forward kinematics. Specifically,
we seek for an approximate solution that satisfies the position
requirement.

Firstly, an objective function is defined below to quantify the
distance between the current position and the target position
of all vertices in V̄ as

J(Fdk(C,V,Ω)) =
∑
vp∈V̄

‖vd
p − vc

p‖2, (12)

ALGORITHM 2: InverseKinematicComp
Input: The rest shape V , the target positions VP for

investigated points, and the maximally allowed
iterations imax.

Output: The actuation parameters C
1 Set the initial value of C as the rest configuration;
2 Set the iteration time i = 1;
3 Evaluate the objective function J0 = J(C);
4 while J(C) > λ and i < imax do
5 Compute the gradient of J(C) as ∇J ;
6 Set the step size ∆h = 1.0;
7 Compute Jnew = J(C + ∆h∇J);

/* Soft line-search (line 7-17) */
/* Step 1: Shrinking */

8 while Jnew ≥ J0 do
9 ∆h = τ∆h;

10 Compute and update Jnew = J(C + ∆h∇J);
11 end

/* Step 2: Expanding */
12 Set h = ∆h;
13 repeat
14 Compute and update Jnew = J(C + (h+ ∆h)∇J);
15 if Jnew ≤ Jopt then
16 Set Jopt = Jnew and h = h+ ∆h;
17 end
18 until Jnew > Jopt;

/* Best h has been found */
19 Set C = C + h∇J and i = i+ 1;
20 end
21 return C;

where C is the set of actuation parameters that can have
multiple variables. Then, the inverse kinematics of a soft robot
can be defined as an optimization problem that

Copt = arg min
C
J(Fdk(C,V,Ω)). (13)

We use the gradient-based method to solve this optimization
task, which needs to first figure out the gradients of J(·) with
respect to C = (C1, C2, . . . , Ci, . . .). The analytical solution of
∂J
∂Ci

cannot be obtained as the position vd
p is only an implicit

function of C. Fortunately, we can efficiently and effectively
evaluate the value of Fdk(·) by our forward kinematic algo-
rithm – i.e., we can easily get the positions of investigated
vertices by computing a deformed shape according to the given
actuation. As a result, numerical differences are employed to
compute the gradient ∇J =

[
∂J
∂Ci

]
as

∂J

∂Ci
=
J(. . . , Ci + ∆C, . . .)− J(. . . , Ci −∆C, . . .)

2∆C
(14)

where ∆C is a small constant which can be determined
according to the value of J(·) by the strategy of [41].

Directly updating the values of {Ci} by the gradient ∇J
may lead to a computation with slow convergence. To improve
it, a linear search method is applied to determine the best
updating scale h so that

h = arg min J(Fdk(C + h∇J,V,Ω)). (15)

Specifically, we first determine a value of ∆h so that J(C +
∆h∇J) < J(C) by a shrinking step starting from ∆h = 1.0.
The shrinkage speed is controlled by a ratio τ ∈ (0, 1) – we
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Fig. 6. Verification of small-strain assumption on two effective designs of soft
robots fabricated by soft materials: (a) Ultimaker TPU 95A and (b) Aglius
30. The strain distribution of body elements (shown in the right) is generated
by FEM simulation, and the histograms (left) show the statistics of strains on
these two designs under large structural deformation. (c) Stress-strain curves
for Ultimaker TPU 95A (left) and Aglius 30 materials (right) obtained by
physical experimental tests. It can be observed that the elemental deformation
mainly occurs in the range with linear material elasticity.

use τ = 0.1 in all our experimental tests. After that, the scale
h is further optimized by be incrementally enlarged with the
step size of ∆h – this is called an expanding step. These two
steps of linear search can help us to find a ‘loose’ optimum
along the direction of ∇J .

The terminal condition of optimization process for solv-
ing (13) is chosen to be J(Fdk(C,V,Ω)) ≤ λ with λ being
a threshold determined according to the accuracy allowed in
different applications. On the other hand, it is also possible
that a user-specified goal cannot be realized by a soft robot
– e.g. when a desired position vc

p falls outside the reachable
space of a robot. Therefore, we also set a maximally allowed
iterations, imax, as the terminal condition in our IK algorithm.
Since the line-search strategy is used to ensure the decrease
of an objective function in every iteration, our method can
always provide a local optimum for objective function (12).
The pseudo-code of our IK computation has been given in
Algorithm 2.

IV. MATERIAL PROPERTY: ANALYSIS AND CALIBRATION

To formulate the deformation of soft robots made with
multiple materials, we proposed a reduced model based on the
linear shape-blending method presented in Section II-C. The
effectiveness of our method mainly relies on two conjectures.
• For a variety of smart soft robot designs, the large

deformation of continuum body is mainly generated by
structural deformation instead of elemental deformation
– i.e., the strains are relatively small.

• For many materials widely used for the fabrication of
soft robots, the material elasticity in the range with small
strain can be approximately described as a linear model.

In this section, these two assumptions are verified by both
the FEM simulation and the material tests. After proving the
correctness of our method, an image-based calibration process
is proposed to find a shape parameter to be used in our method
corresponding to the physical behavior of materials.

A. Linear Material Elasticity

Many materials used for fabricating soft robots can be
largely stretched and have hyper-elastic material property,
which was utilized to achieve large shape change under actua-
tion in early years. However, recent designs of soft robots have
specially designed advanced structures to realize more reliable
deformation with better durability. For example, inextensible
layers [8] are used to prevent the non-directional expansion so
that the effectiveness of an actuator is tremendously enhanced.
In these cases, extreme local stretch is no longer necessary for
realizing a large global deformation. We study the range of
elemental deformation on a widely applicable soft finger struc-
ture [42] and another smart design of soft manipulator [43].

Tensile tests have been conducted on two materials used
in fabricating these two soft robots – Ultimaker TPU 95A
and Aglius 30. The obtained stress-strain curves are shown in
Fig. 6(c). The strain-stress relationship is nonlinear in general.
However, when deformation occurs in a range with small
strains, the relationship can be linearly approximated with
small error. Specifically, when the strain is less than 20% for
TPU and 30% for Aglius, a linear stress/strain curve can be
obtained (see also the solid and dash lines shown in the zoom-
view of Fig. 6(a) and (b)).

We conduct the FEM to further study the strains generated
on these two designs of soft robots. Abaqus software is em-
ployed to generate the strain distribution when large structural
deformation has been achieved on these two structures. In
Fig. 6, the histograms are used to visualize the statistical
distribution of strains in all elements. It can be easily found
that the strains are less than 20% for most regions and all fall
in the range of linear elasticity discussed above – i.e., less
than 20% for TPU and 30% for Aglius.

Note that, large elemental deformation can be achieved
under actuation for the materials with small Young’s modulus
such as silicon rubber. This material property was employed
for some designs developed in early years. For these cases,
the elasticity is not guaranteed to be linear for all elements,
which brings modeling uncertainty although our method can
still successfully predict the deformation in practice.

B. Calibration of Shape Parameter

After verifying the correctness of using the linear elasticity
simplification for body elements, our shape-blending method
needs to define proper shape parameters to mimic the real
physical behavior. Rather than calibrating each material sepa-
rately in a tensile test, an image-based method is developed to
calibrate the relative properties between different materials. As
shown in Fig. 7, we impose the displacement on a rectangular
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Fig. 7. Image-based calibration of the shape parameter for simulating objects
with multiple materials: (a) a multi-material bar with displacement on the
right, (b) a physical elongation test on 3D printed specimen using NinjaFlex
and Flexible PLA materials, (c) the tensile test result generated by our
simulation framework after calibrating the shape parameter Rω , and (d) the
twisting test [6] is also conducted to verify the correctness of our material
elasticity and the calibration method.

TABLE II
CALIBRATED PARAMETERS FOR DIFFERENT MATERIAL COMBINATIONS

Material A Material B Rm RA
ω /R

B
ω Actuation

TPU 95A NinjaFlex 3.75 7.08 Cable
Tango Black Mixed Aglius 5.68 10.30 Pneumatic

specimen at one end while fixing another end. Without loss of
generality, the specimen is fabricated with two materials A and
B joined with a sharp interface. Let the length of the whole
specimen be L and the distance between the interface and the
fixed end be L1, where different values of L1 ∈ (0, L) are
used for different specimens. When imposing a displacement
∆L at the free end of the bar, the displacement of the interface
will be located at ∆L1 ∈ (0,∆L) depending on the relative
material properties between A and B. The relationship of two
materials can be presented by an elasticity ratio, which is
mathematically defined as

Rm =
εA
εB

=
L1(∆L−∆L1)

(L− L1)∆L1
, (16)

where εA and εB are the strains in the regions of two materials
with A being linked to the fixed end and B locating at the free
end. Note that, for linear materials, Rm also equals to the ratio
of Young’s modulus (i.e., a constant when materials are given).
The rest of the problem is how to find the corresponding value
of the shape parameter Rω after obtaining the elasticity ratio
Rm on two materials through the physical tests. The basic idea
of our calibration is to apply different values of Rω to run
the elongation tests in our geometry-based simulation by the
same setup. The value of Rω is then determined by matching
our simulation results with the results of physical tests, where
the bisection-search method is used. With a well calibrated
parameter Rω , the position of the material interface generated
by our simulator matches well with the physical experiment
accurately (see Fig. 7(c)). To further verify the generality

Fig. 8. Comparisons of a cable-driven gripper among the physical test (left),
our simulation (middle), and the simulation by the SoftRobots plug-in for
SOFA [27] (right).

of this parameter, we conduct a twisting test similar to the
one presented in [6]. As shown in the left of Fig. 7(d), the
specimen with two materials gives a symmetry torsion where
the relatively soft region has a larger rotation angle. By using
the same calibrated material parameter Rω , our simulation
generates a similar result (see the right of Fig. 7(d)).

We have applied this calibration method to various materials
used for fabricating soft robots. For different 3D printing
systems, different combinations of materials are tested and the
corresponding calibrated parameters are listed in Table II. The
effectiveness of our shape-blending based deformation model
and the calibration method is further validated in the next
section by other experimental tests taken on different robot
designs.

V. RESULTS AND APPLICATIONS

We have implemented our geometric computing based kine-
matic algorithms for soft robots in C++ and tested on a
standard PC with an Intel E5-1653 3.5GHz CPU and 16GB
RAM. With the help of parallelization on multi-core CPU on
the numerical solver Eigen [44], our system can support the
computation of forward kinematics for models with up to 50k
tetrahedra in real-time (i.e., 25 fps).

In this section, the results of forward kinematic compu-
tation for soft robots will be first presented and compared
with existing numerical modeling methods. After that, the
effectiveness of our inverse kinematic solver is evaluated on
different soft robots with multiple actuators. The performance
of our approach in these experimental tests is also presented
in the supplementary video.

A. Validation of Forward Kinematics

The results generated by our forward kinematics algorithm
on a deformed soft body are validated by physical tests.
Moreover, our method is also compared with different sim-
ulation techniques. The models of soft robot are digitally
represented by tetrahedral meshes, and their corresponding
physical objects are fabricated by multi-material 3D printer
(e.g., Ultimaker 3 and Object 350 Connex3). The properties
of soft materials are evaluated on a Zwick Roell static testing
machine.
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Fig. 9. Trajectories for a soft finger’s tip under pneumatic actuation. The
background image shows the bending results in real physical test. The results
of three different numerical simulators are presented: 1) finite element analysis
with linear (FEM 1) and non-linear material properties (FEM 2), 2) the SOFA
simulator and 3) our method. The FEM results are generated by Abaqus.

TABLE III
COMPUTATIONAL COSTS FOR DIFFERENT METHODS OF SIMULATION

Method Element # t90◦ (sec.) t180◦ (sec.) t240◦ (sec.)

FEM 1† 44774 240 529 820
FEM 2 44774 288 636 1068
Our Method 45802 8.5 15.2 23.2
SOFA [27] 44900 3.8 - -

†Simulations of finite element analysis use approximated linear material
propriety in FEM 1 and nonlinear model in FEM 2 – both by the Abaqus
software.

The first test is conducted on a cable-driven gripper with
single material (Flexible PLA) as shown in Fig. 8. The top and
bottom rows show two sequences of deformations at different
time instants, where from left to right show the results of
physical test, our simulation and SOFA [27]. Due to the reason
that the ‘deformations are progressively computed for each
time step and the accuracy is traded off for computational
speed in SOFA, its results do not match with the physical
tests in large deformation. Specifically, simulation starts to
vary from reality when cable length change is larger than 45%.

The second test is conducted on a pneumatic soft gripper
by increasing the pressure of the air pumped into the chamber
to control bending of the gripper. We quantitatively present
the accuracy of our method by tracking the tip position of a
soft gripper. As shown in Fig. 9, our result matches well with
the analysis conducted by advanced FEA software as well as
the physical experiment. When using the similar number of
tetrahedra in the computation (i.e., around 45k), the computa-
tion of our framework is much faster – with 23.2 seconds vs.
13.6 minutes required to complete the simulation for bending
the soft actuator up to 240 degrees by the Abaqus software.
Meanwhile, we test this soft model on the SOFA platform
with similar mesh size. The computing time has been reported
in Table III. Noticed that the simulation speed of SOFA is
faster than our method; however, the result begins to become
unrealistic after being bent for more than 90 degrees (the

Fig. 10. Simulation result for a soft crawling robot by geometry modelling
the electrostic-driven stretching behavior of DEA. (Top) The results of our
forward kinematic computing. (Bottom) The locomotion behavior of a real
robot [45].

Fig. 11. Two cable-driven soft grippers (left and right) with different material
distributions have different behaviors under actuation. Locations of markers
determined by our simulation are well-matched with theirs in physical test.

yellow trajectory shown in Fig. 9). In contrast, our simulation
can produce very realistic results for large deformation case
while still having a fast speed in FK computing.

A design of soft crawling robot [45] is studied to validate
our approach on the DEA in FK computing. The actuator is
fabricated by attaching bendable PET frames to a pre-stretched
elastomer membrane. After releasing the constraint, the elas-
tomer layer will shrink and drive the soft body deforming to its
initial status (as shown in the left of Fig. 10). By applying the
voltage to the electrodes, the elastomer region will elongate the
soft body. Two rigid legs are attached to the robot and always
kept on the x-y plane during simulation. In our simulation,
an initial stretching ratio λinit = 0.7 is used on actuation
elements to first deform the planner model and get the initial
shape. We use the voltage and stretch relationship in [46] to
determine the parameter λ for the actuated status.

To verify the result of our forward kinematic computation
for multiple materials, we test two cable-driven grippers with
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Fig. 12. A cable-driven soft finger with three tendons is used for the validation
of IK computation. (a) The experiment setup. (b) The configuration space is
sampled to obtain good initial values for IK computing (125 sample points are
displayed). (c) The study of convergence for IK computation by evaluating the
objective function J(·) (Eq.(12)) with the target position of the tracking point
being given as the black star shown in (b). We can find that the converging
speed of IK computation is greatly improved when the closest point (red
triangle) in the sampled configuration space is used as initial guess.

different material compositions. The simulation and physical
results are compared visually with its dynamics in Fig. 11. The
deformations are also compared quantitatively by the trajectory
of three corresponding markers located on the boundary of
the grippers. It can be seen that both results match with the
physical experiments very well.

B. Validation of IK Algorithm by Trajectory Following

To verify the accuracy and efficiency of our IK solver, we
first demonstrate the behavior of our algorithm in a trajectory
planning experiment by a cable-driven soft finger with three
‘knuckles’. The soft finger is fixed on a solid base in our
experimental setup (as shown in Fig. 12(a)) and for every
‘knuckle’, one iron cable is linked to its top and driven
individually by its corresponding stepper motor through the
pulley shaft. The design with multiple actuators enables the
ability of controlling the soft finger to move in a plane.

Given a desired motion trajectory L for an an investigated
point q on the soft robot V , the task of trajectory planning
can be solved by finding the parameters of actuation that
drive q traveling along L accurately. To realize this, we first
sample L into N points as PL = {p1,p2, . . . ,pN}. After
running the IK computation presented in Algorithm 2 for
each target point pk ∈ PL, we are able to determine the
corresponding parameter set Ck in joint space for actuation
(i.e., the shortening ratio for each tendon’s length). For the
terminal condition J(Fdk(Ck,V,Ω)) ≤ λ that is used for IK
computation, we choose λ = 0.2 mm and imax = 30 for all
sample points.

ALGORITHM 3: TrajectoryFollowing
Input: The rest shape V , the sampled working space Pw,

the investigated point q and the target trajectory L.
Result: The parameters of actuation C.

1 Generate the set of sample points PL = {p1,p2, . . . ,pN}
on L;

2 Find the point pc ∈ Pw that minimizes ‖pc − p1‖;
/* Using the corresponding Cc of pc */

3 Vd ← ForwardKinematicComp(V , Cc);
/* Computing the actuation parameters */

4 for k = 1, 2 ... N do
/* Accelerate the IK computation by

using Vd and Cc as initial guess */
5 Ck ← InverseKinematicComp(V , pk);
6 Vd ← ForwardKinematicComp(V , Ck) and Cc ← Ck;
7 end
8 return C;

Implementation Details: After using different initial guesses
for the IK computation, we find that its speed of convergence
strongly relies on the position of initial guess (see Fig. 12(c)).
Therefore, the following two strategies are conducted to speed
up the computation in our trajectory planning application.

• Firstly, we generate a sample-based representation for the
configuration space Pω (see Fig. 12(b)) where the sample
points pc ∈ Pw are obtained by applying the FK algo-
rithm with various combination of actuation parameters.
The initial guess of IK solution (i.e. C in Algorithm 2)
for the first point p1 on a trajectory L is then set as the
control parameter of its closest sample point in Pw.

• Secondly, a deformed shape is always kept during the
computation and serves as the initial shape for realizing
the next target point. Specifically, after obtaining the
actuation parameters Ck for the target point pk, we update
the shape of soft robot, Vd, by applying the forward
kinematics with Ck as the input. This updated shape will
be used as the input for IK computation targeting on the
next point pk+1.

The pseudo-code of our trajectory following algorithm and
the above acceleration strategies are given in Algorithm 3. The
computation of our method is very efficient. Firstly, a roughly
sampled configuration space (e.g. 125 sample points) can be
generated in 8.3 sec. for obtaining good initial values. Then,
we conducted the tests on a ‘L’ trajectory (with N = 55) and
a flame trajectory (with N = 85) as shown in Fig. 13, the
computing times are 38 sec. and 46 sec. respectively.

We further conduct physical experiments (see the hard-
ware setup shown in Fig. 12(a)) to verify the parameters of
actuation generated by Algorithm 3. Arduino Mega 2560
and the RAMPS extension board are used to generate the
modulated pulse signals that control the pull and release of
cables. To generate a motion that linearly interpolates the
neighboring target points, dynamic speed controller provided
by Marlin firmware [47] is used to synchronize the three
motors. A camera system is used to track the actual position
of the investigated point q, which is located at the top-right
corner of the soft finger. The resultant trajectories of physical
movement are given in Fig. 13(a) while comparing to the
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Fig. 13. The results of experimental tests for moving a marker point along
desired trajectories: (a) comparison between the tracked actual movement and
two target trajectories, and (b) position errors of the investigated point while
moving along the ‘L’ trajectory (top) and the flame shape curve (bottom). The
dimension of our actuator is 120mm× 25mm× 25mm.

Fig. 14. The results of IK computing and trajectory following with a desired
trajectory L that is partially out of the soft robot’s working space. Waypoints
(red) on L and their corresponding reachable points (black) determined by
our IK solution are visualized by the gray dash lines.

target trajectories. The errors of motion are also visualized as
two error curves shown in Fig. 13(b). Besides computation
error, errors in physical experiments are also generated by
many other factors, including the fabrication error, the control
strategy and the unpredictable friction between cables and the
soft finger.

By sampling the configuration space for a soft robot, one
intuitive solution of trajectory following can be realized by di-
rectly searching the closest sample points in Pω and using their
corresponding parameters for actuation. However, this method
needs very dense sampling rate to guarantee the required
numerical accuracy that is comparable with our IK computing.
Although our FK computing is very fast, the cost of this
searching-based planning is still much higher than the IK-
based trajectory following method presented in Algorithm 3.
For example, computing 3375 sample points beforehand (see

Fig. 15. The experiments taken on a multi-chamber 3D printed pneumatic-
driven soft actuators, which is reproduced from [48]. (a) The physical behavior
under actuation – from left to right: rest shape, expanding one chamber,
expanding two chambers and expanding all chambers with the same volume-
change ratio. (b) The results computed by our forward kinematic algorithm.
(c) Calibrated ratio for the relationship between pressures and expanding ratios
under different actuation statuses. (d) Study the trajectories for the tip point
(shown as the red dot in (a)) by comparing the results of physical tests, analytic
computation [43] and our forward kinematic algorithm, where the black arrow
shows the direction of tip moving.

Fig. 8(b)) takes more than 5 minutes. Moreover, continuity
is hard to be preserved on a path realized by the sample-
searching method. Differently, our IK computing presented in
Algorithm 2 can ensure the continuity by its nature of an
iterative algorithm. We test it on an extreme case as shown
in Fig. 14 where part of the desired trajectory falls out of the
working space. The result of our algorithm is a smooth path
completely inside the feasible region.

C. Kinematic Computing for Pneumatic-driven Soft Actuator

The deformation of pneumatic-driven soft robot is usually
driven by changing the pressure of inflation. To conduct
kinematic computation by our framework, we should be able to
convert the pressure into a ratio of chamber’s volume-change
as

α = Vc/V
0
c (17)

where V 0
c and Vc are the volumes of chamber before and

after inflation respectively. In literature, Mosadegh et al. [22]
first introduce an experiment setup which can draw pressure-
volume (PV) hysteresis curves of soft fingers. Although
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straightforward, this method is limited as it only supports the
actuation of incompressible fluid (i.e., water). Inspired by the
volumetric control system present in [48], we developed a
general method to calibrate the relationship as α(P ) with P
being the pressure of inflation.

The most difficult part of this calibration process is that
the current volume of deformed chamber Vc is not directly
measurable. Without loss of the generality, we can consider a
pneumatic-drive soft robot as shown in Fig. 1(c) – the chamber
is actuated by a syringe pump module meanwhile connecting
to a pressure sensor. As a result, both the inflation pressure
P and the changed volume of air in the syringe ∆Vsy can be
measured. As the system is closed, we can derive the following
equation for two balanced statuses of the system based on the
Idea Gas Law.

P̄ (V 0
c + V 0

sy + Vt) = P (Vc + V 0
sy −∆Vsy + Vt), (18)

where V 0
c , Vt and V 0

sy present the initial volumes of the
chamber, the tube and the syringe respectively – all can be
obtained from the design. P̄ = 100kPa is used as the standard
atmospheric pressure in our calculation. This formula can be
converted into

α =
Vc
V 0
c

=
P̄ V 0

c + P∆Vsy − (P − P̄ )(V 0
sy + Vt)

PV 0
c

. (19)

Therefore, we only need to measure the value of ∆Vsy during
the calibration process to obtain the value of α by Eq.(19).

The aforementioned method for calibrating expanding ratios
is general and easy to be implemented. We have applied it to a
soft robot driven by multiple pneumatic actuators (by the ex-
periment setup shown in Fig. 1(c)). This design was originally
presented in [48], and the robot has three chambers that can
be actuated individually to bend its body in 3D space. The soft
part of the actuator is fabricated by the Object 350 Connex3
printer with the mixture between a rigid (VeroMagenta) and a
soft material (Agilus 30 Black), which has a rigidity of shore
70A hardness. In our experiments, the three chambers are
pressurized one after another by P = 100 ∼ 240 kPa, and
the related hysteresis curve α(P ) can be found in Fig. 15(c).

The forward kinematic computation for actuating multiple
chambers are shown Fig. 15(b) and compared with analytic
computation [43] and physical tests. The trajectories of the
tip’s moving are plotted in Fig. 15(d). It is easy to find that
our algorithm can generate results more accurately than the
analytic prediction method presented in [43], which determines
the position of an investigated point by simply combining
the prediction results of individual chambers. The maximum
tracking error (on every waypoint) observed on our results of
forward kinematic computation is less than 3mm throughout
the whole trajectory. The dimension of this soft actuator is
48mm × 48mm × 136mm and the model used in kinematic
computing contains 135k tetrahedra.

Efficiently predicting the required pressure that can generate
an expected deformation on a pneumatic-driven soft robot
can be very challenging for the conventional methods (such
as the static force modeling [4] or the FEM analysis [7])
because of the highly non-linearity of the problem. Benefited
by the efficiency of our kinematic computation, we can also

Fig. 16. Results of trajectory planning on a pneumatic-driven soft robot: (a)
Configuration space for the tip point on this robot is presented as the red 3D
region, where the blue curve gives the target trajectory. (b) Top view of tracked
trajectory realized by our IK computation based actuation. (c) Corresponding
position error for the tracked tip point.

solve the trajectory planning on the pneumatic-driven soft
actuator. Specifically, Algorithm 3 is applied to compute the
required volume Vc for each chamber, which is then converted
into a volume-change ratio α and mapped to the required
pressure P to be provided by a pump. The result is shown
in Fig. 16 with the tracked trajectory plotted in the top-view
while comparing with the desired trajectory. The offline IK
computation conducted in the 3D space and the procedure of
actuation have been provided in the supplementary video.

VI. CONCLUSION AND DISCUSSION

In this paper, we have presented a novel framework to
solve kinematic problems for soft robots based on geometric
computing. In our method, both the soft body of robots and dif-
ferent types of actuations are modeled as geometric elements
that are integrated in an energy optimization formulation.
Meanwhile, the distribution of multiple materials on the body
of a soft robot is formulated by giving different stiffness
to different elements, where the stiffness is represented by
a calibrated shape parameter in our framework. We have
proposed an efficient optimize-based algorithm for solving
forward kinematics and further evolved it to the computa-
tion of inverse kinematics. Our method is fast, adaptable
for various actuation type and can handle soft robots with
complex designs. Compared with existing kinematic solutions,
our method makes a good balance between the efficiency
and the accuracy in computing. In particular, it shows very
excellent performance in convergence and robustness when
dealing with large rotational deformation. We have conducted
several physical experiments to validate the accuracy of our
framework.
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Fig. 17. The performance of our kinematic computing method on meshes with
different resolutions from coarse to fine. As can be expected, a finer mesh
takes more time on each iteration but can generate more accurate results. In
our practice, we use a relatively fine mesh that can also give very accurate
prediction (i.e., a mesh with 25.8k vertices as shown in the circled dash line).

As a numerical method, our method represents soft robots
in a discrete form as volumetric meshes. Our framework
supports different types of elements that can precisely describe
the model (e.g. tetrahedron for general 3D shape and prism
for thin-shell structure). The average time used to compute
forward kinematics for a single step of iteration keeps a nearly
linear relationship with the number of vertices in a mesh (see
Fig. 17). At the same time, we also observe that accurate
results can already be achieved when only a relatively fine
mesh is employed to conduct the simulation. Specifically, the
average tracking error is less than 1mm for the experiment
presented in Section V-C) when a relatively fine mesh is
employed. In real applications, we always adjust the mesh
density and compare the results of FK computing to seek for
a good balance between accuracy and efficiency.

There are two major limitations of for our geometric
computation based framework. Firstly, the correctness of our
formulation relies on the level of elemental deformation falling
in the range with small strains so that gives a linear stress-
strain relationship. Therefore, the current material model needs
to be further extended to support cases with large local
stretch – e.g., the soft robots fabricated by silicon rubber.
Secondly, viscoelasticity of soft material is not considered
in our framework as we only compute kinematics for quasi-
static status. The actuation parameters computed by our inverse
kinematic and trajectory following algorithms can perform
very well when the actuation speed is relatively slow.

In our future work, the above limitations need to be solved
by developing a more advanced material model. Modeling
the soft robot driven by field-defined actuation (e.g. magnetic
or electric field distribution [49]) is also an interesting ex-
tension of our framework. Moreover, collision responses can
be incorporated into the process of kinematic computation
by following the strategy of geometry-based optimization
proposed in [50], which will enable the function of simulating
a variety of collided interactions.
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