Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology *New Series /* Editor in Chief: W. Martienssen

Group IV: Physical Chemistry Volume 19

Thermodynamic Properties of Inorganic Materials compiled by SGTE

Subvolume B Binary Systems Phase Diagrams, Phase Transition Data, Integral and Partial Quantities of Alloys

Part 1 Elements and Binary Systems from Ag-Al to Au-Tl

Editor Lehrstuhl für Werkstoffchemie, Rheinisch-Westfälische Technische Hochschule Aachen

Authors Scientific Group Thermodata Europe (SGTE)

ISSN 1615-2018 (Physical Chemistry)

ISBN 3-540-65327-9 Springer-Verlag Berlin Heidelberg New York

Library of Congress Cataloging in Publication Data

Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie

Editor in Chief: W. Martienssen

Vol. IV/19B1: Editor: Lehrstuhl für Werkstoffchemie, Rheinisch-Westfälische Technische Hochschule Aachen

At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English.

Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag

Includes bibliographies.

1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables.

I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910.

III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology. QC61.23 502'.12 62-53136

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH

© Springer-Verlag Berlin Heidelberg 2002 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information.

Cover layout: Erich Kirchner, Heidelberg Typesetting: Authors and Redaktion Landolt-Börnstein, Darmstadt Printing and Binding: WB-Druck, Rieden/Allgäu

SPIN: 10655491 63/3020 - 5 4 3 2 1 0 - Printed on acid-free paper

Editors

P. Franke and D. Neuschütz

Lehrstuhl für Werkstoffchemie Rheinisch-Westfälische Technische Hochschule Aachen D-52056 Aachen, Germany http://www.mch.rwth-aachen.de/

Authors

Scientific Group Thermodata Europe (SGTE)

Chairman: A.T. Disdale Grenoble Campus 1001 Avenue Centrale, BP 66 F-38402 Saint Martin d'Hères, France http://www.sgte.org/

Member Organisations of SGTE:

The present series of books is the result of a collective work carried out during many years by many individuals. Since a complete list of all contributors is an impossible task, only a contact person is mentioned under each member organisation.

AEA Technology plc

Materials and Chemical Process Assessment P.K. Mason 220, Harwell Laboratory, Didcot, Oxfordshire, United Kingdom, OX11 0QJ http://www.aeat.co.uk/mcpa/

GTT Technologies

Gesellschaft für Technische Thermochemie und -physik mbH K. Hack Kaiserstraße 100 D-52134 Herzogenrath, Germany http://www.gtt-technologies.de/

Institut National Polytechnique de Grenoble

Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques C. Bernard F-38402 Saint Martin d'Hères, France http://www.inpg.fr/ltpcm/

IRSID

Department of Physical Chemistry and Surfaces J. Lehmann Voie Romaine - BP 30320 F-57283 Maizières-lès-Metz, France

Max-Planck-Institut für Metallforschung und

Institut für Nichtmetallische Anorganische Materialen der Universität Stuttgart Pulvermetallurgisches Laboratorium O.B. Fabrichnaya Heisenbergstraße 5 D-70569 Stuttgart, Germany http://www.mpi-stuttgart.mpg.de/

National Physical Laboratory

NPL Materials Centre A.T. Dinsdale Queens Road, Teddington, Middlesex, United Kingdom, TW11 0LW http://www.npl.co.uk/mtdata/mts.html

Rheinisch-Westfälische Technische Hochschule Aachen

Lehrstuhl für Werkstoffchemie E. Münstermann D-52056 Aachen, Germany http://www.mch.rwth-aachen.de/

Royal Institute of Technology

Department of Materials Science and Engineering J. Ågren S-10044 Stockholm, Sweden http://www.met.kth.se/tc/

Thermo-Calc Software AB

B. Sundman Björnnägen 21 S-11347 Stockholm, Sweden http://www.thermocalc.se/

THERMODATA

B. Cheynet
Grenoble Campus
1001 Avenue Centrale, BP 66
F-38402 Saint Martin d'Hères, France
http://thermodata.online.fr/

The Spencer Group

P.J. Spencer P.O. Box 393 Trumansburg, New York 14886, USA http://www.spencergroupintl.com/

Université Paris-Sud XI

Faculté de Pharmacie Laboratoire de Chimie Physique Minérale et Bioinorganique, EA 401 Y. Feutelais 5 rue J.B. Clément F-92296 Châtenay-Malabry, France http://www.u-psud.fr/ The reviews in the present volume of selected binary systems have been prepared by:

P.-Y.Chevalier, A.T. Dinsdale, N. Dupin, O.B. Fabrichnaya, Y. Feutelais, P. Franke, K. Hack, U.R. Kattner, B. Legendre, H.L. Lukas, P.J. Spencer and B. Sundman.

In preparing the data for publication in this series, the editors have been assisted particularly by:

A.T. Dinsdale (Data Manager for Elements), I. Ansara[†] (Data Manager for Pure Substances),
B. Sundman (Data Manager for Solutions), S.G. Fries (Solution Database Coordinator) and A. Hovmark (SGTEbin software).

Landolt-Börnstein

Editorial Office

Gagernstr. 8, D-64283 Darmstadt, Germany fax: +49 (6151) 171760 e-mail: lb@springer.de

Internet http://www.landolt-boernstein.com

Helpdesk

e-mail: helpdesk-em@springer.de

Dedication to Ibrahim Ansara

This series of volumes, presenting thermodynamic properties of binary alloys, is dedicated to the memory of Ibrahim Ansara – better known to his friends as Himo. Himo was a member of SGTE from the time of its origin as a CNRS research project in 1967, through the time of its constitution as a European, non-profit-making company under French law in 1979, until his sudden, unexpected death in 2001.

Through all those years, Himo missed scarcely a single SGTE meeting and his continual cheerfulness and enthusiasm, as well as his scientific understanding, were an inspiration to his colleagues both in their joint work of SGTE database development as well as in their individual research projects in their home laboratories. He was a friend to everyone in SGTE, and it is the spirit of friendship and warmth that he promoted that has been largely responsible for the continued close collaboration and achievements of this diverse international group as a whole.

It is very appropriate to dedicate the Landolt-Börnstein handbooks on binary alloy systems to Himo. In the preparation of the previous volumes on pure substances, Himo made substantial contributions both as database manager and as advisor. The present series of volumes on binary alloys has benefited considerably from his contributions to the review and selection of available assessments during the initial stages of the work. It is a sad coincidence that it was during a meeting to prepare the first of these volumes that Himo died.

Philip Spencer

Preface

Thermodynamic data, in conjunction with appropriate software for calculation of complex chemical equilibria, are finding wide application in many areas of materials design and development. In particular, the last 25 years have seen enormous advances in the thermodynamic modelling of alloy solution phases, whereby a knowledge of the underlying crystallographic structure of each phase is fundamental to a reliable representation of the thermodynamic properties and phase equilibria of a particular system of interest. With the aid of thermodynamic calculations, considerable time and costs can and are being saved in producing a material of the required composition and phase constitution required for a particular application.

SGTE has been at the forefront in providing critically assessed thermodynamic data for alloy systems and has provided guidelines for the modelling of alloy phases of different types. Major advantages of the SGTE data are their self-consistency, the fact that they are produced with careful attention to a well-defined quality procedure and that the expertise of SGTE members in various areas of inorganic chemistry and materials science allows review of the numbers by highly qualified scientists in the fields concerned.

Following the publication of a first set of four volumes of SGTE compiled thermodynamic properties of inorganic substances, which dealt with pure substances (Subvolume A), this second set of four volumes presents selected thermodynamic data for binary alloy systems (Subvolume B). The possibility to continue to ternary and multi-component systems is also foreseen. The data in the latter would be so presented as to correspond to potential application themes (steels, light alloys, nickel-base alloys, etc.). The fundamental equations used in evaluating the data are given in the introduction to the volumes and the models used in representing the data are also described.

Each book in this binary alloys series is accompanied by a CD, which allows computer calculation of a range of solution properties for selected temperature and phase composition ranges for the systems presented in that particular volume. Graphical representations, including the calculated phase diagram for each system, are also possible. Information on more comprehensive software, allowing complex equilibrium calculations involving both pure substances and solution phases of different types (e.g. slags, salt systems, aqueous solutions, etc.), can be obtained from SGTE members. A list of the SGTE membership is presented in the cover pages of this volume.

Very many scientists, in addition to those currently participating in SGTE activities, have contributed to the development of the SGTE databases. Their names have become too numerous to list and we respectfully ask them to accept this acknowledgement of their efforts. However, special recognition is given here to the late Himo Ansara, who was SGTE Pure Substances Database manager from the beginning and who made major contributions to these binary alloy volumes. His dedicated work and friendship were an inspiration to all of his colleagues. We remember him with deep affection and gratitude.

Dr. P.J. Spencer Chairman of SGTE, 1992 – 2002 Ithaca, April 2002

Content

IV/19 Thermodynamic Properties of Inorganic Materials

Subvolume B Binary Systems Phase Diagrams, Phase Transition Data,

Integral and Partial Quantities of Alloys

Part 1 Elements and Binary Systems from Ag-Al to Au-Tl

Introduction	XIV
Assessment and selection procedures	XIV
Thermodynamic Modelling	XVI
Description of the Tables and Diagrams	XX
Description of the Software	XXII
References	XXVI
SCTE Data for Pure Elements	1
Stable and Metastable Phase Data	1
Standard Element Reference	2
Pafarances	2
SGTE Pure Element Transition Data	2
Diagrams of Gibbs Energies and Heat Connecities	5
	0
Binary Systems	32
Ag – Al	33
Ag – Au	38
Ag – Bi	42
Ag – Ge	45
Ag – In	49
Ag - Ir	53
Ag - Mg	56
Ag – Os	61
Ag – Pb	64
Ag - Pd	67
Ag - Pt	71
Ag-Rh	75
Ag – Ru	78
Ag – Sb	81
Ag – Si	84
Ag-Sn	88
Ag – Ti	92
Ag – Tl	95
Ag - Zn	98
Ag – Zr	103
Al – As	106
Al – Au	109
Al – B	112
Al – Bi	116
Al – C	119
Al – Ca	122

Al – Ce	125
Al – Co	129
Al – Cr	134
Al – Cu	139
Al – Fe	143
Al – Ga	148
Al – Ge	151
Al – In	154
Al – Li	157
Al – Mg	160
Al – Mn	164
Al – Mo	170
Al – N	173
Al – Nb	175
Al – Nd	178
Al – Ni	182
Al – O	188
Al – P	190
Al – Pb	192
Al – Sb	195
Al – Si	198
Al – Ta	201
Al – Ti	205
Al – V	210
Al – W	214
Al – Y	217
Al – Zn	221
Al – Zr	225
As – Au	229
As – Cu	232
As – Fe	235
As – Ga	238
As – Ge	242
As – In	246
As – P	250
As – Sb	254
Au – Bi	259
Au – C	262
Au – Cr	264
Au – Cu	268
Au – Ge	273
Au – In	276
Au – Pb	280
Au – Pd	283
Au – Kn	287
Au – Ku	290
Au – Sb	293
Au – Si	296
Au – 1e	299
Au – 11	302

CD-ROM: Software for the calculation of phase diagrams and thermodynamic data of binary systems

Introduction

The first 4 volumes of this series, under the general heading Thermodynamic Properties of Inorganic Materials, presents SGTE-compiled thermodynamic data for pure substances, including the elements in their stable states. The series now continues with a further 4 volumes of SGTE selected and compiled data – this time for binary alloy systems. For thermodynamic calculations involving alloy solution phases, Gibbs energies of the pure elements in different stable and metastable states are required. Such data have been compiled on behalf of SGTE by Dinsdale [91Din] and have recently been updated [02Din]. The values have found wide use internationally as the basis for thermodynamic assessments of higher order systems.

As with the pure element values, the binary alloy descriptions contained in the present 4-volume series are not only complete in themselves, but also extend the basis for thermodynamic assessments and calculations relating to multicomponent alloys.

Members of SGTE have played a principle role in promoting the concept of "computational thermochemistry" as a time and cost-saving basis for guiding materials development and processing in many different areas of technology. At the same time, through organisation of workshops and participation in CODATA Task Groups, SGTE members have contributed significantly to the broader international effort to unify thermodynamic data and assessment methods.

The SGTE data can be obtained via members and their agents world-wide for use with commercially available software developed by some of the members, to enable users to undertake calculations of complex chemical equilibria efficiently and reliably.

The SGTE Member organisations are:

France:	 Institut National Polytechnique (LTPCM), Grenoble Association THERMODATA, Grenoble IRSID, Maizières-lès-Metz Université de Paris-Sud (EA 401)
Germany:	 – Rheinisch-Westfälische Technische Hochschule (MCh), Aachen – GTT-Technologies, Herzogenrath – MPI für Metallforschung (PML), Stuttgart
Sweden:	 – Royal Institute of Technology (MSE), Stockholm – Thermo-Calc Software AB, Stockholm
United Kingdom:	 – National Physical Laboratory (MATC), Teddington – AEA Technology plc, Harwell
USA:	– The Spencer Group

Assessment and selection procedures

The assessments of the binary alloy systems presented in this 4-volume series have all been made using the so-called "CALPHAD method" [98Sau]. This method results in an optimised parametric description of the Gibbs energies of the phases of the system when taking into account the crystallographic structure of the phases and all the experimental thermodynamic and phase boundary data available. The thermodynamic parameters provide a consistent analytical description of the phase diagram, chemical potentials, enthalpies of mixing, heat capacities, etc.

SGTE

As an example, the relations between the Gibbs energy curves and the phase diagram for the Bi-Sn system are demonstrated in Figs. 1 and 2, respectively. In Fig. 1 the Gibbs energy curves for the phases in the Bi-Sn system are given as a function of the mole fraction of Sn, x_{Sn} , at T = 450 K. At fixed pressure, temperature and composition, the equilibrium of the system is determined by the state with the lowest Gibbs energy. All equilibrium states are located on the convex hull of the set of G-curves which is constructed by applying double-tangents to the curves. The tangent points denote the boundaries between one- and two-phase regions. In Fig. 2, these points are marked on the selected isotherm of T = 450 K. If this construction is repeated for other temperatures the complete phase diagram of the system is obtained.

Fig. 1. Gibbs energy functions for the phases in the Bi-Sn system at 450 K.

Fig. 2. Phase diagram for the system Bi-Sn.

If several published assessments are available for a particular system, selection has been made following an analysis of how well the available experimental data are reproduced by the description. Compatibility of the modelling used with respect to assembly of a data set for higher order systems has also been taken into account.

There are many different phases present in binary systems and, in order to combine their thermodynamic descriptions in higher order systems, it is important to know their crystal structures as well as the solubilities of alloyed elements in them. In these volumes, the naming of phases has been carried out as consistently as possible so as to facilitate identification of the same phase appearing in different binary systems.

The main characteristics of each system are presented in individual reports which generally include

- the calculated phase diagram
- an abstract summarising the main features of the system
- a summary of the various stable and metastable phases defined in the system together with crystallographic information, the phase name used in the database and the thermodynamic model used, including the occupation of the sublattices
- a table of the invariant reactions
- tables and diagrams with integral quantities
- tables and diagrams with partial quantities
- plots of calculated thermodynamic functions

Criteria for selection of binary alloy assessments

Introduction

In order to qualify for selection, the following information was reviewed:

- phase diagram
- thermodynamic information
- documentation
- models used for solution phases
- models used for stoichiometric phases
- feasibility of extrapolation
- compatibility with SGTE unary data

Thermodynamic Modelling

Elements

The Gibbs energy of the pure element i, ${}^{\circ}G_{i}^{\phi}(T)$, referred to the enthalpy for its stable state ϕ at 298.15 K, ${}^{\circ}H_{i}^{\phi}(298.15 \text{ K})$, is denoted by GHSER_i. This quantity is described as a function of temperature by the following equation:

GHSER_i =
$${}^{\circ}G_{i}^{\phi}(T) - {}^{\circ}H_{i}^{\phi}(298.15 \text{ K})$$

= $a + b T + c T \cdot \ln T + d T^{2} + e T^{3} + f T^{-1} + g T^{7} + h T^{-9}$ (1)

A number of temperature ranges may be used. The first and second derivatives of this quantity with respect to temperature are related to the absolute entropy and heat capacity of the compound at the same temperature. Experimental values for heat capacities can thus be directly used in the optimisation and will be related to the coefficients c, d, e, f, g and h.

For elements which have a magnetic ordering, e.g. Co, Cr, Fe, Ni and Mn, the term GHSER is referred to a para-magnetic state. An additional term is thus added to the molar Gibbs energy of the magnetic phase. For elements as well as for solutions, this term is equal to:

$$G^{\text{mag}} = RT\ln(\beta + 1)f(\tau) \tag{2}$$

where τ is T/T^* , T^* being the critical temperature for magnetic ordering (Curie temperature $T_{\rm C}$ for ferromagnetic materials or the Néel temperature $T_{\rm N}$ for antiferromagnetic materials), and β the average magnetic moment per atom of the alloy expressed in Bohr magnetons.

The function $f(\tau)$ is given as:

$$\begin{split} \tau <&= 1 \quad : \quad f(\tau) = 1 - [79\tau^{-1}/140p + (474/497)(1/p - 1)(\tau^3/6 + \tau^9/135 + \tau^{15}/600)]/A \\ \tau > 1 \quad : \quad f(\tau) = -[\tau^{-5}/10 + \tau^{-15}/315 + \tau^{-25}/1500]/A \end{split}$$

with A = 518/1125 + (11692/15975)(1/p - 1).

These equations were derived by Hillert *et al.* [78Hil] from an expression of the magnetic heat capacity $C_{\rm P}^{\rm mag}$ described by Inden [81Ind].

The value of p depends on the crystal structure. For example, p is equal to 0.28 for fcc and hcp metals and 0.40 for bcc metals [81Ind]. For anti-ferromagnetic alloys the T^* and β are modelled as negative and they are divided by an *anti-ferromagnetic factor* of -1 for bcc and -3 for fcc and hcp before the values are used in equation (2).

For each element, equation (1) is taken from the SGTE unary database. These data have been published previously as the SGTE data for the pure elements by Dinsdale [91Din, 02Din].

The function GHSER_i is also often used to express the thermodynamic functions of metastable structures φ , different from the stable structure of the pure element. The expression ${}^{\circ}G_{i}^{\varphi}(T) - {}^{\circ}H_{i}^{\phi}(298.15 \text{ K})$ is

equivalent to ${}^{\circ}G_{i}^{\varphi}(T) - {}^{\circ}G_{i}^{\phi}(T) + \text{GHSER}_{i}$. The term ${}^{\circ}G_{i}^{\varphi}(T) - {}^{\circ}G_{i}^{\phi}(T)$ is often called the lattice stability of element *i* in phase φ .

Binary compounds

The Gibbs energy of the compound A_aB_b may be expressed as:

$$G_{A_{a}B_{b}}(T) - a^{\circ}H^{\phi}_{A}(298.15 \text{ K}) - b^{\circ}H^{\phi}_{B}(298.15 \text{ K}) = f(T)$$
(3)

where a and b are stoichiometric numbers. The expression for f(T) is identical to that given by equation (1).

Equation (3) can be transformed by applying equation (1) for each component

$$f(T) = G_{A_{a}B_{b}}(T) - a \circ G_{A}^{\phi}(T) - b \circ G_{B}^{\phi}(T) + a GHSER_{A} + b GHSER_{B}$$

$$= \Delta_{f} G_{A_{a}B_{b}}(T) + a GHSER_{A} + b GHSER_{B}$$
(4)

The term $\Delta_{f}G_{A_{a}B_{b}}(T)$ is the Gibbs energy of formation of the compound referred to the stable elements at temperature T. It can often be taken as a linear function of T.

Gaseous species

An expression identical to equation (1) may be used to describe the Gibbs energy of the gaseous species with the additional $RT \ln(P/P_0)$ term, where P is the total pressure and P_0 the reference pressure, usually 0.1 MPa. The species in the gas phase are assumed to form an ideal solution. The reference state for each vapour species is taken to be the pure components at 0.1 MPa pressure. The thermodynamic properties of the gas species are normally obtained from vapour pressure measurements coupled to spectroscopic data. Data for gaseous substances are covered in more detail in subvolume (A) for pure substances.

Many species, i.e. molecules, may exist in the gas phase and each has a Gibbs energy of formation. The equilibrium within a gas for a given composition at a given temperature and pressure is calculated by minimising the Gibbs energy varying the fraction of the species. As the Gibbs energy is used as the modelling function in most solution databases it is not possible to calculate the critical point for gas/liquid. The models used for the different liquids are also not compatible with the ideal model for the gas.

Condensed phases

The condensed phases can be divided into three groups.

1: Substitutional solutions

For the substitutional solution ϕ , the molar Gibbs energy is expressed as follows:

$$G_{\rm m}^{\phi} = G_{\rm m}^{\phi, \rm srf} + G_{\rm m}^{\phi, \rm id} + G_{\rm m}^{\phi, \rm E}$$

$$\tag{5}$$

with

$$G_{\rm m}^{\phi,{\rm srf}} = \sum_{i} x_i \, {}^{o}G^{\phi} \tag{6}$$

$$G_{\rm m}^{\phi, \rm id} = R T \sum_{i} x_i \ln x_i \tag{7}$$

 x_i is the molar fraction of component *i* with $\sum_i x_i = 1$. The term $G_m^{\phi, \text{srf}}$ is the Gibbs energy of the phase relative to the reference state for the components and $G_m^{\phi, \text{id}}$ is the contribution of ideal mixing entropy.

Introduction

The Redlich - Kister equation [48Red], a power series expansion, is used to express the excess Gibbs energy, $G_{\rm m}^{\phi, \rm E}$, for the interaction between the two elements *i* and *j* as follows:

$$G_{\rm m}^{\phi,{\rm E}} = x_i x_j \sum_{\nu=0} {}^{\nu} L_{ij}^{\phi} (x_i - x_j)^{\nu}$$
(8)

The model parameter ${}^{\nu}L_{ij}^{\phi}$ can be temperature dependent.

If experimental information for ternary solutions is available then an extra term can be added to equation (8). For a ternary system A–B–C, this term is equal to:

$$x_{\rm A} x_{\rm B} x_{\rm C} L_{\rm ABC} \tag{9}$$

The liquid is in most cases treated as a substitutional solution. For liquids with very strong short range order the associate model [78Som] or the ionic liquid model [85Hil] has sometimes been used.

For magnetic alloys, the composition dependence of T^* and β are expressed by:

$$T^{*}(x) = \sum_{i} x_{i} \, {}^{\circ}T_{i}^{*} + T^{*,E}$$
(10)

$$\beta(x) = \sum_{i} x_{i} \,^{\circ} \beta_{i} + \beta^{\mathrm{E}} \tag{11}$$

where $T^{*,E}$ and β^{E} are both represented by an expression similar to equation (8).

2: Ordered Phases

The use of the sublattice model, developed by Hillert and Staffansson [70Hil] based on Temkin's model for ionic solutions [45Tem] and extended by Sundman and Ågren [81Sun], allows a variety of solution phases to be treated, for example interstitial solutions, intermediate phases, carbides etc. All of these represent an ordering of the constituents on different sublattices.

As non-stoichiometric phases are formed by several sublattices, they can be schematically described as follows:

$$(\mathbf{A}, \mathbf{B}, \ldots)_p (\mathbf{A}, \mathbf{B}, \ldots)_q \ldots$$

where the constituents A, B, ... can be atoms, vacancies, molecules or ions on the different sublattices p, q, ... are the number of sites. If p + q + ... = 1, then the thermodynamic quantities are referred to one mole of sites. Most often p and q are selected to be the smallest set of integers.

For each sublattice s, the site fraction of the species i, y_i^s , is equal to

$$y_i^s = \frac{n_i^s}{\sum_j n_j^s} = \frac{n_i^s}{n^s} \qquad \text{with} \qquad \sum_i y_i^s = 1 \qquad \text{and} \qquad \sum_s n^s = n \qquad (12)$$

where n_i^s is the number of species *i* in sublattice s, n^s the number of sites in sublattice *s*, and *n* the total number of sites. n^s is related to n by $n^s = n \cdot p/(p + q + ...)$. The number of sublattices and the species occupying them, is generally obtained from crystallographical information. The mole fraction of an element is obtained by

$$x_{i} = \frac{\sum_{s} n^{s} y_{i}^{s}}{\sum_{s} n^{s} (1 - y_{\mathrm{Va}}^{s})}$$
(13)

where y_{Va}^s is the fraction of vacant sites on sublattice s.

This model also describes stoichiometric phases, in which case the sublattices are occupied only by a single species, and substitutional phases which have a single lattice.

Landolt-Börnstein New Series IV/19B

SGTE

The molar Gibbs energy for a phase ϕ expressed by the sublattice model is equal to

$$G_{\rm m}^{\phi} = G_{\rm m}^{\phi, \rm srf} + G_{\rm m}^{\phi, \rm id} + G_{\rm m}^{\phi, \rm E} \tag{14}$$

As an example, a two sublattice phase with two elements A and B in each of the sublattices is considered. Denoting the sublattices with primes at the symbols, the surface of reference for the Gibbs energy is

$$G^{\rm srf} = y'_{\rm A} y''_{\rm A} \, {}^{o}G_{\rm A:A} + y'_{\rm A} y''_{\rm B} \, {}^{o}G_{\rm A:B} + y'_{\rm B} y''_{\rm A} \, {}^{o}G_{\rm B:A} + y'_{\rm B} y''_{\rm B} \, {}^{o}G_{\rm B:B} \tag{15}$$

The terms ${}^{o}G_{A:A}$ and ${}^{o}G_{B:B}$ represent the Gibbs energies of the phase ϕ for the constituent elements A and B. The colon separates the different sublattices. The terms ${}^{o}G_{A:B}$ and ${}^{o}G_{B:A}$ represent the Gibbs energies of the stoichiometric compounds $A_{p}B_{q}$ and $B_{p}A_{q}$, which may be stable or metastable. ${}^{o}G_{A:A}$, ${}^{o}G_{B:B}$, ${}^{o}G_{A:B}$ and ${}^{o}G_{B:A}$ are numerically given by equations (3) and (1).

The term $G_{\rm m}^{\rm id}$ is related to the molar configurational entropy and is equal to:

$$G_{\rm m}^{\rm id} = R T[p(y_{\rm A}^{'} \ln y_{\rm A}^{'} + y_{\rm B}^{'} \ln y_{\rm B}^{'}) + q(y_{\rm A}^{''} \ln y_{\rm A}^{''} + y_{\rm B}^{''} \ln y_{\rm B}^{''})]$$
(16)

Finally, the excess Gibbs energy $G_{\rm m}^{\rm E}$ is equal to

$$G_{\rm m}^{\rm E} = y'_{\rm A} y'_{\rm B} [y''_{\rm A} L_{{\rm A},{\rm B};{\rm A}} + y''_{\rm B} L_{{\rm A},{\rm B};{\rm B}}] + y''_{\rm A} y''_{\rm B} [y'_{\rm A} L_{{\rm A};{\rm A},{\rm B}} + y'_{\rm B} L_{{\rm B};{\rm A},{\rm B}}] + y'_{\rm A} y'_{\rm B} y'_{\rm A} y''_{\rm B} L_{{\rm A},{\rm B};{\rm A},{\rm B}}$$
(17)

The terms $L_{i,j:i}$ and $L_{i:i,j}$ represent the interaction parameters between the atoms on one sublattice for a given occupancy of the other, and can be described by a Redlich - Kister polynomial, as follows:

$$L_{i,j:i} = \sum_{\nu=0} (y'_{i} - y'_{j})^{\nu \ \nu} L_{i,j:i}$$
(18)

The parameters ${}^{\nu}L_{i,j:i}$ can be temperature dependent. The term $L_{i,j:i,j}$ is known as the reciprocal parameter which may be related to the exchange reaction of A and B between the sublattices. It is usually assumed to be composition independent but may depend on temperature.

The above equations can easily be extended to ternary and higher order systems.

3: Phases with order-disorder transformation

Phases with order-disorder transformation, like A2/B2 and $A1/L1_2$ can also be described with the sublattice method although this disregards any explicit short range order contributions. A single Gibbs energy function may be used to describe the thermodynamic properties of both the ordered and disordered phases as follows:

$$G_{\rm m} = G_{\rm m}^{\rm dis}(x_i) + \Delta G_{\rm m}^{\rm ord}(y_i^s) \tag{19}$$

where $G_{\rm m}^{\rm dis}(x_i)$ is the molar Gibbs energy of the disordered phase, given by equation (5) and $\Delta G_{\rm m}^{\rm ord}(y_i^s)$ is the ordering energy given by:

$$\Delta G_{\rm m}^{\rm ord} = G_{\rm m}^{\rm subl}(y_i^s) - G_{\rm m}^{\rm subl}(y_i^s = x_i) \tag{20}$$

where $G_{\rm m}^{\rm subl}(y_i^s)$ is given by equation (14). This must be calculated twice, once with the original site fractions y_i^s and once with these site fractions replaced by the mole fractions. If the phase is disordered the site fractions and mole fractions are equal and thus $\Delta G_{\rm m}^{\rm ord}$ equal to zero.

To ensure stability of the disordered phase, the first differential of G_m^{subl} with respect to any variation in the site occupancy must be zero at the disordered state. This enforces some relations between the parameters in G_m^{subl} as is discussed in [88Ans].

Description of the Tables and Diagrams

The diagrams and tables which are presented for the binary systems provide an overview of the major thermodynamic properties and the mixing behaviour of these systems. Depending on the nature of the respective system, the number and the type of the presented diagrams and tables varies. For all systems, a calculated phase diagram, a short abstract and a table listing the condensed phases are provided. Additional tables and diagrams present data for invariant reactions, integral and partial quantities of the liquid and solid phases, and standard reaction quantities of intermetallic compounds in the system.

The following list gives on overview of the quantities in the tables and diagrams and their designations. The definition of these quantities is provided in the following paragraphs.

Symbol	Unit	Quantity
$a_{ m A}$		thermodynamic activity of the component A in a liquid or solid solution
$\Delta_{\mathbf{f}} C_P^{\circ}$	J mol ^{-1} K ^{-1}	change of the molar heat capacity at constant pressure upon formation of a compound
ΔC_P	$J \text{ mol}^{-1} \mathrm{K}^{-1}$	change of the molar heat capacity at constant pressure upon formation of a liquid or solid solution
ΔG_{m}	$J mol^{-1}$	integral Gibbs energy of a liquid or solid solution
$G_{\mathrm{m}}^{\mathrm{E}}$	$J mol^{-1}$	integral excess Gibbs energy of a liquid or solid solution
$\Delta \widetilde{G}_{ m A}$	$J mol^{-1}$	partial Gibbs energy of the component A in a liquid or solid solution
$G_{ m A}^{ m E}$	$J mol^{-1}$	partial excess Gibbs energy of the component A in a liquid or solid solution
$\Delta_{\mathbf{f}}G^{\circ}$	$J mol^{-1}$	standard Gibbs energy of formation of a compound
$\Delta H_{ m m}$	$J mol^{-1}$	integral enthalpy of a liquid or solid solution
$\Delta H_{ m A}$	$J \text{ mol}^{-1}$	partial enthalpy of the component A in a liquid or solid solution
$\Delta_{\rm f} H^{\circ}$	$J mol^{-1}$	standard enthalpy of formation of a compound
$\Delta_{ m r} H$	$J mol^{-1}$	enthalpy of reaction per mole of atoms
$p_{ m i}$	Pa	partial pressure of species i
$\Delta S_{ m m}$	$J \text{ mol}^{-1} \text{ K}^{-1}$	integral entropy of a liquid or solid solution
$S_{ m m}^{ m E}$	$J \text{ mol}^{-1} \text{ K}^{-1}$	integral excess entropy of a liquid or solid solution
$\Delta S_{ m A}$	$J \text{ mol}^{-1} \text{ K}^{-1}$	partial entropy of the component A in a liquid or solid solution
$S_{ m A}^{ m E}$	$J \text{ mol}^{-1} \text{ K}^{-1}$	partial excess entropy of the component A in a liquid or solid solution
$\Delta_{\mathbf{f}} S^{\circ}$	$J \text{ mol}^{-1} \text{ K}^{-1}$	standard entropy of formation of a compound
T	K	thermodynamic temperature
$T_{ m C}$	K	Curie temperature
$x_{ m A}$		mole fraction of component A in an alloy or compound
$\gamma_{ m A}$		activity coefficient of the component A in a liquid or solid solution

The first diagram shows the phase diagram of the system. The single-phase fields and the compounds are marked with labels which are used in the tables to refer to the respective phases. All boundaries between phases which transform into each other by first-order transformations are drawn with solid lines. Second-order phase transformations and magnetic transformations are denoted by dashed and dotted lines, respectively.

The table "phases, structures and models", contains crystallographic data and information on the thermodynamic model in the database. The designations of the phases according to Strukturbericht, prototype, Pearson symbol and the space group have been collected from various sources, including the original publication of the assessment and the reference books of Pearson [85Vil], Massalski [90Mas] and Smithells [92Bra]. The SGTE name is used by the accompanying software on the CD-ROM. The last column of this table denotes how the sublattices of the crystals have been mapped into a thermodynamic model. The species which dissolve in a common sublattice are enclosed in parentheses. The indices denote the stoichiometric coefficients of the respective sublattices. If a sublattice is occupied by a single species only, the parentheses have been omitted. Vacancies are denoted by a box (\Box) .

The table of "invariant reactions" provides detailed data for the invariant equilibria and special transition points shown in the phase diagram. For each of these reactions the temperature and the phase compositions are provided. The compositions of the participating phases are listed in the same sequence as given by the symbolic equation. The last column gives the reaction enthalpy on cooling for one mole of atoms according to the respective transformation.

The thermodynamic quantities for the liquid and solid solutions are provided by a set of three tables which are denoted by a suffix a–c after the Roman number. The first of these tables lists the integral quantities as well as the change of the molar heat capacity. The other two tables give the partial quantities for the respective two components.

The integral and partial quantities can often be obtained easily from experiments. Partial molar quantities are used to describe the thermodynamic behaviour of the individual components. In a binary system, the partial molar Gibbs energy G_A of component A can be calculated from the molar Gibbs energy, G_m , at constant temperature and pressure by the well-known relation:

$$G_{\rm A} = G_{\rm m} + (1 - x_{\rm A})(\partial G_{\rm m}/\partial x_{\rm A})_{P,T}$$
⁽²¹⁾

 G_A is also known as the chemical potential of component A and denoted by the symbol μ_A . Similar relations hold for the partial molar enthalpy, H_A , and the partial molar entropy, S_A .

Partial quantities provide the difference between the values of thermodynamic functions of a component in a solution and the corresponding values for the pure components. Thus, the partial Gibbs energy ΔG_A of component A is calculated from G_A in the solution and G_A° in the pure substance by:

$$\Delta G_{\rm A} = G_{\rm A} - G_{\rm A}^{\circ} \tag{22}$$

Usually, the values of the pure components are given for their most stable modification at the respective temperature and pressure. But in order to avoid ambiguities the reference states for each component are given at the tables. The quantities ΔH_A and ΔS_A are defined accordingly.

The thermodynamic activity a_A of a component A is closely related to the partial Gibbs energy by:

$$a_{\rm A} = \exp(\Delta G_{\rm A}/RT) \tag{23}$$

Therefore, the activity is 1 for pure components in the chosen reference state.

The integral Gibbs energy, $\Delta G_{\rm m}$ is equal to the difference between the Gibbs energy of one mole of a solution $G_{\rm m}$ and the sum of the molar Gibbs energies of the pure components $G_{\rm i}^{\circ}$ at the same temperature and pressure. For a binary system the integral Gibbs energy is:

$$\Delta G_{\rm m} = G_{\rm m} - x_{\rm A} G_{\rm A}^{\circ} - x_{\rm B} G_{\rm B}^{\circ} \tag{24}$$

If the reference state of the components is the same phase as the mixture, $\Delta G_{\rm m}$ is also called the Gibbs energy of mixing. If the reference state of at least one component is different from the phase of the mixture then $\Delta G_{\rm m}$ contains the difference in Gibbs energies for the pure components between two phases. In these cases $\Delta G_{\rm m}$ is called the Gibbs energy of formation of the mixture. The quantities $\Delta H_{\rm m}$ and $\Delta S_{\rm m}$ are defined accordingly.

The excess quantities describe the deviation of the mixture from the ideal mixing behaviour. The molar excess Gibbs energy, $G_{\rm m}^{\rm E}$, is given by the difference of the integral Gibbs energy and the Gibbs energy of mixing for an ideal mixture:

$$G_{\rm m}^{\rm E} = \Delta G_{\rm m} - G_{\rm m}^{\rm id} \tag{25}$$

Landolt-Börnstein New Series IV/19B SGTE

In case of a a simple substitutional solution, $G_{\rm m}^{\rm id}$ is given by equation (7) and for solid solutions with several sublattices an expression similar to equation (16) applies.

The partial excess quantities can be derived from the integral excess functions by relations similar to those between partial and integral quantities. Thus, analogous to equation (21), the partial excess Gibbs energy of component A is given by:

$$G_{\rm A}^{\rm E} = G_{\rm m}^{\rm E} + (1 - x_{\rm A})(\partial G_{\rm m}^{E} / \partial x_{\rm A})_{P,T}$$
⁽²⁶⁾

Since the heat of mixing is zero for an ideal mixture, the excess enthalpy is identical to the heat of mixing and the partial excess enthalpy of a component is equal to its partial enthalpy. Therefore, the partial excess entropy can be calculated from the partial excess Gibbs energy by a temperature derivative or by the difference from the partial enthalpy:

$$S_{\rm A}^{\rm E} = -(\partial G_{\rm A}^{\rm E}/\partial T)_{P,x_{\rm A}} = (\Delta H_{\rm A} - G_{\rm A}^{\rm E})/T$$
⁽²⁷⁾

The activity coefficient is related to the partial excess Gibbs energy by an expression analogous to equation (23):

$$\gamma_{\rm A} = \exp(G_{\rm A}^{\rm E}/RT) \tag{28}$$

For the case of simple substitutional solutions the activity of a component A is related to its mole fraction by: $a_A = \gamma_A x_A$.

The preceding equations describe the thermodynamic behaviour of a single phase. In an unconstrained equilibrium between two phases each component has the same chemical potential and the same activity in each phase and the integral quantities are linear functions of the composition in a two-phase region. In the diagrams, the functions are drawn with dashed lines in these regions.

Special considerations apply to stoichiometric compounds. Here, the partial quantities cannot be defined by the expression given in equation (21) because the composition cannot be varied. Instead, the chemical potentials are defined by the equilibrium with the next adjacent stable phase.

The table of "standard reaction quantities" provides the Gibbs energy, the enthalpy, and the entropy of formation for the given compounds from the pure elements in their most stable state at 298.15 K and 0.1 MPa. Phosphorus deviates from this rule since here the white modification is conventionally chosen as a reference state instead of the more stable red form. All values in this table are given for the reaction of a total amount of 1 mole of atoms.

Description of the Software

The software provided with the volumes can calculate the printed phase diagrams but it also has some additional capabilities.

Phase Names

The phase names are the same as used in the volumes. If the phase has a miscibility gap or could appear as both ordered and disordered in the same system, a "COMPOSITION SET" number is appended to the name after a hash sign. For example LIQUID and LIQUID#2 may appear as phase names if there is a miscibility gap in the liquid phase. Normally the composition set 1 is not identified explicitly. As both phases are thermodynamically identical the assignment of a specific composition set number is arbitrary. For ordering in the Au-Cu system for example there are four different composition sets for the FCC phase.

Diagram Selection

The two basic windows for SGTEbin are shown in Fig. 3. In the text area of the base window references for data and other key textual information may appear. For the selection of a system press any two of the elements highlighted in bold print. The four buttons at the bottom of the window will become available. Four basic types of diagrams can be generated by use of specific buttons. These are,

- the phase diagram,
- the Gibbs energy curves for all phases as a function of composition at a specific temperature
- the activity curves of the two elements as a function of composition at a specific temperature
- a plot of the phase fractions as a function of the temperature for a given composition

SGTE MAIN	×
已兴吐	Binary Phase Diagram
	C SGTE BINARY PHASE DIAGRAM
	Periodic Lable Phases
	Part Innu
	LBBIN LB Binary Database by BS 2002-03-26
	40 Zr
	K Ca So Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As So Br Kr
	RD Sr Y Zr Nb Mo To Ru Rh Pd Ag Cd In Sn Sb Te I Xo
	HT Ha W HI Do St Bt Hs MI
	Landrande series La Ce Fr Nd Fm Sm 5u Gd To Dy Ho Fr Im Ye Lu
<u> </u>	*Adhide series Ao Th Ra J Np Ru Am Cm Bk Cr Es Fm Mc No Le
	Phase Discram Courses Annual Phase Fraction Cannel Help

Fig. 3. Base window and periodic chart window.

The basic diagrams are obtained by just selecting two elements and the specific button. From these four calculations an infinite number of modified diagrams can be generated. Some of these will be discussed below.

In addition to selecting the two elements one can also select the set of phases. The folder tagged "PHASE" gives the default selection of stable phases for the selected system. By changing this selection various metastable diagrams can be calculated.

Phase Diagram

This button will generate a standard temperature - composition phase diagram with the axes in mole fractions and degrees Celsius, see the example in Fig. 4a and 4b. Magnifications and phase labels can be obtained using specific buttons in the graphical window. The REDEFINE button provides a menu, which will allow a change of the axes as shown in Fig. 5. Fig. 6 is equivalent to Fig. 4 but now plotted with activity and temperature in Celsius as axes variables.

Fig. 4a. The periodic chart window shows the selected elements in red. Note that the buttons in the lower area are activated.

Fig. 4b. A binary phase diagram, here Al-Cu.

There are a number of different possible choices for the axis variable, some will be more sensible than others for a particular phase diagram. You may find it instructive to try a few on your own.

Fig. 5. The REDEFINE window for Al-Cu.

Fig. 6. The calculated Al-Cu system using the activity of Al and the Celsius temperature as axis variables.

G-Curves

In this diagram the Gibbs energies for each phase will be plotted vs composition at a given temperature. This diagram is related to the phase diagram in that the stable combination of phases is given by the lowest Gibbs energy at each composition. An example is given in Fig. 7. The number listed to the right of the diagram identifies each curve. Some phases have limited ranges of existence and stoichiometric phases appear with a small + sign. It is possible to change the axis to plot any integral quantity such as the enthalpy or entropy of the phases. In most cases the default for the reference phase for each element is the stable phase at 298.15 K.

SGTE

A-Curves

In this diagram the activities of the two elements are plotted vs composition at a given temperature as shown in Fig. 8. The horizontal lines represent two-phase equilibria. It may be useful to change the activity axis to a logarithmic scale in the REDEFINE window or to plot the chemical potential instead. In most cases the default for the reference phase for each element is the stable phase at 298.15 K.

Note the difference between A-CURVES and G-CURVES. In the latter all phases are calculated for their range of composition. In the A-CURVES diagram the phases are included only where they are stable.

Fig. 7. The diagram calculated by pressing the G curves button. The Gibbs energy curves are shown for all phases of the Al-Cu system at 1273 K.

Fig. 8. The diagram calculated by pressing the A curves button. The component activities in the system Al-Cu are shown at 1000 K.

Phase Fraction

This diagram gives the amount of the stable phases as a function of temperature for a given composition as shown in Fig. 9. The amount is given as mass fraction of phase. If one is interested to know how the amount of the phases varies with composition for a given temperature one can use the A-CURVES button and then change the axis with REDEFINE.

Fig. 9. The diagram calculated by pressing the phase fraction button. The curves show the amount of phase as function of the temperature at a given composition; the mole-fraction of copper is set to 0.71.

Introduction

Features and Errors

Unfortunately all software has errors. If you find a problem with the software please provide details by sending an email to info@thermocalc.se. Please provide the minimum number of actions needed to reproduce the error. If you would like to suggest an additional feature send an email to the same address. One known problem may occur in the calculation of metastable phase diagrams where there may be a miscibility gap.

References

[45Tem]	M Temkin [.]	Acta Phys	Chim 20 ((1945) 411 - 47	0
[+J ICIII]	IVI. ICHIKIII.	Acta I flys.	Ciiiii. 20 ((1945) 411-42	.0.

- [48Red] O. Redlich, A. Kister: Ind. Eng. Chem. 40 (1948) 345–348.
- [70Hil] M. Hillert, L.-I. Staffanson: Acta Chem. Scand. 24 (1970) 3618–3626.
- [78Hil] M. Hillert, M. Jarl: Calphad **2** (1978) 227–238.
- [78Som] F. Sommer: Calphad **2** (1978) 319–324.
- [81Ind] G. Inden: Physica **103B** (1981) 82–100.
- [81Sun] B. Sundman, J. Ågren: J. Phys. Chem. Solids 42 (1981) 297–301.
- [85Hil] M. Hillert, B. Jansson, B. Sundman, Ågren: Metall. Trans. A **16A** (1985) 261–266.
- [85Vil] P. Villars, L.D. Calvert: "Pearson's Handbook of Crystallographic Data for Intermetallic Phases", Vol. 1–3, ASM, Metals Park, Ohio, USA, 1985.
- [88Ans] I. Ansara, P. Willemin, B. Sundman: Acta metall. **36** (1988) 977–982.
- [90Mas] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak: "Binary Alloy Phase Diagrams", 2nd ed., ASM International, Materials Park, Ohio, USA, 1990.
- [91Din] A.T. Dinsdale: Calphad **15** (1991) 317–425.
- [92Bra] E.A. Brandes, G.B. Brook (eds.): "Smithells Metals Reference Book", 7th ed., Butterworth-Heinemann Ltd., Oxford, 1992.
- [97Ans] I. Ansara, N. Dupin, H.L. Lukas, B. Sundman: J. Alloys Compd. 247 (1997) 20–30.
- [98Sau] N. Saunders, A.P. Miodownik: "CALPHAD Calculation of Phase Diagrams", Elsevier Science Ltd., Oxford, 1998.
- [02Din] A.T. Dinsdale: to be published (2002).

XXVI

SGTE Data for Pure Elements

A.T. Dinsdale

The data for each phase of each element are presented graphically in terms of the variation with temperature of the heat capacity of the various phases and the difference in Gibbs energy between each phase and the reference phase for the element (ie lattice stability).

The SGTE element data were first presented in September 1989 [89Din] but published in revised form in 1991 [91Din1, 91Din2, 93Din] partially to conform to the 1990 International Temperature Scale [90Pre, 91Rus]. The data have been revised and enhanced since then. Over the last few years these element data have formed the basis of a number of assessments of binary, ternary and higher order systems which have appeared in the open literature.

Stable and Metastable Phase Data

In order to model the thermodynamic properties of binary or multicomponent systems data for each element are required for each phase in which it can form or dissolve. The data for the stable phases are, on the whole, well defined although serious anomalies still exist requiring further experimental study. Data are also required for these phases for temperatures outside their range of stability and this is generally much more of a problem. The traditional CALPHAD approach [70Kau] is to use the enthalpy and entropy of transition to extrapolate the Gibbs energy difference but to neglect any effects due to a difference in heat capacity between the phases. These differences, however, can often be substantial.

The extrapolation of the experimental heat capacity data across a solid state transformation is generally fairly straightforward. The extrapolation of data above and below the fusion temperature is more complicated. If the liquid heat capacity data are extrapolated from above the fusion temperature to lower temperatures there is the possibility that for certain temperatures the liquid phase would have a lower entropy than the solid phases. This is unreasonable and would be prevented in practice by the occurrence of the so-called glass transition, which is thought to take place at about 0.25 of the fusion temperature. A similar problem could occur with the extrapolation of the solid phase data to temperatures well above the melting point where under certain circumstances the solid could be predicted to become stable again.

These problems need to be avoided and SGTE adopted an interim solution for many elements in which the heat capacity of the liquid phase approaches that of the most stable solid phase for temperatures below the melting point [87And]. In a similar way above the melting temperature the heat capacity of the solid phases approaches that of the liquid phase. This has led to the introduction of terms in T^7 and T^{-9} into expressions for the Gibbs energy and removes the possibility of phases becoming incorrectly stable at high or low temperatures. An alternative method was also used for a number of elements to obtain a smoother extrapolation of the heat capacities of the solid and liquid phases.

The definition of data for phases which, for a given element, are metastable present even more of a problem and it has been common to assess these "lattice stabilities", ie expressions for the difference in Gibbs energy between one phase and another, from the critical assessment of data for many binary systems. Many of the initial set of lattice stabilities used were derived by Kaufman (see for example [70Kau, 77Kau, 78Kau]). SGTE sponsored the definition of new values for the Gibbs energies of transformation [86Sau, 88Sau] by considering more recent experimental data for stable phase transformations, taking account of the observed correlation between the entropy of fusion and temperature of fusion and better theoretical prediction of the enthalpy difference between two structures for a given element at 0 K. More recent theoretical studies have indicated that some elements in certain phases may be mechanically unstable for particular ranges of temperature and pressure [95Chan]. The SGTE unary data published in 1991 provided, according to the consensus of SGTE members the most reliable data for the elements. These recommended data have

changed since then as new information became available from experimental studies and improved theoretical methods and to reflect other currently accepted data.

More recently SGTE has also been at the forefront of the development of more scientific approaches to the extrapolation of heat capacities through use of Einstein or Debye equations [95Chas] for crystalline phases and a two state model for the liquid phase [95Ågr, 00Tol]. In due course these will lead to a completely new set of unary data and form the basis for new and improved thermodynamic databases.

Standard Element Reference

The data for each phase are stored in the form of Gibbs energies relative to the "Standard Element Reference" ie the enthalpies of the pure elements in their defined reference phase at 298.15 K (denoted as $G - H_{\rm SER}$). This reference phase is normally the phase stable at 10⁵ Pa and 298.15 K. The exception to this rule is phosphorus for which, by convention, the white form is chosen as the reference phase because the more stable red form is difficult to characterise. This form of data is very convenient to use since all data in a database stored relative to this reference state are interconsistent and can be combined for the calculation of chemical and metallurgical equilibria. Furthermore each dataset contains all the thermodynamic information of interest for a particular phase and does not include any anomalous behaviour in a reference phase. All other thermodynamic functions can be calculated directly from one or more derivatives of the Gibbs energy expression. The concept of $G - H_{\text{SER}}$ can be best understood by noting that a Gibbs energy can be subdivided into its enthalpy and entropy contributions. The entropy of an element in a phase has an absolute value. The enthalpy, on the other hand, and therefore the Gibbs energy, has no absolute value, and a reference state needs to be defined. The most obvious reference state for the enthalpy is that of the element in its reference phase at 298.15 K. This is the reference state used for tabulation of the enthalpy of formation at 298.15 K. Combination of the enthalpy defined in this way with the absolute entropy gives $G - H_{\rm SER}$.

The remainder of this section on unary data falls into two parts. The first part is a summary of the transition data between the stable phases for all elements for which SGTE has solid and liquid data. All thermodynamic data refer to units of J mol⁻¹. This is similar to the information presented in the Massalski compilation of binary alloy phase diagrams [91Din2] but is updated. The standard entropies at 298.15 K for certain key elements are compatible with the CODATA key values [89Cox] and all temperatures quoted refer to the ITS-90 temperature scale [90Pre, 91Rus]. These include eight of the fixed points on the temperature scale.

The table includes for each element a number of important properties. After the atomic weight is given the difference in enthalpy between 298.15 and 0 K and the standard entropy at 298.15 K of the element in the defined reference phase. The final five columns relate to the temperature, change in enthalpy, change in entropy and change in heat capacity associated with any condensed phase transformation occurring within the element on heating. A number of rows are provided for elements which undergo solid state phase transformations eg Mn. The final row for a given element is associated with melting.

The second part shows the variation of heat capacity of the various phases as a function of temperature and also the difference in Gibbs energy between a given phase and the element reference phase.

References

[70Kau]	L. Kaufman, H. Bernstein: "Computer Calculations of Phase Diagrams", Academic Press,
	New York and London, 1970.
[77Kau]	L. Kaufman: Calphad 1 (1977) 7–89.
[78Kau]	L. Kaufman, H. Nesor: Calphad 2 (1978) 55–80 and 81–108.
[86Sau]	N. Saunders, A.P. Miodownik: "Metastable Lattice Stabilities for the Elements", University of Surrey Report, 1986.

2

[87And]	JO. Andersson, A. Fernandez Guillermet, P. Gustafson, M. Hillert, B. Jansson, B. Jönsson,
	B. Sundman, J. Ågren: Calphad 11 (1987) 93–98.
[88Sau]	N. Saunders, A.P. Miodownik, A.T. Dinsdale: Calphad 12 (1988) 351-74.
[89Cox]	J.D. Cox, D.D. Wagman, V.A. Medvedev: "CODATA Key Values for Thermodynamics",
	Hemisphere Publ. Corp., New York NY, USA, 1989.
[89Din]	A.T. Dinsdale: "SGTE Data for Pure Elements", NPL Report DMA(A)195, September 1989.
[90Pre]	H. Preston-Thomas: Metrologia, 27 (1990) 3–10.
[91Din1]	A.T. Dinsdale: Calphad 15 (1991) 317–425.
[91Din2]	A.T. Dinsdale: "SGTE Pure Element Transition Data", published within the 3 volume compi-
	lation "Binary Alloy Phase Diagrams", 2nd ed., ASM Int., T.B. Massalski, ed., 1991.
[91Rus]	R.L. Rusby, R.P. Hudson, M. Durieux, J.F. Schooley, P.M. Steur, C.A. Swenson: Metrologia
	28 (1991) 9–18.
[93Din]	A.T. Dinsdale: J. Chim. Phys. 90 (1993) 189–200.
[95Ågr]	J. Ågren, B. Cheynet, M. Clavaguera-Mora, K. Hack, J. Hertz, F. Sommer, U. Kattner:
	Calphad 19 (1995) 449–480.
[95Chan]	Y.A. Chang, C. Colinet, M. Hillert, Z. Moser, J.M. Sanchez, N. Saunders, R.E. Watson,
	A. Kussmaul: Calphad 19 (1995) 481–498.
[95Chas]	M.W. Chase, I. Ansara, A.T. Dinsdale, G. Eriksson, G. Grimvall, L. Höglund, H. Yokokawa:
	Calphad 19 (1995) 437–447.
	U C

1 Elements

[00Tol] O. Tolochko, J. Ågren: J. Phase Equil. **21** (2000) 19–24.

	Atomic	$H_{298} - H_0$	S_{298}	Phase	$T_{ m trs}$	$\Delta_{ m trs} H$	$\Delta_{ m trs}S$	$\Delta_{ m trs} C_P$
	weight	[J/mol]	$[J/(mol \cdot K)]$		[K]	[J/mol]	$[J/(mol \cdot K)]$	$[J/(mol \cdot K)]$
Ag	107.8682	5745.	42.55	FCC_A1	1234.93	11296.80	9.1477	1.5402
Al	26.98154	4540.	28.30	FCC_A1	933.47	10711.04	11.4744	-2.2046
Am	243.	6407.00	55.3960	DHCP	1041.98	870.09	0.8350	-2.7810
				FCC_A1	1350.00	5862.06	4.3422	1.2898
				BCC_A2	1449.00	14393.0	9.9330	2.092
As	74.922	5117.032	35.6895	RHO_A7	1090.00	24442.9	22.4247	0.0
Au	196.9665	6016.592	47.4884	FCC_A1	1337.33	12552.0	9.3859	0.0
В	10.81	1222.0	5.9	BET	2348.00	50200.00	21.3799	0.8362
Ba	137.33	6910.0	62.50	BCC_A2	1000.00	7120.0	7.120	-4.3450
Be	9.01218	1950.0	9.50	HCP_A3	1527.00	6849.0	4.4853	-1.8915
				BCC_A2	1560.00	7895.0	5.0609	-1.2123
Bi	208.9804	6426.624	56.735	RHO_A7	544.55	11296.80	20.7452	0.6522
С	12.011	1054.0	5.7423	HEX_A9	4765.3	117369.0	24.6300	0.0
Ca	40.08	5736.0	41.588	FCC_A1	716.00	928.85	1.2972	-1.2336
				BCC_A2	1115.00	8539.54	7.6588	-8.2257
Cd	112.41	6247.	51.80	HCP_A3	594.219	6192.32	10.4209	0.1666
Ce	140.12	7280.16	69.454	FCC_A1	1000.00	2991.60	2.9916	-0.1337
				BCC_A2	1072.00	5460.12	5.0934	0.0836
Co	58.9332	4765.567	30.0400	HCP_A3	694.99	427.59	0.6153	0.000
				FCC_A1	1768.00	16200.01	9.1629	0.8962

SGTE Pure Element Transition Data

3

1 Elements

	Atomic	$H_{298} - H_0$	S_{298}	Phase	$T_{ m trs}$	$\Delta_{ m trs} H$	$\Delta_{ m trs}S$	$\Delta_{\mathrm{trs}} C_P$
	weight	[J/mol]	[J/(mol·K)]		[K]	[J/mol]	[J/(mol·K)]	[J/(mol·K)]
Cr	51.996	4050.0	23.5429	BCC_A2	2180.0	21004.00	9.6349	-10.7118
Cs	132.9054	7711.000	85.23	BCC_A2	301.59	2096.00	6.9498	0.1128
Cu	63.546	5004.	33.15	FCC_A1	1357.77	13263.28	9.7684	1.5391
Dy	162.50	8865.896	74.9559	HCP_A3	1654.15	4591.74	2.7759	4.1866
2				BCC_A2	1685.11	11350.52	6.7358	-0.2929
Er	167.26	7392.2912	73.17816	HCP_A3	1802.00	19903.29	11.0451	-4.6468
Eu	151.96	8004.0	80.79304	BCC_A2	1095.00	9213.17	8.4139	-2.9731
Fe	55.847	4489.0	27.2797	BCC_A2	1184.81	1012.86	0.8549	-7.6812
				FCC_A1	1667.47	825.78	0.4952	2.1829
				BCC_A2	1810.94	13806.84	7.6241	4.6526
Ga	69.72	5572.0	40.7271	ORT	302.91	5589.81	18.4534	2.2766
Gd	157.25	9087.648	68.0894	HCP_A3	1508.15	3518.67	2.3331	-0.3127
				BCC_A2	1586.15	9668.04	6.0953	-0.4529
Ge	72.59	4636.	31.09	DIA_A4	1211.40	36944.72	30.4975	-1.1370
Hf	178.49	5845.0	43.56	HCP_A3	2016.00	5860.29	2.9069	-6.6207
				BCC_A2	2506.00	27196.00	10.8524	5.5559
Hg	200.59	9342.	75.90	LIQUID	234.321	2295.34	9.7957	-0.0066
Ho	164.9304	7995.624	75.0191	HCP_A3	1747.00	15926.61	9.1165	-9.7986
In	114.82	6610.0	57.65	TET_A6	429.75	3283.0	7.6393	0.0148
Ir	192.22	5267.656	35.5054	FCC_A1	2719.00	41124.00	15.1247	12.0550
Κ	39.0983	7088.	64.68	BCC_A2	336.53	2320.86	6.8964	0.0576
La	138.9055	6665.112	56.9024	DHCP	550.00	364.01	0.6618	-0.5686
				FCC_A1	1134.00	3121.26	2.7524	4.5150
				BCC_A2	1193.00	6196.50	5.1941	-5.2300
Li	6.941	4632.00	29.12	BCC_A2	453.60	2999.93	6.6136	0.6362
Lu	174.967	6388.968	50.9611	HCP_A3	1936.00	18648.09	9.6323	-0.0103
Mg	24.305	4998.0	32.671	HCP_A3	923.00	8476.78	9.1839	2.0821
Mn	54.9380	4995.696	32.2206	CBCC_A12	980.00	2253.55	2.2995	-1.5482
				CUB_A13	1360.00	2165.73	1.5925	0.1264
				FCC_A1	1411.00	1908.30	1.3524	3.2651
				BCC_A2	1519.00	12908.94	8.4983	1.7204
Mo	95.94	4589.0	28.56	BCC_A2	2896.00	37479.85	12.9419	-10.5181
Na	22.98977	6460.	51.3000	BCC_A2	370.87	2597.01	7.0025	0.3018
Nb	92.9064	5220.0	36.27	BCC_A2	2750.00	30000.0	10.9091	0.5560
Nd	144.24	7133.72	71.0862	DHCP	1128.00	3029.22	2.6855	-1.435
				BCC_A2	1289.00	7142.09	5.5408	4.2258
Ni	58.69	4787.0	29.7955	FCC_A1	1728.30	17479.82	10.1142	4.248
Np	237.0482	6606.536	50.4590	ORTHO	555.02	4699.92	8.4680	-5.0491
1				TETRAG	855.95	3000.12	3.5050	-2.9291
				BCC_A2	916.84	3198.57	3.4887	8.995
Os	190.2		32.6352	HCP_A3	3306.00	57855.00	17.5000	13.8379
Р	30.97376	5360.0	41.09	WHITE	317.30	659.0^{-1}	2.0769	1.9793
Pa	231.0359	6439.176	51.882	BCT_Aa	1443.10	6639.79	4.6011	-2.0962
				BCC_A2	1844.78	12341.18	6.6898	7.5305
Pb	207.2	6870.	64.80	FCC_A1	600.612	4773.94	7.9485	1.1867
Pd	106.42	5468.488	37.8234	FCC_A1	1828.00	16736.00	9.1554	4.5325
Pr	140.9077	7418.232	73.9313	DHCP	1068.00	3167.29	2.9656	-3.5564
				BCC_A2	1204.00	6886.86	5.7200	4.5187

1 Elements

	Atomic	$H_{298} - H_0$	S_{298}	Phase	$T_{\rm trs}$	$\Delta_{ m trs} H$	$\Delta_{\mathrm{trs}}S$	$\Delta_{ m trs} C_P$
	weight	[J/mol]	[J/(mol·K)]		[K]	[J/mol]	[J/(mol·K)]	[J/(mol·K)]
Pt	195.08	5723.712	41.6308	FCC_A1	2041.50	22175.00	10.8621	-0.8317
Pu	244.	6902.0	54.4610		397.61	3706.00	9.3206	-3.3379
					487.90	478.00	0.9797	-0.5630
					593.06	713.02	1.2023	-0.7521
				FCC_A1	736.40	83.35	0.1132	-0.8764
				TET_A6	755.67	1841.06	2.4363	-1.8400
				BCC_A2	913.00	2824.03	3.0931	8.4470
Rb	85.4678	7489.	76.78	BCC_A2	312.46	2192.42	7.0166	-0.5631
Re	186.207	5333.	36.4820	HCP_A3	3458.00	34075.04	9.8540	9.9322
Rh	102.9055	(4920.384)	31.5557	FCC_A1	2237.00	26593.50	11.8880	1.3593
Ru	101.07	4602.4	28.6144	HCP_A3	2607.00	38589.03	14.8021	0.8342
S	32.06	4412.0	32.07	ORTHO	368.30	401.00	1.0888	0.5358
				MONOCL	388.36	1721.00	4.4315	6.5224
Sb	121.75	5870.152	45.5219	RHO_A7	903.78	19874.00	21.9899	0.4002
Sc	44.9559	5217.448	34.6435	HCP_A3	1608.00	4008.27	2.4927	4.1361
				BCC_A2	1814.00	14095.90	7.7706	0.000
Se	78.96	5514.512	41.9655	HEX_A8	494.00	6694.40	13.5514	3.8536
Si	28.0855	3217.	18.81	DIA_A4	1687.00	50208.00	29.7617	-2.0264
Sm	150.36	7573.04	69.4962	RHO_C19	1190.00	3112.90	2.6159	-1.3808
				BCC_A2	1345.00	8619.04	6.4082	3.2635
Sn	118.69	6323.	51.18	BCT_A5	505.078	7029.12	13.9169	-1.0252
Sr	87.62	6568.	55.694	FCC_A1	820.00	836.80	1.0205	-2.3609
				BCC_A2	1050.00	7431.00	7.0771	8.7110
Ta	180.9479	5681.872	41.4718	BCC_A2	3290.00	36568.17	11.1149	-2.6340
Tb	158.9254	9426.552	73.3037	HCP_A3	1562.00	4380.65	2.8045	-0.3402
				BCC_A2	1632.00	10150.38	6.2196	0.000
Tc	98.		32.9856	HCP_A3	2430.01	33291.19	13.7000	8.3218
Te	127.60	6080.	49.221	HEX_A8	722.66	17376.00	24.0445	16.1903
Th	232.0381	6350.	51.8	FCC_A1	1633.20	3597.01	2.2024	-5.7949
				BCC_A2	2022.99	13807.13	6.8251	6.0679
Ti	47.88	4824.	30.72	HCP_A3	1155.00	4169.98	3.6104	-5.0307
				BCC_A2	1941.00	14146.00	7.2880	8.4656
T1	204.383	6831.97	64.2997	HCP_A3	507.00	359.82	0.7097	2.0997
				BCC_A2	577.00	4142.16	7.1788	-2.3901
Tm	168.9342	7397.312	74.01496	HCP_A3	1818.00	16840.60	9.2633	3.8918
U	238.0289	6364.	50.20	ORT_A20	942.00	2790.73	2.9625	-5.111
				TET	1049.00	4757.18	4.5350	-4.644
				BCC_A2	1408.00	9142.04	6.4930	10.3764
V	50.9415	4507.0	30.89	BCC_A2	2183.00	21500.0	9.8488	2.3597
W	183.85	4970.0	32.6176	BCC_A2	3694.90	52313.66	14.1583	0.2900
Y	88.9059	5983.457	44.7875	HCP_A3	1751.15	4886.19	2.7903	-3.5825
	-			BCC_A2	1795.15	11394.22	6.3472	7.9486
Yb	173.04	6711.136	59.8312	FCC_A1	1033.00	1748.91	1.6930	4.059
7	05 00		41.00	BCC_A2	1097.00	7656.72	6.9797	0.6695
Zn	65.38	5657.	41.63	HCP_ZN	692.68	7322.00	10.5705	1.6653
Zr	91.22	5566.27	39.1809	HCP_A3	1138.97	4106.54	3.6054	-6.3115
				BCC_A2	2127.85	20997.77	9.8681	6.0320

Ag (Silver)

Al (Aluminium)

Am (Americium)

As (Arsenic)

Au (Gold)

B (Boron)

Landolt-Börnstein New Series IV/19B SGTE

Ba (Barium)

Be (Beryllium)

Bi (Bismuth)

C (Carbon)

Ca (Calcium)

Cd (Cadmium)

Landolt-Börnstein New Series IV/19B SGTE

Ce (Cerium)

Co (Cobalt)

Cr (Chromium)

Cs (Caesium)

Cu (Copper)

Dy (Dysprosium)

Landolt-Börnstein New Series IV/19B SGTE

Er (Erbium)

Eu (Europium)

Fe (Iron)

Ga (Gallium)

Gd (Gadolinium)

Ge (Germanium)

Hf (Hafnium)

14

Hg (Mercury)

Ho (Holmium)

In (Indium)

Ir (Iridium)

K (Potassium)

Landolt-Börnstein New Series IV/19B

La (Lanthanum)

Li (Lithium)

Lu (Lutetium)

Mg (Magnesium)

Mn (Manganese)

Mo (Molybdenum)

Landolt-Börnstein New Series IV/19B

N (Nitrogen)

Na (Sodium)

Nb (Niobium)

Nd (Neodymium)

Ni (Nickel)

Np (Neptunium)

Landolt-Börnstein New Series IV/19B

O (Oxygen)

Os (Osmium)

P (Phosphorus)

Landolt-Börnstein New Series IV/19B

Pa (Protactinium)

Pb (Lead)

Pd (Palladium)

Landolt-Börnstein New Series IV/19B

Pr (Praseodymium)

Pt (Platinum)

Pu (Plutonium)

Landolt-Börnstein New Series IV/19B

Rb (Rubidium)

Re (Rhenium)

Rh (Rhodium)

Landolt-Börnstein New Series IV/19B

Ru (Ruthenium)

S (Sulphur)

Sb (Antimony)

Sc (Scandium)

Se (Selenium)

Si (Silicon)

Landolt-Börnstein New Series IV/19B

Sm (Samarium)

Sn (Tin)

Sr (Strontium)

Ta (Tantalum)

Tb (Terbium)

Tc (Technetium)

Landolt-Börnstein New Series IV/19B

Te (Tellurium)

Th (Thorium)

Ti (Titanium)

Landolt-Börnstein New Series IV/19B

Tl (Thallium)

Tm (Thulium)

U (Uranium)

Landolt-Börnstein New Series IV/19B

V (Vanadium)

W (Tungsten)

Y (Yttrium)

Landolt-Börnstein New Series IV/19B

Yb (Ytterbium)

Zn (Zinc)

Zr (Zirconium)

Landolt-Börnstein New Series IV/19B

Binary Systems from Ag-Al to Au-Tl

Ag – Al (Silver – Aluminium)

Fig. 1. Calculated phase diagram for the system Ag-Al.

Small quantities of Ag are often added to aluminium alloys to improve their high temperature mechanical properties. The critically assessed dataset for this system adopted by SGTE is from Lim et al. [95Lim] which is based on an earlier assessment of Spencer and Kubaschewski [87Spe]. The system is characterised by complete mixing in the liquid phase and substantial solid solution in each of the crystalline elements. There are also solid solution ranges for the bcc, hcp and cubic *A*13 structures. In addition to phase diagram studies the data of Lim were based upon experimental activity and enthalpy of mixing measurements in both the liquid and crystalline phases. The agreement between the critically assessed data and the experimental values is reasonable.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc bcc cub hcp	$egin{array}{c} A1 \ A2 \ A13 \ A3 \end{array}$	Cu W βMn Mg	cF4 cI2 cP20 hP2	$Fm\overline{3}m$ $Im\overline{3}m$ $P4_132$ $P6_3/mmc$	LIQUID FCC_A1 BCC_A2 CUB_A13 HCP_A3	$(Ag,Al)_1$ $(Ag,Al)_1$ $(Ag,Al)_1$ $(Ag,Al)_1$ $(Ag,Al)_1$ $(Ag,Al)_1$

Table I. Phases, structures and models.

Туре	<i>T /</i> K	Com	positions	$/x_{ m Al}$	$\Delta_{ m r} H$ / (J/mol)	
peritectic	1051.2	0.164	0.231	0.208	-5233	
congruent	1007.6	0.359	0.359		-10626	
eutectic	1003.2	0.316	0.279	0.328	-9890	
peritectoid	881.4	0.193	0.235	0.230	-1089	
congruent	880.0	0.239	0.239		-1244	
eutectic	840.0	0.656	0.413	0.742	-10332	
neritectoid	730.6	0.192	0.234	0.223	-853	
	Type peritectic congruent eutectic peritectoid congruent eutectic peritectoid	TypeT / Kperitectic1051.2congruent1007.6eutectic1003.2peritectoid881.4congruent880.0eutectic840.0peritectoid730.6	Type T / K Compperitectic1051.20.164congruent1007.60.359eutectic1003.20.316peritectoid881.40.193congruent880.00.239eutectic840.00.656peritectoid730.60.192	Type T / K Compositionsperitectic1051.20.1640.231congruent1007.60.3590.359eutectic1003.20.3160.279peritectoid881.40.1930.235congruent880.00.2390.239eutectic840.00.6560.413peritectoid730.60.1920.234	Type $T \ / \ K$ Compositions / x_{A1} peritectic1051.20.1640.2310.208congruent1007.60.3590.359eutectic1003.20.3160.2790.328peritectoid881.40.1930.2350.230congruent880.00.2390.239eutecticeutectic840.00.6560.4130.742peritectoid730.60.1920.2340.223	Type $T \ / \ K$ Compositions $/ x_{A1}$ $\Delta_r H \ / (J/mol)$ peritectic1051.20.1640.2310.208 -5233 congruent1007.60.3590.359 -10626 eutectic1003.20.3160.2790.328 -9890 peritectoid881.40.1930.2350.230 -1089 congruent880.00.2390.239 -1244 eutectic840.00.6560.4130.742 -10332 peritectoid730.60.1920.2340.223 -853

Table IIIa. Integral quantities for the liquid phase at 1300 K.

$x_{ m Al}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6888	-2762	3.174	-3374	0.471	0.000	
0.200	-11228	-4540	5.144	-5819	0.984	0.000	
0.300	-13729	-5202	6.559	-7126	1.480	0.000	
0.400	-14615	-4866	7.499	-7341	1.904	0.000	
0.500	-14177	-3825	7.963	-6685	2.200	0.000	
0.600	-12746	-2460	7.912	-5472	2.316	0.000	
0.700	-10629	-1163	7.282	-4026	2.202	0.000	
0.800	-8012	-251	5.970	-2603	1.809	0.000	
0.900	-4818	113	3.793	-1305	1.090	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Al(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1543	-444	0.845	-404	-0.031	0.867	0.963	
0.800	-4457	-2103	1.811	-2045	-0.045	0.662	0.828	
0.700	-8773	-4824	3.038	-4918	0.072	0.444	0.634	
0.600	-13933	-7855	4.675	-8412	0.428	0.276	0.459	
0.500	-19130	-10175	6.888	-11638	1.125	0.170	0.341	
0.400	-23658	-10817	9.878	-13754	2.259	0.112	0.280	
0.300	-27308	-9196	13.932	-14295	3.922	0.080	0.266	
0.200	-30889	-5436	19.579	-13493	6.198	0.057	0.287	
0.100	-37498	-694	28.311	-12610	9.166	0.031	0.311	
0.000	$-\infty$	2510	∞	-14260	12.900	0.000	0.267	

Reference state: Ag(liquid)

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m A1}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$					
0.000	$-\infty$	-31290	∞	-36880	4.300	0.000	0.033					
0.100	-54991	-23620	24.131	-30103	4.986	0.006	0.062					
0.200	-38310	-14288	18.479	-20914	5.097	0.029	0.144					
0.300	-25291	-6083	14.775	-12278	4.765	0.096	0.321					
0.400	-15639	-383	11.736	-5735	4.117	0.235	0.588					
0.500	-9225	2525	9.038	-1733	3.275	0.426	0.852					
0.600	-5472	3111	6.602	50	2.355	0.603	1.005					
0.700	-3481	2280	4.431	374	1.466	0.725	1.035					
0.800	-2293	1045	2.567	119	0.712	0.809	1.011					
0.900	-1187	202	1.069	-48	0.193	0.896	0.996					
1.000	0	0	0.000	0	0.000	1.000	1.000					

Table IIIc. Partial quantities for Al in the liquid phase at 1300 K.

Reference state: Al(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

	0	1		1				
Phase	$x_{ m Al}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.050	-2977	-1397	1.926	-1623	0.276	0.000	
	0.100	-5060	-2415	3.225	-2843	0.522	0.000	
	0.150	-6589	-3101	4.254	-3707	0.740	0.000	
	0.193	-7541	-3458	4.979	-4198	0.903	0.000	
hcp	0.232	-8275	-3748	5.521	-4582	1.018	0.000	
	0.250	-8601	-3914	5.716	-4767	1.041	0.000	
	0.300	-9408	-4373	6.140	-5243	1.061	0.000	
	0.350	-10038	-4780	6.412	-5624	1.029	0.000	
	0.400	-10114	-4741	6.553	-5526	0.958	0.000	
	0.413	-9960	-4572	6.571	-5338	0.935	0.000	
fcc	0.783	-4029	341	5.330	-466	0.984	0.000	
	0.800	-3762	410	5.089	-351	0.928	0.000	
	0.850	-2955	533	4.254	-73	0.740	0.000	
	0.900	-2128	517	3.225	89	0.522	0.000	
	0.950	-1236	344	1.926	118	0.275	0.000	
	1.000	0	0	0.000	0	0.000	0.000	

Table IVa. Integral quantities for the stable phases at 820 K.

Reference states: Ag(fcc), Al(fcc)

Table IVb. Partial quantities for Ag in the stable phases at 820 K.

Phase	$x_{ m Ag}$	ΔG_{Ag} [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	ΔS_{Ag} [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	S_{Ag}^{E} [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000
	0.950	-559	-198	0.441	-210	0.015	0.921	0.970
	0.900	-1493	-727	0.934	-775	0.058	0.803	0.893
	0.850	-2712	-1497	1.482	-1604	0.131	0.672	0.790
	0.807	-3921	-2284	1.997	-2461	0.216	0.563	0.697
hcp	0.768	-3921	-1573	2.864	-2122	0.670	0.563	0.733
1	0.750	-4254	-1647	3.179	-2292	0.788	0.536	0.714
	0.700	-4926	-1584	4.075	-2494	1.109	0.486	0.694
	0.650	-6878	-2789	4.987	-3941	1.405	0.365	0.561
	0.600	-13575	-8740	5.896	-10092	1.649	0.137	0.228
	0.587	-16562	-11540	6.124	-12933	1.699	0.088	0.150
fcc	0.217	-16562	-3216	16.275	-6134	3.559	0.088	0.407
	0.200	-16605	-2588	17.094	-5632	3.712	0.088	0.438
	0.150	-16790	-419	19.964	-3855	4.191	0.085	0.568
	0.100	-17371	2181	23.843	-1672	4.698	0.078	0.783
	0.050	-19508	5209	30.143	917	5.234	0.057	1.144
	0.000	$-\infty$	8660	∞	3904	5.800	0.000	1.773

Reference state: Ag(fcc)

Phase	$x_{ m Al}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{\rm Al}$	$\gamma_{ m Al}$
fcc	0.000	$-\infty$	-32060	∞	-36816	5.800	0.000	0.005
	0.050	-48908	-24191	30.142	-28483	5.234	0.001	0.015
	0.100	-37161	-17609	23.843	-21462	4.698	0.004	0.043
	0.150	-28558	-12187	19.964	-15623	4.191	0.015	0.101
	0.193	-22693	-8372	17.465	-11471	3.779	0.036	0.186
hcp	0.232	-22693	-10950	14.321	-12730	2.171	0.036	0.155
	0.250	-21642	-10714	13.326	-12190	1.800	0.042	0.167
	0.300	-19866	-10880	10.958	-11657	0.947	0.054	0.181
	0.350	-15907	-8479	9.058	-8749	0.330	0.097	0.277
	0.400	-4924	1258	7.539	1323	-0.079	0.486	1.214
	0.413	-563	5346	7.206	5471	-0.153	0.921	2.231
fcc	0.783	-563	1325	2.303	1102	0.272	0.921	1.175
	0.800	-552	1160	2.087	970	0.232	0.922	1.153
	0.850	-513	702	1.482	595	0.131	0.927	1.091
	0.900	-434	332	0.934	284	0.058	0.938	1.043
	0.950	-274	87	0.441	76	0.014	0.961	1.011
	1.000	0	0	0.000	0	0.000	1.000	1.000

1.0

0.8

Table IVc. Partial quantities for Al in the stable phases at 820 K.

Reference state: Al(fcc)

Fig. 4. Integral quantities of the stable phases at T=820 K.

Activities $a_{\scriptscriptstyle \rm Al}$ 0.6 $a_{{\scriptscriptstyle {\rm Ag}}}$ 0.4 0.2 0.0 0.2 0.0 0.4 0.6 1.0 0.8 $x_{\rm al}$ Ag Al

Fig. 5. Activities in the stable phases at T=820 K.

References

[87Spe]	P.J. Spencer, O. Kubaschewski: Monatsh. Chem. 118 (1987) 155–167.
[95Lim]	S.S. Lim, P.L. Rossiter, J.W. Tibbals: Calphad 19 (1995) 131–142.

Fig. 1. Calculated phase diagram for the system Ag-Au.

Both Au and Ag are noble metals used in jewellery and electronic applications. Both elements crystallise in the fcc structure and form a continuous series of solutions both in the liquid and crystalline phases. The composition range where the two phases are in equilibrium is very small. The critical assessment of data for this system selected by SGTE was published by Hassam et al. [88Has] based on the phase diagram and activities in the fcc phase compiled by Hultgren et al. supplemented by more recent experimental thermodynamic properties of the liquid phase.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	A1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	$(Ag,Au)_1$ $(Ag,Au)_1$

Table I. Phases, structures and models.

$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]						
0	0	0.000	0	0.000	0.000						
-4987	-1476	2.600	-1338	-0.103	0.000						
-7995	-2624	3.978	-2378	-0.182	0.000						
-9978	-3444	4.840	-3121	-0.239	0.000						
-11121	-3936	5.322	-3567	-0.274	0.000						
-11496	-4101	5.478	-3716	-0.285	0.000						
-11121	-3936	5.322	-3567	-0.274	0.000						
-9978	-3444	4.840	-3121	-0.239	0.000						
-7995	-2624	3.978	-2378	-0.182	0.000						
-4987	-1476	2.600	-1338	-0.103	0.000						
0	0	0.000	0	0.000	0.000						
	$\begin{array}{c} & \\ \Delta G_{\rm m} \\ [{\rm J/mol}] \\ \\ & \\ 0 \\ -4987 \\ -7995 \\ -9978 \\ -11121 \\ -11496 \\ -11121 \\ -9978 \\ -7995 \\ -4987 \\ 0 \end{array}$	$\begin{array}{c c} \Delta G_{\rm m} & \Delta H_{\rm m} \\ [J/{\rm mol}] & [J/{\rm mol}] \\ \hline 0 & 0 \\ -4987 & -1476 \\ -7995 & -2624 \\ -9978 & -3444 \\ -11121 & -3936 \\ -11496 & -4101 \\ -11121 & -3936 \\ -9978 & -3444 \\ -7995 & -2624 \\ -4987 & -1476 \\ 0 & 0 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

Table IIa. Integral quantities for the liquid phase at 1350 K.

Reference states: Ag(liquid), Au(liquid)

Table IIb. Partial quantities for Ag in the liquid phase at 1350 K.

x_{Ag}	$\Delta G_{ m Ag}$	$\Delta H_{ m Ag}$	$\Delta S_{ m Ag}$	$G_{ m Ag}^{ m E}$	$S_{ m Ag}^{ m E}$	$a_{ m Ag}$	$\gamma_{ m Ag}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1331	-164	0.865	-149	-0.011	0.888	0.987	
0.800	-3099	-656	1.810	-595	-0.046	0.759	0.948	
0.700	-5341	-1476	2.863	-1338	-0.103	0.621	0.888	
0.600	-8112	-2624	4.065	-2378	-0.182	0.485	0.809	
0.500	-11496	-4101	5.478	-3716	-0.285	0.359	0.718	
0.400	-15636	-5905	7.208	-5351	-0.410	0.248	0.621	
0.300	-20797	-8037	9.452	-7283	-0.559	0.157	0.523	
0.200	-27578	-10497	12.652	-9512	-0.730	0.086	0.429	
0.100	-37885	-13286	18.222	-12039	-0.923	0.034	0.342	
0.000	$-\infty$	-16402	∞	-14863	-1.140	0.000	0.266	

Reference state: Ag(liquid)

Table IIc. Partial quantities for Au in the liquid phase at 1350 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	ΔS_{Au} [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{\mathrm{Au}}^{\mathrm{E}}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
0.000	$-\infty$	-16402	∞	-14863	-1.140	0.000	0.266	
0.100	-37885	-13286	18.222	-12039	-0.923	0.034	0.342	
0.200	-27578	-10497	12.652	-9512	-0.730	0.086	0.429	
0.300	-20797	-8037	9.452	-7283	-0.559	0.157	0.523	
0.400	-15636	-5905	7.208	-5351	-0.410	0.248	0.621	
0.500	-11496	-4101	5.478	-3716	-0.285	0.359	0.718	
0.600	-8112	-2624	4.065	-2378	-0.182	0.485	0.809	
0.700	-5341	-1476	2.863	-1338	-0.103	0.621	0.888	
0.800	-3099	-656	1.810	-595	-0.046	0.759	0.948	
0.900	-1331	-164	0.865	-149	-0.011	0.888	0.987	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Au(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1350 K.

Fig. 3. Activities in the liquid phase at T=1350 K.

Table IIIa. Integral quantities for the stable phases at 1200 K.

Phase	$x_{ m Au}$	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-4647	-1404	2.703	-1404	0.000	0.000	
	0.200	-7489	-2496	4.161	-2496	0.000	0.000	
	0.300	-9371	-3276	5.079	-3276	0.000	0.000	
	0.400	-10459	-3744	5.596	-3744	0.000	0.000	
	0.500	-10816	-3900	5.763	-3900	0.000	0.000	
	0.600	-10459	-3744	5.596	-3744	0.000	0.000	
	0.700	-9371	-3276	5.079	-3276	0.000	0.000	
	0.800	-7489	-2496	4.161	-2496	0.000	0.000	
	0.900	-4647	-1404	2.703	-1404	0.000	0.000	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(fcc), Au(fcc)

Table IIIb. Partial quantities for Ag in the stable phases at 1200 K.

Phase	$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000	
	0.900	-1207	-156	0.876	-156	0.000	0.886	0.984	
	0.800	-2850	-624	1.855	-624	0.000	0.752	0.939	
	0.700	-4963	-1404	2.966	-1404	0.000	0.608	0.869	
	0.600	-7593	-2496	4.247	-2496	0.000	0.467	0.779	
	0.500	-10816	-3900	5.763	-3900	0.000	0.338	0.676	
	0.400	-14758	-5616	7.619	-5616	0.000	0.228	0.570	
	0.300	-19656	-7644	10.010	-7644	0.000	0.139	0.465	
	0.200	-26041	-9983	13.382	-9983	0.000	0.074	0.368	
	0.100	-35609	-12635	19.145	-12635	0.000	0.028	0.282	
	0.000	$-\infty$	-15599	∞	-15599	0.000	0.000	0.209	

Reference state: Ag(fcc)

		1		I IIII				
Phase	$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$
fcc	0.000	$-\infty$	-15599	∞	-15599	0.000	0.000	0.209
	0.100	-35609	-12635	19.145	-12635	0.000	0.028	0.282
	0.200	-26041	-9983	13.382	-9983	0.000	0.074	0.368
	0.300	-19656	-7644	10.010	-7644	0.000	0.139	0.465
	0.400	-14758	-5616	7.619	-5616	0.000	0.228	0.570
	0.500	-10816	-3900	5.763	-3900	0.000	0.338	0.676
	0.600	-7593	-2496	4.247	-2496	0.000	0.467	0.779
	0.700	-4963	-1404	2.966	-1404	0.000	0.608	0.869
	0.800	-2850	-624	1.855	-624	0.000	0.752	0.939
	0.900	-1207	-156	0.876	-156	0.000	0.886	0.984
	1.000	0	0	0.000	0	0.000	1.000	1.000

Table IIIc. Partial quantities for Au in the stable phases at 1200 K.

Reference state: Au(fcc)

Fig. 5. Activities in the stable phases at T=1200 K.

References

[88Has] S. Hassam, M. Gambino, M. Gaune-Escard, J.P. Bros, J. Ågren: Metall. Trans. A **19A** (1988) 409–416.

41

Fig. 1. Calculated phase diagram for the system Ag-Bi.

The silver-bismuth system is part of the commonly used solder system Pb-Sn-Ag-Bi-Sb-Zn. Therefore, this system has been studied in many experimental investigations. Detailed reviews of experimental data are given in [80Ell, 93Kar]. The thermodynamic parameters have been assessed several times [76Zim1, 76Zim2, 93Kar, 94Kat, 98Luk, 99Ass]. The description of [98Luk] is accepted here because it has been tested in multicomponent systems. This thermodynamic description is an update of that of Zimmermann et al. [76Zim2] in order to make it compatible with the SGTE unary descriptions of [01Din].

The Ag-Bi system is a simple nearly degenerate eutectic system. The fcc solid solution has a retrograde solidus with a maximum solubility of about 2.5 at.% Bi. The solid solubility of Bi in fcc-Ag has been determined by thermoelectric power measurements, from lattice parameter data and by electron probe microanalysis. The solid solubility of Ag in solid Bi is negligible and it has not been measured systematically. The enthalpy of mixing of liquid Ag-Bi alloys has been measured by calorimetry. The activities of Ag and Bi in the liquid have been determined by EMF and vapour pressure measurements. All phases are modelled by the substitutional solution model. The calculated thermodynamic quantities and the phase diagram agree well with the experimental data.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A7	A1 A7	Cu αAs	cF4 hR2	Fm 3 m R3m	LIQUID FCC_A1 RHOMBOHEDRAL_A7	(Ag,Bi) ₁ (Ag,Bi) ₁ Bi ₁

Table I. Phases, structures and models.

Table	II.	Invariant reactions.
14010		m and and reactions.

Reaction	Туре	T / K	Com	positions	/ $x_{ m Bi}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc + A7	eutectic	535.0	0.950	0.008	1.000	-11694

Table IIIa. Integral quantities for the liquid phase at 1300 K.

$x_{ m Bi}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-4177	428	3.542	-663	0.840	0.537	
0.200	-6334	1074	5.698	-925	1.538	0.955	
0.300	-7497	1768	7.127	-894	2.048	1.254	
0.400	-7945	2372	7.936	-670	2.340	1.433	
0.500	-7839	2775	8.165	-347	2.402	1.492	
0.600	-7285	2898	7.833	-10	2.237	1.433	
0.700	-6342	2689	6.947	261	1.868	1.254	
0.800	-5014	2127	5.493	395	1.332	0.955	
0.900	-3187	1218	3.388	327	0.685	0.537	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Bi(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	ΔS_{Ag} [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
$\begin{array}{c} 1.000\\ 0.900\\ 0.800\\ 0.700\\ 0.600\\ 0.500\\ 0.400\\ 0.300\\ 0.200\\ \end{array}$	$\begin{array}{r} 0\\ -1358\\ -3141\\ -5181\\ -7346\\ -9559\\ -11814\\ -14250\\ -17346\end{array}$	$\begin{array}{c} 0\\ -139\\ -317\\ -241\\ 293\\ 1404\\ 3120\\ 5381\\ 8042 \end{array}$	$\begin{array}{c} 0.000\\ 0.937\\ 2.172\\ 3.799\\ 5.877\\ 8.433\\ 11.487\\ 15.101\\ 19.529\end{array}$	$\begin{array}{c} 0\\ -219\\ -729\\ -1325\\ -1825\\ -2066\\ -1910\\ -1237\\ 50 \end{array}$	$\begin{array}{c} 0.000\\ 0.061\\ 0.317\\ 0.834\\ 1.629\\ 2.670\\ 3.869\\ 5.091\\ 6.148\end{array}$	$\begin{array}{c} 1.000\\ 0.882\\ 0.748\\ 0.619\\ 0.507\\ 0.413\\ 0.335\\ 0.268\\ 0.201\\ \end{array}$	$\begin{array}{c} 1.000\\ 0.980\\ 0.935\\ 0.885\\ 0.845\\ 0.826\\ 0.838\\ 0.892\\ 1.005 \end{array}$	
$\begin{array}{c} 0.100 \\ 0.000 \end{array}$	$\begin{array}{c} -22864 \\ -\infty \end{array}$	$\begin{array}{c} 10866 \\ 13532 \end{array}$	$25.946 \\ \infty$	$\begin{array}{c} 2025\\ 4742 \end{array}$	$\begin{array}{c} 6.801 \\ 6.761 \end{array}$	$\begin{array}{c} 0.121 \\ 0.000 \end{array}$	$\begin{array}{c} 1.206 \\ 1.551 \end{array}$	

Reference state: Ag(liquid)

		1		1 1				
x_{Bi}	$\Delta G_{ m Bi}$ [J/mol]	$\Delta H_{ m Bi}$ [J/mol]	$\Delta S_{ m Bi}$ [J/(mol·K)]	$G_{ m Bi}^{ m E}$ [J/mol]	$S_{ m Bi}^{ m E}$ [J/(mol·K)]	$a_{ m Bi}$	$\gamma_{ m Bi}$	
0.000	$-\infty$	2561	∞	-9014	8.904	0.000	0.434	
0.100	-29549	5534	26.987	-4661	7.842	0.065	0.650	
0.200	-19107	6638	19.804	-1711	6.422	0.171	0.854	
0.300	-12902	6456	14.891	112	4.881	0.303	1.010	
0.400	-8842	5489	11.024	1062	3.406	0.441	1.103	
0.500	-6119	4147	7.897	1373	2.134	0.568	1.135	
0.600	-4265	2751	5.397	1256	1.150	0.674	1.123	
0.700	-2952	1536	3.452	903	0.487	0.761	1.087	
0.800	-1930	648	1.984	482	0.128	0.836	1.046	
0.900	-1000	146	0.882	139	0.006	0.912	1.013	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Bi in the liquid phase at 1300 K.

Reference state: Bi(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

References

[76Zim1]	B. Zimmermann, Ph. D. Thesi	s, Universität Stuttgart, Stuttgart, 1976.
----------	-----------------------------	--

- [76Zim2] B. Zimmermann, E.-T. Henig, H.L. Lukas: Z. Metallkd. 67 (1976) 815–820.
- [80Ell] R.P. Elliot, F.A. Shunk: Bull. Alloy Phase Diagrams 1 (1980) 62–64.
- [93Kar] I. Karakaya, W.T. Thompson: J. Phase Equilibria 14 (1993) 525–530.
- [94Kat] U.R. Kattner, W.J. Boettinger: J. Electron. Mater. 23 (1994) 603–610.
- [98Luk] H.L. Lukas: unpublished optimization 1998.
- [99Ass] J. Assal, B. Hallstedt, L.J. Gauckler: J. Amer. Ceram. Soc. 82 (1999) 711–715.

Fig. 1. Calculated phase diagram for the system Ag-Ge.

The Ag-Ge system has been critically assessed by Chevalier [88Che]. A review of the literature concerning the Ag-Ge system has been published by [80Ell]. The phase diagram is rather simple and of eutectic type, with a complete mutual solubility in the liquid state, a limited solid solubility of germanium in the silver rich terminal solid solution, and a negligible solid solubility of silver in pure crystalline germanium; there are no compounds in the system and the liquid and the fcc-phase has been modelled as a simple substitutional solution.

The liquidus curve has been investigated by thermal analysis [29Bri, 36Mau, 75Pre]. The solid solubility of Ge in Ag has been studied by conventional techniques by [29Bri, 36Mau, 40Owe, 40Hum, 50Now]. The calculated eutectic temperature, and composition are very close to the mean experimental values. The maximum solubility of germanium in the silver rich fcc solid solution, is in complete agreement with the experimental results of [75Pre], considered to be the most accurate work. The solubility of silver in germanium is so small that solid Ge has been modelled as a pure phase.

The calculated enthalpy of mixing of the liquid phase is in agreement with the calorimetric measurements [68Cas, 69Cas, 68Wit]. The calculated partial Gibbs energy of elements in the liquid phase is in good agreement with emf measurements [71Bat], and mass spectrometry measurements [79Mar]. It is difficult to reconcile the calculated chemical potential of germanium in the fcc solid solution with experiments on gas-solid equilibria [74Jac].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A4	$\begin{array}{c} A1\\ A4 \end{array}$	Cu C(diamond)	cF4 cF8	Fm $\overline{3}m$ Fd $\overline{3}m$	LIQUID FCC_A1 DIAMOND_A4	(Ag,Ge) ₁ (Ag,Ge) ₁ Ge ₁

Table I. Phases, structures and models.

	actions.					
Reaction	Туре	T / K	Comp	positions	/ $x_{ m Ge}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc + A4	eutectic	923.3	0.249	0.096	1.000	-15302

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 1300 K.

$x_{ m Ge}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-4383	-716	2.820	-869	0.117	0.000	
0.200	-6514	-454	4.661	-1105	0.501	0.000	
0.300	-7547	346	6.072	-944	0.993	0.000	
0.400	-7856	1319	7.058	-582	1.462	0.000	
0.500	-7664	2177	7.570	-172	1.807	0.000	
0.600	-7104	2708	7.548	170	1.952	0.000	
0.700	-6231	2777	6.929	371	1.850	0.000	
0.800	-5010	2324	5.642	399	1.481	0.000	
0.900	-3255	1367	3.555	259	0.853	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Ge(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	ΔS_{Ag} [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
$\begin{array}{c} 1.000\\ 0.900\\ 0.800\\ 0.700\\ 0.600\\ 0.500\\ 0.400\\ 0.300\\ \end{array}$	$\begin{array}{c} 0 \\ -1498 \\ -3513 \\ -5672 \\ -7737 \\ -9622 \\ -11418 \\ -13457 \\ 1000 \\ -1$	$\begin{array}{c} 0 \\ -569 \\ -1650 \\ -2477 \\ -2509 \\ -1440 \\ 812 \\ 4097 \\ -222 \end{array}$	$\begin{array}{c} 0.000\\ 0.714\\ 1.433\\ 2.458\\ 4.021\\ 6.294\\ 9.408\\ 13.503\\ 10.002$	$\begin{array}{c} 0 \\ -359 \\ -1101 \\ -1816 \\ -2215 \\ -2130 \\ -1514 \\ -443 \\ -222 \\ -443 \\ -444 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -$	$\begin{array}{c} 0.000\\ -0.162\\ -0.422\\ -0.508\\ -0.226\\ 0.531\\ 1.789\\ 3.492\\ 5.501\end{array}$	$\begin{array}{c} 1.000\\ 0.871\\ 0.723\\ 0.592\\ 0.489\\ 0.411\\ 0.348\\ 0.288\\ 0.2817\end{array}$	$\begin{array}{c} 1.000\\ 0.967\\ 0.903\\ 0.845\\ 0.815\\ 0.821\\ 0.869\\ 0.960\\ 1.965\end{array}$	
$0.200 \\ 0.100 \\ 0.000$	$-16511 \\ -22734 \\ -\infty$	$ \begin{array}{r} 8036 \\ 12023 \\ 15221 \end{array} $	$ \begin{array}{c} 18.882 \\ 26.736 \\ \infty \end{array} $	$\begin{array}{c} 886\\ 2155\\ 2924\end{array}$	$5.501 \\ 7.591 \\ 9.459$	$0.217 \\ 0.122 \\ 0.000$	$1.085 \\ 1.221 \\ 1.311$	

Reference state: Ag(liquid)

14010 11	ici i uitiui t	1 duninico it	n de in the ng	and phase a				
$x_{ m Ge}$	$\Delta G_{ m Ge}$ [J/mol]	$\Delta H_{ m Ge}$ [J/mol]	$\Delta S_{ m Ge}$ [J/(mol·K)]	$G_{ m Ge}^{ m E}$ [J/mol]	$S_{ m Ge}^{ m E}$ [J/(mol·K)]	$a_{ m Ge}$	$\gamma_{ m Ge}$	
0.000	$-\infty$	-13715	∞	-12737	-0.752	0.000	0.308	
0.100	-30345	-2040	21.774	-5457	2.629	0.060	0.604	
0.200	-18515	4333	17.575	-1119	4.194	0.180	0.902	
0.300	-11922	6932	14.504	1091	4.493	0.332	1.106	
0.400	-8035	7062	11.613	1869	3.995	0.475	1.189	
0.500	-5707	5794	8.847	1786	3.083	0.590	1.180	
0.600	-4228	3972	6.308	1293	2.061	0.676	1.127	
0.700	-3135	2211	4.112	721	1.146	0.748	1.069	
0.800	-2135	896	2.332	277	0.476	0.821	1.026	
0.900	-1091	183	0.980	48	0.104	0.904	1.004	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Ge in the liquid phase at 1300 K

Reference state: Ge(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

References

[29Bri]	T.R. Briggs, R.O. McDuffie, L.H. Willisford: J. Phys. Chem. 33 (1929) 1080–1096.
[36Mau]	H. Maucher: Forschungsarb. Metallk. Röntgenmetallogr., N° 20 (1936) 1–32.
[40Hum]	W. Hume-Rothery, G.V. Raynor, P.W. Reynolds, H.K. Packer: J. Inst. Metals 66 (1940) 209-
	239.
[40Owe]	E.A. Owen, V.W. Rowlands: J. Inst. Metals 66 (1940) 361-378.
[50Now]	H. Nowotny, K. Bachmayer: Monatsh. Chem. 81 (1950) 669-678.
[68Cas]	R. Castanet, M. Laffitte: C.R. Acad. Sci. Paris, Ser. C 267 (1968) 204-206.
[68Wit]	F.E. Wittig: private communication (1968).
[69Cas]	R. Castanet, Y. Claire, M. Laffitte: J. Chim. Phys. PhysChim. Biol. 66 (1969) 1276–1285.
[71Bat]	G.I. Batalin, E.A. Beloborodova, V.A. Stukalo: Russ. J. Phys. Chem. 45 (1971) 1533.
[71Pre]	B. Predel, D.W. Stein: Z. Naturforsch. 26A (1971) 722.
[74Jac]	K.T. Jacob, C.B. Alcock, J.C. Chan: Acta Metall. 22 (1974) 545-551.
[75Pre]	B. Predel, H. Bankstahl: J. Less-Common Met. 43 (1975) 191–203.
[79Mar]	L. Martin-Garin, C. Chatillon, M. Allibert: J. Less-Common Met. 63 (1979) 9-23.
[80E11]	R.P. Elliott, F.A. Shunk: Bull. Alloy Phase Diagrams 1 (1980) 47–51.
[88Che]	PY. Chevalier: Thermochim. Acta 130 (1988) 25–32.

Ag – In (Silver – Indium)

Fig. 1. Calculated phase diagram for the system Ag-In.

The Ag-In system has been critically assessed by Chevalier and Fischer [01Che], and is of interest for nuclear safety applications. The phase diagram as compiled by Moffatt [81Mof] presents a complete mutual solubility in the liquid state, limited solid solubility of indium in the silver rich terminal solid solution, and negligible solid solubility of silver in pure indium. There are two intermediate solid solutions, bcc with a very narrow temperature and composition range, and hcp with a larger existence range, which could transform into a different structure (ζ') below 473 K. Three intermediate compounds have been identified: Ag₃In, Ag₂In_{1-x} with a limited nonstoichiometry range and AgIn₂, strictly stoichiometric. All solution phases have been described with a simple substitutional model and the three compounds have been considered as stoichiometric.

The calculated liquidus is in good agreement with experimental data in the silver-rich domain by [34Hum, 37Hum], and in an extended composition range by [35Wei, 70Cam]. The calculated solidus and solid-solid phase transitions are in better agreement with [35Wei] than with [70Cam], which disagree on the hcp limits. The temperatures of the invariant reactions including the bcc phase are in agreement with the works of [35Wei, 70Cam, 91Hor]; the temperatures of the three invariant reactions in the indium rich-region agree with [70Cam, 91Hor]. The Ag₂In \leftrightarrow hcp temperature is well represented, as the upper temperature of Ag₃In (460 K). However, the (ζ') phase below 473 K is replaced by a two-phase region Ag₃In + Ag₂In below 458 K.

The calculated mixing enthalpy of the liquid phase is within the range of data measured by Kleppa [56Kle] at 723 K, Nozaki et al. [66Noz] at 1100 K, Castanet et al. [70Cas] at 743 K and 1280 K, Béja [66Bej] at 1028 K and Qi et al. [89Qi] at 1300 K.

The partial Gibbs energies of silver and indium are in good agreement with the experimental results of [89Qi, 69Alc] at 1300 K. The partial Gibbs energies of indium are in good agreement with experimental results of [63Prz, 72Pre] at 1000 K, and [81Kam] at 1050 K and 1250 K. The partial Gibbs energy of indium in fcc solid solutions is in good agreement with the measurements of [73Jac] at 900 K and [73Mas] at 1000 K. Enthalpies of formation of fcc and hcp solid solutions have been determined by [610rr] at 317 K and [56Kle] at 723 K. The thermodynamic data of the compounds have been estimated.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
$\begin{array}{c} \text{liquid} \\ \text{fcc} \\ \text{Ag}_3 \text{In} \\ \text{bcc} \\ \text{hcp} \\ \text{Ag}_2 \text{In}_1 \\ \text{AgIn}_2 \\ \begin{array}{c} 46 \end{array}$	$ \begin{array}{c} A1 \\ A3 \\ A2 \\ A3 \\ D0_3 \\ C16 \\ A6 \end{array} $	Cu Mg CsCl Mg AlFe ₃ Al ₂ Cu In	cF4 hP2 cP2 hP2 cF16 tI12 tI2	$Fm\overline{3}m$ $P6_3/mmc$ Pm3m $P6_3/mmc$ $Fm\overline{3}m$ I4/mcm I4/mmm	LIQUID FCC_A1 AG3IN1 BCC_A2 HCP_A3 D03_AG2IN1 C16_AG1IN2 TETRAGONAL_A6	$(Ag,In)_1$ $(Ag,In)_1$ Ag_3In_1 $(Ag,In)_1$ $(Ag,In)_1$ Ag_2In_1 Ag_1In_2 In_1

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	<i>T /</i> K	Com	positions	/ x_{In}	$\Delta_{ m r} H$ / (J/mol)
fcc + liquid \rightleftharpoons bcc	peritectic	977.8	0.187	0.278	0.225	-2588
$fcc + bcc \rightleftharpoons hcp$	peritectoid	946.7	0.192	0.231	0.224	-1102
$bcc \rightleftharpoons hcp + liquid$	eutectoid	933.3	0.253	0.252	0.329	-1177
$hcp \rightleftharpoons Ag_2In$	congruent	568.6	0.333	0.333		-1952
$hcp \rightleftharpoons Ag_2In + liquid$	eutectoid	477.7	0.420	0.333	0.926	-1221
$hcp \rightleftharpoons Ag_3In$	congruent	460.2	0.250	0.250		-592
$hcp \rightleftharpoons Ag_3In + Ag_2In$	eutectoid	458.2	0.256	0.250	0.333	-663
$hcp \rightleftharpoons fcc + Ag_3In$	eutectoid	443.8	0.233	0.200	0.250	-393
$Ag_2In + liquid \rightleftharpoons AgIn_2$	peritectic	439.2	0.333	0.950	0.667	-2548
$liquid \rightleftharpoons AgIn_2 + A6$	eutectic	414.6	0.967	0.667	1.000	-3731

Table IIIa. Integral quantities for the liquid phase at 1300 K.

_							
	x_{In}	ΔG_{m}	$\Delta H_{ m m}$	$\Delta S_{ m m}$	$G_{ m m}^{ m E}$	$S_{ m m}^{ m E}$	ΔC_p
		[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$	$[J/(mol \cdot K)]$
-	0.000	0	0	0.000	0	0.000	0.000
	0.100	-7006	-3035	3.055	-3493	0.352	0.000
	0.200	-10754	-4531	4.786	-5345	0.626	0.000
	0.300	-12605	-4935	5.900	-6002	0.821	0.000
	0.400	-13116	-4621	6.535	-5841	0.939	0.000
	0.500	-12660	-3897	6.741	-5168	0.978	0.000
	0.600	-11494	-2999	6.535	-4220	0.939	0.000
	0.700	-9768	-2097	5.900	-3165	0.821	0.000
	0.800	-7511	-1288	4.786	-2102	0.626	0.000
	0.900	-4574	-603	3.055	-1060	0.352	0.000
	1.000	0	0	0.000	0	0.000	0.000

Reference states: Ag(liquid), In(liquid)
		1		1 F				
$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2039	-849	0.915	-900	0.039	0.828	0.920	
0.800	-5384	-2769	2.012	-2972	0.156	0.608	0.760	
0.700	-9284	-4971	3.318	-5429	0.352	0.424	0.605	
0.600	-13213	-6878	4.873	-7692	0.626	0.295	0.491	
0.500	-16883	-8119	6.741	-9390	0.978	0.210	0.419	
0.400	-20266	-8531	9.027	-10362	1.408	0.153	0.383	
0.300	-23665	-8160	11.927	-10652	1.917	0.112	0.373	
0.200	-27909	-7258	15.885	-10513	2.503	0.076	0.378	
0.100	-35296	-6288	22.313	-10407	3.168	0.038	0.382	
0.000	$-\infty$	-5919	∞	-11004	3.912	0.000	0.361	

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

Reference state: Ag(liquid)

Table IIIc. Partial quantities for In in the liquid phase at 1300 K.

x_{In}	ΔG_{In} [J/mol]	ΔH_{In} [J/mol]	ΔS_{In} [J/(mol·K)]	$G_{ m In}^{ m E}$ [J/mol]	$S_{ m In}^{ m E}$ [J/(mol·K)]	a_{In}	γ_{In}	
0.000	$-\infty$	-39700	∞	-44785	3.912	0.000	0.016	
0.100	-51713	-22706	22.313	-26825	3.168	0.008	0.084	
0.200	-32233	-11582	15.885	-14837	2.503	0.051	0.253	
0.300	-20355	-4849	11.927	-7341	1.917	0.152	0.507	
0.400	-12969	-1234	9.027	-3065	1.408	0.301	0.753	
0.500	-8437	326	6.741	-945	0.978	0.458	0.916	
0.600	-5646	689	4.873	-125	0.626	0.593	0.989	
0.700	-3812	501	3.318	44	0.352	0.703	1.004	
0.800	-2411	204	2.012	1	0.156	0.800	1.000	
0.900	-1161	29	0.915	-22	0.039	0.898	0.998	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: In(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

•

52	

Compound	x_{In}	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Ag ₃ In ₁ Ag ₂ In ₁ Ag ₁ In ₂	$0.250 \\ 0.333 \\ 0.667$	$-6695 \\ -7471 \\ -3966$	-5817 -7047 -3966	$2.944 \\ 1.424 \\ 0.000$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\end{array}$

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

- [34Hum] W. Hume-Rothery, G.W. Mabbott, M. Channel-Evans: Phil. Trans. Royal Soc. (London) A233 (1934) 1–97.
 [35Wei] F. Weibke, H. Eggers: Z. Anorg. Chem. 222 (1935) 145–160.
- [37Hum] W. Hume-Rothery, P.W. Reynolds: Phil. Trans. Royal Soc. (London) A160 (1937) 282–303.
- [56Kle] O.J. Kleppa: J. Phys. Chem. **60** (1956) 846–852.
- [610rr] R.L. Orr, R. Hultgren: J. Phys. Chem. 65 (1961) 378-380.
- [63Prz] E. Przezdziecka-Mycielska, J. Terpilowski, K. Strozecka: Arch. Hutnictwa 8 (1963) 85–102.
- [66Bej] R. Béja: reported by [66Noz].
- [66Noz] T. Nozaki, M. Shimoji, K. Niwa: Trans. Jpn. Inst. Met. **30** (1966) 7-10.
- [67Sny] H.J. Snyder: Trans. AIME **239** (1967) 1385–1391.
- [69Alc] C.B. Alcock, R. Sridhar, R.C. Svedberg: Acta Metall. 17 (1969) 839–844.
- [70Cam] A.N. Campbell, R. Wagemann, R.B. Ferguson: Can. J. Chem. 48 (1970) 1703–1715.
- [70Cas] R. Castanet, Y. Claire, M. Laffitte: J. Chim. Phys. Phys.-Chim. Biol. 67 (1970) 789–793.
- [72Pre] B. Predel, U. Schallner: Z. Metallkd. 63 (1972) 341–347.
- [73Jac] K.T. Jacob, C.B. Alcock: Metall. Trans. 4 (1973) 2483–2484.
- [73Mas] D.B. Masson, S.S. Pradhan: Metall. Trans. 4 (1973) 991–995.
- [81Kam] K. Kameda, Y.Yoshida, S. Sakairi: J. Jpn. Inst. Met. 45 (1981) 614–620.
- [81Mof] W.G. Moffatt: The Handbook of Binary Phase Diagrams, General Electric, Genium Publishing Corporation, 1981.
- [89Qi] G. Qi, M. Hino, T. Azakami: Mater. Trans. JIM **30** (1989) 575–582.
- [91Hor] P.J. Horrocks: Ph.D. Thesis, Univ. Manchester, 1991.
- [01Che] P.-Y. Chevalier, E. Fischer: unpublished assessment, 2001.

Fig. 1. Calculated partial phase diagram for the system Ag-Ir.

Experimental information for this system is very scarce. In the recommended description [86Kar] for this system, a simple substitutional model has been used to represent the properties of mixing of the liquid and fcc phases using the solubility curve for Ir in liquid Ag and the approximate eutectic temperature of 1234 K, as reported by [86Kar], as a guide in deriving the thermodynamic parameters. Because of the uncertainty of available experimental values, and because the gas phase becomes stable at temperatures a little higher, the description is best used for temperatures below ca. 2300 K.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	(Ag,Ir) ₁
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	$(Ag,Ir)_1$
Table II.	Invariant rea	ctions.				
Reaction	on	Туре	T / K	Compos	sitions / $x_{ m Ir}$	$\Delta_{ m r} H$ / (J/mol)
liquid ,	\Rightarrow fcc' + fcc''	eutectic	1234.2	0.001 0	.000 1.00	0 -11357

Table I. Phases,	structures	and	models.
------------------	------------	-----	---------

x_{Ir}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.005	-195	434	0.315	328	0.053	0.072	
0.010	-278	865	0.572	653	0.106	0.144	
0.015	-319	1294	0.806	976	0.159	0.216	
0.020	-334	1720	1.027	1296	0.212	0.288	
0.022	-335	1881	1.108	1417	0.232	0.315	

Table IIIa. Integral quantities for the liquid phase at 2000 K.

Reference states: Ag(liquid), Ir(fcc)

Table IIIb. Partial quantities for Ag in the liquid phase at 2000 K.

x_{Ag}	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$
1.000	0	0	0.000	0	0.000	1.000	1.000
0.995	-82	1	0.042	1	0.000	0.995	1.000
0.990	-162	5	0.084	5	0.000	0.990	1.000
0.985	-239	12	0.126	12	0.000	0.986	1.001
0.980	-314	22	0.168	22	0.000	0.981	1.001
0.978	-342	26	0.184	26	0.000	0.980	1.002

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Ir in the liquid phase at 2000 K.

x_{Ir}	$\Delta G_{ m Ir}$ [J/mol]	$\Delta H_{ m Ir}$ [J/mol]	$\Delta S_{ m Ir}$ [J/(mol·K)]	$G_{ m Ir}^{ m E}$ [J/mol]	$S_{ m Ir}^{ m E}$ [J/(mol·K)]	$a_{ m Ir}$	$\gamma_{ m Ir}$	
0.000	$-\infty$	87066	∞	65879	10.594	0.000	52.546	
0.005	-22763	86529	54.646	65342	10.594	0.254	50.877	
0.010	-11772	85995	48.883	64808	10.594	0.493	49.267	
0.015	-5562	85463	45.512	64275	10.594	0.716	47.715	
0.020	-1308	84932	43.120	63745	10.594	0.924	46.219	
0.022	-1	84732	42.366	63545	10.594	1.000	45.664	

Reference state: Ir(fcc)

Fig. 2. Integral quantities of the liquid phase at T=2000 K.

References

[86Kar] I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 7 (1987) 359–360.

Fig. 1. Calculated phase diagram for the system Ag-Mg.

Small additions of Ag can be used to improve the precipitation-hardening process in Al-Cu-Mg alloys. The thermodynamic description of [97Lim] has been selected, because it updates a previous assessment [84Nay] and it provides new experimental data for the thermodynamic description of the compounds $Ag_{23}Mg_{77}$ and $AgMg_4$.

The liquid, fcc and hcp phases are modelled as simple substitutional solutions whereas Ag_3Mg and AgMg are described as ordered solution phases with $L1_2$ and B2 structure, respectively. The compound $Ag_{23}Mg_{77}$ represents the high-temperature (ε') and the low-temperature (ε) modification of a phase with narrow composition range, but due to the lack of data they are not distinguished in the description.

The calculated phase diagram is in acceptable agreement with literature data for the liquidus throughout the whole composition range. The solidus curves next to the terminal fcc and hcp phases are also well reproduced. The two-phase region fcc/AgMg and the field of the Ag_3Mg phase exhibit lager deviations from experimental data. The calculated heats of formation for the liquid, fcc, Ag_3Mg and AgMg phases reveal also certain deviations from experimental data. However, the authors have refrained from using more parameters especially for the ordered phases in order to facilitate extrapolations to higher-order systems.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	(Ag,Mg)1
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_L102	$(Ag,Mg)_1$
Ag_3Mg	$L1_2$	AuCu ₃	cP4	$Pm\overline{3}m$	FCC_L102	$4(Ag,Mg)_1$
AgMg	<i>B</i> 2	CsCl	cP2	Pm3m	BCC_B2	$2(Ag,Mg)_1$
$Ag_{23}Mg_{77}$			cF^*		AGMG3	$Ag_{23}Mg_{77}$
$AgMg_4$			hP^*		AGMG4	Ag_1Mg_4
hcp	A3	Mg	hP2	$P6_3/mmc$	HCP_A3	$(Ag,Mg)_1$

Table I.	Phases,	structures	and	model	ls
----------	---------	------------	-----	-------	----

56

Table	II.	Invariant	reactions.

Reaction	Туре	T / K	Compositions / $x_{ m Mg}$		$\Delta_{ m r} H$ / (J/mol)	
liquid \rightleftharpoons AgMg	congruent	1099.6	0.496	0.496		-18861
liquid ≓ fcc + AgMg	eutectic	1028.4	0.335	0.277	0.398	-16114
$AgMg + liquid \rightleftharpoons Ag_{23}Mg_{77}$	peritectic	764.5	0.625	0.809	0.770	-21652
$liquid \rightleftharpoons Ag_{23}Mg_{77} + hcp$	eutectic	747.0	0.864	0.770	0.965	-15806
$Ag_{23}Mg_{77} + hcp \rightleftharpoons AgMg_4$	peritectoid	738.3	0.770	0.969	0.800	-1160
$fcc + AgMg \rightleftharpoons Ag_3Mg$	peritectoid	665.1	0.232	0.337	0.232	-2097

Table IIIa. Integral quantities for the liquid phase at 1323 K.

x_{Mg}	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$	$G_{\rm m}^{\rm E}$	$S_{\rm m}^{\rm E}$	ΔC_p	
	[J/III01]	[J/III01]	[J /(IIIOF K)]	[J/III01]	[J /(IIIOI· K)]		
0.000	0	0	0.000	0	0.000	0.000	
0.100	-10346	-4336	4.543	-6770	1.840	0.000	
0.200	-17413	-7581	7.432	-11909	3.271	0.000	
0.300	-22183	-9783	9.373	-15464	4.294	0.000	
0.400	-24886	-10990	10.503	-17483	4.907	0.000	
0.500	-25637	-11250	10.875	-18013	5.112	0.000	
0.600	-24505	-10610	10.503	-17102	4.907	0.000	
0.700	-21517	-9117	9.373	-14797	4.294	0.000	
0.800	-16652	-6819	7.432	-11147	3.271	0.000	
0.900	-9775	-3764	4.543	-6199	1.840	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Mg(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1323 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1 0 0 0	0	0	0.000	Ō	0.000	1 000	1 0 0 0	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1983	-553	1.080	-824	0.204	0.835	0.928	
0.800	-5686	-2149	2.673	-3231	0.818	0.596	0.745	
0.700	-11051	-4693	4.806	-7127	1.840	0.366	0.523	
0.600	-18036	-8088	7.519	-12417	3.271	0.194	0.323	
0.500	-26629	-12242	10.875	-19004	5.112	0.089	0.178	
0.400	-36874	-17057	14.979	-26795	7.361	0.035	0.088	
0.300	-48937	-22439	20.029	-35693	10.019	0.012	0.039	
0.200	-63309	-28292	26.467	-45605	13.086	0.003	0.016	
0.100	-81762	-34522	35.706	-56433	16.561	0.001	0.006	
0.000	$-\infty$	-41034	∞	-68084	20.446	0.000	0.002	

Reference state: Ag(liquid)

		1	e					
$x_{ m Mg}$	$\Delta G_{ m Mg}$ [J/mol]	$\Delta H_{ m Mg}$ [J/mol]	$\Delta S_{ m Mg}$ [J/(mol·K)]	$G_{ m Mg}^{ m E}$ [J/mol]	$S^{ m E}_{ m Mg}$ [J/(mol·K)]	$a_{ m Mg}$	$\gamma_{ m Mg}$	
0.000	$-\infty$	-48967	∞	-76017	20.446	0.000	0.001	
0.100	-85617	-38378	35.706	-60289	16.561	0.000	0.004	
0.200	-64324	-29308	26.467	-46620	13.086	0.003	0.014	
0.300	-48160	-21661	20.029	-34916	10.019	0.013	0.042	
0.400	-35161	-15343	14.979	-25081	7.361	0.041	0.102	
0.500	-24646	-10258	10.875	-17021	5.112	0.106	0.213	
0.600	-16259	-6312	7.519	-10640	3.271	0.228	0.380	
0.700	-9765	-3407	4.806	-5842	1.840	0.412	0.588	
0.800	-4988	-1451	2.673	-2533	0.818	0.635	0.794	
0.900	-1776	-347	1.080	-617	0.204	0.851	0.945	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Mg in the liquid phase at 1323 K.

Reference state: Mg(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1323 K.

58

	0	1		I IIII				
Phase	$x_{ m Mg}$	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$	$G_{\rm m}^{\rm E}$	$S_{\rm m}^{\rm E}$	ΔC_p	
		[3/1101]	[3/1101]		[3/1101]	[5/(1101 K)]	[J /(IIIOI K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-8634	-7143	1.929	-6545	-0.774	0.000	
	0.200	-14155	-11691	3.189	-10939	-0.972	0.000	
	0.245	-15872	-12994	3.722	-12290	-0.911	0.000	
AgMg	0.358	-19552	-18018	1.985	-17618	-0.517	0.139	
	0.400	-20824	-19012	2.344	-19207	0.252	0.099	
	0.500	-22537	-20653	2.438	-22428	2.296	0.753	
	0.600	-19257	-14330	6.374	-17641	4.283	0.099	
	0.622	-18311	-12900	7.000	-16511	4.672	0.117	
liquid	0.805	-10442	2130	16.264	-7269	12.159	0.596	
	0.880	-6771	4177	14.162	-4412	11.111	0.643	
hcp	0.974	-1647	-575	1.386	-861	0.369	0.000	
	1.000	0	0	0.000	0	0.000	0.000	
liquid hcp	$\begin{array}{c} 0.600 \\ 0.622 \\ 0.805 \\ 0.880 \\ 0.974 \\ 1.000 \end{array}$	-19257 -18311 -10442 -6771 -1647 0	-14330 -12900 2130 4177 -575 0	$\begin{array}{c} 6.374 \\ 7.000 \\ 16.264 \\ 14.162 \\ 1.386 \\ 0.000 \end{array}$	-17641 -16511 -7269 -4412 -861 0	$\begin{array}{c} 4.283 \\ 4.672 \\ 12.159 \\ 11.111 \\ 0.369 \\ 0.000 \end{array}$	$\begin{array}{c} 0.099 \\ 0.117 \\ 0.596 \\ 0.643 \\ 0.000 \\ 0.000 \end{array}$	

Table IVa. Integral quantities for the stable phases at 773 K.

Reference states: Ag(fcc), Mg(hcp)

Table IVb. Partial quantities for Ag in the stable phases at 773 K.

Phase	$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000
	0.900	-1793	-1357	0.564	-1116	-0.312	0.757	0.841
	0.800	-5572	-4954	0.799	-4138	-1.056	0.420	0.525
	0.755	-7815	-7133	0.882	-6006	-1.459	0.296	0.393
AgMg	0.642	-7815	-8785	-1.255	-3709	-6.567	0.296	0.562
	0.600	-10044	-10554	-0.659	-4831	-7.404	0.210	0.472
	0.500	-26639	-32852	-8.037	-26530	-8.179	0.016	0.016
	0.400	-43930	-52739	-11.396	-47708	-6.508	0.001	0.001
	0.378	-45170	-52356	-9.297	-47950	-5.700	0.001	0.001
liquid	0.195	-45170	-17548	35.733	-34669	22.149	0.001	0.005
-	0.120	-54958	-22212	42.363	-41334	24.738	0.000	0.002
hcp	0.026	-54958	-21136	43.755	-31621	13.565	0.000	0.007
-	0.000	$-\infty$	-22318	∞	-33395	14.330	0.000	0.006

Reference state: Ag(fcc)

		1	0	1					
Phase	$x_{ m Mg}$	$\Delta G_{ m Mg}$ [J/mol]	$\Delta H_{ m Mg}$ [J/mol]	$\Delta S_{ m Mg}$ [J/(mol·K)]	$G_{ m Mg}^{ m E}$ [J/mol]	$S^{ m E}_{ m Mg}$ [J/(mol·K)]	$a_{ m Mg}$	$\gamma_{ m Mg}$	
fcc	0.000	$-\infty$	-85600	∞	-77019	-11.100	0.000	0.000	
	0.100	-70202	-59216	14.213	-55403	-4.932	0.000	0.000	
	0.200	-48489	-38636	12.746	-38145	-0.636	0.001	0.003	
	0.245	-40645	-31017	12.455	-31616	0.774	0.002	0.007	
AgMg	0.358	-40645	-34610	7.807	-42615	10.356	0.002	0.001	
	0.400	-36993	-31700	6.847	-40771	11.735	0.003	0.002	
	0.500	-18435	-8453	12.913	-18326	12.771	0.057	0.058	
	0.600	-2809	11276	18.221	2405	11.477	0.646	1.454	
	0.622	-2019	11034	16.886	2559	10.963	0.730	1.489	
liquid	0.805	-2019	6902	11.541	-623	9.736	0.730	0.908	
-	0.880	-196	7777	10.315	626	9.251	0.970	1.102	
hcp	0.974	-196	-16	0.233	-24	0.010	0.970	0.996	
-	1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IVc. Partial quantities for Mg in the stable phases at 773 K.

Reference state: Mg(hcp)

Fig. 5. Activities in the stable phases at T=773 K.

Table V. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Mg}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
$\begin{array}{c} Ag_{23}Mg_{77} \\ Ag_1Mg_4 \end{array}$	$\begin{array}{c} 0.770\\ 0.800 \end{array}$	$-18396 \\ -16489$	$-22600 \\ -20458$	-14.100 -13.313	0.000 0.000

References

T=773 K.

[84Nay] A.A. Nayeb-Hashemi, J.B. Clark: Bull. Alloy Phase Diagrams 5 (1984) 348-358. [97Lim]

M. Lim, J.E. Tibballs, P.L. Rossiter: Z. Metallkd. 88 (1997) 162-169.

Fig. 1. Calculated phase diagram for the system Ag-Os.

The description presented here for the Ag-Os system is based on the very limited phase diagram information given by [Massalski, 86Kar]. As such, a large uncertainty is associated with the tabulated values. At normal pressure, the condensed phases are no longer stable at temperatures above ca. 2450 K. This should be borne in mind when viewing the tables and figures. The phase diagram presented here (which has been calculated by elimination of the gas phase) results from fitting the solubility of Os in Ag-rich alloys to experimental data. Although the present description relates to all compositions and temperatures, it is best used for Os contents below ~10 at.% and temperatures below ~2500 K.

Table I. Phases, structures and models.	
---	--

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc hcp	A1 A3	Cu Mg	cF4 hP2	$Fm\overline{3}m$ $P6_3/mmc$	LIQUID FCC_A1 HCP_A3	(Ag,Os) ₁ (Ag,Os) ₁ (Ag,Os) ₁

Table II. Invariant reac	tions.
--------------------------	--------

Reaction	Туре	<i>T /</i> K	Compositions / x_{Os}			$\Delta_{ m r} H$ / (J/mol)	
$\begin{array}{l} \text{liquid} \rightleftharpoons \text{liquid'} + \text{liquid''} \\ \text{liquid''} \rightleftharpoons \text{liquid'} + \text{hcp} \\ \text{liquid''} \rightleftharpoons \text{fcc} + \text{hcp} \end{array}$	critical eutectic eutectic	$3392.0 \\ 3107.1 \\ 1234.6$	$0.544 \\ 0.774 \\ 0.000$	$0.544 \\ 0.296 \\ 0.000$	$0.544 \\ 1.000 \\ 1.000$	$0 \\ -43851 \\ -11333$	

x_{Os}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$
0.000	0	0	0.000	0	0.000	0.000
0.005	-168	465	0.317	355	0.055	0.048
0.010	-223	928	0.575	708	0.110	0.095
0.015	-236	1380	0.808	1053	0.164	0.142

Table IIIa. Integral quantities for the liquid phase at 2000 K.

Reference states: Ag(liquid), Os(hcp)

Table IIIb. Partial quantities for Ag in the liquid phase at 2000 K.

$x_{ m Ag}$	ΔG_{Ag} [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S^{ m E}_{ m Ag}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.995	-82	1	0.042	1	0.000	0.995	1.000	
0.990	-163	5	0.084	5	0.000	0.990	1.000	
0.985	-240	10	0.125	10	0.000	0.986	1.001	

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Os in the liquid phase at 2000 K.

x _{Os} [$\Delta G_{ m Os}$ [J/mol]	$\Delta H_{ m Os}$ [J/mol]	$\Delta S_{ m Os}$ [J/(mol·K)]	$G_{ m Os}^{ m E}$ [J/mol]	S_{Os}^{E} [J/(mol·K)]	a_{Os}	$\gamma_{ m Os}$	
0.000	$-\infty$	93269	∞	71298	10.985	0.000	72.791	
0.005 -	-17265	92811	55.038	70841	10.985	0.354	70.814	
0.010	-6196	92354	49.275	70384	10.985	0.689	68.896	
0.015	0	91907	45.954	69937	10.985	1.000	67.068	

Reference state: Os(hcp)

Fig. 2. Integral quantities of the liquid phase at T=2000 K.

Fig. 3. Activities in the liquid phase at T=2000 K.

References

[86Kar] I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 7 (1987) 360–362.

Fig. 1. Calculated phase diagram for the system Ag-Pb.

The silver-lead system is part of the commonly used solder system Pb-Sn-Ag-Bi-Sb-Zn. Therefore, the Ag-Pb system has been studied experimentally many times. A detailed review of experimental data is presented in [80Ell]. The thermodynamic parameters for the Ag-Pb system have been assessed several times [76Zim, 81Ash, 86Hay, 87Kar, 94Lee, 98Roe, 00Luk]. The assessment of [00Luk] has been accepted here. It is based on the same experimental data as [76Zim] and additionally includes a very precise determination of the liquidus for Pb-rich compositions [79Esd].

The system is characterised by a continuous solution of the elements in the liquid phase and a wide miscibility gap in the solid state. The solubility of Pb in fcc-Ag has been determined by thermoelectric power measurements, micrographically and by lattice parameter data. The solubility of Ag in solid Pb is derived from diffusion measurements, thermo-resistometric investigations, electrical resistivity and lattice parameter measurements. In liquid Ag-Pb alloys, the enthalpy of mixing has been measured calorimetrically and the activities of Pb and Ag have been derived from EMF and vapour pressure measurements. All phases are modelled by the substitutional solution model. The calculated thermodynamic quantities and the phase diagram are in good agreement with the experimental data.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	A1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	(Ag,Pb) ₁ (Ag,Pb) ₁

Table I. Phases, structures and models.

Table	II.	Invariant	reactions.

Reaction	Туре	T / K	Comp	Compositions / x_{Pb}		$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc' + fcc''	eutectic	576.4	0.955	0.008	0.998	-5434

Table IIIa. Integral quantities for the liquid phase at 1300 K.

x_{Pb}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[\text{J/(mol·K)}]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3295	1149	3.419	219	0.716	0.698	
0.200	-4834	2127	5.354	575	1.194	1.242	
0.300	-5653	2901	6.580	950	1.501	1.630	
0.400	-6021	3440	7.278	1253	1.682	1.863	
0.500	-6069	3713	7.525	1423	1.761	1.940	
0.600	-5851	3689	7.338	1424	1.742	1.863	
0.700	-5355	3337	6.686	1248	1.607	1.630	
0.800	-4493	2625	5.476	916	1.315	1.242	
0.900	-3039	1523	3.510	475	0.807	0.698	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Pb(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
$\begin{array}{c} 1.000 \\ 0.900 \\ 0.800 \\ 0.700 \\ 0.600 \end{array}$	$0 \\ -1229 \\ -2603 \\ -3962 \\ -5247$	$\begin{array}{c} 0 \\ 81 \\ 365 \\ 916 \\ 1794 \end{array}$	$\begin{array}{c} 0.000 \\ 1.008 \\ 2.283 \\ 3.752 \\ 5.417 \end{array}$	0 -90 -191 -106 274	$\begin{array}{c} 0.000 \\ 0.132 \\ 0.428 \\ 0.786 \\ 1.170 \end{array}$	$\begin{array}{c} 1.000 \\ 0.893 \\ 0.786 \\ 0.693 \\ 0.615 \end{array}$	$\begin{array}{c} 1.000 \\ 0.992 \\ 0.983 \\ 0.990 \\ 1.026 \end{array}$	
$\begin{array}{c} 0.500 \\ 0.400 \\ 0.300 \\ 0.200 \\ 0.100 \\ 0.000 \end{array}$	$\begin{array}{r} -6513 \\ -7949 \\ -9948 \\ -13305 \\ -20160 \\ -\infty \end{array}$	$3064 \\ 4787 \\ 7024 \\ 9838 \\ 13290 \\ 17441$	$7.367 \\ 9.796 \\ 13.055 \\ 17.802 \\ 25.730 \\ \infty$	$979 \\1955 \\3066 \\4091 \\4729 \\4594$	$1.604 \\ 2.178 \\ 3.045 \\ 4.421 \\ 6.585 \\ 9.883$	$\begin{array}{c} 0.547 \\ 0.479 \\ 0.398 \\ 0.292 \\ 0.155 \\ 0.000 \end{array}$	$1.095 \\ 1.198 \\ 1.328 \\ 1.460 \\ 1.549 \\ 1.530$	

Reference state: Ag(liquid)

		1		1 I				
$x_{ m Pb}$	$\Delta G_{ m Pb}$ [J/mol]	$\Delta H_{ m Pb}$ [J/mol]	$\Delta S_{ m Pb}$ [J/(mol·K)]	$G_{ m Pb}^{ m E}$ [J/mol]	$S_{ m Pb}^{ m E}$ [J/(mol·K)]	$a_{ m Pb}$	$\gamma_{ m Pb}$	
0.000	$-\infty$	12251	∞	1043	8.621	0.000	1.101	
0.100	-21885	10767	25.117	3003	5.972	0.132	1.320	
0.200	-13760	9173	17.641	3637	4.259	0.280	1.400	
0.300	-9600	7533	13.179	3414	3.168	0.411	1.371	
0.400	-7182	5908	10.069	2722	2.450	0.515	1.286	
0.500	-5625	4362	7.682	1867	1.919	0.594	1.189	
0.600	-4452	2957	5.699	1069	1.452	0.662	1.104	
0.700	-3386	1756	3.956	469	0.990	0.731	1.044	
0.800	-2290	822	2.394	122	0.539	0.809	1.011	
0.900	-1137	216	1.041	2	0.165	0.900	1.000	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Pb in the liquid phase at 1300 K.

Reference state: Pb(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

References

[76Zim]	B. Zimmermann: Ph.D. Thesis, Universität Stuttgart, Stuttgart, 1976.
[79Esd]	J.D. Esdaile, N.G. Siviour: Met. Trans. 10A (1979) 382-384.
[80E11]	R.P. Elliot, F.A. Shunk: Bull. Alloy Phase Diagrams 1 (1980) 56–59.
[81Ash]	S. Ashtakala, A.D. Pelton, C.W. Bale: Bull. Alloy Phase Diagrams 2 (1981) 81–83.
[86Hay]	F.H. Hayes, H.L. Lukas, G. Effenberg, G. Petzow: Z. Metallkd. 77 (1986) 749–754.
[87Kar]	I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 8 (1987) 326–334.
[94Lee]	BZ. Lee, CS. Oh, D.N. Lee: J. Alloys Comp. 215 (1994) 293–301.
[98Roe]	F. Roemermann, R. Blachnik: J. Alloys Comp. 280 (1998) 147–157.
[00Luk]	H.L. Lukas: unpublished optimization, 2000.

Fig. 1. Calculated phase diagram for the system Ag-Pd.

Alloys of Ag and Pd form a complete range of solid and liquid solutions. The selected thermodynamic data for the system are based on the phase diagram presented by Massalski together with the results obtained by Karakaya and Thompson [87Kar]. A simple substitutional solution model has been used to represent the thermodynamic properties of the liquid and fcc phases. The data are valid for all compositions and temperatures, but particularly in the range 1000 - 2000 K. The present assessment [98Spe] is preferred over that of [99Gho] because the latter presents mixing enthalpies of relatively high magnitude for the liquid and solid phases which is rather surprising for a system with the given complete miscibility ranges.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	A1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	$(Ag,Pd)_1$ $(Ag,Pd)_1$

Table I. Phases, structures and models.

	8	1	11				
$x_{ m Pd}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6744	-1744	2.703	-1744	0.000	0.000	
0.200	-10241	-2544	4.161	-2544	0.000	0.000	
0.300	-12016	-2620	5.079	-2620	0.000	0.000	
0.400	-12536	-2184	5.596	-2184	0.000	0.000	
0.500	-12106	-1444	5.763	-1444	0.000	0.000	
0.600	-10952	-600	5.596	-600	0.000	0.000	
0.700	-9244	152	5.079	152	0.000	0.000	
0.800	-7073	624	4.161	624	0.000	0.000	
0.900	-4368	632	2.703	632	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIa. Integral quantities for the liquid phase at 1850 K.

Reference states: Ag(liquid), Pd(liquid)

Table IIb. Partial quantities for Ag in the liquid phase at 1850 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2129	-509	0.876	-509	0.000	0.871	0.967	
0.800	-5172	-1740	1.855	-1740	0.000	0.714	0.893	
0.700	-8751	-3265	2.966	-3265	0.000	0.566	0.809	
0.600	-12529	-4672	4.247	-4672	0.000	0.443	0.738	
0.500	-16231	-5569	5.763	-5569	0.000	0.348	0.696	
0.400	-19674	-5580	7.619	-5580	0.000	0.278	0.696	
0.300	-22868	-4349	10.010	-4349	0.000	0.226	0.754	
0.200	-26292	-1536	13.382	-1536	0.000	0.181	0.905	
0.100	-32239	3179	19.145	3179	0.000	0.123	1.230	
0.000	$-\infty$	10100	∞	10100	0.000	0.000	1.928	

Reference state: Ag(liquid)

Table IIc. Partial quantities for Pd in the liquid phase at 1850 K.

$x_{ m Pd}$	$\Delta G_{ m Pd}$ [J/mol]	$\Delta H_{ m Pd}$ [J/mol]	$\Delta S_{ m Pd}$ [J/(mol·K)]	$G_{ m Pd}^{ m E}$ [J/mol]	$S_{ m Pd}^{ m E}$ [J/(mol·K)]	$a_{ m Pd}$	$\gamma_{ m Pd}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\end{array}$	$-\infty$ -48277 -30516 -19634	-22900 -12859 -5760 -1115	∞ 19.145 13.382 10.010	-22900 -12859 -5760 -1115	0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000 \\ 0.043 \\ 0.138 \\ 0.279 \\ 0.442 \end{array}$	$\begin{array}{c} 0.226 \\ 0.433 \\ 0.688 \\ 0.930 \\ 1.100 \end{array}$	
$\begin{array}{c} 0.400 \\ 0.500 \\ 0.600 \\ 0.700 \\ 0.800 \\ 0.900 \end{array}$	-12546 -7981 -5137 -3405 -2268 1271	$ 1548 \\ 2681 \\ 2720 \\ 2081 \\ 1164 \\ 340 $	$7.619 \\ 5.763 \\ 4.247 \\ 2.966 \\ 1.855 \\ 0.876$	$ 1548 \\ 2681 \\ 2720 \\ 2081 \\ 1164 \\ 340 $	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.442 \\ 0.595 \\ 0.716 \\ 0.801 \\ 0.863 \\ 0.921 \end{array}$	$ 1.106 \\ 1.190 \\ 1.193 \\ 1.145 \\ 1.079 \\ 1.023 $	
1.000	-1271 0	349 0	0.000	549 0	0.000	1.000	1.023 1.000	

Reference state: Pd(liquid)

Fig. 1. Calculated phase diagram for the system Ag-Pd.

Alloys of Ag and Pd form a complete range of solid and liquid solutions. The selected thermodynamic data for the system are based on the phase diagram presented by Massalski together with the results obtained by Karakaya and Thompson [87Kar]. A simple substitutional solution model has been used to represent the thermodynamic properties of the liquid and fcc phases. The data are valid for all compositions and temperatures, but particularly in the range 1000 - 2000 K. The present assessment [98Spe] is preferred over that of [99Gho] because the latter presents mixing enthalpies of relatively high magnitude for the liquid and solid phases which is rather surprising for a system with the given complete miscibility ranges.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	A1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	$(Ag,Pd)_1$ $(Ag,Pd)_1$

Table I. Phases, structures and models.

	8	1	11				
$x_{ m Pd}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6744	-1744	2.703	-1744	0.000	0.000	
0.200	-10241	-2544	4.161	-2544	0.000	0.000	
0.300	-12016	-2620	5.079	-2620	0.000	0.000	
0.400	-12536	-2184	5.596	-2184	0.000	0.000	
0.500	-12106	-1444	5.763	-1444	0.000	0.000	
0.600	-10952	-600	5.596	-600	0.000	0.000	
0.700	-9244	152	5.079	152	0.000	0.000	
0.800	-7073	624	4.161	624	0.000	0.000	
0.900	-4368	632	2.703	632	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIa. Integral quantities for the liquid phase at 1850 K.

Reference states: Ag(liquid), Pd(liquid)

Table IIb. Partial quantities for Ag in the liquid phase at 1850 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2129	-509	0.876	-509	0.000	0.871	0.967	
0.800	-5172	-1740	1.855	-1740	0.000	0.714	0.893	
0.700	-8751	-3265	2.966	-3265	0.000	0.566	0.809	
0.600	-12529	-4672	4.247	-4672	0.000	0.443	0.738	
0.500	-16231	-5569	5.763	-5569	0.000	0.348	0.696	
0.400	-19674	-5580	7.619	-5580	0.000	0.278	0.696	
0.300	-22868	-4349	10.010	-4349	0.000	0.226	0.754	
0.200	-26292	-1536	13.382	-1536	0.000	0.181	0.905	
0.100	-32239	3179	19.145	3179	0.000	0.123	1.230	
0.000	$-\infty$	10100	∞	10100	0.000	0.000	1.928	

Reference state: Ag(liquid)

Table IIc. Partial quantities for Pd in the liquid phase at 1850 K.

$x_{ m Pd}$	$\Delta G_{ m Pd}$ [J/mol]	$\Delta H_{ m Pd}$ [J/mol]	$\Delta S_{ m Pd}$ [J/(mol·K)]	$G_{ m Pd}^{ m E}$ [J/mol]	$S_{ m Pd}^{ m E}$ [J/(mol·K)]	$a_{ m Pd}$	$\gamma_{ m Pd}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\end{array}$	$-\infty$ -48277 -30516 -19634	-22900 -12859 -5760 -1115	∞ 19.145 13.382 10.010	-22900 -12859 -5760 -1115	0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000 \\ 0.043 \\ 0.138 \\ 0.279 \\ 0.442 \end{array}$	$\begin{array}{c} 0.226 \\ 0.433 \\ 0.688 \\ 0.930 \\ 1.100 \end{array}$	
$\begin{array}{c} 0.400 \\ 0.500 \\ 0.600 \\ 0.700 \\ 0.800 \\ 0.900 \end{array}$	-12546 -7981 -5137 -3405 -2268 1271	$ 1548 \\ 2681 \\ 2720 \\ 2081 \\ 1164 \\ 340 $	$7.619 \\ 5.763 \\ 4.247 \\ 2.966 \\ 1.855 \\ 0.876$	$ 1548 \\ 2681 \\ 2720 \\ 2081 \\ 1164 \\ 340 $	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.442 \\ 0.595 \\ 0.716 \\ 0.801 \\ 0.863 \\ 0.921 \end{array}$	$ 1.106 \\ 1.190 \\ 1.193 \\ 1.145 \\ 1.079 \\ 1.023 $	
1.000	-1271 0	349 0	0.000	549 0	0.000	1.000	1.023 1.000	

Reference state: Pd(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1850 K.

Fig. 3. Activities in the liquid phase at T=1850 K.

Table IIIa. Integral quantities for the stable phases at 1200 K.

Phase	$x_{ m Pd}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-5269	-2733	2.113	-2025	-0.590	0.000	
	0.200	-8117	-4467	3.042	-3124	-1.119	0.000	
	0.300	-9570	-5349	3.518	-3475	-1.561	0.000	
	0.400	-9973	-5526	3.705	-3258	-1.890	0.000	
	0.500	-9565	-5145	3.684	-2649	-2.080	0.000	
	0.600	-8544	-4352	3.493	-1829	-2.102	0.000	
	0.700	-7070	-3294	3.147	-976	-1.932	0.000	
	0.800	-5260	-2119	2.618	-267	-1.543	0.000	
	0.900	-3126	-972	1.795	118	-0.908	0.000	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(fcc), Pd(fcc)

Table IIIb. Partial quantities for Ag in the stable phases at 1200 K.

Phase	$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000
	0.900	-1544	-524	0.850	-493	-0.026	0.857	0.952
	0.800	-3960	-1899	1.717	-1733	-0.138	0.672	0.841
	0.700	-6923	-3833	2.575	-3364	-0.391	0.500	0.714
	0.600	-10126	-6032	3.411	-5029	-0.836	0.362	0.604
	0.500	-13285	-8203	4.236	-6370	-1.528	0.264	0.528
	0.400	-16172	-10051	5.101	-7029	-2.518	0.198	0.494
	0.300	-18664	-11283	6.151	-6651	-3.860	0.154	0.513
	0.200	-20936	-11606	7.775	-4878	-5.607	0.123	0.613
	0.100	-24326	-10726	11.334	-1352	-7.811	0.087	0.873
	0.000	$-\infty$	-8350	∞	4282	-10.527	0.000	1.536

Reference state: Ag(fcc)

8
5
)
3
2
3
3
7
3
9
)

Table IIIc. Partial quantities for Pd in the stable phases at 1200 K.

Reference state: Pd(fcc)

Fig. 4. Integral quantities of the stable phases at T=1200 K.

Fig. 5. Activities in the stable phases at T=1200 K.

References

[87Kar]	I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 9 (1988) 237–243.
[98Spe]	P.J. Spencer: unpublished assessment, 1998.

[99Gho] G. Ghosh, C. Kantner, G.B. Olson: J. Phase Equilibria **20** (1999) 295–308.

Fig. 1. Calculated phase diagram for the system Ag-Pt.

The present data for the Ag-Pt system [98Spe] are based on the somewhat incomplete phase diagram information presented by [86Mas, 87Kar]. A simple substitutional model has been used to represent the properties both of the liquid and of the fcc phase. The calculated peritectic reaction temperature and the associated liquid and (Ag) compositions agree well with experimental observation, but the (Pt) composition given by the assessment (24 at.%) is considerably higher than that chosen by Massalski (12.5 at.%). The assessment also provides a narrower solidus/liquidus gap in Ag-rich alloys than that presented in Massalski's compilation.

In a more recent experimental investigation [96Dur] the phase equilibria in the System Ag–Pt have been investigated by means of DTA. The observed temperature of the peritectic reaction $(1461\pm3 \text{ K})$ confirms the calculated value, however, other lines of the experimental diagram differ considerably from the calculations. In addition, X-ray and EMPA on long-time annealed samples [96Dur] revealed that the various uncertain phases which are indicated in the phase diagram of [87Kar] are not stable. Instead, it has been found [96Dur] that only one intermediate phase Ag₁₅Pt₁₇ is stable below 1076 K.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	A1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	$(Ag,Pt)_1$ $(Ag,Pt)_1$
Table II.	Invariant rea	ctions.				
Reactio	on	Туре	T / K	Compo	ositions / x_1	$\Delta_{ m r} H$ / (J/mol)
liquid +	$fcc'' \rightleftharpoons fcc'$	peritectic	1459.5	0.251	0.760 0.	442 - 4972

Table I. Phases, structures and models.

Tuble II	ia. integre	ii quuninie	is for the fique	i pilase at i	2100 IX.		
$x_{ m Pt}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3098	301	1.619	2578	-1.084	0.000	
0.200	-4448	338	2.279	4289	-1.881	0.000	
0.300	-5298	309	2.670	5368	-2.409	0.000	
0.400	-5774	341	2.912	5977	-2.684	0.000	
0.500	-5893	490	3.039	6210	-2.724	0.000	
0.600	-5663	742	3.050	6088	-2.546	0.000	
0.700	-5105	1010	2.912	5561	-2.167	0.000	
0.800	-4227	1140	2.556	4510	-1.605	0.000	
0.900	-2933	902	1.826	2744	-0.877	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 2100 K

Reference states: Ag(liquid), Pt(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 2100 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1361	171	0.730	478	-0.146	0.925	1.028	
0.800	-2331	384	1.293	1565	-0.563	0.875	1.094	
0.700	-3328	350	1.752	2899	-1.214	0.826	1.181	
0.600	-4589	-8	2.181	4330	-2.066	0.769	1.281	
0.500	-6181	-554	2.679	5922	-3.084	0.702	1.404	
0.400	-8049	-940	3.385	7950	-4.233	0.631	1.577	
0.300	-10121	-606	4.531	10901	-5.480	0.560	1.867	
0.200	-12624	1222	6.593	15478	-6.788	0.485	2.427	
0.100	-17612	5530	11.020	22593	-8.125	0.365	3.647	
0.000	$-\infty$	13516	∞	33371	-9.455	0.000	6.762	

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Pt in the liquid phase at 2100 K.

$x_{ m Pt}$	$\Delta G_{ m Pt}$ [J/mol]	$\Delta H_{ m Pt}$ [J/mol]	$\Delta S_{ m Pt}$ [J/(mol·K)]	$G_{ m Pt}^{ m E}$ [J/mol]	$S_{ m Pt}^{ m E}$ [J/(mol·K)]	$a_{ m Pt}$	$\gamma_{ m Pt}$	
0.000	$-\infty$	5165	∞	31069	-12.335	0.000	5.926	
0.100	-18731	1471	9.620	21474	-9.525	0.342	3.421	
0.200	-12918	153	6.225	15183	-7.157	0.477	2.386	
0.300	-9895	212	4.813	11127	-5.197	0.567	1.891	
0.400	-7552	864	4.007	8447	-3.611	0.649	1.622	
0.500	-5605	1534	3.399	6498	-2.364	0.725	1.451	
0.600	-4073	1863	2.827	4846	-1.421	0.792	1.320	
0.700	-2955	1703	2.218	3272	-0.747	0.844	1.206	
0.800	-2128	1119	1.546	1768	-0.309	0.885	1.107	
0.900	-1302	388	0.805	538	-0.072	0.928	1.031	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Pt(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2100 K.

Fig. 3. Activities in the liquid phase at T=2100 K.

Table IVa.	Integral	quantities	for the	stable	phases	at 1200	K.

Phase	$x_{ m Pt}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	ΔS_{m} [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[\text{J/(mol·K)}]}$	
fcc'	$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.254\\ 0.901 \end{array}$	$0 \\ -1589 \\ -1850 \\ -1810 \\ -862$	$0\\1814\\3374\\4087\\2517$	$\begin{array}{c} 0.000\\ 2.836\\ 4.353\\ 4.914\\ 2.816\end{array}$	$0 \\ 1655 \\ 3143 \\ 3840 \\ 2360$	$\begin{array}{c} 0.000\\ 0.133\\ 0.193\\ 0.206\\ 0.131\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(fcc), Pt(fcc)

Table IVb. Partial quantities for Ag in the stable phases at 1200 K.

Phase	$x_{ m Ag}$	ΔG_{Ag} [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$
fcc'	$\begin{array}{c} 1.000 \\ 0.900 \\ 0.800 \\ 0.746 \end{array}$	$0 \\ -984 \\ -1831 \\ -2181$	$0 \\ 119 \\ 543 \\ 932$	0.000 0.919 1.979 2.595	0 68 395 737	0.000 0.043 0.123 0.163	$\begin{array}{c} 1.000 \\ 0.906 \\ 0.832 \\ 0.804 \end{array}$	1.000 1.007 1.040 1.077
fcc"	$\begin{array}{c} 0.099 \\ 0.000 \end{array}$	$-2181 \\ -\infty$	$\begin{array}{c} 22016 \\ 29299 \end{array}$	$20.165 \ \infty$	$\begin{array}{c} 20889 \\ 27129 \end{array}$	$\begin{array}{c} 0.940 \\ 1.809 \end{array}$	$\begin{array}{c} 0.804 \\ 0.000 \end{array}$	$8.114 \\ 15.165$

Reference state: Ag(fcc)

		•		1				
Phase	$x_{ m Pt}$	$\Delta G_{ m Pt}$ [J/mol]	$\Delta H_{ m Pt}$ [J/mol]	$\Delta S_{ m Pt}$ [J/(mol·K)]	$G_{ m Pt}^{ m E}$ [J/mol]	$S_{ m Pt}^{ m E}$ [J/(mol·K)]	$a_{ m Pt}$	$\gamma_{ m Pt}$
fcc'	$0.000 \\ 0.100 \\ 0.200 \\ 0.254$	$-\infty$ -7036 -1926 -717	$19252 \\ 17070 \\ 14696 \\ 13371$	$\infty \\ 20.088 \\ 13.851 \\ 11.741$	$17058 \\ 15938 \\ 14132 \\ 12971$	$1.828 \\ 0.943 \\ 0.470 \\ 0.333$	$\begin{array}{c} 0.000 \\ 0.494 \\ 0.824 \\ 0.931 \end{array}$	5.527 4.940 4.122 3.669
fcc"	$\begin{array}{c} 0.901 \\ 1.000 \end{array}$	$-717 \\ 0$	$\begin{array}{c} 373 \\ 0 \end{array}$	$\begin{array}{c} 0.909 \\ 0.000 \end{array}$	$\begin{array}{c} 323 \\ 0 \end{array}$	$\begin{array}{c} 0.042\\ 0.000\end{array}$	$\begin{array}{c} 0.931 \\ 1.000 \end{array}$	$1.033 \\ 1.000$

Table IVc. Partial quantities for Pt in the stable phases at 1200 K.

Reference state: Pt(fcc)

Fig. 4. Integral quantities of the stable phases at T=1200 K. T=1200 K.

References

[86Mas]	T.B. Massalski (ed.): Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, 1986.
[87Kar]	I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 8 (1987) 334–340.
[96Dur]	Ph. Durussel, P. Feschotte: J. Alloys Comp. 239 (1996) 226–230.
[98Spe]	P.J. Spencer: unpublished assessment, 1998.

Fig. 1. Calculated phase diagram for the system Ag-Rh.

No experimental thermodynamic data for this system are available and phase diagram information is also very scarce. The suggested diagram presented by [86Kar], in which only a composition for the Rh-rich eutectic is shown as having any reliability, is clearly uncertain, but has nevertheless been used as basis for the present assessment. The assumption of an ideal mixing entropy for the liquid phase has been made here and while the main features of the system are reproduced by the present thermodynamic description, the data presented below should only be viewed as approximate values.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	<i>A</i> 1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	$(Ag,Rh)_1$ $(Ag,Rh)_1$

Table I. Phase	s, structures	and	models
----------------	---------------	-----	--------

Table II. Invariant reactions.										
Reaction	Туре	T / K	Compositions / $x_{ m Rh}$			$\Delta_{ m r} H$ / (J/mol)				
$\begin{array}{l} \text{liquid} \rightleftharpoons \text{liquid'} + \text{liquid''} \\ \text{liquid'} \rightleftharpoons \text{liquid''} + \text{fcc''} \\ \text{liquid'} + \text{fcc'} \rightleftharpoons \text{fcc''} \end{array}$	critical monotectic peritectic	$\begin{array}{c} 2745.1 \\ 2176.8 \\ 1235.8 \end{array}$	$0.494 \\ 0.857 \\ 0.004$	$0.494 \\ 0.137 \\ 0.862$	$0.494 \\ 0.932 \\ 0.004$	$0 \\ -28724 \\ -11285$				

75

14010 11	in incogie	ii quantitie	s for the liquit	· phuse at	2000 11.		
$x_{ m Rh}$	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3434	4134	2.703	4134	0.000	0.000	
0.200	-4312	7338	4.161	7338	0.000	0.000	
0.300	-4605	9616	5.079	9616	0.000	0.000	
0.400	-4695	10973	5.596	10973	0.000	0.000	
0.500	-4724	11413	5.763	11413	0.000	0.000	
0.600	-4729	10939	5.596	10939	0.000	0.000	
0.700	-4664	9557	5.079	9557	0.000	0.000	
0.800	-4379	7270	4.161	7270	0.000	0.000	
0.900	-3485	4083	2.703	4083	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 2800 K

Reference states: Ag(liquid), Rh(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 2800 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1987	466	0.876	466	0.000	0.918	1.020	
0.800	-3338	1857	1.855	1857	0.000	0.866	1.083	
0.700	-4138	4165	2.966	4165	0.000	0.837	1.196	
0.600	-4510	7382	4.247	7382	0.000	0.824	1.373	
0.500	-4637	11500	5.763	11500	0.000	0.819	1.639	
0.400	-4822	16510	7.619	16510	0.000	0.813	2.032	
0.300	-5626	22403	10.010	22403	0.000	0.785	2.618	
0.200	-8298	29171	13.382	29171	0.000	0.700	3.501	
0.100	-16799	36806	19.145	36806	0.000	0.486	4.860	
0.000	$-\infty$	45300	∞	45300	0.000	0.000	6.999	

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Rh in the liquid phase at 2800 K.

$x_{ m Rh}$	$\Delta G_{ m Rh}$ [J/mol]	$\Delta H_{ m Rh}$ [J/mol]	$\Delta S_{ m Rh}$ [J/(mol·K)]	$G_{ m Rh}^{ m E}$ [J/mol]	$S_{ m Rh}^{ m E}$ [J/(mol·K)]	$a_{ m Rh}$	$\gamma_{ m Rh}$	
0.000	$-\infty$	46000	∞	46000	0.000	0.000	7.213	
0.100	-16459	37147	19.145	37147	0.000	0.493	4.931	
0.200	-8208	29261	13.382	29261	0.000	0.703	3.514	
0.300	-5695	22334	10.010	22334	0.000	0.783	2.610	
0.400	-4973	16358	7.619	16358	0.000	0.808	2.019	
0.500	-4812	11325	5.763	11325	0.000	0.813	1.627	
0.600	-4667	7226	4.247	7226	0.000	0.818	1.364	
0.700	-4252	4052	2.966	4052	0.000	0.833	1.190	
0.800	-3400	1795	1.855	1795	0.000	0.864	1.080	
0.900	-2005	447	0.876	447	0.000	0.917	1.019	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Rh(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2800 K.

References

[86Kar] I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 7 (1986) 362–365.

Ag – Ru (Silver – Ruthenium)

Fig. 1. Calculated phase diagram for the system Ag-Ru.

The available experimental information for this system is very scarce, being limited to the uncertain and restricted phase diagram proposed by [86Kar]. The present assessment, which makes the assumption of an ideal entropy of mixing for the liquid phase, allows the Ag-rich eutectic to be reproduced reasonably well. The thermodynamic parameters obtained for the liquid phase result in a simple eutectic behaviour for the system, rather than the liquid immiscibility suggested by [86Kar].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc hcp	A1 A3	Cu Mg	cF4 hP2	$Fm\overline{3}m$ $P6_3/mmc$	LIQUID FCC_A1 HCP_A3	$(Ag,Ru)_1$ $(Ag,Ru)_1$ $(Ag,Ru)_1$

Table I. Phases, structures and models.

Table II	I. Invariant	reactions.	

Reaction	Туре	T / K	Comp	ositions	/ $x_{ m Ru}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc + hcp	eutectic	1201.4	0.031	0.000	1.000	-12325

			o for the inquit	· piluse ut			
$x_{ m Ru}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5609	1689	2.703	1689	0.000	0.000	
0.200	-8086	3147	4.161	3147	0.000	0.000	
0.300	-9394	4320	5.079	4320	0.000	0.000	
0.400	-9956	5153	5.596	5153	0.000	0.000	
0.500	-9968	5593	5.763	5593	0.000	0.000	
0.600	-9524	5585	5.596	5585	0.000	0.000	
0.700	-8638	5076	5.079	5076	0.000	0.000	
0.800	-7222	4011	4.161	4011	0.000	0.000	
0.900	-4961	2337	2.703	2337	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 2700 K

Reference states: Ag(liquid), Ru(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 2700 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2259	107	0.876	107	0.000	0.904	1.005	
0.800	-4511	499	1.855	499	0.000	0.818	1.022	
0.700	-6723	1284	2.966	1284	0.000	0.741	1.059	
0.600	-8896	2571	4.247	2571	0.000	0.673	1.121	
0.500	-11093	4468	5.763	4468	0.000	0.610	1.220	
0.400	-13489	7081	7.619	7081	0.000	0.548	1.371	
0.300	-16508	10520	10.010	10520	0.000	0.479	1.598	
0.200	-21238	14893	13.382	14893	0.000	0.388	1.941	
0.100	-31384	20307	19.145	20307	0.000	0.247	2.471	
0.000	$-\infty$	26870	∞	26870	0.000	0.000	3.310	

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Ru in the liquid phase at 2700 K.

$x_{ m Ru}$	$\Delta G_{ m Ru}$ [J/mol]	$\Delta H_{ m Ru}$ [J/mol]	$\Delta S_{ m Ru}$ [J/(mol·K)]	$G_{ m Ru}^{ m E}$ [J/mol]	$S_{ m Ru}^{ m E}$ [J/(mol·K)]	$a_{ m Ru}$	$\gamma_{ m Ru}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600 \end{array}$	$-\infty$ -35758 -22390 -15626 -11545 -8843 -6880	$17870 \\ 15933 \\ 13741 \\ 11402 \\ 9025 \\ 6718 \\ 4587$	∞ 19.145 13.382 10.010 7.619 5.763 4.247	$17870 \\ 15933 \\ 13741 \\ 11402 \\ 9025 \\ 6718 \\ 4587 \\$	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.203\\ 0.369\\ 0.499\\ 0.598\\ 0.674\\ 0.736\end{array}$	$\begin{array}{c} 2.217\\ 2.033\\ 1.844\\ 1.662\\ 1.495\\ 1.349\\ 1.227\end{array}$	
$\begin{array}{c} 0.700\\ 0.700\\ 0.800\\ 0.900\\ 1.000 \end{array}$	-5265 -3719 -2025 0	$ \begin{array}{r} 1301 \\ 2742 \\ 1291 \\ 341 \\ 0 \end{array} $	$2.966 \\ 1.855 \\ 0.876 \\ 0.000$	$ \begin{array}{r} 1301 \\ 2742 \\ 1291 \\ 341 \\ 0 \end{array} $	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.791 \\ 0.847 \\ 0.914 \\ 1.000 \end{array}$	$ 1.130 \\ 1.059 \\ 1.015 \\ 1.000 $	

Reference state: Ru(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2700 K.

References

[86Kar] I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 7 (1986) 365–368.

Fig. 1. Calculated phase diagram for the system Ag-Sb.

While the lead-tin system is a basic building block for a range of commonly used solders there has been a growing requirement for the development of alternative materials which are more environmentally sound and provide fewer potential health problems. Tin based solders containing elements such as Ag, Bi, Sb and Zn are candidate replacements and therefore a detailed understanding of the thermodynamics and phase equilibria in the Ag-Sb system is required. The selected assessment to be included in the SGTE database is by Oh et al. [96Oh] and is compatible with the SGTE data for the pure elements [91Din] and has shown to be successful already in the modelling of multicomponent systems.

The system is characterised by a continuous solution of the elements in the liquid phase, limited solubility of Sb in the Ag based solid solution, a region of stability for a disordered hexagonal solid solution on the Ag side of the system and an intermetallic compound Ag_3Sb (isostructural with Ag_3Sn) which exists over a range of homogeneity. Solubility of Ag in the rhombohedral structure of Sb is small. The Ag_3Sb phase was modelled as a two sublattice phase allowing a significant range of homogeneity to either side of the stoichiometric composition. There have been extensive measurements of both thermodynamic properties and the phase diagram for the system. The experimental data show some scatter but the critically assessed data are in good agreement with those considered to be most reliable. There have been comprehensive measurements of the enthalpies of mixing and activities of both components in the liquid and solid phases.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc hcp Ag ₃ Sb A7	A1 A3 L6 ₀ A7	Cu Mg CuTi $_3$ lpha As	cF4 hP2 tP4 hR2	$Fm\overline{3}m$ $P6_3/mmc$ P4/mmm $R\overline{3}m$	LIQUID FCC_A1 HCP_A3 L60_AG3SB RHOMBO_A7	$\begin{array}{l} (Ag,Sb)_1\\ (Ag,Sb)_1\\ (Ag,Sb)_1\\ (Ag,Sb)_3(Ag,Sb)_1\\ Sb_1 \end{array}$

 Table I. Phases, structures and models.

8	2

Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Sb}$	$\Delta_{ m r} H$ / (J/mol)
fcc + liquid \rightleftharpoons hcp hcp + liquid \rightleftharpoons Ag ₃ Sb liquid \rightleftharpoons Ag ₃ Sb + A7	peritectic peritectic eutectic	$974.4 \\ 835.5 \\ 753.2$	$0.064 \\ 0.153 \\ 0.436$	$0.163 \\ 0.277 \\ 0.256$	$0.088 \\ 0.220 \\ 1.000$	$-2515 \\ -6071 \\ -13852$

Table IIIa. Integral quantities for the liquid phase at 1300 K.

$x_{ m Sb}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6292	-2062	3.253	-2778	0.551	0.000	
0.200	-9448	-2583	5.281	-4039	1.120	0.000	
0.300	-10899	-2143	6.735	-4296	1.656	0.000	
0.400	-11235	-1224	7.701	-3960	2.105	0.000	
0.500	-10836	-205	8.177	-3344	2.414	0.000	
0.600	-9933	630	8.126	-2659	2.530	0.000	
0.700	-8621	1101	7.478	-2019	2.399	0.000	
0.800	-6845	1124	6.130	-1436	1.970	0.000	
0.900	-4339	718	3.890	-826	1.188	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Sb(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1991	-876	0.858	-852	-0.018	0.832	0.924	
0.800	-5087	-2679	1.852	-2675	-0.003	0.625	0.781	
0.700	-8451	-4398	3.118	-4596	0.152	0.458	0.654	
0.600	-11562	-5320	4.801	-6041	0.554	0.343	0.572	
0.500	-14225	-5033	7.071	-6733	1.308	0.268	0.536	
0.400	-16601	-3420	10.139	-6697	2.521	0.215	0.538	
0.300	-19268	-667	14.308	-6255	4.298	0.168	0.561	
0.200	-23423	2743	20.128	-6027	6.746	0.115	0.573	
0.100	-31824	6028	29.116	-6935	9.971	0.053	0.526	
0.000	$-\infty$	8106	∞	-10198	14.080	0.000	0.389	

Reference state: Ag(liquid)

$x_{ m Sb}$	$\Delta G_{ m Sb}$ [J/mol]	$\Delta H_{ m Sb}$ [J/mol]	$\Delta S_{ m Sb}$ [J/(mol·K)]	$G_{ m Sb}^{ m E}$ [J/mol]	$S^{ m E}_{ m Sb}$ [J/(mol·K)]	$a_{ m Sb}$	$\gamma_{ m Sb}$	
0.000	$-\infty$	-30512	∞	-37314	5.232	0.000	0.032	
0.100	-45002	-12741	24.816	-20114	5.671	0.016	0.156	
0.200	-26894	-2200	18.995	-9498	5.614	0.083	0.415	
0.300	-16611	3117	15.175	-3597	5.165	0.215	0.717	
0.400	-10744	4921	12.050	-840	4.432	0.370	0.925	
0.500	-7446	4622	9.283	46	3.520	0.502	1.004	
0.600	-5488	3330	6.783	33	2.536	0.602	1.003	
0.700	-4059	1858	4.551	-203	1.586	0.687	0.981	
0.800	-2701	720	2.631	-289	0.776	0.779	0.974	
0.900	-1285	128	1.088	-147	0.212	0.888	0.987	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Sb in the liquid phase at 1300 K.

Reference state: Sb(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

References

[960h] C.-S. Oh, J.-H. Shim, B.-J. Lee, D.N. Lee: J. Alloys Comp. 238 (1996) 155–166.

Fig. 1. Calculated phase diagram for the system Ag-Si.

The Ag-Si system has been critically assessed by Chevalier [88Che]. The phase diagram is rather simple and of eutectic type. It shows a complete mutual solubility in the liquid state, no reported solid solubility of silicon in the silver rich terminal solid solution, and a negligible solid solubility of silver in pure silicon. There are no compounds in the system and the liquid is modelled with a simple substitutional model. Solid Si is modelled as a stoichiometric phase.

The calculated liquidus is in good agreement with experimental data determined by thermal and metallographic studies [08Arr, 48Haj, 57Got, 63Hag, 75Pre]. The enthalpy of mixing in the liquid phase has been calculated by Hassam et al. [83Has] from their own calorimetric measurements. Their results are very different from those of Robinson and Tarby [71Rob] from partial pressure measurements, but in good agreement with the EMF results of Sakao and Elliott [74Sak].

The calculated chemical potentials of the elements in the liquid phase are in good agreement with the selected values of Hultgren et al. [73Hul]. The silver potential agrees with EMF measurements [70Ver, 74Sak], but it deviates substantially from older results [650Ke, 68Tup]. The activity coefficient of silicon was determined by equilibrating molten silver and silicon nitride at 1673 K in nitrogen + hydrogen gas mixtures and from the solubility data by Turkdogan and Grieveson [63Tur].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A4	$egin{array}{c} A1\ A4 \end{array}$	Cu C(diamond)	$cF4 \ cF8$	$Fm\overline{3}m$ $Fd\overline{3}m$	LIQUID FCC_A1 DIAMOND_A4	(Ag,Si) ₁ Ag ₁ Si ₁

Table I. Phases, structures and models.
m 11	TT	T · ·	
Table		Invariant	reactions
14010		111 / cui icuite	reactions.

Reaction	Туре	T / K	Com	positions	/ $x_{ m Si}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc + A4	eutectic	1110.4	0.100	0.000	1.000	-14957

Table IIIa. Integral quantities for the liquid phase at 1700 K.

$x_{ m Si}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-4121	-162	2.329	474	-0.374	0.000	
0.200	-6006	226	3.666	1067	-0.495	0.000	
0.300	-6938	971	4.653	1696	-0.426	0.000	
0.400	-7237	1881	5.364	2276	-0.232	0.000	
0.500	-7075	2763	5.787	2723	0.024	0.000	
0.600	-6561	3424	5.874	2951	0.278	0.000	
0.700	-5756	3671	5.545	2878	0.466	0.000	
0.800	-4655	3311	4.686	2418	0.525	0.000	
0.900	-3108	2151	3.094	1487	0.391	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Si(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1700 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	S_{Ag}^{E} [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
$\begin{array}{c} 1.000\\ 0.900\\ 0.800\\ 0.700\\ 0.600\\ 0.500\\ 0.400\\ 0.300 \end{array}$	$\begin{array}{c} 0 \\ -1563 \\ -3338 \\ -5201 \\ -7054 \\ -8834 \\ -10551 \\ -12371 \end{array}$	$\begin{array}{c} 0 \\ -307 \\ -972 \\ -1608 \\ -1831 \\ -1254 \\ 508 \\ 3841 \end{array}$	$\begin{array}{c} 0.000\\ 0.739\\ 1.392\\ 2.114\\ 3.073\\ 4.459\\ 6.505\\ 9.536\end{array}$	$\begin{array}{c} 0 \\ -74 \\ -184 \\ -160 \\ 166 \\ 964 \\ 2401 \\ 4647 \end{array}$	$\begin{array}{r} 0.000\\ -0.137\\ -0.464\\ -0.852\\ -1.175\\ -1.304\\ -1.113\\ -0.474\end{array}$	$\begin{array}{c} 1.000\\ 0.895\\ 0.790\\ 0.692\\ 0.607\\ 0.535\\ 0.474\\ 0.417\end{array}$	$\begin{array}{c} 1.000\\ 0.995\\ 0.987\\ 0.989\\ 1.012\\ 1.071\\ 1.185\\ 1.389\end{array}$	
$0.200 \\ 0.100 \\ 0.000$	$-14879 \\ -20306 \\ -\infty$	$9130 \\ 16760 \\ 27118$	$14.123 \\ 21.804 \\ \infty$	$7870\ 12241\ 17926$	$0.741 \\ 2.659 \\ 5.407$	$\begin{array}{c} 0.349 \\ 0.238 \\ 0.000 \end{array}$	$1.745 \\ 2.377 \\ 3.555$	

Reference state: Ag(liquid)

		1		F				
$x_{ m Si}$	$\Delta G_{ m Si}$ [J/mol]	$\Delta H_{ m Si}$ [J/mol]	$\Delta S_{ m Si}$ [J/(mol·K)]	$G_{ m Si}^{ m E}$ [J/mol]	$S_{ m Si}^{ m E}$ [J/(mol·K)]	$a_{ m Si}$	$\gamma_{ m Si}$	
0.000	$-\infty$	-5014	∞	3855	-5.217	0.000	1.314	
0.100	-27145	1144	16.640	5402	-2.505	0.147	1.465	
0.200	-16680	5017	12.763	6069	-0.619	0.307	1.536	
0.300	-10992	6990	10.578	6026	0.567	0.459	1.532	
0.400	-7511	7449	8.800	5440	1.182	0.588	1.469	
0.500	-5316	6780	7.115	4482	1.352	0.687	1.373	
0.600	-3902	5367	5.452	3318	1.205	0.759	1.265	
0.700	-2922	3597	3.835	2120	0.869	0.813	1.162	
0.800	-2099	1856	2.327	1055	0.471	0.862	1.077	
0.900	-1197	528	1.015	292	0.139	0.919	1.021	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Si in the liquid phase at 1700 K.

Reference state: Si(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1700 K.

Fig. 3. Activities in the liquid phase at T=1700 K.

86

References

- [08Arr] G. Arrivaut: Z. Anorg. Chem. **60** (1908) 436.
- [48Haj] O. Hajicek: Hutn. Listy **3** (1948) 265–270.
- [57Got] V. Gottardi: Met. Ital. **49** (1957) 721–724.
- [63Hag] J.P. Hager: Trans. AIME **227** (1963) 1000–1002.
- [63Tuk] E.T. Turkdogan, P. Grieveson: Trans. AIME 227 (1963) 1143–1146.
- [650Ke] T.J. O'Keefe: Univ. Missouri, No. 65-9133, 1965.
- [68Tup] R.H. Tupkary: Ind. J. Technol. 6 (1968) 132–135.
- [70Ver] A. Vermande, I. Ansara, P. Desre: Rev. Int. Hautes Temp. Réfract. 7 (1970) 39–43.
- [71Rob] V.S. Robinson, S.K. Tarby: Met. Trans. 2 (1971) 1347–1352.
- [73Hul] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley: "Selected Values of the Thermodynamic Properties of Binary Alloys", American Society for Metals, Metals Park, Ohio, 1973.
- [74Sak] H. Sakao, J.F. Elliott: Met. Trans. 5 (1974) 2063–2067.
- [75Pre] B. Predel, H. Bankstahl: J. Less-Common Met. 43 (1975) 191–203.
- [83Has] S. Hassam, M. Gaune-Escard, J.P. Bros: Ber. Bunsenges. Phys. Chem. 87 (1983) 785–792.
- [88Che] P.-Y. Chevalier: Thermochim. Acta, **130** (1988) 33–41.

Fig. 1. Calculated phase diagram for the system Ag-Sn.

While the lead-tin system is a basic building block for a range of commonly used solders there has been a growing requirement for the development of alternative materials which are more environmentally sound and provide fewer potential health problems. Tin based solders containing elements such as Ag, Bi, Sb and Zn are candidate replacements and therefore a detailed understanding of the thermodynamics and phase equilibria in the Ag-Sn system is required. A number of good quality assessments has been carried out on the Ag-Sn system [87Kar, 96Oh, 88Che, 94Kat]. The one by Oh et al. [96Oh] was selected to be included in the SGTE database because of its basic compatibility with the SGTE data for the pure elements [91Din] and its successful use already in the modelling of multicomponent systems. A modification of the data for the fcc phase has been made [99Din] for compatibility with the latest SGTE data for the elements.

The system is characterised by a continuous solution of the elements in the liquid phase, limited solubility of Sn in the Ag based solid solution, a region of stability for a disordered hexagonal solid solution on the Ag side of the system and an intermetallic compound Ag_3Sn which exists over a narrow range of homogeneity. Solubility of Ag in the body centred tetragonal structure of Sn is small. The Ag_3Sn phase was modelled as a two sublattice phase allowing a small range of homogeneity to composition richer in Ag than the stoichiometric composition. There have been extensive measurements of both thermodynamic properties and the phase diagram and the assessed data are in very good agreement throughout. There have been comprehensive measurements of the enthalpies of mixing and activities of both components in the liquid. Experimental thermodynamic properties for the solid phases are rather more limited.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc hcp Ag ₃ Sn bct	A1 A3 L6 ₀ A5	Cu Mg CuTi ₃ βSn	cF4 hP2 tP4 tI4	$Fm\overline{3}m$ $P6_3/mmc$ P4/mmm $I4_1/amd$	LIQUID FCC_A1 HCP_A3 AG3M BCT_A5	$(Ag,Sn)_1$ $(Ag,Sn)_1$ $(Ag,Sn)_1$ $Ag_3(Ag,Sn)_1$ $(Ag,Sn)_1$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Sn}$	$\Delta_{ m r} H$ / (J/mol)
fcc + liquid \rightleftharpoons hcp hcp + liquid \rightleftharpoons Ag ₃ Sn liquid \rightleftharpoons Ag ₃ Sn + bct	peritectic peritectic eutectic	$996.8 \\ 754.3 \\ 493.7$	$0.116 \\ 0.238 \\ 0.959$	$0.211 \\ 0.486 \\ 0.250$	$\begin{array}{c} 0.131 \\ 0.250 \\ 0.998 \end{array}$	-1919 -1880 -7525

Table IIIa. Integral quantities for the liquid phase at 1250 K.

$x_{ m Sn}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5629	-1986	2.915	-2251	0.212	0.000	
0.200	-8530	-2725	4.643	-3329	0.483	0.000	
0.300	-9948	-2633	5.852	-3599	0.773	0.000	
0.400	-10356	-2058	6.639	-3362	1.043	0.000	
0.500	-10056	-1287	7.016	-2852	1.253	0.000	
0.600	-9238	-541	6.958	-2243	1.362	0.000	
0.700	-7991	22	6.410	-1642	1.331	0.000	
0.800	-6293	308	5.281	-1093	1.120	0.000	
0.900	-3952	289	3.393	-573	0.690	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Sn(liquid)

		1	e	1 1				
$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
$\begin{array}{c} 1.000\\ 0.900\\ 0.800\\ 0.700\\ 0.600\\ 0.500\\ 0.400\\ 0.300\\ 0.200\\ 0.100\\ \end{array}$	$\begin{array}{c} 0 \\ -1747 \\ -4411 \\ -7391 \\ -10300 \\ -12968 \\ -15473 \\ -18197 \\ -22025 \\ -29245 \end{array}$	$\begin{array}{c} 0 \\ -698 \\ -2206 \\ -3793 \\ -4919 \\ -5237 \\ -4591 \\ -3022 \\ -758 \\ 1776 \end{array}$	$\begin{array}{c} 0.000\\ 0.840\\ 1.764\\ 2.879\\ 4.305\\ 6.186\\ 8.705\\ 12.140\\ 17.013\\ 24.817\end{array}$	$\begin{array}{r} 0 \\ -652 \\ -2091 \\ -3684 \\ -4991 \\ -5764 \\ -5949 \\ -5684 \\ -5298 \\ -5314 \end{array}$	$\begin{array}{c} 0.000\\ -0.036\\ -0.092\\ -0.087\\ 0.058\\ 0.422\\ 1.086\\ 2.130\\ 3.632\\ 5.672\end{array}$	$\begin{array}{c} 1.000\\ 0.845\\ 0.654\\ 0.491\\ 0.371\\ 0.287\\ 0.226\\ 0.174\\ 0.120\\ 0.060\\ \end{array}$	$\begin{array}{c} 1.000\\ 0.939\\ 0.818\\ 0.702\\ 0.619\\ 0.574\\ 0.564\\ 0.579\\ 0.601\\ 0.600 \end{array}$	
0.000	$-\infty$	3965	∞	-6449	8.331	0.000	0.538	

Table IIIb. Partial quantities for Ag in the liquid phase at 1250 K.

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Sn in the liquid phase at 1250 K.

$x_{ m Sn}$	$\Delta G_{ m Sn}$ [J/mol]	$\Delta H_{ m Sn}$ [J/mol]	$\Delta S_{ m Sn}$ [J/(mol·K)]	$G_{ m Sn}^{ m E}$ [J/mol]	$S_{ m Sn}^{ m E}$ [J/(mol·K)]	$a_{ m Sn}$	$\gamma_{ m Sn}$	
0.000	$-\infty$	-27634	∞	-29745	1.689	0.000	0.057	
0.100	-40567	-13581	21.589	-16636	2.444	0.020	0.202	
0.200	-25007	-4803	16.163	-8280	2.782	0.090	0.451	
0.300	-15914	75	12.791	-3401	2.780	0.216	0.721	
0.400	-10440	2234	10.139	-917	2.521	0.366	0.916	
0.500	-7144	2663	7.846	60	2.083	0.503	1.006	
0.600	-5082	2159	5.793	227	1.546	0.613	1.022	
0.700	-3617	1326	3.954	90	0.989	0.706	1.009	
0.800	-2360	575	2.348	-41	0.493	0.797	0.996	
0.900	-1142	124	1.012	-47	0.136	0.896	0.996	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Sn(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1250 K.

Fig. 3. Activities in the liquid phase at T=1250 K.

		1		1 1	
Compound	x_{Sn}	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J/(mol\cdot K)})$
Ag ₃ Sn	0.250	-4636	-3826	2.718	-0.561

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[87Kar]	I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 8 (1987) 340-347.
[88Che]	PY. Chevalier: Thermochim. Acta 136 (1988) 45-54.
[94Kat]	U.R. Kattner, W.J. Boettinger: J. Electron. Mater. 23 (1994) 603-610.
[96Oh]	CS. Oh, JH. Shim, BJ. Lee, D.N. Lee: J. Alloys Comp. 23 (1996) 155–166.
[99Din]	A.T. Dinsdale: unpublished work, 1999.

Fig. 1. Calculated phase diagram for the system Ag-Ti.

The phase diagram of the Ag-Ti system has been reviewed by [87Mur] and is characterised by two compound phases (AgTi and AgTi₂), which have been modelled here as stoichiometric, and by a rather extensive bcc (β Ti) solid solution range, treated in the present assessment as a substitutional solution. The invariant reactions of the system are reproduced rather well by the present thermodynamic description. Activities and mixing enthalpies for the liquid phase show large positive deviations from ideality which reflect the tendency to immiscibility suggested by the rather flat liquidus.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AgTi AgTi ₂ hcp bcc	A1 B11 C11 _b A3 A2	Cu γCuTi MoSi ₂ Mg W	cF4 tP4 tI6 hP2 cI2	Fm3m P4/nmm I4/mmm P6 ₃ /mmc Im3m	LIQUID FCC_A1 B11 C11B HCP_A3 BCC_A2	$(Ag,Ti)_1$ $(Ag,Ti)_1$ Ag_1Ti_1 Ag_1Ti_2 $(Ag,Ti)_1$ $(Ag,Ti)_1$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Com	positions	/ x_{Ti}	$\Delta_{ m r} H$ / (J/mol)
liquid + bcc ≓ AgTi	peritectic	1293.1	0.080	0.821	0.500	-11199
liquid ≓ fcc + AgTi	eutectic	1233.1	0.056	0.053	0.500	-11258
AgTi + bcc ≓ AgTi ₂	peritectoid	1213.3	0.500	0.883	0.667	-3194
$bcc \rightleftharpoons AgTi_2 + hcp$	eutectoid	1128.2	0.931	0.667	0.943	-4425

iusie ii	in most	quantitie	s for the liquit	· phuse at	2000 11.		
x_{Ti}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	G ^E _m [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot\text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3081	2403	2.742	2325	0.039	0.000	
0.200	-4200	4260	4.230	4121	0.070	0.000	
0.300	-4764	5577	5.170	5394	0.091	0.000	
0.400	-5044	6356	5.700	6147	0.104	0.000	
0.500	-5141	6602	5.872	6385	0.109	0.000	
0.600	-5079	6321	5.700	6112	0.104	0.000	
0.700	-4825	5516	5.170	5333	0.091	0.000	
0.800	-4270	4191	4.230	4052	0.070	0.000	
0.900	-3133	2351	2.742	2272	0.039	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 2000 K

Reference states: Ag(liquid), Ti(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 2000 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G^{ m E}_{ m Ag}$ [J/mol]	$S^{ m E}_{ m Ag}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1487	274	0.880	265	0.004	0.914	1.016	
0.800	-2657	1088	1.873	1054	0.017	0.852	1.065	
0.700	-3574	2436	3.005	2357	0.039	0.807	1.152	
0.600	-4327	4307	4.317	4168	0.070	0.771	1.285	
0.500	-5051	6693	5.872	6476	0.109	0.738	1.476	
0.400	-5964	9586	7.775	9273	0.157	0.699	1.747	
0.300	-7471	12976	10.224	12550	0.213	0.638	2.127	
0.200	-10464	16856	13.660	16299	0.278	0.533	2.665	
0.100	-17779	21216	19.497	20511	0.352	0.343	3.433	
0.000	$-\infty$	26047	∞	25177	0.435	0.000	4.545	

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Ti in the liquid phase at 2000 K.

x_{Ti}	ΔG_{Ti}	ΔH_{Ti}	$\Delta S_{ m Ti}$	$G_{\mathrm{Ti}}^{\mathrm{E}}$	$S_{ m Ti}^{ m E}$	a_{Ti}	$\gamma_{ m Ti}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
0.000	$-\infty$	26773	∞	25903	0.435	0.000	4.748	
0.100	-17426	21569	19.497	20864	0.352	0.351	3.507	
0.200	-10371	16949	13.660	16392	0.278	0.536	2.680	
0.300	-7542	12905	10.224	12479	0.213	0.635	2.118	
0.400	-6121	9429	7.775	9116	0.157	0.692	1.730	
0.500	-5232	6512	5.872	6294	0.109	0.730	1.460	
0.600	-4489	4144	4.317	4005	0.070	0.763	1.272	
0.700	-3691	2318	3.005	2240	0.039	0.801	1.144	
0.800	-2721	1024	1.873	990	0.017	0.849	1.061	
0.900	-1506	255	0.880	246	0.004	0.913	1.015	
1.000	0	0	0.000	0	0.000	1.000	1.000	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Ti(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2000 K.

Fig. 3. Activities in the liquid phase at T=2000 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Ti}	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/({\rm mol}{\cdot}{\rm K}))$
$\begin{array}{c} Ag_1 Ti_1 \\ Ag_1 Ti_2 \end{array}$	$0.500 \\ 0.667$	$-1517 \\ -1365$	$-1502 \\ -1345$	$0.050 \\ 0.067$	0.000 0.000

References

[87Mur] J.L. Murray, K.J. Bhansali: Bull. Alloy Phase Diagrams 4 (1983) 178–183.

Fig. 1. Calculated phase diagram for the system Ag-Tl.

A review of experimental phase equilibrium data and thermodynamic measurements have been presented by [89Bar]. The recommended thermodynamic description [98Luk] is an update of that of Zimmermann et al. [76Zim], in order to make it compatible with the SGTE unary data.

The Ag-Tl system is a simple nearly degenerate eutectic system. The (Ag) fcc solid solution has a retrograde solidus with a maximum solubility of about 8 at.% Tl. The solubility of Ag in solid Tl has not been determined and it is assumed to be very low. The hcp and bcc phases are modelled as pure Tl. The fcc and liquid phases are described by the substitutional model. The enthalpy of mixing of Ag-Tl liquid alloys has been measured calorimetrically. The activity of Tl in liquid solutions has been obtained by EMF and by vapour pressure measurements. Recent measurements of activities of Tl in liquid Ag-Tl [83Kam] are in good agreement with the measurements used in [76Zim]. The calculated thermodynamic properties and the phase diagram are in good agreement with experimental data.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc bcc hcp	A1 A2 A3	Cu W Mg	cF4 cI2 hP2	$Fm\overline{3}m$ $Im\overline{3}m$ $P6_3/mmc$	LIQUID FCC_A1 BCC_A2 HCP_A3	(Ag,Tl) ₁ (Ag,Tl) ₁ Tl ₁ Tl ₁

Table I. Phases, structures and models.

Table II: Invariant rea	actions.						
Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Tl}$	$\Delta_{ m r} H$ / (J/mol)	
$\begin{array}{l} \text{liquid} \rightleftharpoons \text{fcc} + \text{bcc} \\ \text{fcc} + \text{bcc} \rightleftharpoons \text{hcp} \end{array}$	eutectic degenerate	$\begin{array}{c} 562.4\\ 507.0\end{array}$	$\begin{array}{c} 0.976 \\ 0.030 \end{array}$	$\begin{array}{c} 0.046 \\ 1.000 \end{array}$	$\begin{array}{c} 1.000\\ 1.000\end{array}$	-4734 -360	

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 1300 K.

$x_{ m Tl}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot\text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3300	1164	3.434	213	0.732	0.000	
0.200	-4916	2213	5.484	492	1.323	0.000	
0.300	-5839	3075	6.857	764	1.778	0.000	
0.400	-6302	3692	7.688	972	2.092	0.000	
0.500	-6413	4012	8.019	1079	2.256	0.000	
0.600	-6209	3993	7.848	1065	2.252	0.000	
0.700	-5676	3602	7.137	927	2.058	0.000	
0.800	-4730	2814	5.803	678	1.643	0.000	
0.900	-3161	1616	3.674	353	0.971	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Tl(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1185	46	0.947	-46	0.071	0.896	0.996	
0.800	-2491	280	2.132	-79	0.277	0.794	0.993	
0.700	-3834	828	3.587	21	0.621	0.701	1.002	
0.600	-5200	1787	5.375	322	1.128	0.618	1.030	
0.500	-6655	3229	7.603	837	1.840	0.540	1.081	
0.400	-8375	5195	10.439	1530	2.820	0.461	1.152	
0.300	-10706	7704	14.162	2308	4.151	0.371	1.238	
0.200	-14369	10744	19.317	3028	5.936	0.265	1.323	
0.100	-21395	14277	27.440	3493	8.295	0.138	1.382	
0.000	$-\infty$	18238	∞	3456	11.371	0.000	1.377	

Reference state: Ag(liquid)

_			1		[
	x_{Tl}	ΔG_{Tl}	$\Delta H_{ m Tl}$	$\Delta S_{ m Tl}$	$G_{ m Tl}^{ m E}$	$S_{ m Tl}^{ m E}$	a_{Tl}	$\gamma_{ m Tl}$	
		[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
	0.000	$-\infty$	11972	∞	1519	8.041	0.000	1.151	
	0.100	-22336	11232	25.821	2552	6.676	0.127	1.266	
	0.200	-14617	9942	18.891	2780	5.509	0.259	1.293	
	0.300	-10516	8318	14.488	2497	4.478	0.378	1.260	
	0.400	-7956	6549	11.158	1948	3.539	0.479	1.197	
	0.500	-6171	4795	8.435	1322	2.672	0.565	1.130	
	0.600	-4766	3191	6.121	755	1.873	0.643	1.072	
	0.700	-3521	1843	4.126	335	1.160	0.722	1.031	
	0.800	-2321	832	2.425	91	0.570	0.807	1.008	
	0.900	-1135	209	1.034	4	0.158	0.900	1.000	
	1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Tl in the liquid phase at 1300 K.

Reference state: Tl(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

References

[76Zim]	B. Zimmermann	, ETh. Henig, H.L	. Lukas: Z. Metalll	kd. 67 (1976) 815–820.

- [83Kam] K. Kameda, Y. Yoshida, S. Sakairi: J. Jpn. Inst. Met. 47 (1983) 406–412.
- [89Bar] M.R. Baren: Bull. Alloy Phase Diagrams **10** (1989) 641–643.
- [98Luk] H.L. Lukas: unpublished optimization 1998.

Fig. 1. Calculated phase diagram for the system Ag-Zn.

This system has many similarities with the more well known Cu-Zn system. Pure Ag is stable as fcc and pure Zn has a modified hexagonal structure, here denoted hex-Zn, with a different c/a ratio compared to normal hcp. There is a complete solubility in the liquid phase and a series of peritectic transformations with the intermediate phases. The solubility of Zn in fcc-Ag is large but only a few percent of Ag in hex-Zn. Three intermediate phases are in equilibrium with the liquid, from the Ag side these are bcc, Ag_5Zn_8 and hcp. In contrast with the Cu-Zn phase the bcc phase does not transform to an ordered *B*2 at lower temperatures but a hexagonal phase, AgZn, appears instead.

The system is important for solders. There are a lot of experimental data and the assessment reproduces these well. There are several assessments, the one selected is [98Gom].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc bcc AgZn Ag ₅ Zn ₈ hcp bex	$\begin{array}{c} A1\\ A2\\ \dots\\ D8_2\\ A3\\ A3 \end{array}$	Cu W Cu ₅ Zn ₈ Mg Mg	cF4 cI2 hP* cI52 hP2 hP2	$Fm\overline{3}m$ $Im\overline{3}m$ $I\overline{4}3m$ $P6_3/mmc$ $P6_2/mmc$	LIQUID FCC_A1 BCC_A2 AGZN_Z D82 HCP_A3 HCP_ZN	$(Ag,Zn)_1$ $(Ag,Zn)_1$ $(Ag,Zn)_1$ $Zn_1(Ag,Zn)_2$ $(Ag,Zn)_2Ag_2(Ag,Zn)_3(Ag,Zn)_6$ $(Ag,Zn)_1$ $(Ag,Zn)_1$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	<i>T /</i> K	Comp	ositions	/ $x_{\rm Zn}$	$\Delta_{ m r} H$ / (J/mol)
fcc + liquid \rightleftharpoons bcc	peritectic	982.7	0.324	0.373	0.370	-6610
$bcc + liquid \rightleftharpoons Ag_5Zn_8$	peritectic	933.5	0.582	0.623	0.608	-4766
Ag_5Zn_8 + liquid \rightleftharpoons hcp	peritectic	907.4	0.648	0.706	0.694	-6762
$hcp + liquid \rightleftharpoons hex$	peritectic	705.6	0.904	0.981	0.962	-5429
$bcc + Ag_5Zn_8 \rightleftharpoons AgZn$	peritectoid	551.9	0.496	0.586	0.502	-1750
$bcc \rightleftharpoons fcc + AgZn$	eutectoid	539.4	0.449	0.403	0.459	-1159

Table IIIa. Integral quantities for the liquid phase at 1300 K.

$x_{ m Zn}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.000	ECO4	0	0.000	9170	0.000	0.000	
0.100	-5084	-2000	2.107	-2170	-0.340	0.000	
0.200	-9090	-4944	3.189	-3681	-0.971	0.000	
0.300	-11204	-6258	3.804	-4601	-1.275	0.000	
0.400	-12269	-6888	4.139	-4994	-1.457	0.000	
0.500	-12419	-6900	4.246	-4927	-1.518	0.000	
0.600	-11741	-6360	4.139	-4466	-1.457	0.000	
0.700	-10280	-5334	3.804	-3677	-1.275	0.000	
0.800	-8034	-3888	3.189	-2625	-0.971	0.000	
0.900	-4892	-2088	2.157	-1378	-0.546	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Ag(liquid), Zn(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 1300 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1479	-419	0.815	-340	-0.061	0.872	0.969	
0.800	-3684	-1588	1.613	-1272	-0.243	0.711	0.889	
0.700	-6520	-3375	2.419	-2665	-0.546	0.547	0.782	
0.600	-9907	-5648	3.276	-4385	-0.971	0.400	0.666	
0.500	-13794	-8275	4.246	-6302	-1.518	0.279	0.558	
0.400	-18187	-11124	5.433	-8283	-2.185	0.186	0.465	
0.300	-23210	-14063	7.036	-10196	-2.974	0.117	0.389	
0.200	-29306	-16960	9.497	-11910	-3.885	0.066	0.332	
0.100	-38180	-19683	14.228	-13291	-4.917	0.029	0.292	
0.000	$-\infty$	-22100	∞	-14209	-6.070	0.000	0.269	

Reference state: Ag(liquid)

		1	1	1				
x_{Zn}	$\Delta G_{ m Zn}$ [J/mol]	$\Delta H_{ m Zn}$ [J/mol]	ΔS_{Zn} [J/(mol·K)]	$G_{ m Zn}^{ m E}$ [J/mol]	$S_{\mathrm{Zn}}^{\mathrm{E}}$ [J/(mol·K)]	$a_{\rm Zn}$	$\gamma_{\rm Zn}$	
0.000	$-\infty$	-33100	∞	-25209	-6.070	0.000	0.097	
0.100	-43526	-25029	14.228	-18637	-4.917	0.018	0.178	
0.200	-30714	-18368	9.497	-13318	-3.885	0.058	0.292	
0.300	-22132	-12985	7.036	-9118	-2.974	0.129	0.430	
0.400	-15811	-8748	5.433	-5907	-2.185	0.232	0.579	
0.500	-11044	-5525	4.246	-3552	-1.518	0.360	0.720	
0.600	-7443	-3184	3.276	-1921	-0.971	0.502	0.837	
0.700	-4738	-1593	2.419	-883	-0.546	0.645	0.922	
0.800	-2716	-620	1.613	-304	-0.243	0.778	0.972	
0.900	-1193	-133	0.815	-54	-0.061	0.896	0.995	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Zn in the liquid phase at 1300 K.

Reference state: Zn(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

	e	-		-				
Phase	x_{Zn}	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-3586	-1919	2.778	-1964	0.075	0.000	
	0.200	-5943	-3345	4.329	-3446	0.168	0.000	
	0.300	-7495	-4279	5.359	-4447	0.280	0.000	
	0.391	-8280	-4702	5.963	-4941	0.397	0.000	
bcc	0.438	-8530	-4447	6.804	-5111	1.106	0.000	
	0.500	-8712	-4542	6.951	-5254	1.188	0.000	
	0.506	-8713	-4538	6.959	-5256	1.197	0.000	
Ag_5Zn_8	0.585	-8711	-5248	5.772	-8048	4.668	0.982	
0000	0.600	-8692	-5361	5.552	-8175	4.689	1.457	
	0.605	-8677	-5382	5.491	-8200	4.696	1.643	
hcp	0.656	-8483	-5584	4.831	-5271	-0.522	0.000	
-	0.700	-8203	-5677	4.210	-5156	-0.869	0.000	
	0.800	-6628	-4822	3.011	-4132	-1.150	0.000	
	0.863	-4834	-3349	2.474	-2843	-0.844	0.000	
hex	0.968	-1276	-573	1.173	-567	-0.010	0.000	
	1.000	0	0	0.000	0	0.000	0.000	

Table IVa. Integral quantities for the stable phases at 600 K.

Reference states: Ag(fcc), Zn(hex)

Phase	$x_{ m Ag}$	ΔG_{Ag}	$\Delta H_{\rm Ag}$	ΔS_{Ag}	G_{Ag}^{E}	S_{Ag}^{E}	$a_{ m Ag}$	$\gamma_{ m Ag}$	
		[J/III01]	[J/III0I]	$[\mathbf{J}/(\mathbf{IIIOI}\cdot\mathbf{K})]$	[J/III0I]	[J/(III0I·K)]			
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000	
	0.900	-766	-246	0.867	-241	-0.009	0.858	0.953	
	0.800	-2076	-985	1.819	-963	-0.036	0.660	0.824	
	0.700	-3946	-2216	2.884	-2167	-0.082	0.453	0.648	
	0.609	-6163	-3770	3.988	-3686	-0.139	0.291	0.478	
bcc	0.562	-6163	-2935	5.381	-3292	0.596	0.291	0.517	
	0.500	-8487	-4755	6.221	-5030	0.458	0.182	0.365	
	0.494	-8726	-4942	6.307	-5208	0.443	0.174	0.352	
Ag_5Zn_8	0.415	-8726	116	14.737	-2172	3.813	0.174	0.647	
	0.400	-10309	-2143	13.610	-4431	3.813	0.127	0.411	
	0.395	-10975	-3654	12.201	-5941	3.813	0.111	0.304	
hcp	0.344	-10975	-2408	14.277	-5653	5.408	0.111	0.322	
-	0.300	-14489	-6246	13.738	-8483	3.728	0.055	0.183	
	0.200	-25103	-18490	11.021	-17074	-2.361	0.007	0.033	
	0.137	-34180	-29108	8.454	-24257	-8.085	0.001	0.008	
hex	0.032	-34180	-17216	28.274	-17036	-0.300	0.001	0.033	
	0.000	$-\infty$	-18400	∞	-18220	-0.300	0.000	0.026	

Table IVb. Partial quantities for Ag in the stable phases at 600 K.

Reference state: Ag(fcc)

Phase	x_{Zn}	ΔG_{Zn} [J/mol]	$\Delta H_{ m Zn}$ [J/mol]	ΔS_{Zn} [J/(mol·K)]	$G_{ m Zn}^{ m E}$ [J/mol]	$S_{\mathrm{Zn}}^{\mathrm{E}}$ [J/(mol·K)]	$a_{ m Zn}$	$\gamma_{ m Zn}$
fcc bcc	$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.391\\ 0.438 \end{array}$	$-\infty$ -28959 -21408 -15775 -11572 -11572	$\begin{array}{r} -21650 \\ -16972 \\ -12787 \\ -9094 \\ -6152 \\ -6392 \end{array}$	∞ 19.977 14.369 11.134 9.034 8.633	$\begin{array}{r} -22046 \\ -17472 \\ -13379 \\ -9768 \\ -6891 \\ -7448 \end{array}$	0.660 0.833 0.987 1.124 1.233 1.761	$\begin{array}{c} 0.000\\ 0.003\\ 0.014\\ 0.042\\ 0.098\\ 0.098\end{array}$	$\begin{array}{c} 0.012 \\ 0.030 \\ 0.068 \\ 0.141 \\ 0.251 \\ 0.225 \end{array}$
Ag ₅ Zn ₈	$\begin{array}{c} 0.500 \\ 0.506 \\ 0.585 \\ 0.600 \\ 0.605 \end{array}$	$-8937 \\ -8701 \\ -8701 \\ -7614 \\ -7175$	-4328 -4144 -9051 -7507 -6511	$7.681 \\ 7.595 \\ -0.584 \\ 0.179 \\ 1.108$	-5479 -5303 -12215 -10671 -9675	$1.918 \\ 1.932 \\ 5.273 \\ 5.273 \\ 5.273 \\ 5.273 \\ $	$\begin{array}{c} 0.167 \\ 0.175 \\ 0.175 \\ 0.217 \\ 0.237 \end{array}$	$\begin{array}{c} 0.333 \\ 0.345 \\ 0.086 \\ 0.118 \\ 0.144 \end{array}$
hcp	$\begin{array}{c} 0.656 \\ 0.700 \\ 0.800 \\ 0.863 \\ 0.968 \end{array}$	-7175 -5509 -2010 -182 182	-7251 -5433 -1405 734	$-0.126 \\ 0.127 \\ 1.008 \\ 1.527 \\ 0.272$	-5071 -3729 -896 551	-3.633 -2.839 -0.847 0.303 0.000	$\begin{array}{c} 0.237 \\ 0.331 \\ 0.668 \\ 0.964 \\ 0.964 \end{array}$	0.362 0.474 0.836 1.117 0.996
псх	1.000	-182 0	$-19 \\ 0$	0.272	$-19 \\ 0$	0.000	1.000	1.000

Table IVc. Partial quantities for Zn in the stable phases at 600 K

Reference state: Zn(hex)

Fig. 4. Integral quantities of the stable phases at T=600 K.

Fig. 5. Activities in the stable phases at T=600 K.

References

[98Gom] T. Gomez-Acebo: Calphad **22** (1998) 203–220.

Fig. 1. Calculated phase diagram for the system Ag-Zr.

Karakaya and Thompson [92Kar] have reviewed available experimental information for the system and, due to scarcity of data, presented a phase diagram which is incomplete and not well-defined. The available phase boundaries have nevertheless been used as basis for the present thermodynamic assessment. The calculated invariant reactions give reasonable agreement with the proposed diagram. The nearly flat liquidus in the Ag-rich region of the system and the compound phases present on moving towards Zr-rich compositions are reflected by the asymmetric behaviour of the calculated enthalpies of mixing and activity values for liquid alloys.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AgZr AgZr ₂ hcp bcc	A1 B11 C11 _b A3 A2	Cu γCuTi MoSi₂ Mg W	cF4 tP4 tI6 hP2 cI2	Fm 3 m P4/nmm I4/mmm P6 ₃ /mmc Im3m	LIQUID FCC_A1 B11 C11B HCP_A3 BCC_A2	$\begin{array}{c} (Ag,Zr)_{1} \\ (Ag,Zr)_{1} \\ Ag_{1}Zr_{1} \\ Ag_{1}Zr_{2} \\ (Ag,Zr)_{1} \\ (Ag,Zr)_{1} \end{array}$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Com	positions	/ $x_{ m Zr}$	$\Delta_{ m r} H$ / (J/mol)
liquid + bcc \rightleftharpoons AgZr ₂	peritectic	1472.6	0.653	0.785	0.667	-22600
$liquid + AgZr_2 \rightleftharpoons AgZr$	peritectic	1420.2	0.498	0.667	0.500	-21727
liquid ≓ fcc + AgZr	eutectic	1216.5	0.024	0.004	0.500	-12175
$bcc \rightleftharpoons AgZr_2 + hcp$	eutectoid	1093.0	0.966	0.667	0.985	-5185

	0	1	1	1			
x_{Zr}	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\frac{\Delta S_{\rm m}}{[\rm J/(mol\cdot K)]}$	$G_{\rm m}^{\rm E}$ [J/mol]	$S_{\mathrm{m}}^{\mathrm{E}}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$	
0.000) 0	0	0.000	0	0.000	0.000	
0.100	-4447	1558	2.730	1499	0.027	0.000	
0.200	-7126	2090	4.189	2028	0.028	0.000	
0.300	-9317	1884	5.091	1857	0.012	0.000	
0.400	-11072	1207	5.581	1239	-0.015	0.000	
0.500	-12271	309	5.718	408	-0.045	0.000	
0.600	-12730	-577	5.524	-419	-0.072	0.000	
0.700	-12218	-1237	4.991	-1044	-0.088	0.000	
0.800	-10441	-1477	4.075	-1288	-0.086	0.000	
0.900	-6934	-1118	2.644	-988	-0.059	0.000	
1.000) 0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 2200 K.

Reference states: Ag(liquid), Zr(liquid)

Table IIIb. Partial quantities for Ag in the liquid phase at 2200 K.

$x_{ m Ag}$	$\Delta G_{ m Ag}$ [J/mol]	$\Delta H_{ m Ag}$ [J/mol]	$\Delta S_{ m Ag}$ [J/(mol·K)]	$G_{ m Ag}^{ m E}$ [J/mol]	$S_{ m Ag}^{ m E}$ [J/(mol·K)]	$a_{ m Ag}$	$\gamma_{ m Ag}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1396	562	0.890	532	0.014	0.927	1.029	
0.800	-2325	1856	1.900	1757	0.045	0.881	1.101	
0.700	-3362	3338	3.046	3162	0.080	0.832	1.189	
0.600	-5058	4516	4.352	4286	0.104	0.758	1.264	
0.500	-7953	4954	5.867	4726	0.104	0.647	1.295	
0.400	-12633	4268	7.682	4128	0.064	0.501	1.253	
0.300	-19826	2131	9.981	2197	-0.030	0.338	1.128	
0.200	-30750	-1731	13.191	-1311	-0.191	0.186	0.931	
0.100	-48701	-7538	18.710	-6582	-0.435	0.070	0.698	
0.000	$-\infty$	-15455	∞	-13751	-0.775	0.000	0.472	

Reference state: Ag(liquid)

Table IIIc. Partial quantities for Zr in the liquid phase at 2200 K.

$x_{ m Zr}$	$\Delta G_{\rm Zr}$	$\Delta H_{ m Zr}$	ΔS_{Zr} [J/(mol·K)]	$G_{ m Zr}^{ m E}$	$S_{\mathrm{Zr}}^{\mathrm{E}}$	$a_{ m Zr}$	$\gamma_{\rm Zr}$	
	[0/mor]	[0/moi]	[0,(1101 11)]	[0/mor]	[0,(1101 11)]			
0.000	$-\infty$	21701	∞	20788	0.415	0.000	3.116	
0.100	-31915	10520	19.288	10204	0.143	0.175	1.747	
0.200	-26329	3025	13.343	3110	-0.039	0.237	1.185	
0.300	-23211	-1510	9.864	-1188	-0.146	0.281	0.937	
0.400	-20093	-3758	7.425	-3333	-0.193	0.333	0.833	
0.500	-16588	-4335	5.570	-3909	-0.194	0.404	0.808	
0.600	-12794	-3807	4.085	-3450	-0.162	0.497	0.828	
0.700	-8958	-2681	2.853	-2434	-0.113	0.613	0.875	
0.800	-5364	-1413	1.796	-1282	-0.060	0.746	0.932	
0.900	-2294	-404	0.859	-366	-0.017	0.882	0.980	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Zr(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2200 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Zr}$	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/({\rm mol} \cdot {\rm K}))$
$\begin{array}{c} Ag_1Zr_1\\ Ag_1Zr_2 \end{array}$	$\begin{array}{c} 0.500 \\ 0.667 \end{array}$	-6733 - 8402	$-6917 \\ -8941$	-0.619 -1.809	0.000 0.000

References

[92Kar] I. Karakaya, W.T. Thompson: Bull. Alloy Phase Diagrams 13 (1992) 143–146.

Fig. 1. Calculated phase diagram for the system Al-As (constrained system).

The ability of group III-V compound semiconductors to form miscible substitutional solutions with each other results in materials with a wide range of electrical and optical properties. The Al-As system has one intermediate phase, AlAs, which is isotypic with ZnS (sphalerite). The melting temperature of AlAs was derived from the analysis of the ternary AlAs-GaAs system [84Ans]. The regular

solution interaction parameter of the liquid phase was determined from the analysis of the ternary Al-Ga-As system [84Ans]. Figure 1 shows the phase diagram at constrained pressure sufficient to maintain As in the condensed state [94Ans]. Figure 2 represents the calculated equilibrium phase diagram at (0.1 MPa). Figure 3 shows the partial pressures of several species in the gas phase along the calculated liquidus line of Figure 1.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AlAs A7	A1 B3 A7	Cu ZnS αAs	cF4 cF8 hR2	$Fm\overline{3}m$ $F\overline{4}3m$ $R\overline{3}m$	LIQUID FCC_A1 B3_ZINCBLENDE RHOMBOHEDRAL_A7	$(Al,As)_1$ $(Al,As)_1$ Al_1As_1 As_1

Table I. Phases, structures and models.

Table II. Invariant reactio	ns.
-----------------------------	-----

Reaction	Туре	<i>T /</i> K	Compositions / x_{As}		/ x _{As}	$\Delta_{\rm r} H$ / (J/mol)
liquid \rightleftharpoons AlAs liquid \rightleftharpoons AlAs + A7 liquid \rightleftharpoons fcc + AlAs	congruent eutectic eutectic	$2058.2 \\ 1089.0 \\ 933.3$	$0.500 \\ 0.998 \\ 0.000$	$0.500 \\ 0.500 \\ 0.000$	$1.000 \\ 0.500$	-72104 -24662 -10735

106

Fig. 3. Calculated partial pressures of gaseous species in the phase equilibria of the constrained system.

Table IIIa. Integral quantities for the liquid phase at 2100 K.

$x_{ m As}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500 \end{array}$	$0 \\ -13545 \\ -22727 \\ -29027 \\ -32736 \\ -33962$	$0 \\ -1412 \\ -2511 \\ -3296 \\ -3766 \\ -3923$	$\begin{array}{r} 0.000\\ 5.778\\ 9.627\\ 12.253\\ 13.795\\ 14.304 \end{array}$	$0 \\ -7869 \\ -13990 \\ -18361 \\ -20985 \\ -21859$	0.000 3.075 5.466 7.174 8.199 8.541	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	
$\begin{array}{c} 0.600\\ 0.600\\ 0.700\\ 0.800\\ 0.900\\ 1.000 \end{array}$	$-32736 \\ -29027 \\ -22727 \\ -13545 \\ 0$	-3766 -3296 -2511 -1412 0	$ \begin{array}{r} 13.795 \\ 12.253 \\ 9.627 \\ 5.778 \\ 0.000 \\ \end{array} $	$\begin{array}{r} -20985 \\ -18361 \\ -13990 \\ -7869 \\ 0 \end{array}$	$8.199 \\ 7.174 \\ 5.466 \\ 3.075 \\ 0.000$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	

Table IIIb. Partial quantities for Al in the liquid phase at 2100 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2714	-157	1.218	-874	0.342	0.856	0.951	
0.800	-7394	-628	3.222	-3497	1.367	0.655	0.818	
0.700	-14097	-1412	6.040	-7869	3.075	0.446	0.637	
0.600	-22909	-2511	9.713	-13990	5.466	0.269	0.449	
0.500	-33962	-3923	14.304	-21859	8.541	0.143	0.286	
0.400	-47476	-5649	19.917	-31477	12.299	0.066	0.165	
0.300	-63865	-7690	26.750	-42843	16.740	0.026	0.086	
0.200	-84060	-10044	35.246	-55959	21.864	0.008	0.041	
0.100	-111027	-12711	46.817	-70823	27.672	0.002	0.017	
0.000	$-\infty$	-15693	∞	-87435	34.163	0.000	0.007	

Reference state: Al(liquid)

	1		1				
$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$
0.000	$-\infty$	-15693	∞	-87435	34.163	0.000	0.007
0.100	-111027	-12711	46.817	-70823	27.672	0.002	0.017
0.200	-84060	-10044	35.246	-55959	21.864	0.008	0.041
0.300	-63865	-7690	26.750	-42843	16.740	0.026	0.086
0.400	-47476	-5649	19.917	-31477	12.299	0.066	0.165
0.500	-33962	-3923	14.304	-21859	8.541	0.143	0.286
0.600	-22909	-2511	9.713	-13990	5.466	0.269	0.449
0.700	-14097	-1412	6.040	-7869	3.075	0.446	0.637
0.800	-7394	-628	3.222	-3497	1.367	0.655	0.818
0.900	-2714	-157	1.218	-874	0.342	0.856	0.951
1.000	0	0	0.000	0	0.000	1.000	1.000

Table IIIc. Partial quantities for As in the liquid phase at 2100 K.

Reference state: As(liquid)

Fig. 4. Integral quantities of the liquid phase at T=2100 K.

Fig. 5. Activities in the liquid phase at T=2100 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{As}	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al_1As_1	0.500	-57405	-58565	-3.890	0.000

References

[84Ans] I. Ansara, D. Dutartre: Calphad **8** (1984) 323–342.

[94Ans] I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson: Calphad 18 (1994) 177–222.

Al – Au (Aluminium – Gold)

Fig. 1. Calculated phase diagram for the system Al-Au.

The phase diagram of the Al-Au system is dominated by the formation of an array of intermetallic phases some of which exhibit a range of homogeneity. The most prominent of these phases is Al_2Au which melts congruently at 1333 K. Below 923 K this phase is in equilibrium with the Al rich terminal solid solution phase which has a maximum solubility of Au of 0.06 at.%. For Au rich compositions there is a wide range of stability for the liquid phase. The maximum solubility of Al in fcc Au is 16 at.%. On the whole the experimental data for the phase diagram of the system are consistent. The experimental thermodynamic properties of the system have mainly been concerned with the liquid phase (enthalpies of mixing, emf studies and Knudsen cell mass spectrometry) and the intermetallic phases (enthalpies of formation). There are discrepancies and inconsistencies between the measurements which seem difficult to resolve. The assessed data for the system were taken from the assessment of Murray et al. [87Mur] modified by Dinsdale [98Din] to be compatible with the SGTE element data.

Phase Struktu bericht	ir- Prototype	Pearson symbol	Space group	SGTE name	Model
$\begin{array}{ccc} \text{liquid} \\ \text{fcc} & A1 \\ \text{Al}_2 \text{Au} & C1 \\ \text{AlAu} & B31 \\ \gamma \text{AlAu}_2 & C11_{\text{b}} \\ \text{Al}_2 \text{Au}_5 & \cdots \\ \text{bcc} & A2 \\ \text{AlAu} \end{array}$	$\begin{array}{c} Cu\\ CaF_2\\ MnP\\ MoSi_2\\ \dots\\ W \end{array}$	cF4 cF12 mP28 tI6 hR* cI2 cP20	$Fm\overline{3}m$ $Fm\overline{3}m$ $P2_1/m$ $I4/mmm$ $Im\overline{3}m$ $P2_2$	LIQUID FCC_A1 C1_AL2AU B31_ALAU ALAU2 AL2AU5 AL2AU5 ALAU4 ALAU4	$(Al,Au)_1$ $(Al,Au)_1$ Al_2Au_1 Al_1Au_1 Al_1Au_2 Al_2Au_5 Al_1Au_4 Al_1Au_4

Table I. Phases, structures and models.

Reaction	Туре	T / K	Compositions / x_{Au}		/ $x_{ m Au}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons Al ₂ Au	congruent	1331.8	0.333	0.333		-12893
$liquid \rightleftharpoons fcc + Al_2Au$	eutectic	921.2	0.023	0.003	0.333	-10569
Al_2Au +liquid \rightleftharpoons AlAu	peritectic	890.9	0.333	0.563	0.500	-13739
liquid \rightleftharpoons AlAu ₂	congruent	888.7	0.667	0.667		-11717
$AlAu_2 + liquid \rightleftharpoons Al_2Au_5$	peritectic	860.8	0.667	0.720	0.714	-9357
liquid \rightleftharpoons AlAu + AlAu ₂	eutectic	853.9	0.602	0.500	0.667	-12655
liquid \rightleftharpoons AlAu ₄	congruent	825.3	0.786	0.786		-3206
liquid \rightleftharpoons AlAu ₄ + fcc	eutectic	824.2	0.805	0.800	0.846	-3311
$liquid \rightleftharpoons Al_2Au_5 + AlAu_4$	eutectic	810.4	0.780	0.714	0.800	-4692
$AlAu_4 \rightleftharpoons Al_2Au_5 + fcc$	eutectoid	751.5	0.800	0.714	0.844	-2676

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 1400 K.

x_{Au}	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$	$G_{\rm m}^{\rm E}$	$S_{\rm m}^{\rm E}$	ΔC_p	
	[J/III01]	[J/III01]	$[\mathbf{J}/(\mathbf{IIIOI}\cdot\mathbf{K})]$	[J/III01]	$[\mathbf{J}/(1101\cdot\mathbf{K})]$	$[\mathbf{J}/(\mathbf{IIIOI}\cdot\mathbf{K})]$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5592	-7011	-1.014	-1808	-3.717	0.000	
0.200	-10133	-13559	-2.447	-4308	-6.608	0.000	
0.300	-14200	-19232	-3.594	-7090	-8.673	0.000	
0.400	-17577	-23620	-4.316	-9743	-9.912	0.000	
0.500	-19927	-26313	-4.562	-11858	-10.325	0.000	
0.600	-20859	-26901	-4.316	-13025	-9.912	0.000	
0.700	-19943	-24974	-3.594	-12833	-8.673	0.000	
0.800	-16696	-20122	-2.447	-10871	-6.608	0.000	
0.900	-10514	-11934	-1.014	-6730	-3.717	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Au(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1400 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-812	-164	0.463	414	-0.413	0.933	1.036	
0.800	-1487	-1202	0.203	1111	-1.652	0.880	1.100	
0.700	-2883	-3935	-0.751	1269	-3.717	0.781	1.115	
0.600	-5878	-9183	-2.361	68	-6.608	0.604	1.006	
0.500	-11381	-17767	-4.562	-3312	-10.325	0.376	0.752	
0.400	-20358	-30507	-7.249	-9692	-14.868	0.174	0.435	
0.300	-33907	-48224	-10.226	-19892	-20.236	0.054	0.181	
0.200	-53467	-71737	-13.050	-34733	-26.431	0.010	0.051	
0.100	-81837	-101868	-14.307	-55035	-33.452	0.001	0.009	
0.000	$-\infty$	-139436	∞	-81617	-41.299	0.000	0.001	

Reference state: Al(liquid)

		1		I I I				
$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S^{ m E}_{ m Au}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
0.000	$-\infty$	-71068	∞	-13249	-41.299	0.000	0.320	
0.100	-48610	-68641	-14.307	-21808	-33.452	0.015	0.154	
0.200	-44716	-62986	-13.050	-25982	-26.431	0.021	0.107	
0.300	-40607	-54924	-10.226	-26592	-20.236	0.031	0.102	
0.400	-35126	-45275	-7.249	-24460	-14.868	0.049	0.122	
0.500	-28473	-34859	-4.562	-20404	-10.325	0.087	0.173	
0.600	-21193	-24498	-2.361	-15247	-6.608	0.162	0.270	
0.700	-13959	-15011	-0.751	-9807	-3.717	0.301	0.431	
0.800	-7503	-7218	0.203	-4906	-1.652	0.525	0.656	
0.900	-2590	-1941	0.463	-1363	-0.413	0.801	0.889	
1.000	0	0	0.000	0	0.000	1.000	1.000	

1.0

0.8

0.6

0.4

0.2

0.0

0.0

Al

Activities

Table IIIc. Partial quantities for Au in the liquid phase at 1400 K.

Reference state: Au(liquid)

0.4

0.6

 $x_{\scriptscriptstyle {Au}}$

0.2

 $a_{\scriptscriptstyle \rm A}$

 $a_{\scriptscriptstyle {
m Au}}$

0.8

1.0

 $\mathbf{A}\mathbf{u}$

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Au}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al_2Au_1	0.333	-21471	-22229	-2.543	-0.002
Al_1Au_1	0.500	-27275	-30786	-11.774	-0.001
Al_1Au_2	0.667	-23555	-25602	-6.865	-0.001
Al_2Au_5	0.714	-21273	-22968	-5.685	-0.001
Al_1Au_4	0.800	-12142	-11085	3.545	0.000

References

[87Mur] J.L. Murray, H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams 8 (1987) 20–30.
[98Din] A.T. Dinsdale, unpublished work, 1998.

Al – B (Aluminium – Boron)

Fig. 1. Calculated phase diagram for the system Al-B.

The Al-B system is of interest because B is added in combination with Ti to Al-alloys in order to promote grain refinement, precipitation hardening and mechanical reinforcement. Besides this application the AlB₁₂ phase is a promising compound for high temperature thermoelectric applications and aircraft protection. Out of several thermodynamic assessments [84Kau, 94Dus, 99Cam, 01Luk] the description of [01Luk] is recommended here. It is based on calorimetric data and on measurements of the liquidus. The phase diagram presented by [67Ser] contradicts the phase rule as there is no two-phase field between AlB₁₂ and B in [67Ser]. Later it has been concluded by [94Dus] that the phases β -AlB₁₂ and AlB₁₀, considered to be stable by [67Ser], are stabilised by impurities. The stability of the Al_2B_3 phase is also questionable. Only two stable compounds are considered by [01Luk]: AlB₂ and AlB₁₂. The most contradictory point is the melting characteristics of AlB₁₂. According to [67Ser] the AlB₁₂ phase melts incongruently at 2348 K and the B phase can dissolve about 4 at.% of Al. The incongruent melting of AlB₁₂ has been confirmed experimentally [94Dus], but according to the evaluation of [90Car] and calculations of [01Luk] AlB₁₂ melts congruently. There is a big difference of ~ 80 K between the experimental temperatures of peritectic melting of AlB₂ reported by [94Dus] and [00Hal]. The data of [94Dus] are preferred by [01Luk], because the samples of [00Hal] contained Fe impurities. Enthalpies of formation have been determined calorimetrically for the compounds AlB₂ [67Dom] and AlB₁₂ [67Dom, 95Mes]. The calculated enthalpies of [01Luk] closely match the calorimetric data of [95Mes]. According to the thermodynamic description of [99Cam] the incongruent melting temperature of AlB_2 is 75 K lower than obtained by [94Dus] and contradicts the calorimetric data of [67Dom, 95Mes]. The solubility of B in fcc-Al has been found to be only about 0.0055 at.%.

Both compounds and solid B are treated by [01Luk] as stoichiometric phases. The liquid is described as a substitutional solution and the solution of boron in fcc-Al is treated as an interstitial solution, analogous to B–Ni and similar systems.

SGTE

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AlB ₂ AlB ₁₂ β B	A1 C32 	$\begin{array}{l} {\rm Cu} \\ {\rm AlB}_2 \\ \alpha {\rm AlB}_{12} \\ \beta {\rm B} \end{array}$	cF4 hP3 tP216 hR105	$Fm\overline{3}m$ $P6/mmm$ $P4_{1}2_{1}2$ $R\overline{3}m$	LIQUID FCC_A1 ALB2 ALB12_ALPHA BETA_RHOMBO_B	$(Al,B)_1$ $Al_1(B,\Box)_1$ Al_1B_2 Al_1B_{12} $B_{93}B_{12}$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Com	positions	$/x_{ m B}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons AlB ₁₂	congruent	2367.1	0.923	0.923		-56029
liquid \rightleftharpoons AlB ₁₂ + β B	eutectic	2320.3	0.975	0.923	1.000	-51877
$liquid + AlB_{12} \rightleftharpoons AlB_2$	peritectic	1303.1	0.017	0.923	0.667	-6442
$liquid \rightleftharpoons fcc + AlB_2$	eutectic	933.1	0.001	0.000	0.667	-10752

Table IIIa. Integral quantities for the liquid phase at 2500 K.

$x_{ m B}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6438	1469	3.163	319	0.460	0.000	
0.200	-10275	2172	4.979	126	0.818	0.000	
0.300	-13329	2053	6.153	-631	1.074	0.000	
0.400	-15871	1187	6.823	-1881	1.227	0.000	
0.500	-17836	-232	7.041	-3428	1.278	0.000	
0.600	-18939	-1881	6.823	-4949	1.227	0.000	
0.700	-18698	-3316	6.153	-6000	1.074	0.000	
0.800	-16412	-3965	4.979	-6010	0.818	0.000	
0.900	-11041	-3133	3.163	-4284	0.460	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), B(liquid)

		1	1	1				
$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1953	364	0.927	237	0.051	0.910	1.011	
0.800	-3559	1591	2.060	1079	0.205	0.843	1.053	
0.700	-4967	3598	3.426	2447	0.460	0.787	1.125	
0.600	-6733	5930	5.065	3885	0.818	0.723	1.206	
0.500	-9845	7759	7.041	4563	1.278	0.623	1.245	
0.400	-15769	7879	9.459	3278	1.841	0.468	1.171	
0.300	-26575	4715	12.516	-1549	2.505	0.278	0.928	
0.200	-45322	-3687	16.654	-11868	3.272	0.113	0.565	
0.100	-77868	-19652	23.287	-30006	4.142	0.024	0.236	
0.000	$-\infty$	-45881	∞	-58664	5.113	0.000	0.059	

Table IIIb. Partial quantities for Al in the liquid phase at 2500 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for B in the liquid phase at 2500 K.

$x_{ m B}$	$\Delta G_{\rm B}$ [J/mol]	$\Delta H_{\rm B}$ [J/mol]	$\Delta S_{\rm B}$ [J/(mol·K)]	$G_{\rm B}^{\rm E}$ [J/mol]	$S_{\rm B}^{\rm E}$ [J/(mol·K)]	$a_{ m B}$	$\gamma_{ m B}$	
			/1		/1			
0.000	$-\infty$	18042	∞	5259	5.113	0.000	1.288	
0.100	-46802	11415	23.287	1060	4.142	0.105	1.052	
0.200	-37140	4495	16.654	-3686	3.272	0.168	0.838	
0.300	-32839	-1550	12.516	-7813	2.505	0.206	0.687	
0.400	-29576	-5928	9.459	-10530	1.841	0.241	0.603	
0.500	-25826	-8222	7.041	-11418	1.278	0.289	0.577	
0.600	-21052	-8389	5.065	-10434	0.818	0.363	0.605	
0.700	-15322	-6758	3.426	-7908	0.460	0.478	0.684	
0.800	-9184	-4035	2.060	-4546	0.205	0.643	0.804	
0.900	-3615	-1298	0.927	-1425	0.051	0.840	0.934	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: B(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2500 K.

Fig. 3. Activities in the liquid phase at T=2500 K.

		1		I I I I I I I I I I I I I I I I I I I	
Compound	$x_{ m B}$	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathrm{J}/(\mathrm{mol} \cdot \mathrm{K}))$
Al_1B_2	0.667	-10920	-11456	-1.800	0.000
Al_1B_{12}	0.923	-11384	-11517	-0.445	0.000

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[67Dom]	E.S. Domalsky, G.T. Armstrong: J. Res. Natl. Bur. Stand. A, Phys. Chem. 71 (1967) 307–315.
[67Ser]	V.T. Serebryansky, V.Z. Epel'baum, G.S. Zhdanov: Russ. J. Inorg. Chem. 12 (1967) 543–552.
[84Kau]	L. Kaufman, B. Uhrenius, D. Birnie, K. Taylor: Calphad 8 (1984) 25-66.
[90Car]	O.N. Carlson: Bull. Alloy Phase Diagrams 11 (1990) 560–566.
[94Dus]	H. Duschanek, P. Rogl: J. Phase Equilibria 15 (1994) 543–552.
[95Mes]	S.W. Meschel, O.J. Kleppa: J. Alloys Comp. 227 (1995) 93–96.
[99Cam]	C.E. Campbell, U.R. Kattner: J. Phase Equilibria 20 (1999) 485-491.
[00Hal]	A. Hall, J. Economy: J. Phase Equilibria 20 (2000) 63-69.
[01Luk]	H.L. Lukas: unpublished assessment, 2001.

Fig. 1. Calculated phase diagram for the system Al-Bi.

The Al-Bi system is a very simple system showing a wide range of immiscibility in the liquid phase up to 1310 K where the miscibility gap closes at a composition approximately 20 at.% Bi. It has potential importance as a key subsystem for bearing alloys and automotive applications. The selected data for the Al-Bi system are from the critical assessment of McAlister [84McA]. Terminal solid solutions are very limited. The miscibility gap has been studied extensively between the monotectic temperature of 931 K and the upper consolute temperature, and the solubility of Al in the liquid at temperatures below the monotectic and the eutectic at about 543 K. The limited experimental thermodynamic studies have concerned the enthalpies of mixing and the partial Gibbs energies of Al. The assessed data are in very good agreement with all the experimental data for the system with the exception of the upper consolute temperature which is calculated to be 1330 K.

Tal	ble	I.	Phases,	structures	and	mod	els.
-----	-----	----	---------	------------	-----	-----	------

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A7	A1 A7	Cu αAs	cF4 hR2	$Fm\overline{3}m$ $R\overline{3}m$	LIQUID FCC_A1 RHOMBOHEDRAL_A7	$\begin{array}{l} (Al,Bi)_1 \\ (Al,Bi)_1 \\ Bi_1 \end{array}$

Table	II.	Invariant	reactions.
-------	-----	-----------	------------

Reaction	Туре	T / K	Compositions / $x_{\rm Bi}$			$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons liquid' + liquid'' liquid' \rightleftharpoons fcc + liquid'' liquid \rightleftharpoons fcc + A7	critical monotectic eutectic	$\begin{array}{c} 1329.9 \\ 931.3 \\ 543.5 \end{array}$	$0.198 \\ 0.004 \\ 0.995$	$0.198 \\ 0.001 \\ 0.000$	$0.198 \\ 0.841 \\ 1.000$	0 - 10891 - 11404

iuoie ii	in incogie	quantitie	io for the liquit	· phase at	1100 11.		
$x_{ m Bi}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-1298	4618	4.226	2486	1.523	0.000	
0.200	-1816	6579	5.996	4009	1.835	0.000	
0.300	-2238	7024	6.616	4873	1.537	0.000	
0.400	-2588	6717	6.646	5246	1.050	0.000	
0.500	-2860	6103	6.402	5208	0.639	0.000	
0.600	-3051	5379	6.022	4783	0.426	0.000	
0.700	-3131	4551	5.487	3980	0.408	0.000	
0.800	-2991	3500	4.637	2834	0.476	0.000	
0.900	-2343	2044	3.133	1441	0.431	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1400 K

Reference states: Al(liquid), Bi(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1400 K.

x_{Al}	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{\rm Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-682	1553	1.597	544	0.721	0.943	1.048	
0.800	-899	4485	3.846	1698	1.991	0.926	1.157	
0.700	-1076	7114	5.850	3076	2.885	0.912	1.302	
0.600	-1342	8765	7.219	4605	2.972	0.891	1.485	
0.500	-1694	9520	8.010	6375	2.247	0.865	1.729	
0.400	-2185	9965	8.678	8481	1.060	0.829	2.072	
0.300	-3146	10937	10.059	10869	0.049	0.763	2.544	
0.200	-5558	13271	13.450	13177	0.068	0.620	3.102	
0.100	-12218	17551	21.264	14585	2.119	0.350	3.501	
0.000	$-\infty$	23852	∞	13656	7.283	0.000	3.232	

Reference state: Al(liquid)

Table IIIc. Partial quantities for Bi in the liquid phase at 1400 K.

		-					
x_{Bi}	$\Delta G_{ m Bi}$ [J/mol]	$\Delta H_{ m Bi}$ [J/mol]	$\Delta S_{ m Bi}$ [J/(mol·K)]	$G_{ m Bi}^{ m E}$ [J/mol]	$S_{ m Bi}^{ m E}$ [J/(mol·K)]	a_{Bi}	$\gamma_{ m Bi}$
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.400 \end{array}$	$-\infty$ -6844 -5481 -4948 -4457	$\begin{array}{c} 64336\\ 32200\\ 14953\\ 6815\\ 3644\\ \end{array}$	∞ 27.888 14.596 8.402 5.786	$\begin{array}{c} 31077 \\ 19959 \\ 13253 \\ 9066 \\ 6209 \\ 4041 \end{array}$	$23.757 \\ 8.743 \\ 1.214 \\ -1.608 \\ -1.832 \\ 0.021 \\ 0$	$\begin{array}{c} 0.000\\ 0.555\\ 0.624\\ 0.654\\ 0.682\\ 0.520\end{array}$	14.436 5.555 3.122 2.179 1.705
$\begin{array}{c} 0.500 \\ 0.600 \\ 0.700 \\ 0.800 \\ 0.900 \\ 1.000 \end{array}$	$-4027 \\ -3629 \\ -3124 \\ -2349 \\ -1246 \\ 0$	$2686 \\ 2322 \\ 1815 \\ 1058 \\ 321 \\ 0$	$\begin{array}{c} 4.795 \\ 4.251 \\ 3.528 \\ 2.433 \\ 1.119 \\ 0.000 \end{array}$	$4041 \\ 2317 \\ 1028 \\ 248 \\ -19 \\ 0$	$-0.968 \\ 0.003 \\ 0.562 \\ 0.578 \\ 0.243 \\ 0.000$	$\begin{array}{c} 0.708 \\ 0.732 \\ 0.765 \\ 0.817 \\ 0.898 \\ 1.000 \end{array}$	$1.415 \\ 1.220 \\ 1.092 \\ 1.022 \\ 0.998 \\ 1.000$

Reference state: Bi(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

References

[84McA] A.J. McAlister: Bull. Alloy Phase Diagrams **5** (1984) 247–250.

Fig. 1. Calculated phase diagram for the system Al-C.

The Al-C system is a part of the Al-C-O system which is important for modelling the carbothermic reduction of alumina. A critical review of the experimental phase equilibrium data in the system Al-C has been given by [91Sch]. The phase diagram has been re-evaluated by [92Oka]. The only stable compound in the system is Al_4C_3 . According to experimental determinations it melts incongruently forming liquid and graphite. However, in the literature there are conflicting data for the temperature of this peritectic reaction. The melting point of Al_4C_3 evaluated by Massalski contradicts several experimental determinations. The thermodynamic dataset established by [94Gro, 95Gro] is recommended here. It is based on the experimentally determined solubility of carbon in the liquid phase, temperature data for the peritectic equilibrium and different kinds of data for Al_4C_3 : calorimetric measurements of the enthalpy of formation, enthalpy increments measured by drop-solution calorimetry and enthalpy of decomposition into graphite and gaseous Al obtained by vapour pressure mass spectrometry.

The solubility of carbon in liquid aluminium is restricted by the decomposition of the liquid phase to graphite and gas [91Sch]. The upper limits for the stability of the liquid under normal pressure are a temperature of 2570 K and a carbon content of 25 at.% according to [94Gro]. In the thermodynamic dataset of [95Gro] the liquid phase is described by a substitutional model. The solid solubility of carbon in aluminium is very low (0.04-0.08 at.% [92Oka]) and the fcc phase is described by a sublattice model in [95Gro]. Al₄C₃ is treated as a stoichiometric compound in [95Gro].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Al ₄ C ₃ graphite	A1 D7 ₁ A9	Cu Al ₄ C ₃ C(graphite)	cF4 hR7 hP4	$Fm\overline{3}m\ R\overline{3}m\ P6_3/mmc$	LIQUID FCC_A1 D71_AL4C3 GRAPHITE_A9	$(Al,C)_1$ $Al_1(C,\Box)_1$ Al_4C_3 C_1

Table I. Phases, structures and models.

Reaction	Туре	<i>T /</i> K	Compositions / $x_{ m C}$			$\Delta_{ m r} H$ / (J/mol)				
liquid + graphite \rightleftharpoons Al ₄ C ₃ liquid \rightleftharpoons fcc + Al ₄ C ₃	peritectic eutectic	$2428.9 \\ 933.5$	$\begin{array}{c} 0.203 \\ 0.000 \end{array}$	$\begin{array}{c} 1.000\\ 0.000 \end{array}$	$\begin{array}{c} 0.429 \\ 0.429 \end{array}$	-62895 - 10711				

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 2500 K.

$x_{ m C}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.025	-2063	3930	2.397	367	1.425	0.000	
0.050	-3340	7809	4.460	787	2.809	0.000	
0.075	-4278	11637	6.366	1259	4.151	0.000	
0.100	-4973	15414	8.155	1784	5.452	0.000	
0.125	-5469	19140	9.844	2362	6.711	0.000	
0.150	-5794	22815	11.444	2993	7.929	0.000	
0.175	-5963	26439	12.961	3676	9.105	0.000	
0.200	-5989	30012	14.400	4412	10.240	0.000	
0.225	-5882	33533	15.766	5201	11.333	0.000	
0.228	-5857	34013	15.948	5313	11.480	0.000	

Reference states: Al(liquid), C(graphite)

Table IIIb. Partial quantities for Al in the liquid phase at 2500 K.

$x_{ m Al}$	$\Delta G_{\rm A1}$ [J/mol]	$\Delta H_{\rm A1}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.975	-553	26	0.231	-26	0.021	0.974	0.999	
0.950	-1172	102	0.510	-105	0.083	0.945	0.995	
0.925	-1858	230	0.835	-237	0.187	0.915	0.989	
0.900	-2612	409	1.208	-422	0.332	0.882	0.980	
0.875	-3434	638	1.629	-659	0.519	0.848	0.969	
0.850	-4327	919	2.099	-949	0.747	0.812	0.955	
0.825	-5290	1251	2.617	-1291	1.017	0.775	0.940	
0.800	-6325	1634	3.184	-1687	1.328	0.738	0.922	
0.775	-7433	2069	3.801	-2135	1.681	0.699	0.902	
0.772	-7591	2132	3.889	-2200	1.733	0.694	0.900	

Reference state: Al(liquid)
		1	1	I				
$x_{ m C}$	$\Delta G_{ m C}$	$\Delta H_{ m C}$	$\Delta S_{ m C}$	$G_{\mathrm{C}}^{\mathrm{E}}$	$S_{\mathrm{C}}^{\mathrm{E}}$	$a_{ m C}$	$\gamma_{ m C}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
0.000	$-\infty$	158230	∞	13627	57.841	0.000	1.926	
0.025	-60969	156212	86.873	15709	56.202	0.053	2.129	
0.050	-44532	154246	79.511	17738	54.603	0.117	2.347	
0.075	-34128	152331	74.583	19715	53.047	0.194	2.582	
0.100	-26224	150466	70.676	21638	51.531	0.283	2.832	
0.125	-19714	148653	67.347	23510	50.057	0.387	3.099	
0.150	-14106	146891	64.399	25328	48.625	0.507	3.382	
0.175	-9136	145180	61.726	27094	47.234	0.644	3.682	
0.200	-4647	143520	59.267	28807	45.885	0.800	3.998	
0.225	-539	141911	56.980	30467	44.578	0.974	4.331	
0.228	0	141694	56.678	30691	44.401	1.000	4.378	

Table IIIc. Partial quantities for C in the liquid phase at 2500 K.

Reference state: C(graphite)

Fig. 2. Integral quantities of the liquid phase at T=2500 K.

Fig. 3. Activities in the liquid phase at T=2500 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m C}$	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al_4C_3	0.429	-29633	-31481	-6.199	-1.385

References

- [920ka] H. Okamoto: J. Phase Equilibria 13 (1992) 97–98.
- [94Gro] J. Gröbner: Ph.D. Thesis, Stuttgart University, 1994.
- [95Gro] J. Gröbner, H.L. Lukas, F. Aldinger: J. Alloys Comp. 220 (1995) 8–14.

Fig. 1. Calculated phase diagram for the system Al-Ca.

This system has no solubility in the terminal phases and four intermetallic compounds with limited solubility, all modelled without any solubility. The Al_2Ca is a Laves phase and melts congruently whereas Al_4Ca is formed peritectically.

Al and Ca easily react with oxygen and this binary system is mainly interesting as part of a database where Al and Ca are used as alloying elements in other metals or slags. In a previous assessment, [93Ang], only two compounds were included but in a more recent assessment, [01Kev1, 01Kev2] two new phases were detected in the system, Al₃Ca₈ which melts congruently and AlCa which forms peritectically.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Al ₄ Ca Al ₂ Ca AlCa Al ₃ Ca ₈ bcc	A1 D1 ₃ C15 A2	Cu Al ₄ Ba Cu ₂ Mg Ca ₈ In ₃ W	cF4 tI10 cF24 mC* aP22 cI2	$Fm\overline{3}m$ I4/mmm $Fd\overline{3}m$ C2/m $P\overline{1}$ $Im\overline{3}m$	LIQUID FCC_A1 D13_AL4CA C15_AL2M1 ALCA AL3CA8 BCC_A2	$(Al,Ca)_1$ $(Al,Ca)_1$ Al_4Ca_1 Al_2Ca_1 Al_2Ca_1 Al_1Ca_1 Al_3Ca_8 $(Al,Ca)_1$

Table I. Phases, structures and models.

Al – Ca (Aluminium – Calcium)

Table II. Invariant reactions.	
--------------------------------	--

Reaction	Туре	T / K	Comp	ositions	/ $x_{ m Ca}$	$\Delta_{ m r} H$ / (J/mol)	
liquid \rightleftharpoons Al ₂ Ca	congruent	1359.8	0.333	0.333		-19143	
liquid + Al ₂ Ca \rightleftharpoons Al ₄ Ca	peritectic	974.5	0.098	0.333	0.200	-9535	
$Al_2Ca + liquid \rightleftharpoons AlCa$	peritectic	906.4	0.333	0.616	0.500	-5127	
liquid \rightleftharpoons fcc + Al ₄ Ca	eutectic	886.2	0.051	0.000	0.200	-11703	
liquid \rightleftharpoons Al ₃ Ca ₈	congruent	853.5	0.727	0.727		-8751	
liquid \rightleftharpoons Al ₃ Ca ₈ + bcc	eutectic	827.6	0.795	0.727	1.000	-8378	
liquid \rightleftharpoons AlCa + Al ₃ Ca ₈	eutectic	825.2	0.662	0.500	0.727	-8769	
$bcc \rightleftharpoons Al_3Ca_8 + fcc$	degenerate	716.0	1.000	0.727	1.000	-929	

Table IIIa. Integral quantities for the liquid phase at 1400 K.

x_{Ca}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-8516	-8260	0.183	-4732	-2.520	0.000	
0.200	-14212	-14659	-0.319	-8387	-4.480	0.000	
0.300	-17951	-19072	-0.801	-10840	-5.880	0.000	
0.400	-19877	-21451	-1.124	-12043	-6.720	0.000	
0.500	-20094	-21825	-1.237	-12025	-7.000	0.000	
0.600	-18725	-20299	-1.124	-10891	-6.720	0.000	
0.700	-15935	-17056	-0.801	-8824	-5.880	0.000	
0.800	-11908	-12355	-0.319	-6083	-4.480	0.000	
0.900	-6788	-6532	0.183	-3004	-2.520	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Ca(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1400 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1738	-903	0.596	-511	-0.280	0.861	0.957	
0.800	-4848	-3818	0.735	-2250	-1.120	0.659	0.824	
0.700	-9503	-8879	0.446	-5351	-2.520	0.442	0.631	
0.600	-15665	-15990	-0.233	-9718	-4.480	0.260	0.434	
0.500	-23094	-24825	-1.237	-15025	-7.000	0.138	0.275	
0.400	-31380	-34826	-2.461	-20714	-10.080	0.067	0.169	
0.300	-40014	-45207	-3.710	-25999	-13.720	0.032	0.107	
0.200	-48597	-54950	-4.538	-29862	-17.920	0.015	0.077	
0.100	-57858	-62807	-3.535	-31055	-22.680	0.007	0.069	
0.000	$-\infty$	-67300	∞	-28100	-28.000	0.000	0.089	

Reference state: Al(liquid)

		1	1	1				
x_{Ca}	$\Delta G_{ m Ca}$ [J/mol]	$\Delta H_{ m Ca}$ [J/mol]	$\Delta S_{ m Ca}$ [J/(mol·K)]	$G_{\mathrm{Ca}}^{\mathrm{E}}$ [J/mol]	$S^{ m E}_{ m Ca}$ [J/(mol·K)]	$a_{ m Ca}$	$\gamma_{ m Ca}$	
0.000	$-\infty$	-91300	∞	-52100	-28.000	0.000	0.011	
0.100	-69522	-74471	-3.535	-42719	-22.680	0.003	0.025	
0.200	-51669	-58022	-4.538	-32934	-17.920	0.012	0.059	
0.300	-37662	-42855	-3.710	-23647	-13.720	0.039	0.131	
0.400	-26196	-29642	-2.461	-15530	-10.080	0.105	0.263	
0.500	-17094	-18825	-1.237	-9025	-7.000	0.230	0.461	
0.600	-10289	-10614	-0.233	-4342	-4.480	0.413	0.689	
0.700	-5615	-4991	0.446	-1463	-2.520	0.617	0.882	
0.800	-2736	-1706	0.735	-138	-1.120	0.791	0.988	
0.900	-1114	-279	0.596	113	-0.280	0.909	1.010	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Ca in the liquid phase at 1400 K.

Reference state: Ca(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Ca}	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al ₄ Ca ₁	0.200	-19363	-21000	-5.492	0.000
Al_2Ca_1	0.333	-28203	-29700	-5.020	0.000
Al ₁ Ca ₁	0.500	-22160	-22800	-2.148	0.000
Al ₃ Ca ₈	0.727	-13860	-14000	-0.470	0.000

References

[93Ang] C. Anglezio, C. Servant, I. Ansara: J. Chem. Phys. PCB 90 (1993) 339–407.

- [01Kev1] D. Kevorkov, R. Schmid-Fetzer: Z. Metallkd. 92 (2001) 946–952.
- [01Kev2] D. Kevorkov, R. Schmid-Fetzer, A. Pisch, F. Hodaj, C. Colinet: Z. Metallkd. **92** (2001) 953–958.

SGTE

Al – Ce (Aluminium – Cerium)

Fig. 1. Calculated phase diagram for the system Al-Ce.

The Al-Ce system is one of a number of rare earth system of interest for its potential for forming metallic glasses [93Bar]. The data for the Al-Ce system were critically assessed by Cacciamani et al. [98Ans]. The phase diagram information on the system has been reviewed by Saccone et al. [96Sac] and Gschneidner and Calderwood [88Gsc] and appears to be well understood. The system is characterised by intermetallic compounds at five compositions, solid-solid phase transformations have been reported for two of these compositions. Solid solution in pure Ce and Al is very low. Two of the compounds Al₂Ce and AlCe₃ melt congruently while the other three melt by peritectic reaction. The thermodynamics of the system have been studied by direct reaction calorimetry.

Phase	Struktur- bericht	Prototype	Pearson	Space	SGTE	Model
	benefit		symbol	group	name	
liquid					LIQUID	(Al,Ce) ₁
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	(Al,Ce) ₁
$\alpha Al_{11}Ce_3$	•••	$\alpha Al_{11}La_3$	oI28	Immm	AL11M3	$Al_{11}Ce_3$
$\beta Al_{11}Ce_3$	$D1_3$	Al ₄ Ba	tI10	I4/mmm	D13_AL11M3	$Al_{11}Ce_3$
Al ₃ Ce	$D0_{19}$	Ni ₃ Sn	hP8	$P6_3/mmc$	D019_AL3M1	Al_3Ce_1
Al ₂ Ce	<i>C</i> 15	Cu_2Mg	cF24	$Fd\overline{3}m$	C15_AL2M1	Al_2Ce_1
AlCe		AlCe	oC16	Cmcm	AL1M1	Al_1Ce_1
α AlCe ₃	$D0_{19}$	Ni ₃ Sn	hP8	$P6_3/mmc$	D019_AL1M3	Al_1Ce_3
β AlCe ₃	$L1_2$	AuCu ₃	cP4	$Pm\overline{3}m$	L12_AL1M3	Al_1Ce_3
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	(Al,Ce) ₁

Table I. Phases, structures and models.

Reaction	Туре	<i>T /</i> K	Compositions / $x_{\rm Ce}$		/ $x_{ m Ce}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons Al ₂ Ce	congruent	1752.8	0.333	0.333		-26274
$liquid + Al_2Ce \rightleftharpoons \beta Al_{11}Ce_3$	peritectic	1510.7	0.180	0.333	0.214	-15932
$\beta Al_{11}Ce_3 + Al_2Ce \rightleftharpoons Al_3Ce$	peritectoid	1408.0	0.214	0.333	0.250	-344
$\beta Al_{11}Ce_3 \rightleftharpoons \alpha Al_{11}Ce_3$	polymorphic	1293.0	0.214	0.214		-504
$Al_2Ce + liquid \rightleftharpoons AlCe$	peritectic	1115.2	0.333	0.638	0.500	-8594
liquid + bcc \rightleftharpoons fcc	peritectic	1000.0	0.956	1.000	1.000	-2992
liquid $\rightleftharpoons \beta AlCe_3$	congruent	958.3	0.750	0.750		-6646
liquid \rightleftharpoons AlCe + β AlCe ₃	eutectic	941.1	0.709	0.500	0.750	-6873
$liquid \rightleftharpoons fcc + \alpha Al_{11}Ce_3$	eutectic	897.0	0.031	0.000	0.214	-10406
liquid $\rightleftharpoons \beta AlCe_3 + fcc$	eutectic	857.5	0.855	0.750	1.000	-6048
$\beta AlCe_3 \rightleftharpoons \alpha AlCe_3$	polymorphic	523.1	0.750	0.750		-999

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 1800 K.

$x_{ m Ce}$	ΔG_{m} [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-11453	-15622	-2.316	-6588	-5.019	1.202	
0.200	-18134	-26788	-4.808	-10645	-8.969	1.930	
0.300	-21713	-33869	-6.753	-12571	-11.832	2.264	
0.400	-22839	-37232	-7.996	-12767	-13.592	2.278	
0.500	-22005	-37246	-8.467	-11631	-14.231	2.052	
0.600	-19638	-34281	-8.135	-9565	-13.731	1.661	
0.700	-16112	-28705	-6.996	-6969	-12.075	1.183	
0.800	-11732	-20887	-5.086	-4243	-9.247	0.696	
0.900	-6652	-11196	-2.524	-1786	-5.227	0.276	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Ce(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1800 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2909	-2289	0.344	-1332	-0.532	0.823	0.915	
0.800	-8135	-8664	-0.294	-4795	-2.149	0.581	0.726	
0.700	-14927	-18388	-1.923	-9589	-4.888	0.369	0.527	
0.600	-22558	-30723	-4.536	-14913	-8.783	0.222	0.369	
0.500	-30341	-44930	-8.105	-19967	-13.868	0.132	0.263	
0.400	-37665	-60274	-12.561	-23951	-20.179	0.081	0.202	
0.300	-44084	-76015	-17.740	-26065	-27.750	0.053	0.175	
0.200	-49595	-91417	-23.234	-25508	-36.616	0.036	0.182	
0.100	-55941	-105741	-27.667	-21480	-46.812	0.024	0.238	
0.000	$-\infty$	-118250	∞	-13181	-58.371	0.000	0.414	

Reference state: Al(liquid)

		1	· · · · · · · · · · · · · · · · · · ·	I				
$x_{ m Ce}$	$\Delta G_{ m Ce}$ [J/mol]	$\Delta H_{ m Ce}$ [J/mol]	$\Delta S_{ m Ce}$ [J/(mol·K)]	$G^{ m E}_{ m Ce}$ [J/mol]	$S^{ m E}_{ m Ce}$ [J/(mol·K)]	$a_{ m Ce}$	$\gamma_{ m Ce}$	
0.000	$-\infty$	-179721	∞	-79869	-55.473	0.000	0.005	
0.100	-88351	-135616	-26.258	-53890	-45.403	0.003	0.027	
0.200	-58131	-99285	-22.863	-34044	-36.245	0.021	0.103	
0.300	-37548	-69991	-18.024	-19530	-28.034	0.081	0.271	
0.400	-23260	-46996	-13.187	-9547	-20.805	0.211	0.528	
0.500	-13669	-29562	-8.830	-3295	-14.593	0.401	0.802	
0.600	-7620	-16953	-5.185	25	-9.432	0.601	1.002	
0.700	-4124	-8430	-2.392	1214	-5.358	0.759	1.085	
0.800	-2266	-3255	-0.549	1073	-2.404	0.859	1.074	
0.900	-1175	-691	0.269	402	-0.607	0.924	1.027	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Ce in the liquid phase at 1800 K.

Reference state: Ce(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1800 K.

Fig. 3. Activities in the liquid phase at T=1800 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Ce}	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
$\alpha Al_{11}Ce_3$	0.214	-37455	-40182	-9.149	0.000
$\beta Al_{11}Ce_3$	0.214	-37067	-39678	-8.759	0.000
Al_3Ce_1	0.250	-40798	-43803	-10.080	0.000
Al_2Ce_1	0.333	-48600	-52281	-12.345	0.000
Al_1Ce_1	0.500	-41989	-45920	-13.186	0.000
$\alpha Al_1 Ce_3$	0.750	-23024	-25188	-7.256	0.000
$\beta Al_1 Ce_3$	0.750	-22595	-24189	-5.346	0.000

References

- [88Gsc] K.A. Gschneidner Jr., F.W. Calderwood: Bull. Alloy Phase Diagrams, 9 (1988) 669–672.
- [93Bar] M. Baricco, L. Battezzati, G. Borzone, G. Cacciamani: J. Chim. Phys. 90 (1993) 261–268.
- [96Sac] A. Saccone, A.M. Cardinale, St. Delfino, R. Ferro: Z. Metallkd. 87 (1996) 82–87.
- [98Ans] I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical database for light metal alloys", Vol. 2, EUR 18499, 1998, 20–22.

Fig. 1. Calculated phase diagram for the system Al-Co.

The Co rich side of this system is of high interest for superalloys. The *B*2 phase has been studied for the development of alloys for high-temperature applications. The Al rich side is of interest for Al alloys where the strengthening can be enhanced by the precipitation of Al_9Co_2 . Finally, the ability of systems based on this binary to generate quasicrystals on the Al rich side has also generated many recent studies. Thus the phase diagram and the thermodynamic properties of this system have been widely studied. Nevertheless, some uncertainties still remain on the Al-rich side of the phase diagram; several forms of the $Al_{13}Co_4$ have been identified but the different range of stability reported show some disagreements. The thermodynamic description by Dupin and Ansara [98Dup] is based on the critical assessment of all the available experimental data for the system. The four compounds Al_9Co_2 , $Al_{13}Co_4$, Al_3Co , and Al_5Co are modelled as stoichiometric. The large homogeneity range of the *B*2 compound, AlCo, is described with the compound energy formalism. The solubility of Al in fcc-Co is large and changes rapidly around the magnetic transition. The description of the magnetism of the fcc solution leads to a miscibility gap between ferro- and para-magnetic fcc-Co which has not been experimentally studied.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	(Al,Co) ₁
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_L12	(Al,Co) ₁
Al_9Co_2		•••	mP22	$P2_{1}/c$	AL9CO2	Al_9Co_2
$Al_{13}Co_4$		•••	mC93	$C_{\mathbf{m}}$	AL13CO4	$Al_{13}Co_4$
Al ₃ Co		•••		•••	AL3CO	Al_3Co_1
Al_5Co_2	$D8_{11}$	Al_5Mn_2	hP28	$P6_3/mmc$	D811_AL5CO2	Al_5Co_2
AlCo	B2	CsCl	cP2	Pm3m	BCC_B2	$(Al,Co)_1(Co,\Box)_1$
hcp	A3	Mg	hP2	$P6_3/mmc$	HCP_A3	(Al,Co) ₁

Table I. Phases, structures and models.

Reaction	Туре	<i>T /</i> K	Comp	positions	/ $x_{ m Co}$	$\Delta_{ m r} H$ / (J/mc	ol)
liquid ≓ AlCo	congruent	1910.9	0.492	0.492		-25510	
liquid \rightleftharpoons AlCo + fcc	eutectic	1670.6	0.808	0.756	0.845	-15183	
liquid + AlCo \rightleftharpoons Al ₅ Co ₂	peritectic	1454.6	0.256	0.460	0.286	-22443	
liquid + Al ₅ Co ₂ \rightleftharpoons Al ₃ Co	peritectic	1405.0	0.204	0.286	0.250	-9567	
liquid + Al ₃ Co \rightleftharpoons Al ₁₃ Co ₄	peritectic	1366.7	0.169	0.250	0.235	-3893	
$liquid + Al_{13}Co_4 \rightleftharpoons Al_9Co_2$	peritectic	1245.6	0.099	0.235	0.182	-8655	
$fcc \rightleftharpoons fcc' + fcc''$	critical	1220.4	0.956	0.956	0.956	0	
$fcc \rightleftharpoons AlCo + fcc'$	monotectoid	1100.4	0.918	0.598	0.944	-2260	
$liquid \rightleftharpoons fcc + Al_9Co_2$	eutectic	931.3	0.003	0.000	0.182	-10854	
$fcc \rightleftharpoons AlCo + hcp$	eutectoid	569.1	0.988	0.500	1.000	-467	

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 2000 K.

$x_{ m Co}$	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$	$G_{\rm m}^{\rm E}$	$S_{\rm m}^{\rm E}$	ΔC_p	
	[J/III01]	[J/III01]		[J/IIIOI]			
0.000	0	0	0.000	0	0.000	0.000	
0.100	-11232	-14972	-1.870	-5826	-4.573	0.000	
0.200	-19284	-27309	-4.013	-10963	-8.173	0.000	
0.300	-25053	-35495	-5.221	-14895	-10.300	0.000	
0.400	-28484	-39014	-5.265	-17293	-10.861	0.000	
0.500	-29514	-38118	-4.302	-17988	-10.065	0.000	
0.600	-28160	-33586	-2.713	-16968	-8.309	0.000	
0.700	-24516	-26493	-0.989	-14358	-6.068	0.000	
0.800	-18726	-17968	0.379	-10404	-3.782	0.000	
0.900	-10873	-8960	0.957	-5467	-1.746	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Co(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 2000 K.

$x_{ m A1}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1996	-969	0.514	-244	-0.362	0.887	0.985	
0.800	-5464	-6463	-0.499	-1754	-2.355	0.720	0.900	
0.700	-11208	-17896	-3.344	-5277	-6.309	0.510	0.728	
0.600	-19544	-34145	-7.301	-11049	-11.548	0.309	0.515	
0.500	-30374	-52499	-11.063	-18847	-16.826	0.161	0.322	
0.400	-43286	-69608	-13.161	-28049	-20.779	0.074	0.185	
0.300	-57709	-82423	-12.357	-37688	-22.368	0.031	0.104	
0.200	-73274	-89151	-7.938	-46511	-21.320	0.012	0.061	
0.100	-91323	-90195	0.564	-53034	-18.580	0.004	0.041	
0.000	$-\infty$	-89104	∞	-55598	-16.753	0.000	0.035	

Reference state: Al(liquid)

		1		r				
$x_{ m Co}$	$\Delta G_{ m Co}$ [J/mol]	$\Delta H_{ m Co}$ [J/mol]	$\Delta S_{ m Co}$ [J/(mol·K)]	$G^{ m E}_{ m Co}$ [J/mol]	$S^{ m E}_{ m Co}$ [J/(mol·K)]	$a_{ m Co}$	$\gamma_{ m Co}$	
0.000	$-\infty$	-154849	∞	-59526	-47.661	0.000	0.028	
0.100	-94359	-140999	-23.320	-56069	-42.465	0.003	0.034	
0.200	-74561	-110695	-18.067	-47798	-31.448	0.011	0.056	
0.300	-57359	-76560	-9.601	-37338	-19.611	0.032	0.106	
0.400	-41895	-46318	-2.212	-26658	-9.830	0.081	0.201	
0.500	-28655	-23736	2.460	-17129	-3.303	0.178	0.357	
0.600	-18076	-9572	4.252	-9581	0.005	0.337	0.562	
0.700	-10290	-2523	3.883	-4359	0.918	0.539	0.769	
0.800	-5088	-173	2.458	-1378	0.603	0.736	0.920	
0.900	-1934	66	1.000	-182	0.124	0.890	0.989	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Co in the liquid phase at 2000 K.

Reference state: Co(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2000 K.

Fig. 4. Integral quantities of the stable phases at T=1600 K.

Fig. 3. Activities in the liquid phase at T=2000 K.

Fig. 5. Activities in the stable phases at T=1600 K.

Tuble I v	u. megn	ai quantitie	s for the stu	ole pluses ut 1	000 11.			
Phase	$x_{ m Co}$	$\Delta G_{ m m}$	$\Delta H_{ m m}$	$\Delta S_{ m m}$	$G_{\mathrm{m}}^{\mathrm{E}}$	$S^{ m E}_{ m m}$	ΔC_p	
		[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$	$[J/(mol \cdot K)]$	
liquid	0.000	0	0	0.000	0	0.000	0.000	
	0.050	-6467	-6861	-0.246	-3826	-1.897	-0.091	
	0.100	-11826	-13345	-0.949	-7502	-3.652	-0.182	
	0.150	-16524	-19150	-1.641	-10901	-5.156	-0.273	
	0.200	-20581	-24055	-2.171	-13924	-6.332	-0.364	
	0.250	-23974	-27906	-2.458	-16493	-7.133	-0.455	
	0.289	-26133	-30107	-2.484	-18137	-7.482	-0.525	
AlCo	0.452	-34320	-56482	-13.851	-31210	-15.795	-1.008	
	0.500	-35547	-64949	-18.376	-34359	-19.119	15.319	
	0.550	-34009	-57518	-14.693	-31480	-16.274	6.434	
	0.600	-31586	-49066	-10.925	-28006	-13.163	3.603	
	0.650	-28678	-40921	-7.652	-24416	-10.316	2.149	
	0.700	-25390	-33182	-4.870	-20746	-7.772	1.202	
	0.746	-22045	-26405	-2.725	-17288	-5.698	0.556	
fcc	0.848	-14407	-15021	-0.384	-8728	-3.933	-2.461	
	0.850	-14226	-14792	-0.354	-8603	-3.869	-2.454	
	0.900	-10180	-9899	0.176	-5855	-2.527	-2.170	
	0.950	-5595	-4898	0.435	-2954	-1.215	-1.474	
	1.000	0	0	0.000	0	0.000	0.000	

Table IVa. Integral quantities for the stable phases at 1600 K

Reference states: Al(liquid), Co(fcc)

Tal	ble	IVb	. Partial	quantities	for Al	l in the	stable	phases a	at 1600 K.
-----	-----	-----	-----------	------------	--------	----------	--------	----------	------------

		=		_				
Phase	$x_{ m Al}$	ΔG_{Al}	$\Delta H_{ m Al}$	$\Delta S_{ m Al}$	$G_{ m Al}^{ m E}$	$S_{ m Al}^{ m E}$	$a_{ m Al}$	$\gamma_{ m A1}$
		[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$		
liquid	1.000	0	0	0.000	0	0.000	1.000	1.000
	0.950	-734	-132	0.377	-52	-0.050	0.946	0.996
	0.900	-1790	-969	0.514	-389	-0.362	0.874	0.971
	0.850	-3385	-2991	0.246	-1223	-1.105	0.775	0.912
	0.800	-5664	-6463	-0.499	-2695	-2.355	0.653	0.817
	0.750	-8709	-11459	-1.719	-4882	-4.111	0.520	0.693
	0.711	-11615	-16332	-2.948	-7082	-5.782	0.418	0.587
AlCo	0.548	-11615	39552	31.979	6645	20.567	0.418	1.648
	0.500	-41083	-88188	-29.441	-43608	-27.862	0.046	0.038
	0.450	-57198	-151065	-58.667	-68657	-51.505	0.014	0.006
	0.400	-63886	-148994	-53.192	-70512	-49.051	0.008	0.005
	0.350	-69079	-144255	-46.985	-71633	-45.389	0.006	0.005
	0.300	-73857	-138559	-40.439	-72637	-41.202	0.004	0.004
	0.254	-78287	-132715	-34.018	-73560	-36.972	0.003	0.004
fcc	0.152	-78287	-95784	-10.935	-53259	-26.578	0.003	0.018
	0.150	-78699	-96020	-10.826	-53461	-26.599	0.003	0.018
	0.100	-87616	-99532	-7.448	-56985	-26.593	0.001	0.014
	0.050	-98761	-99629	-0.543	-58908	-25.451	0.001	0.012
	0.000	$-\infty$	-95457	∞	-58933	-22.828	0.000	0.012

Reference state: Al(liquid)

		-		-				
Phase	$x_{ m Co}$	$\Delta G_{ m Co}$ [J/mol]	$\Delta H_{ m Co}$ [J/mol]	$\Delta S_{ m Co}$ [J/(mol·K)]	$G_{ m Co}^{ m E}$ [J/mol]	$S_{ ext{Co}}^{ ext{E}}$ [J/(mol·K)]	$a_{ m Co}$	$\gamma_{ m Co}$
liquid	0.000	$-\infty$	-138578	∞	-77051	-38.454	0.000	0.003
	0.050	-115383	-134716	-12.083	-75530	-36.991	0.000	0.003
	0.100	-102147	-124728	-14.113	-71516	-33.258	0.000	0.005
	0.150	-90980	-110718	-12.336	-65743	-28.110	0.001	0.007
	0.200	-80249	-94424	-8.859	-58838	-22.241	0.002	0.012
	0.250	-69770	-77249	-4.674	-51328	-16.201	0.005	0.021
	0.289	-61892	-64037	-1.341	-45367	-11.669	0.010	0.033
AlCo	0.452	-61892	-173096	-69.503	-77177	-59.949	0.010	0.003
	0.500	-30011	-41709	-7.312	-25111	-10.375	0.105	0.151
	0.550	-15036	19022	21.286	-1062	12.552	0.323	0.923
	0.600	-10052	17553	17.253	332	10.763	0.470	1.025
	0.650	-6924	14720	13.527	1008	8.570	0.594	1.079
	0.700	-4619	11980	10.374	1493	6.555	0.707	1.119
	0.746	-2922	9744	7.916	1847	4.936	0.803	1.149
fcc	0.848	-2922	-500	1.513	-722	0.139	0.803	0.947
	0.850	-2848	-458	1.494	-686	0.143	0.807	0.950
	0.900	-1576	61	1.023	-174	0.147	0.888	0.987
	0.950	-691	87	0.487	-9	0.060	0.949	0.999
	1.000	0	0	0.000	0	0.000	1.000	1.000

Table IVc. Partial quantities for Co in the stable phases at 1600 K.

Reference state: Co(fcc)

Table V. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Co}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al ₉ Co ₂	0.182	-31639	-34069	-8.151	-0.026
Al ₁₃ Co ₄	0.235	-37370	-39863	-8.363	-0.034
Al_3Co_1	0.250	-38907	-41492	-8.670	-0.036
Al_5Co_2	0.286	-42560	-45437	-9.648	-0.041
Al_1Co_1	0.500	-55194	-58479	-11.019	-0.072

References

[98Dup] N. Dupin, I. Ansara: Rev. Métall. 9 (1998) 1121–1129.

Al – Cr (Aluminium – Chromium)

Fig. 1. Calculated phase diagram for the system Al-Cr.

There is only a small solubility of Cr in fcc Al while Al is very stable in bcc Cr. Many intermetallic phases form precipitate on cooling from the liquid. Some of these have a significant solubility range but they have all been modelled as stoichiometric compounds. They form a series of peritectic reactions with the liquid except the AlCr₂ compound which forms from the bcc Cr phase. Some of the intermediate phases have transformations at lower temperatures. Both Al and Cr are important alloying elements in nickel based superalloys but also in steels and other metals.

There is a limited amount of experimental data, mainly in the Al rich side. The assessment has been done by N. Saunders and the parameters are reported in COST 507 [98Ans]. To date, the assessment has not been published separately.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	liquid fcc Al ₁₃ Cr ₂ Al ₁₁ Cr ₂ Al ₄ Cr α Al ₉ Cr ₄ β Al ₉ Cr ₄ α Al ₈ Cr ₅ β Al ₈ Cr ₅ AlCr ₂ bcc	$\begin{array}{c} A1 \\ \dots \\ \dots \\ \dots \\ D8_{10} \\ \dots \\ C11_{b} \\ A2 \end{array}$	$\begin{array}{c} Cu\\ Al_{45}V_7\\ Al_5Cr\\ Al_4Cr\\ Al_9Cr_4\\ \cdots\\ Al_8Cr_5\\ \cdots\\ MoSi_2\\ W\end{array}$	cF4 mC104 mP48 mP180 cI52 hR26 tI6 cI2	$Fm\overline{3}m$ $C2/m$ $P2$ $P2/m$ $I\overline{4}3m$ \dots $R\overline{3}m$ \dots $I4/mmm$ $Im\overline{3}m$	LIQUID FCC_A1 AL13CR2 AL11CR2 AL4CR AL9CR4_L AL9CR4_H AL8CR5_L AL8CR5_H ALCR2 BCC_A2	$\begin{array}{c} (Al,Cr)_{1} \\ (Al,Cr)_{1} \\ Al_{13}Cr_{2} \\ Al_{10}Al_{1}Cr_{2} \\ Al_{4}Cr_{1} \\ Al_{9}Cr_{4} \\ Al_{9}Cr_{4} \\ Al_{8}Cr_{5} \\ Al_{8}Cr_{5} \\ Al_{1}Cr_{2} \\ (Al,Cr)_{1} \end{array}$

Table I. Phases, stru	ctures and	models.
-----------------------	------------	---------

Reaction	Туре	<i>T /</i> K	Compositions / $x_{ m Cr}$			$\Delta_{ m r} H$ / (J/mol)
liquid + bcc $\rightleftharpoons \beta Al_8 Cr_5$	peritectic	1597.0	0.383	0.558	0.385	-19408
$liquid + \beta Al_8 Cr_5 \rightleftharpoons \beta Al_9 Cr_4$	peritectic	1443.1	0.225	0.385	0.308	-8029
$\beta Al_8 Cr_5 \rightleftharpoons \alpha Al_8 Cr_5$	polymorphic	1398.0	0.385	0.385		-0291
$\beta Al_9 Cl_4 \leftarrow \alpha Al_9 Cl_4$ liquid + $\alpha Al_9 Cl_4 \rightleftharpoons Al_4 Cr$	peritectic	1208.1	0.308 0.137	0.308 0.308	0.200	-16291
liquid + Al ₄ Cr \rightleftharpoons Al ₁₁ Cr ₂	peritectic	1230.1 1214.6	0.066	0.200	0.154	-4929
$bcc \rightleftharpoons AlCr_2$	congruent	1181.5	0.667	0.667		-2061
$bcc \rightleftharpoons \alpha Al_8 Cr_5 + AlCr_2$	eutectoid	1139.3	0.633	0.385	0.667	-2656
$liquid + Al_{11}Cr_2 \rightleftharpoons Al_{13}Cr_2$	peritectic	1042.9	0.009	0.154	0.133	-1509
$liquid + Al_{13}Cr_2 \rightleftharpoons fcc$	peritectic	934.8	0.002	0.133	0.003	-10473

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 2200 K.

$x_{ m Cr}$	ΔG_{m}	$\Delta H_{ m m}$	$\Delta S_{ m m}$	$G_{\mathrm{m}}^{\mathrm{E}}$	$S_{\mathrm{m}}^{\mathrm{E}}$	ΔC_p	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$	$[J/(mol \cdot K)]$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-9348	-3402	2.703	-3402	0.000	0.000	
0.200	-14849	-5696	4.161	-5696	0.000	0.000	
0.300	-18188	-7014	5.079	-7014	0.000	0.000	
0.400	-19799	-7488	5.596	-7488	0.000	0.000	
0.500	-19929	-7250	5.763	-7250	0.000	0.000	
0.600	-18743	-6432	5.596	-6432	0.000	0.000	
0.700	-16340	-5166	5.079	-5166	0.000	0.000	
0.800	-12737	-3584	4.161	-3584	0.000	0.000	
0.900	-7764	-1818	2.703	-1818	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Cr(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 2200 K.

$x_{ m A1}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2503	-576	0.876	-576	0.000	0.872	0.969	
0.800	-6210	-2128	1.855	-2128	0.000	0.712	0.890	
0.700	-10916	-4392	2.966	-4392	0.000	0.551	0.787	
0.600	-16448	-7104	4.247	-7104	0.000	0.407	0.678	
0.500	-22679	-10000	5.763	-10000	0.000	0.289	0.579	
0.400	-29577	-12816	7.619	-12816	0.000	0.199	0.496	
0.300	-37311	-15288	10.010	-15288	0.000	0.130	0.434	
0.200	-46592	-17152	13.382	-17152	0.000	0.078	0.392	
0.100	-60263	-18144	19.145	-18144	0.000	0.037	0.371	
0.000	$-\infty$	-18000	∞	-18000	0.000	0.000	0.374	

Reference state: Al(liquid)

		1	1	1				
$x_{ m Cr}$	$\Delta G_{ m Cr}$ [J/mol]	$\Delta H_{ m Cr}$ [J/mol]	$\Delta S_{ m Cr}$ [J/(mol·K)]	$G_{ m Cr}^{ m E}$ [J/mol]	$S^{ m E}_{ m Cr}$ [J/(mol·K)]	$a_{ m Cr}$	$\gamma_{ m Cr}$	
0.000	$-\infty$	-40000	∞	-40000	0.000	0.000	0.112	
0.100	-70955	-28836	19.145	-28836	0.000	0.021	0.207	
0.200	-49408	-19968	13.382	-19968	0.000	0.067	0.336	
0.300	-35155	-13132	10.010	-13132	0.000	0.146	0.488	
0.400	-24825	-8064	7.619	-8064	0.000	0.257	0.643	
0.500	-17179	-4500	5.763	-4500	0.000	0.391	0.782	
0.600	-11520	-2176	4.247	-2176	0.000	0.533	0.888	
0.700	-7352	-828	2.966	-828	0.000	0.669	0.956	
0.800	-4274	-192	1.855	-192	0.000	0.792	0.990	
0.900	-1931	-4	0.876	-4	0.000	0.900	1.000	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Cr in the liquid phase at 2200 K.

Reference state: Cr(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2200 K.

Fig. 3. Activities in the liquid phase at T=2200 K.

Table IVa. Integral quantities for the stable phases at 1600 K.

Phase	$x_{ m Cr}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
liquid	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-7114	-1006	3.817	-2789	1.114	-0.167	
	0.200	-11127	-905	6.389	-4470	2.228	-0.335	
	0.300	-13301	173	8.421	-5175	3.342	-0.502	
	0.385	-13971	1753	9.827	-5106	4.287	-0.644	
bcc	0.559	-14349	-13712	0.399	-5221	-5.307	0.004	
	0.600	-14327	-13337	0.619	-5374	-4.977	0.004	
	0.700	-13324	-11649	1.046	-5197	-4.033	0.003	
	0.800	-10900	-8864	1.272	-4243	-2.888	0.002	
	0.900	-6835	-4981	1.159	-2510	-1.544	0.001	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Cr(bcc)

		1		1					
Phase	$x_{ m Al}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m A1}^{ m E}$ [J/(mol·K)]	$a_{\rm Al}$	$\gamma_{ m A1}$	
liquid	1.000	0	0	0.000	0	0.000	1.000	1.000	
	0.900	-1978	-576	0.876	-576	0.000	0.862	0.958	
	0.800	-5097	-2128	1.855	-2128	0.000	0.682	0.852	
	0.700	-9137	-4392	2.966	-4392	0.000	0.503	0.719	
	0.615	-13134	-6672	4.039	-6672	0.000	0.373	0.606	
bcc	0.441	-13134	-17551	-2.760	-2245	-9.566	0.373	0.845	
	0.400	-16288	-20165	-2.423	-4098	-10.042	0.294	0.735	
	0.300	-25172	-27302	-1.332	-9155	-11.342	0.151	0.502	
	0.200	-36401	-35537	0.540	-14990	-12.842	0.065	0.324	
	0.100	-52235	-44870	4.603	-21603	-14.542	0.020	0.197	
	0.000	$-\infty$	-55301	∞	-28994	-16.442	0.000	0.113	

Table IVb. Partial quantities for Al in the stable phases at 1600 K.

Reference state: Al(liquid)

Table IVc. Partial quantities for Cr in the stable phases at 1600 K.

Phase	$x_{ m Cr}$	$\Delta G_{ m Cr}$ [J/mol]	$\Delta H_{ m Cr}$ [J/mol]	$\Delta S_{ m Cr}$ [J/(mol·K)]	$G^{ m E}_{ m Cr}$ [J/mol]	$S_{ m Cr}^{ m E}$ [J/(mol·K)]	$a_{ m Cr}$	$\gamma_{ m Cr}$
liquid	$\begin{array}{c} 0.000\\ 0.100 \end{array}$	$-\infty$ -53336	$-16043 \\ -4879$	∞ 30.286	$-33869 \\ -22705$	$\frac{11.141}{11.141}$	$\begin{array}{c} 0.000\\ 0.018\end{array}$	0.078 0.181
	0.200 0.300	-35247 -23017	3989 10825 15224	24.523 21.152	-13837 -7001	$11.141 \\ 11.141 \\ 11.141$	$0.071 \\ 0.177 \\ 0.216$	0.353 0.591 0.822
bcc	0.385 0.559 0.600	-15308 -15308 -13020	-10682 -8784	19.083 2.892 2.647	-2602 -7569 -6224	-1.946 -1.600	0.316 0.316 0.376	0.822
	0.000 0.700 0.800	-8246 -4525	-4941 -2196	2.041 2.066 1.455	$-3501 \\ -1556$	-0.900 -0.400	$0.538 \\ 0.712$	0.769 0.890
	$\begin{array}{c} 0.900 \\ 1.000 \end{array}$	$-1791 \\ 0$	$-549 \\ 0$	$0.776 \\ 0.000$	-389 0	$-0.100 \\ 0.000$	$\begin{array}{c} 0.874 \\ 1.000 \end{array}$	$0.971 \\ 1.000$

Reference state: Cr(bcc)

Fig. 4. Integral quantities of the stable phases at T=1600 K.

Fig. 5. Activities in the stable phases at T=1600 K.

Compound	$x_{ m Cr}$	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/\!({\rm mol}{\cdot}{\rm K}))$
Al ₁₃ Cr ₂	0.133	-11186	-11626	-1.476	-0.020
$Al_{11}Cr_2$	0.154	-12908	-13499	-1.981	-0.023
Al_4Cr_1	0.200	-16669	-17803	-3.805	-0.029
$\alpha Al_9 Cr_4$	0.308	-17380	-17747	-1.230	-0.045
$\beta Al_9 Cr_4$	0.308	-11628	-10338	4.328	-0.045
$\alpha Al_8 Cr_5$	0.385	-17654	-17651	0.010	-0.056
$\beta Al_8 Cr_5$	0.385	-12705	-11360	4.510	-0.056
Al_1Cr_2	0.666	-11772	-10894	2.948	-0.098

Table V. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[98Ans] I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical database for light metal alloys", Vol. 2, EUR 18499, 1998, 23–27.

Fig. 1. Calculated phase diagram for the system Al-Cu.

The data for the Al-Cu system are taken from the critical assessment of Saunders [98Sau]. The phase diagram for this system is now well established and is characterised by a number of intermetallic phases many of which exist over appreciable ranges of homogeneity. The calculated phase diagram is similar to that recommended in the reviews by Murray [85Mur] and Raynor [44Ray]. There have been many studies of the thermodynamic properties of the system which are in reasonable agreement except for the measurements of the enthalpy of mixing in the liquid phase. The assessment of Saunders favoured the experimental results for the liquid phase of Sandakov et al. [71San] and Heyer [89Hey] over those of Itagaki and Yazawa [75ita], Kawakami [30Kaw] and Oelsen and Middel [37Oel]. There is generally good agreement between calculated and experimental data throughout the system.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	(Al,Cu) ₁
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	$(Al,Cu)_1$
Al_2Cu	<i>C</i> 16	Al_2Cu	tI12	I4/mcm	C16_AL2CU	$Al_2(Al,Cu)_1$
AlCu		•••	mC20	C2/m	ALCU_ETA	$(Al,Cu)_1Cu_1$
Al_9Cu_{11}		•••	hP42	P6/mmm	ALCU_ZETA	Al_9Cu_{11}
$D8_1$	$D8_1$	NiAs	hP4	$P6_3/mmc$	D81_ALCU	$(Al,Cu)_1Cu_1$
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	$(Al,Cu)_1$
Al_2Cu_3		•••	hR^*	$R\overline{3}m$	ALCU_DELTA	Al_2Cu_3
Al_4Cu_9	•••	•••	•••	•••	GAMMA_H	$Al_4(Al,Cu)_1Cu_8$
$D8_3$	$D8_3$	Al_4Cu_9	cP52	$P\overline{4}3m$	D83_GAMMA	$Al_4(Al,Cu)_1Cu_8$

Table I.	Phases,	structures	and	models.
----------	---------	------------	-----	---------

Reaction	Туре	<i>T /</i> K	Comp	ositions	/ $x_{ m Cu}$	$\Delta_{ m r} H$ / (J/mol)
liquid ≓ bcc	congruent	1318.8	0.765	0.765		-9939
$liquid \rightleftharpoons bcc + fcc$	eutectic	1309.3	0.818	0.807	0.837	-10449
liquid + bcc \rightleftharpoons Al ₄ Cu ₉	peritectic	1293.4	0.679	0.699	0.684	-8074
liquid + Al ₄ Cu ₉ \rightleftharpoons bcc	peritectic	1232.4	0.604	0.667	0.644	-1974
$bcc + Al_4Cu_9 \rightleftharpoons D8_3$	peritectoid	1150.5	0.625	0.656	0.647	-2400
liquid + bcc $\rightleftharpoons D8_1$	peritectic	1124.1	0.520	0.585	0.577	-5425
$bcc \rightleftharpoons D8_1 + D8_3$	eutectoid	1109.3	0.602	0.580	0.635	-4190
$Al_4Cu_9 \rightleftharpoons D8_3 + bcc$	eutectoid	1054.2	0.689	0.687	0.732	-1811
$D8_1 + D8_3 \rightleftharpoons Al_2Cu_3$	peritectoid	959.7	0.572	0.628	0.600	-2836
liquid + $D8_1$ \rightleftharpoons AlCu	peritectic	898.1	0.346	0.541	0.510	-4239
liquid + AlCu \rightleftharpoons Al ₂ Cu	peritectic	869.0	0.319	0.506	0.329	-14313
$D8_1 \rightleftharpoons Al_9Cu_{11}$	congruent	861.3	0.550	0.550		-2513
$D8_1 \rightleftharpoons Al_9Cu_{11} + Al_2Cu_3$	eutectoid	855.8	0.556	0.550	0.600	-2674
$D8_1 \rightleftharpoons AlCu + Al_9Cu_{11}$	eutectoid	852.4	0.543	0.511	0.550	-2210
$bcc \rightleftharpoons D8_3 + fcc$	eutectoid	837.9	0.771	0.691	0.795	-1210
$liquid \rightleftharpoons fcc + Al_2Cu$	eutectic	820.7	0.175	0.025	0.318	-12719

Table II. Invariant reactions.

Table IIIa. Integral quantit	ties for the liquid phase at 1400 K.
------------------------------	--------------------------------------

$x_{ m Cu}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-7402	-3796	2.576	-3618	-0.127	-0.720	
0.200	-12806	-7673	3.667	-6982	-0.494	-0.960	
0.300	-17042	-11330	4.080	-9931	-0.999	-0.840	
0.400	-20116	-14442	4.053	-12282	-1.543	-0.480	
0.500	-21889	-16656	3.738	-13821	-2.025	0.000	
0.600	-22142	-17591	3.251	-14307	-2.345	0.480	
0.700	-20587	-16840	2.676	-13476	-2.403	0.840	
0.800	-16858	-13970	2.062	-11033	-2.098	0.960	
0.900	-10441	-8520	1.372	-6656	-1.331	0.720	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Cu(liquid)

		1						
$x_{ m Al}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1330	88	1.012	-103	0.136	0.892	0.991	
0.800	-3208	-35	2.267	-611	0.411	0.759	0.949	
0.700	-6033	-1006	3.591	-1881	0.625	0.596	0.851	
0.600	-10299	-3546	4.823	-4353	0.576	0.413	0.688	
0.500	-16614	-8456	5.828	-8546	0.064	0.240	0.480	
0.400	-25727	-16616	6.508	-15061	-1.111	0.110	0.274	
0.300	-38594	-28990	6.860	-24580	-3.150	0.036	0.121	
0.200	-56600	-46621	7.128	-37865	-6.254	0.008	0.039	
0.100	-82564	-70634	8.522	-55762	-10.623	0.001	0.008	
0.000	$-\infty$	-102234	∞	-79193	-16.458	0.000	0.001	

Table IIIb. Partial quantities for Al in the liquid phase at 1400 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Cu in the liquid phase at 1400 K.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x_{ m Cu}$	$\Delta G_{ m Cu}$ [J/mol]	$\Delta H_{ m Cu}$ [J/mol]	$\Delta S_{ m Cu}$ [J/(mol·K)]	$G^{ m E}_{ m Cu}$ [J/mol]	$S^{ m E}_{ m Cu}$ [J/(mol·K)]	$a_{ m Cu}$	$\gamma_{ m Cu}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 0.100 0.200 0.300	$-\infty$ -62056 -51198 -42730	-36634 -38752 -38224 -35418	∞ 16.646 9.267 5.222	-36995 -35253 -32464 -28715	$0.258 \\ -2.499 \\ -4.114 \\ -4.788$	$0.000 \\ 0.005 \\ 0.012 \\ 0.025$	$0.042 \\ 0.048 \\ 0.061 \\ 0.085$	
	$\begin{array}{c} 0.300\\ 0.400\\ 0.500\\ 0.600\\ 0.700\\ 0.800\\ 0.900\\ 1.000\end{array}$	$\begin{array}{r} -42130 \\ -34841 \\ -27164 \\ -19752 \\ -12869 \\ -6922 \\ -2427 \end{array}$	$\begin{array}{r} -30785 \\ -24856 \\ -18241 \\ -11634 \\ -5808 \\ -1618 \end{array}$	$\begin{array}{c} 2.897\\ 1.649\\ 1.079\\ 0.883\\ 0.796\\ 0.578\\ 0.0578\end{array}$	$\begin{array}{r} -24176 \\ -19095 \\ -13805 \\ -8717 \\ -4324 \\ -1200 \end{array}$	$\begin{array}{r} -4.733 \\ -4.721 \\ -4.114 \\ -3.168 \\ -2.083 \\ -1.059 \\ -0.298 \\ 0.000 \end{array}$	$\begin{array}{c} 0.023\\ 0.050\\ 0.097\\ 0.183\\ 0.331\\ 0.552\\ 0.812\\ 1.000\end{array}$	$\begin{array}{c} 0.003\\ 0.125\\ 0.194\\ 0.305\\ 0.473\\ 0.690\\ 0.902\\ 1.000\end{array}$	
	1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Cu(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

Compound	$x_{ m Cu}$	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al ₂ Cu	0.333	-15131	-15802	-2.245	0.000
AlCu	0.500	-19812	-20280	-1.570	0.000
Al ₉ Cu ₁₁	0.550	-20732	-21000	-0.900	0.000
Al_2Cu_3	0.600	-21161	-21340	-0.600	0.000

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[30Kaw]	M. Kawakami: Sci. Rep. Res. Inst. Tohoku Univ., Sendai, 19 (1930) 521–549.
[37Oel]	W. Oelsen, W. Middel: Mitt. K.W.I. Eisenforsch. Düsseldorf, 19 (1937) 1-26.
[44Ray]	G.V. Raynor: Annotated Equilibrium Diagram Series No. 4, 5 pp, Inst. Met, London, 1944.
[71San]	V.M. Sandakov, Yu.O. Esin, P.V. Gel'd, V.D. Shantarin: Zh. Fiz. Khim. 45 (1971) 2030-2032.
[75Ita]	K. Itagaki, A. Yazawa: Trans. Jpn. Inst. Met. 16 (1975) 679-686.
[85Mur]	J.L. Murray: Int. Met. Rev. 30 (1985) 211–233.
[89Hey]	E. Heyer: unpublished work, Univ. Wien, 1989.
[98Sau]	N. Saunders in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical

database for light metal alloys", Vol. 2, EUR 18499, 1998, 28-33.

Al – Fe (Aluminium – Iron)

Fig. 1. Calculated phase diagram for the system Al-Fe.

There is a large solubility of Al in bcc-Fe while Fe is only slightly soluble in fcc-Al. A number of intermediate phases are formed in contact with the liquid. The bcc phase has also several ordering transformations to B2 and $D0_3$. These are second order at high temperature but first order at low temperature where there is an interaction also with the ferromagnetic transition in bcc-Fe. The solubility of Al in fcc-Fe is very small and a characteristic "gamma-loop" is formed.

Fe is a frequent and important impurity in Al alloys and the solubility is so low that it is important to control by alloying what kind of intermediate phase is formed. Some of these are less harmful. Al as alloying element in Fe is gaining interest but it is difficult to have high concentrations as Al easily oxidises when added to the liquid steel. Al improves the corrosion resistance but the ordering transformations at low temperatures tend to decrease the mechanical strength of these materials. The region with ordering transformations at low temperature and low Al content has attracted considerable scientific interest both experimentally and for modelling chemical and magnetic ordering.

Many experimental data are available although some of these are quite old. The selected assessment of the system has been given by [93Sei].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	(Al,Fe) ₁
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	(Al,Fe) ₁
$Al_{13}Fe_4$	• • •	•••	mC102	C2/m	AL13FE4	$Al_{32}Fe_{12}(Al,\Box)_7$
Al_5Fe_2	$D8_{11}$	Al_5Mn_2	hP28	$P6_3/mmc$	AL5FE2	Al_5Fe_2
Al_2Fe	•••	Al ₂ Fe	aP18	P1	AL2FE	Al_2Fe_1
Al_5Fe_4	•••	•••	cI16?	•••	AL5FE4	(Al,Fe) ₁
A2	A2	W	cI2	$Im\overline{3}m$	BCC_A2	(Al,Fe) ₁
<i>B</i> 2	<i>B</i> 2	CsCl	cP2	$Pm\overline{3}m$	BCC_B2	$(Al,Fe)_1(Al,Fe)_1$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Fe}$	$\Delta_{ m r} H$ / (J/mol)
liquid + AlFe \rightleftharpoons Al ₅ Fe ₄	peritectic	1495.5	0.406	0.484	0.426	-8327
$liquid \rightleftharpoons Al_5Fe_2$	congruent	1434.6	0.286	0.286		-24401
$liquid \rightleftharpoons Al_5Fe_2 + Al_5Fe_4$	eutectic	1430.0	0.316	0.286	0.366	-19438
$Al_5Fe_2 + Al_5Fe_4 \rightleftharpoons Al_2Fe$	peritectoid	1428.2	0.286	0.366	0.333	-6239
$liquid + Al_5Fe_2 \rightleftharpoons Al_{13}Fe_4$	peritectic	1424.4	0.242	0.286	0.247	-21699
$Al_5Fe_4 \rightleftharpoons Al_2Fe + B2$	eutectoid	1368.2	0.404	0.333	0.462	-7178
$liquid \rightleftharpoons fcc + Al_{13}Fe_4$	eutectic	927.1	0.009	0.000	0.237	-11015

Table IIIa. Integral quantities for the liquid phase at 1900 K.

$x_{ m Fe}$	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-9364	-8679	0.360	-4228	-2.343	0.000	
0.200	-15542	-15254	0.152	-7637	-4.009	0.000	
0.300	-19830	-19788	0.022	-10179	-5.057	0.000	
0.400	-22441	-22346	0.050	-11809	-5.545	0.000	
0.500	-23432	-22994	0.230	-12482	-5.533	0.000	
0.600	-22785	-21801	0.518	-12153	-5.078	0.000	
0.700	-20432	-18835	0.841	-10782	-4.238	0.000	
0.800	-16231	-14165	1.087	-8326	-3.073	0.000	
0.900	-9880	-7862	1.062	-4745	-1.641	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Fe(liquid)

		1	1	I IIIII				
$x_{\rm Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2066	-1063	0.528	-402	-0.348	0.877	0.975	
0.800	-5196	-4167	0.541	-1670	-1.314	0.720	0.900	
0.700	-9533	-9183	0.184	-3898	-2.781	0.547	0.781	
0.600	-15245	-15977	-0.385	-7175	-4.633	0.381	0.635	
0.500	-22535	-24412	-0.988	-11585	-6.751	0.240	0.480	
0.400	-31687	-34349	-1.401	-17211	-9.020	0.135	0.336	
0.300	-43152	-45644	-1.311	-24132	-11.322	0.065	0.217	
0.200	-57847	-58148	-0.159	-32422	-13.540	0.026	0.128	
0.100	-78527	-71713	3.587	-42152	-15.558	0.007	0.069	
0.000	$-\infty$	-86182	∞	-53391	-17.259	0.000	0.034	

Table IIIb. Partial quantities for Al in the liquid phase at 1900 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Fe in the liquid phase at 1900 K.

$x_{ m Fe}$	$\Delta G_{ m Fe}$ [J/mol]	$\Delta H_{ m Fe}$ [J/mol]	$\Delta S_{ m Fe}$ [J/(mol·K)]	$G_{ m Fe}^{ m E}$ [J/mol]	$S_{ m Fe}^{ m E}$ [J/(mol·K)]	$a_{ m Fe}$	$\gamma_{ m Fe}$	
0.000	$-\infty$	-97527	∞	-46219	-27.004	0.000	0.054	
0.100	-75042	-77226	-1.150	-38667	-20.295	0.009	0.086	
0.200	-56929	-59600	-1.406	-31504	-14.788	0.027	0.136	
0.300	-43855	-44532	-0.356	-24835	-10.367	0.062	0.208	
0.400	-33236	-31899	0.704	-18761	-6.915	0.122	0.305	
0.500	-24328	-21576	1.449	-13378	-4.315	0.214	0.429	
0.600	-16851	-13435	1.798	-8781	-2.450	0.344	0.574	
0.700	-10695	-7345	1.763	-5060	-1.202	0.508	0.726	
0.800	-5827	-3169	1.399	-2302	-0.456	0.692	0.864	
0.900	-2253	-768	0.781	-588	-0.095	0.867	0.963	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Fe(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1900 K.

Fig. 3. Activities in the liquid phase at T=1900 K.

145

Landolt-Börnstein New Series IV/19B

iubie i (ui	megrui	quantities	or the state	e phases at you	5 II .			
Phase	$x_{ m Fe}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	$0.000 \\ 0.000$	$0 \\ -18$	$0 \\ -8$	$0.000 \\ 0.011$	$0 \\ -6$	$0.000 \\ -0.002$	$0.000 \\ -0.002$	
Al ₁₃ Fe ₄	$\begin{array}{c} 0.237 \\ 0.247 \end{array}$	$-23988 \\ -24603$	$-29271 \\ -29610$	-5.870 -5.563	$-23745 \\ -23931$	$-6.141 \\ -6.309$	$-3.186 \\ -3.322$	
Al_5Fe_2	0.286	-25981	-30815	-5.371			-3.840	
Al_2Fe	0.333	-26638	-30554	-4.351			-4.480	
A2, B2	0.504	-27384	-29037	-1.836	-26476	-2.846	-2.838	
	0.600	-26194	-26389	-0.217	-24072	-2.575	-5.315	
	0.700	-22655	-21398	1.397	-19768	-1.811	-4.992	
	0.800	-17214	-14685	2.810	-14020	-0.739	-2.323	
	0.900	-9924	-7523	2.668	-7491	-0.035	13.207	
	1.000	0	0	0.000	0	0.000	0.000	

Table IVa. Integral quantities for the stable phases at 900 K.

Reference states: Al(fcc), Fe(A2)

Table IVb. Partial quantities for Al in the stable phases at 900 K.

Phase	$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m A1}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000
	1.000	-1	0	0.001	0	0.000	1.000	1.000
$Al_{13}Fe_4$	0.763	-1	-21332	-23.700	-19710	-1.801	1.000	0.072
	0.753	-15764	-21332	-6.187	-19245	-2.319	0.122	0.076
Al_5Fe_2	0.714	-15764	-21880	-6.796			0.122	
	0.714	-22037	-32382	-11.494			0.053	
Al_2Fe	0.667	-22037	-32382	-11.494			0.053	
	0.667	-25178	-33523	-9.272			0.035	
A2, B2	0.496	-25178	-28636	-3.841	-37379	9.715	0.035	0.007
	0.400	-41232	-50726	-10.549	-45071	-6.284	0.004	0.002
	0.300	-54302	-62658	-9.284	-53140	-10.576	0.001	0.001
	0.200	-67918	-74338	-7.133	-60930	-14.898	0.000	0.000
	0.100	-85536	-59319	29.130	-68305	9.985	0.000	0.000
	0.000	$-\infty$	-90978	∞	-82355	-9.581	0.000	0.000

Reference state: Al(fcc)

Phase	$x_{ m Fe}$	$\Delta G_{ m Fe}$ [J/mol]	$\Delta H_{ m Fe}$ [J/mol]	$\Delta S_{ m Fe}$ [J/(mol·K)]	$G_{ m Fe}^{ m E}$ [J/mol]	$S_{ m Fe}^{ m E}$ [J/(mol·K)]	a_{Fe}	$\gamma_{ m Fe}$
fcc	$0.000 \\ 0.000$	$-\infty -101187$	$-49409 \\ -49405$	∞ 57.537	$-36108 \\ -36110$	-14.779 -14.771	$0.000 \\ 0.000$	$0.008 \\ 0.008$
Al13Fe4	$\begin{array}{c} 0.237 \\ 0.247 \end{array}$	$-101182 \\ -51523$	$-54823 \\ -54823$	$51.510 \\ -3.666$	$-36727 \\ -38205$	-20.107 -18.464	$\begin{array}{c} 0.000\\ 0.001 \end{array}$	$0.007 \\ 0.006$
Al ₅ Fe ₂	$\begin{array}{c} 0.286\\ 0.286\end{array}$	$-51523 \\ -35840$	$-53152 \\ -26897$	$\begin{array}{r} -1.810\\ 9.937\end{array}$			$\begin{array}{c} 0.001 \\ 0.008 \end{array}$	
Al ₂ Fe	$0.333 \\ 0.333$	$-35840 \\ -29558$	$-26897 \\ -24615$	$9.937 \\ 5.492$			$\begin{array}{c} 0.008 \\ 0.019 \end{array}$	
A2, B2	$\begin{array}{c} 0.504 \\ 0.600 \\ 0.700 \\ 0.800 \\ 0.900 \\ 1.000 \end{array}$	$\begin{array}{r} -29558 \\ -16169 \\ -9092 \\ -4538 \\ -1522 \\ 0 \end{array}$	$-29432 \\ -10165 \\ -3715 \\ 228 \\ -1768 \\ 0$	$\begin{array}{c} 0.140 \\ 6.672 \\ 5.975 \\ 5.295 \\ -0.272 \\ 0.000 \end{array}$	$-15730 \\ -10073 \\ -5466 \\ -2292 \\ -734 \\ 0$	$-15.225 \\ -0.102 \\ 1.946 \\ 2.801 \\ -1.148 \\ 0.000$	$\begin{array}{c} 0.019 \\ 0.115 \\ 0.297 \\ 0.545 \\ 0.816 \\ 1.000 \end{array}$	0.122 0.260 0.482 0.736 0.907 1.000

Table IVc. Partial quantities for Fe in the stable phases at 900 K.

Reference state: Fe(A2)

Fig. 4. Integral quantities of the stable phases at *T*=900 K.

Fig. 5. Activities in the stable phases at T=900 K.

Table V. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Fe}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J/(mol \cdot K)})$
$\begin{array}{c} Al_5Fe_2\\ Al_2Fe_1 \end{array}$	$\begin{array}{c} 0.286 \\ 0.333 \end{array}$	-28769 -28738	$-30040 \\ -29649$	-4.261 -3.055	$-0.119 \\ -0.139$

References

[93Sei] M. Seiersten: Sintef report STF28F93051 (1993); and in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical database for light metal alloys", Vol. 2, EUR 18499, 1998, 34-39.

Al – Ga (Aluminium – Gallium)

Fig. 1. Calculated phase diagram for the system Al-Ga.

An understanding of the phase diagram and thermodynamics of the Al-Ga system is important in order to model III-V semiconductor systems. The phase diagram is very simple showing moderate solubility (maximum of approximately 9 at.%) of Ga in solid Al and very low solubility of Al in solid Ga. There is eutectic slightly below the melting point of Ga with the liquid composition containing approximately 3 at.% Al. The liquidus surface has been studied by a number of researchers and the agreement is generally very good particularly for Al rich compositions. There is a fair amount of uncertainty about the extent of the solid solution of Ga in Al. The thermodynamic data for the system have been studied by direct reaction calorimetry, micro-calorimetry and emf method. The critically assessed data for this system adopted by SGTE is by Watson [92Wat] who obtained a thermodynamic dataset in good agreement with all the experimental information. Other critical assessments have been carried out by Ansara et al. [78Ans], Murray [83Mur], Sharma and Srivastava [92Sha] and Jayaganthan and Hajra [96Jay].

Table I. Phases	structures	and	models.
-----------------	------------	-----	---------

Phase	Struktur- bericht	Prototype	Pearsor symbol	n Space group	SGTE name		Model
liquid fcc A11	A1 A11	Cu αGa	cF4 oC8	$Fm\overline{3}m$ Cmca	LIQUID FCC_A1 ORTHORH	IOMBIC_A11	$\begin{array}{c} (Al,Ga)_1 \\ (Al,Ga)_1 \\ Ga_1 \end{array}$
Table II.	Invariant rea	actions.					
Reactio	on	Туре	<i>T /</i> K	Compositi	ons / $x_{ m Ga}$	$\Delta_{ m r} H$ / (J/mol))
liquid -	rightarrow fcc + A11	eutectic	299.4	0.974 0.0	82 1.000	-5767	

	ii quantitie	s for the fique	· pilase at	1000 11.			
$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]		
0	0	0.000	0	0.000	0.000		
-2671	303	2.975	32	0.272	0.000		
-4138	503	4.641	23	0.480	0.000		
-5088	618	5.705	-9	0.626	0.000		
-5644	663	6.307	-48	0.711	0.000		
-5846	653	6.500	-83	0.736	0.000		
-5701	597	6.298	-105	0.702	0.000		
-5188	501	5.690	-109	0.611	0.000		
-4253	370	4.623	-92	0.462	0.000		
-2758	204	2.961	-55	0.258	0.000		
0	0	0.000	0	0.000	0.000		
	$\begin{array}{c} \Delta G_{\rm m} \\ [\rm J/mol] \\ 0 \\ -2671 \\ -4138 \\ -5088 \\ -5644 \\ -5846 \\ -5701 \\ -5188 \\ -4253 \\ -2758 \\ 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table IIIa. Integral quantities for the liquid phase at 1000 K

Reference states: Al(liquid), Ga(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1000 K.

x_{Al}	$\Delta G_{ m Al}$	$\Delta H_{ m Al}$	$\Delta S_{ m A1}$	$G_{ m Al}^{ m E}$	$S_{ m Al}^{ m E}$	$a_{ m Al}$	$\gamma_{ m Al}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-853	55	0.908	24	0.032	0.903	1.003	
0.800	-1787	195	1.981	69	0.126	0.807	1.008	
0.700	-2862	384	3.246	104	0.280	0.709	1.013	
0.600	-4139	600	4.739	108	0.492	0.608	1.013	
0.500	-5696	826	6.523	67	0.760	0.504	1.008	
0.400	-7641	1058	8.699	-22	1.080	0.399	0.997	
0.300	-10165	1298	11.463	-154	1.452	0.294	0.982	
0.200	-13696	1559	15.255	-314	1.873	0.193	0.963	
0.100	-19622	1863	21.486	-478	2.341	0.094	0.944	
0.000	$-\infty$	2240	∞	-612	2.853	0.000	0.929	

Reference state: Al(liquid)

Table IIIc. Partial quantities for Ga in the liquid phase at 1000 K.

$x_{ m Ga}$	$\Delta G_{ m Ga}$ [J/mol]	$\Delta H_{ m Ga}$ [J/mol]	$\Delta S_{ m Ga}$ [J/(mol·K)]	$G_{ m Ga}^{ m E}$ [J/mol]	$S_{ m Ga}^{ m E}$ [J/(mol·K)]	$a_{ m Ga}$	$\gamma_{ m Ga}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600\\ 0.700\\ \end{array}$	$-\infty$ -19040 -13542 -10282 -7900 -5996 -4408 -3056	3625 2536 1737 1163 759 480 290 160	∞ 21.576 15.279 11.445 8.659 6.476 4.698 3.216	$587 \\ 105 \\ -160 \\ -272 \\ -281 \\ -233 \\ -161 \\ -90$	$\begin{array}{c} 3.038\\ 2.431\\ 1.897\\ 1.434\\ 1.040\\ 0.713\\ 0.450\\ 0.250\end{array}$	$\begin{array}{c} 0.000\\ 0.101\\ 0.196\\ 0.290\\ 0.387\\ 0.486\\ 0.589\\ 0.692\\ \end{array}$	$\begin{array}{c} 1.073 \\ 1.013 \\ 0.981 \\ 0.968 \\ 0.967 \\ 0.972 \\ 0.981 \\ 0.989 \end{array}$	
0.800 0.900 1.000	$-1892 \\ -884 \\ 0$	73 19 0	$ 1.965 \\ 0.903 \\ 0.000 $	$-37 \\ -8 \\ 0$	$\begin{array}{c} 0.230\\ 0.110\\ 0.027\\ 0.000\end{array}$	$0.796 \\ 0.899 \\ 1.000$	$\begin{array}{c} 0.996 \\ 0.999 \\ 1.000 \end{array}$	

Reference state: Ga(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1000 K.

Fig. 3. Activities in the liquid phase at T=1000 K.

References

- [78Ans] I. Ansara, J.-P. Bros, C. Girard: Calphad 2 (1978) 187–196.
- [83Mur] J. Murray: Bull. Alloy Phase Diagrams 4 (1983) 183–190.
- [92Wat] A. Watson: Calphad **16** (1992) 207–217.
- [92Sha] R.C. Sharma, M. Srivastava: Calphad 16 (1992) 387–408.
- [96Jay] R. Jayaganthan, J.P. Hajra: Mater. Sci. Eng. B, **B28** (1996) 96–102.

Al – Ge (Aluminium – Germanium) 1300 1200 liquid 1100

Fig. 1. Calculated phase diagram for the system Al-Ge.

The Al-Ge system is of some interest because of superconducting and semiconducting metastable phases which can form readily in the system. It is characterised by a simple phase diagram with a eutectic at about 696 K. The solubility of Ge in the aluminium based solid solution is about 2.5 at.%. The solubility of Al in solid Ge (diamond structure) is about 1.3 at.% although this has not been modelled in the selected dataset. This dataset is based upon the critical assessment of data of Ansara et al. [79Ans] but modified to accommodate the adopted data for the pure elements [91Din]. Other critical assessments of data include those of McAlister and Murray [85McA] and Srikanth et al. [96Sri] but use different data for the elements. The phase diagram is fairly well characterised by experimental results which are in good agreement with the critically assessed data. Various studies have been carried out on the thermodynamic properties of the liquid, the enthalpies of formation and partial Gibbs energies of aluminium.

Table I.	Phases,	structures	and	models.
----------	---------	------------	-----	---------

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A4	$egin{array}{c} A1\ A4 \end{array}$	Cu C(diamond)	cF4 cF8	$Fm\overline{3}m$ $Fd\overline{3}m$	LIQUID FCC_A1 DIAMOND_A4	(Al,Ge) ₁ (Al,Ge) ₁ Ge ₁
Table II.	Invariant re	actions.				

Reaction	Туре	<i>T /</i> K	Com	Compositions / x_{Ge}		$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc + A4	eutectic	691.9	0.280	0.005	1.000	-15661

	8	1		r			
$x_{ m Ge}$	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{\rm m}^{\rm E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
	[0,0000]	[]	[*,(*******)]	[]	[0,(0000-00)]	[*:()]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5000	-938	3.191	-1559	0.488	0.000	
0.200	-8127	-1858	4.925	-2830	0.764	0.000	
0.300	-10231	-2612	5.985	-3765	0.906	0.000	
0.400	-11454	-3096	6.566	-4331	0.970	0.000	
0.500	-11845	-3250	6.752	-4508	0.988	0.000	
0.600	-11418	-3056	6.569	-4295	0.973	0.000	
0.700	-10168	-2542	5.991	-3702	0.912	0.000	
0.800	-8055	-1778	4.931	-2758	0.770	0.000	
0.900	-4946	-878	3.196	-1505	0.493	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1273 K.

Reference states: Al(liquid), Ge(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1273 K.

$x_{\rm A1}$	$\Delta G_{\rm A1}$ [J/mol]	$\Delta H_{\rm Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1250	19	0.997	-134	0.121	0.889	0.987	
0.800	-2972	-142	2.223	-610	0.368	0.755	0.944	
0.700	-5277	-713	3.585	-1502	0.619	0.607	0.868	
0.600	-8245	-1795	5.067	-2838	0.819	0.459	0.765	
0.500	-11939	-3355	6.743	-4602	0.980	0.324	0.647	
0.400	-16431	-5229	8.799	-6732	1.181	0.212	0.529	
0.300	-21864	-7125	11.578	-9121	1.568	0.127	0.422	
0.200	-28650	-8616	15.737	-11615	2.356	0.067	0.334	
0.100	-38387	-9147	22.969	-14015	3.824	0.027	0.266	
0.000	$-\infty$	-8030	∞	-16079	6.323	0.000	0.219	

Reference state: Al(liquid)

Table IIIc. Partial quantities for Ge in the liquid phase at 1273 K.

$x_{ m Ge}$	$\Delta G_{ m Ge}$ [J/mol]	$\Delta H_{ m Ge}$ [J/mol]	$\Delta S_{ m Ge}$ [J/(mol·K)]	$G_{ m Ge}^{ m E}$ [J/mol]	$S_{ m Ge}^{ m E}$ [J/(mol·K)]	$a_{ m Ge}$	$\gamma_{ m Ge}$	
0.000	$-\infty$	-8866	∞	-16829	6.255	0.000	0.204	
0.100	-38752	-9553	22.937	-14380	3.792	0.026	0.257	
0.200	-28746	-8723	15.729	-11711	2.347	0.066	0.331	
0.300	-21791	-7043	11.585	-9047	1.575	0.128	0.425	
0.400	-16269	-5049	8.814	-6570	1.195	0.215	0.538	
0.500	-11751	-3146	6.760	-4415	0.997	0.329	0.659	
0.600	-8077	-1608	5.082	-2670	0.834	0.466	0.777	
0.700	-5155	-578	3.596	-1380	0.630	0.614	0.878	
0.800	-2906	-68	2.229	-544	0.374	0.760	0.950	
0.900	-1230	41	0.999	-115	0.123	0.890	0.989	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Ge(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1273 K.

Fig. 3. Activities in the liquid phase at T=1273 K.

References

- [79Ans] I. Ansara, J.P. Bros, M. Gambino: Calphad **3** (1979) 225–233.
- [85McA] A.J. McAlister, J.L. Murray: Bull. Alloy Phase Diagrams 6 (1985) 111–113.
- [96Sri] S. Srikanth, D. Sanyal, P. Ramachandrarao: Calphad **20** (1996) 321–332.

Al – In (Aluminium – Indium)

Fig. 1. Calculated phase diagram for the system Al-In.

An understanding of the phase diagram and thermodynamics of the Al-In system is important in order to model III-V semiconductor systems. The phase diagram for the system is dominated by a miscibility gap in the liquid phase with the upper critical point (approx. 1173 K) biased towards Al rich compositions. The monotectic occurs at about 910 K, over 20 K below the melting point of Al, with the Al rich liquid composition containing approximately 5 at.% In. There is considerable uncertainty in the detailed shape of the miscibility gap with experimental results showing scatter of up to 80 K. There is also uncertainty on the liquidus phase boundary close to Al. There appears to be no solubility in the pure crystalline elements. Experimental thermodynamic studies in the system have been concerned with enthalpies of mixing and partial Gibbs energies of Al derived from emf studies. There is disagreement between the studies of the experimental enthalpies of mixing. The phase diagram and thermodynamic coefficients for the liquid phase. The dataset adopted by SGTE were derived by Coughanowr [89Cou] reported by Ansara et al. [94Ans]. Other critical assessments have been reported by Ansara et al. [78Ans] and Sharma and Srivastava [92Sha].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A6	A1 A6	Cu In	cF4 tI2	$Fm\overline{3}m$ I4/mmm	LIQUID FCC_A1 TETRAGONAL _ A6	(Al,In) ₁ Al ₁ In ₁

Table I. Phases, structures and models.

Table II. Invariant reactions.								
Reaction	Туре	<i>T /</i> K	Com	positions	/ x_{In}	$\Delta_{ m r} H$ / (J/mol)		
$\begin{array}{l} \text{liquid} \rightleftharpoons \text{liquid'} + \text{liquid''} \\ \text{liquid'} \rightleftharpoons \text{fcc} + \text{liquid''} \\ \text{liquid''} \rightleftharpoons \text{fcc} + A6 \end{array}$	critical monotectic degenerated	$1208.4 \\909.7 \\429.6$	$0.366 \\ 0.047 \\ 1.000$	$0.366 \\ 0.000 \\ 0.000$	$0.366 \\ 0.866 \\ 1.000$	$0 \\ -11348 \\ -3296$		

Table IIIa. Integral quantities for the liquid phase at 1300 K.

x_{In}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\rm m}^{\rm E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-1415	2506	3.016	2099	0.313	0.000	
0.200	-1811	4087	4.537	3598	0.376	0.000	
0.300	-2034	4972	5.389	4569	0.310	0.000	
0.400	-2202	5340	5.801	5073	0.205	0.000	
0.500	-2336	5315	5.885	5157	0.122	0.000	
0.600	-2421	4970	5.685	4854	0.090	0.000	
0.700	-2417	4325	5.187	4185	0.108	0.000	
0.800	-2249	3348	4.305	3159	0.145	0.000	
0.900	-1743	1952	2.842	1770	0.140	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), In(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1300 K.

$x_{ m A1}$	$\Delta G_{\rm Al}$ [J/mol]	$\Delta H_{\rm A1}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-825	506	1.024	314	0.148	0.926	1.029	
0.800	-1262	1689	2.270	1150	0.415	0.890	1.112	
0.700	-1472	3168	3.570	2383	0.604	0.873	1.247	
0.600	-1597	4720	4.859	3925	0.612	0.863	1.438	
0.500	-1765	6277	6.186	5727	0.423	0.849	1.699	
0.400	-2123	7933	7.735	7781	0.117	0.822	2.054	
0.300	-2896	9935	9.871	10117	-0.140	0.765	2.550	
0.200	-4592	12693	13.296	12804	-0.086	0.654	3.269	
0.100	-8938	16769	19.775	15950	0.630	0.437	4.374	
0.000	$-\infty$	22889	∞	19704	2.450	0.000	6.190	

Reference state: Al(liquid)

		1		1 F			
x_{In}	ΔG_{In} [J/mol]	ΔH_{In} [J/mol]	ΔS_{In} [J/(mol·K)]	$G_{ m In}^{ m E}$ [J/mol]	$S_{\mathrm{In}}^{\mathrm{E}}$ [J/(mol·K)]	a_{In}	γ_{In}
0.000	$-\infty$	30589	∞	24270	4.861	0.000	9.444
0.100	-6719	20512	20.947	18169	1.802	0.537	5.371
0.200	-4008	13678	13.605	13388	0.223	0.690	3.451
0.300	-3344	9181	9.634	9670	-0.376	0.734	2.446
0.400	-3109	6269	7.214	6795	-0.404	0.750	1.875
0.500	-2906	4352	5.584	4586	-0.180	0.764	1.528
0.600	-2619	2995	4.319	2902	0.071	0.785	1.308
0.700	-2212	1921	3.179	1643	0.214	0.815	1.164
0.800	-1664	1011	2.058	748	0.202	0.857	1.072
0.900	-944	305	0.961	195	0.085	0.916	1.018
1.000	0	0	0.000	0	0.000	1.000	1.000

Table IIIc. Partial quantities for In in the liquid phase at 1300 K.

Reference state: In(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1300 K.

Fig. 3. Activities in the liquid phase at T=1300 K.

References

- [78Ans] I. Ansara, J.P. Bros, C. Girard: Calphad **2** (1978) 2, 187–196.
- [83Mur] J.L. Murray: Bull. Alloy Phase Diagrams 4 (1983) 271–278.
- [89Cou] C.A. Coughanowr: Ph. D. Thesis, University of Florida 1989.
- [92Sha] R.C. Sharma, M. Srivastava: Calphad **16** (1992) 409-426.
- [94Ans] I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson: Calphad 18 (1994) 177–222.
Al – Li (Aluminium – Lithium)

Fig. 1. Calculated phase diagram for the system Al-Li.

The addition of lithium to aluminium alloys results in an increase of the strength and Young's modulus while the density of the metal decreases. These features are particularly attractive for the application of Al-Li alloys in the aircraft industry.

Critical evaluations of the Al-Li system and overviews on experimental investigations are given by several authors [77Sab, 82McA, 89Sau]. The recommended assessment [89Sau] which is reproduced in [98Sau] is based on a fit of phase equilibria across the whole composition and temperature range of the phase diagram, including the liquidus and solidus lines, the invariant equilibria and the stability range of the fcc-phase and the non-stoichiometric AlLi-phase. The other intermetallic phases, Al_2Li_3 and Al_4Li_9 , are assumed to be stoichiometric compounds. In addition, the optimisation includes a fit of lithium activities in molten and solid alloys, as well as the heat of mixing in the liquid. For Al_4Li_9 , a high-temperature modification has been reported [76Myl], but no thermodynamic data are available, therefore, this compound is modelled as a single phase.

Phase Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquidfcc $A1$ AlLi $B32$ Al_2Li_3 \cdots Al_4Li_9 \cdots bcc $A2$	Cu NaTl Ga2Te3 Al4Li9 W	cF4 cF16 hR15 mC26 cI2	$Fm\overline{3}m$ $Fd\overline{3}m$ $R\overline{3}m$ $C2/m$ $Im\overline{3}m$	LIQUID FCC_A1 B32_ALLI AL2LI3 AL4LI9 BCC_A2	$(Al,Li)_{1}$ $(Al,Li)_{1}$ $(Al,Li)_{1}(Li,\Box)_{1}$ $Al_{2}Li_{3}$ $Al_{4}Li_{9}$ $(Al,Li)_{1}$

Table I. Phases, structures and models.

Table II Invariant reactions	
Table II. Invariant reactions.	

Reaction	Туре	T / K	Compositions / $x_{\rm Li}$			$\Delta_{ m r} H$ / (J/mol)
liquid ≓ AlLi	congruent	977.5	0.500	0.500		-15652
liquid ≓ fcc + AlLi	eutectic	868.8	0.256	0.155	0.463	-11004
$AlLi + liquid \rightleftharpoons Al_2Li_3$	peritectic	793.6	0.555	0.775	0.600	-2894
Al_2Li_3 + liquid $\rightleftharpoons Al_4Li_9$	peritectic	607.6	0.600	0.912	0.692	-1801
$liquid \rightleftharpoons Al_4Li_9 + bcc$	eutectic	447.9	0.989	0.692	0.999	-3178

Table IIIa. Integral quantities for the liquid phase at 1000 K.

$x_{ m Li}$	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3884	-2111	1.774	-1181	-0.929	0.000	
0.200	-6676	-4773	1.903	-2515	-2.257	0.000	
0.300	-8823	-7344	1.479	-3744	-3.600	0.000	
0.400	-10262	-9328	0.934	-4666	-4.662	0.000	
0.500	-10898	-10375	0.523	-5135	-5.240	0.000	
0.600	-10664	-10287	0.377	-5068	-5.219	0.000	
0.700	-9522	-9017	0.505	-4443	-4.574	0.000	
0.800	-7465	-6675	0.790	-3305	-3.371	0.000	
0.900	-4466	-3528	0.939	-1763	-1.764	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Li(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1000 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m A1}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-752	395	1.147	124	0.271	0.914	1.015	
0.800	-1731	651	2.382	124	0.526	0.812	1.015	
0.700	-3398	-300	3.098	-432	0.132	0.665	0.949	
0.600	-6055	-3083	2.972	-1808	-1.275	0.483	0.805	
0.500	-9848	-7875	1.973	-4085	-3.790	0.306	0.612	
0.400	-14772	-14391	0.381	-7154	-7.237	0.169	0.423	
0.300	-20715	-21876	-1.160	-10705	-11.171	0.083	0.276	
0.200	-27601	-29096	-1.495	-14220	-14.876	0.036	0.181	
0.100	-36104	-34327	1.777	-16959	-17.368	0.013	0.130	
0.000	$-\infty$	-35348	∞	-17956	-17.392	0.000	0.115	

Reference state: Al(liquid)

		100000000000000000000000000000000000000		na pinase a	100011		
$x_{ m Li}$	$\Delta G_{ m Li}$ [J/mol]	$\Delta H_{ m Li}$ [J/mol]	$\Delta S_{ m Li}$ [J/(mol·K)]	$G_{ m Li}^{ m E}$ [J/mol]	$S_{ m Li}^{ m E}$ [J/(mol·K)]	$a_{ m Li}$	$\gamma_{ m Li}$
0.000	$-\infty$	-15848	∞	-10056	-5.792	0.000	0.298
0.100	-32073	-24659	7.414	-12929	-11.731	0.021	0.211
0.200	-26457	-26467	-0.010	-13075	-13.392	0.042	0.208
0.300	-21484	-23781	-2.297	-11473	-12.308	0.075	0.252
0.400	-16571	-18695	-2.124	-8952	-9.743	0.136	0.341
0.500	-11948	-12875	-0.927	-6185	-6.690	0.238	0.475
0.600	-7925	-7551	0.374	-3677	-3.873	0.386	0.643
0.700	-4725	-3507	1.219	-1760	-1.747	0.566	0.809
0.800	-2431	-1070	1.361	-576	-0.494	0.746	0.933
0.900	-951	-105	0.845	-75	-0.031	0.892	0.991
1.000	0	0	0.000	0	0.000	1.000	1.000

Table IIIc. Partial quantities for Li in the liquid phase at 1000 K.

Reference state: Li(liquid)

Fig. 2. Integral quantities of the liquid phase at **Fig. 3.** Activities in the liquid phase at T=1000 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Li}$	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al ₂ Li ₃ Al ₄ Li ₉	$\begin{array}{c} 0.600\\ 0.692 \end{array}$	$-15973 \\ -12695$	-17928 -14250	-6.558 -5.215	$0.000 \\ 0.000$

References

[76Myl]	K.M. Myles, F.C. Mrazek, J.A. Smaga, J.L. Settle, Proc. Symp. and Workshop on Adv. Battery
	Res. and Design, U.S. ERDA Report ANL-76-8, B50-B73, 1976.
[77Sab]	ML. Saboungi, C.C. Hsu: Calphad 1 (1977) 237–251.
[82McA]	A.J. McAlister: Bull. Alloy Phase Diagrams 3 (1982) 177–183.
[89Sau]	N. Saunders: Z. Metallkd. 80 (1989) 894–903.
[98Sau]	N. Saunders in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical
	database for light metal alloys", Vol. 2, EUR 18499, 1998, 40–43.

Al – Mg (Aluminium – Magnesium)

Fig. 1. Calculated phase diagram for the system Al-Mg.

The Al-Mg system is one of the key systems for aluminium light alloys with high strength, which are extensively used for aircraft construction and for other industrial applications. For successful development of new materials and improvement of existing aluminium and magnesium alloys the phase diagram and thermodynamic data are crucial. The thermodynamic parameters for the Al-Mg system were assessed by [82Mur, 90Sau, 94Cha, 98Lia]. The thermodynamic description of [90Sau] was corrected by [98Lia] taking into account new experimental results and it is accepted by SGTE. According to [98Lia] the ζ -phase included by [90Sau] is metastable. The assessment is based on the experimental phase equilibria and the measurements of thermodynamic values. The thermodynamic properties of the liquid were experimentally obtained from calorimetric measurements, partial pressure data and from EMF data. The thermodynamic data for the solid phases were obtained from DTA measurements and from EMF measurements.

The system is characterised by complete solubility in the liquid state and a limited solubility of Al in solid Mg and vice versa. The fcc-Al, hcp-Mg and liquid phases are described in [90Sau] as substitutional solutions. According to experimental data (see [82Mur]) the phase $Al_{140}Mg_{89}$ and $Al_{30}Mg_{23}$ have narrow homogeneity ranges and they are treated as stoichiometric compounds [98Lia]. The $Al_{12}Mg_{17}$ -phase has a remarkable homogeneity range and is described using a sublattice model. The optimised thermodynamic parameters reproduce well the phase diagram and the thermodynamic data.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
$ liquid \\ fcc \\ Al_{140}Mg_{89} \\ Al_{30}Mg_{23} \\ Al_{12}Mg_{17} \\ hcp $	A1 A12 A3	Cu Al ₃ Mg ₂ CoCrMo αMn Mg	cF4 cF1832 hR53 cI58 hP2	$Fm\overline{3}m$ $Fd\overline{3}m$ R3 $I\overline{4}3m$ $P6_3/mmc$	LIQUID FCC_A1 ALMG_B ALMG_EPS A12_ALMG HCP_A3	$\begin{array}{l} (Al,Mg)_1 \\ (Al,Mg)_1 \\ Mg_{89}Al_{140} \\ Mg_{23}Al_{30} \\ Mg_5(Al,Mg)_{12}(Al,Mg)_{12} \\ (Al,Mg)_1 \end{array}$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Comp	ositions	/ $x_{ m Mg}$	$\Delta_{ m r} H$ / (J/mo	ol)
liquid \Rightarrow Al ₁₂ Mg ₁₇	congruent	736.6	0.538	0.538		-7147	
liquid \rightleftharpoons Al ₁₄₀ Mg ₈₉	congruent	724.8	0.389	0.389		-8252	
$liquid \rightleftharpoons fcc + Al_{140}Mg_{89}$	eutectic	723.6	0.362	0.166	0.389	-8158	
$liquid \rightleftharpoons Al_{140}Mg_{89} + Al_{12}Mg_{17}$	eutectic	722.7	0.424	0.389	0.480	-7723	
$liquid \rightleftharpoons Al_{12}Mg_{17} + hcp$	eutectic	709.4	0.690	0.601	0.884	-6543	
$\mathrm{Al}_{140}\mathrm{Mg}_{89} + \mathrm{Al}_{12}\mathrm{Mg}_{17} \rightleftharpoons \mathrm{Al}_{30}\mathrm{Mg}_{23}$	peritectoid	682.9	0.389	0.494	0.434	-175	
$\mathrm{Al}_{30}\mathrm{Mg}_{23}\rightleftharpoons\mathrm{Al}_{140}\mathrm{Mg}_{89}+\mathrm{Al}_{12}\mathrm{Mg}_{17}$	eutectoid	523.2	0.434	0.389	0.536	-103	

Table IIIa. Integral quantities for the liquid phase at 1000 K.

x_{Mg}	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600 \end{array}$	$\begin{array}{r} 0 \\ -2976 \\ -4701 \\ -5826 \\ -6454 \\ -6622 \\ -6348 \end{array}$	$0 \\ -828 \\ -1623 \\ -2294 \\ -2770 \\ -3000 \\ -2952$	$\begin{array}{c} 0.000\\ 2.148\\ 3.078\\ 3.532\\ 3.684\\ 3.622\\ 3.396\end{array}$	$0 \\ -273 \\ -540 \\ -747 \\ -858 \\ -859 \\ -752$	$\begin{array}{r} 0.000 \\ -0.555 \\ -1.083 \\ -1.547 \\ -1.912 \\ -2.141 \\ -2.200 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	
$\begin{array}{c} 0.700 \\ 0.800 \\ 0.900 \\ 1.000 \end{array}$	$-5640 \\ -4489 \\ -2817 \\ 0$	$-2612 \\ -1987 \\ -1101 \\ 0$	3.028 2.502 1.716 0.000	$-561 \\ -328 \\ -114 \\ 0$	-2.051 -1.659 -0.987 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	

Reference states: Al(liquid), Mg(liquid)

		1		1				
$x_{\rm A1}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-869	0	0.868	7	-0.008	0.901	1.001	
0.800	-1908	-131	1.777	-52	-0.079	0.795	0.994	
0.700	-3223	-543	2.681	-258	-0.285	0.679	0.969	
0.600	-4878	-1329	3.549	-631	-0.699	0.556	0.927	
0.500	-6898	-2527	4.372	-1135	-1.391	0.436	0.872	
0.400	-9295	-4113	5.183	-1677	-2.436	0.327	0.817	
0.300	-12115	-6008	6.107	-2105	-3.903	0.233	0.776	
0.200	-15592	-8076	7.515	-2210	-5.866	0.153	0.767	
0.100	-20871	-10122	10.748	-1726	-8.396	0.081	0.813	
0.000	$-\infty$	-11894	∞	-328	-11.566	0.000	0.961	

Table IIIb. Partial quantities for Al in the liquid phase at 1000 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Mg in the liquid phase at 1000 K.

x_{Mg}	$\Delta G_{ m Mg}$ [J/mol]	$\Delta H_{ m Mg}$ [J/mol]	$\Delta S_{ m Mg}$ [J/(mol·K)]	$G^{ m E}_{ m Mg}$ [J/mol]	$S_{ m Mg}^{ m E}$ [J/(mol·K)]	$a_{ m Mg}$	$\gamma_{ m Mg}$	
0.000	$-\infty$	-8106	∞	-2540	-5.566	0.000	0.737	
0.100	-21946	-8281	13.664	-2801	-5.480	0.071	0.714	
0.200	-15875	-7591	8.283	-2493	-5.098	0.148	0.741	
0.300	-11898	-6379	5.519	-1888	-4.491	0.239	0.797	
0.400	-8817	-4931	3.887	-1199	-3.732	0.346	0.866	
0.500	-6345	-3474	2.872	-582	-2.891	0.466	0.932	
0.600	-4383	-2178	2.205	-135	-2.043	0.590	0.984	
0.700	-2865	-1156	1.709	101	-1.257	0.709	1.012	
0.800	-1713	-464	1.249	142	-0.607	0.814	1.017	
0.900	-811	-99	0.712	65	-0.164	0.907	1.008	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Mg(liquid)

Fig. 3. Activities in the liquid phase at T=1000 K.

Compound	x_{Mg}	$\Delta_{\mathbf{f}} G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} S^{\circ} / (\mathrm{J/(mol \cdot K)})$	$\Delta_{\rm f} C_P^{\circ} / ({\rm J} / ({\rm mol} \cdot {\rm K}))$
$\begin{array}{c} Al_{140}Mg_{89} \\ Al_{30}Mg_{23} \end{array}$	$\begin{array}{c} 0.389 \\ 0.434 \end{array}$	-1955 - 1966	$-1075 \\ -992$	$2.950 \\ 3.268$	$0.000 \\ 0.000$

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[82Mur]	J.L. Murray: Bull. Alloy Phase Diagrams 3 (1982) 60–74.
[90Sau]	N. Saunders: Calphad 14 (1990) 61–70.
[94Cha]	P. Chartrand, A.D. Pelton: J. Phase Equilibria 15 (1994) 591-605.
[98Lia]	P. Liang, HL. Su, P. Donnadieu, M.G. Harmelin, A. Quivy, P. Ochin, G. Effenberg, H.J.
	Seifert, H.L. Lukas, F. Aldinger: Z. Metallkd. 89 (1998) 536-540.

Fig. 1. Calculated phase diagram for the system Al-Mn.

There is a high solubility of Al in the Mn phases but very small solubility of Mn in fcc-Al. Several intermediate phases are formed in contact with the liquid. Recently one of the intermediate phases was identified as bcc and an order/disorder transformation to B2 detected. All invariant reactions with the liquid are peritectic. Some of the intermediate phases have transformations at lower temperatures.

Mn is an important alloying element in Al alloys. It is mainly added to control the type of intermediate phase formed with Fe which is an unavoidable impurity. The Al-Mn system is also important for permanent magnets and shape memory materials.

From the major thermodynamic evaluations and assessments of the Al–Mn system in the literature [87McA, 92Jan, 99Liu], the most recent is recommended here.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	$(Al,Mn)_1$
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	$(Al,Mn)_1$
$Al_{12}Mn$			cI27	$Im\overline{3}$	AL12MN	$Al_{12}Mn_1$
Al ₆ Mn	$D2_{\rm h}$	Al ₆ Mn	oC28	Cmcm	D2H_AL6MN	Al_6Mn_1
Al_4Mn	•••		hP574	$P6_3/mmc$	AL4MN	Al_4Mn_1
$Al_{11}Mn_4$	•••		aP30	$P\overline{1}$	AL11MN4	$Al_{11}Mn_4$
Al_8Mn_5	$D8_{10}$	Al ₈ Cr ₅	hR26	R3m	D810_AL8MN5	$Al_{12}Mn_4(Al,Mn)_{10}$
A2	A2	W	cI2	$Im\overline{3}m$	BCC_A2	(Al,Mn)1
B2	B2	CsCl	cP2	Pm3m	BCC_B2	$(Al,Mn)_1(Al,Mn)_1$
hcp	A3	Mg	hP2	$P6_3/mmc$	HCP_A3	(Al,Mn)1
cbcc	A12	α Mn	cI58	$I\overline{4}3m$	CBCC_A12	$(Al,Mn)_1$
cub	A13	β Mn	cP20	$P4_{1}32$	CUB_A13	(Al,Mn) ₁

Table I.	Phases.	structures	and	models.

164

Reaction	Туре	T / K	Compositions / x_{Mn}			$\Delta_{ m r} H$ / (J/mol)
liquid $\rightleftharpoons A2$	congruent	1592.7	0.818	0.818		-12320
liquid + $A2 \rightleftharpoons hcp$	peritectic	1535.1	0.613	0.660	0.653	-3925
liquid + hcp $\rightleftharpoons A2$	peritectic	1453.4	0.454	0.547	0.533	-3591
$A2 + \text{fcc} \rightleftharpoons \text{cub}$	peritectoid	1340.0	0.899	0.913	0.906	-5528
liquid + $A2$ \rightleftharpoons Al ₈ Mn ₅	peritectic	1332.8	0.272	0.383	0.368	-4449
$fcc \rightleftharpoons cub$	congruent	1323.5	0.950	0.950		-2487
$A2 \rightleftharpoons hcp + cub$	eutectoid	1299.7	0.716	0.693	0.731	-5056
$liquid + Al_8Mn_5 \rightleftharpoons Al_{11}Mn_4$	peritectic	1272.4	0.201	0.334	0.267	-10691
$liquid + Al_{11}Mn_4 \rightleftharpoons Al_4Mn$	peritectic	1195.4	0.123	0.267	0.200	-10690
$hcp \rightleftharpoons B2 + cub$	eutectoid	1145.4	0.574	0.546	0.591	-2408
$B2 \rightleftharpoons Al_8Mn_5 + cub$	eutectoid	1108.6	0.536	0.504	0.586	-2047
liquid + Al ₄ Mn \rightleftharpoons Al ₆ Mn	peritectic	978.1	0.018	0.200	0.143	-3463
liquid \rightleftharpoons fcc + Al ₆ Mn	eutectic	931.4	0.010	0.007	0.143	-10765
$fcc + Al_6Mn \rightleftharpoons Al_{12}Mn$	peritectoid	781.0	0.002	0.143	0.077	-111
$Al_{11}Mn_4 \rightleftharpoons Al_4Mn + Al_8Mn_5$	eutectoid	613.1	0.267	0.200	0.350	-477
$Al_6Mn \rightleftharpoons Al_{12}Mn + Al_4Mn$	eutectoid	403.1	0.143	0.077	0.200	-104

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 1600 K.
--

x_{Mn}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6439	-6648	-0.131	-2114	-2.834	0.000	
0.200	-10338	-11461	-0.702	-3681	-4.862	0.000	
0.300	-12900	-14616	-1.072	-4774	-6.151	0.000	
0.400	-14394	-16268	-1.171	-5440	-6.767	0.000	
0.500	-14925	-16544	-1.012	-5704	-6.775	0.000	
0.600	-14515	-15547	-0.645	-5562	-6.240	0.000	
0.700	-13113	-13355	-0.151	-4986	-5.230	0.000	
0.800	-10581	-10019	0.351	-3924	-3.809	0.000	
0.900	-6621	-5567	0.659	-2297	-2.044	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Mn(liquid)

		1	1	1				
$x_{\rm Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m A1}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1690	-950	0.462	-288	-0.414	0.881	0.979	
0.800	-4011	-3548	0.289	-1042	-1.567	0.740	0.925	
0.700	-6897	-7476	-0.362	-2153	-3.327	0.595	0.851	
0.600	-10382	-12489	-1.317	-3587	-5.564	0.458	0.764	
0.500	-14609	-18421	-2.382	-5388	-8.146	0.333	0.667	
0.400	-19864	-25179	-3.322	-7675	-10.940	0.225	0.562	
0.300	-26659	-32747	-3.805	-10642	-13.816	0.135	0.449	
0.200	-35972	-41188	-3.260	-14561	-16.641	0.067	0.335	
0.100	-50411	-50636	-0.140	-19780	-19.285	0.023	0.226	
0.000	$-\infty$	-61304	∞	-26720	-21.615	0.000	0.134	

Table IIIb. Partial quantities for Al in the liquid phase at 1600 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Mn in the liquid phase at 1600 K.

x_{Mn}	$\Delta G_{ m Mn}$ [J/mol]	$\Delta H_{ m Mn}$ [J/mol]	$\Delta S_{ m Mn}$ [J/(mol·K)]	$G_{ m Mn}^{ m E}$ [J/mol]	$S_{ m Mn}^{ m E}$ [J/(mol·K)]	$a_{ m Mn}$	$\gamma_{ m Mn}$	
0.000	$-\infty$	-76322	∞	-24190	-32.582	0.000	0.162	
0.100	-49182	-57934	-5.470	-18550	-24.615	0.025	0.248	
0.200	-35648	-43110	-4.663	-14238	-18.045	0.069	0.343	
0.300	-26907	-31276	-2.731	-10890	-12.741	0.132	0.441	
0.400	-20411	-21935	-0.953	-8221	-8.571	0.216	0.539	
0.500	-15241	-14666	0.359	-6020	-5.404	0.318	0.636	
0.600	-10949	-9125	1.140	-4153	-3.107	0.439	0.732	
0.700	-7307	-5043	1.415	-2562	-1.551	0.577	0.825	
0.800	-4233	-2227	1.254	-1265	-0.601	0.727	0.909	
0.900	-1756	-559	0.748	-354	-0.128	0.876	0.974	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Mn(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1600 K.

Fig. 3. Activities in the liquid phase at T=1600 K.

Fig. 4. Integral quantities of the stable phases at T=1000 K.

Fig. 5. Activities in the stable phases at T=1000 K.

	0	1		1				
Phase	x_{Mn}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
liquid	0.000	0	0	0.000	0	0.000	0.000	
	0.023	-1733	-1315	0.418	-837	-0.478	0.040	
Al_4Mn	0.200	-13661	-30159	-16.497			1.208	
$Al_{11}Mn_4 \\$	0.267	-16177	-31116	-14.939			1.241	
Al_8Mn_5	0.342	-18412	-33125	-14.713	-16197	-16.928	1.279	
	0.350	-18644	-33388	-14.744	-16428	-16.960	1.283	
	0.400	-19664	-34361	-14.697	-17574	-16.787	1.308	
	0.450	-20036	-34056	-14.020	-18311	-15.744	1.333	
	0.500	-19779	-32236	-12.457	-18740	-13.496	1.358	
	0.501	-19768	-32185	-12.417	-18746	-13.439	1.359	
cub	0.599	-18548	-27910	-9.362	-12949	-14.961	0.444	
	0.600	-18536	-27885	-9.349	-12940	-14.945	0.443	
	0.650	-17706	-26299	-8.593	-12323	-13.976	0.388	
	0.700	-16481	-24151	-7.670	-11402	-12.749	0.332	
	0.750	-14860	-21451	-6.591	-10185	-11.266	0.277	
	0.800	-12843	-18209	-5.366	-8682	-9.527	0.221	
	0.850	-10417	-14433	-4.015	-6903	-7.530	0.166	
	0.900	-7559	-10133	-2.574	-4856	-5.277	0.111	
	0.950	-4203	-5319	-1.116	-2552	-2.767	0.055	
	1.000	0	0	0.000	0	0.000	0.000	

Table IVa. Integral quantities for the stable phases at 1000 K.

Reference states: Al(liquid), Mn(cub)

Phase	$x_{ m Al}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{\rm A1}$	$\gamma_{ m Al}$
liquid	$1.000 \\ 0.977$	0 -219	0 -51	0.000 0.168	0 29	0.000 - 0.022	$1.000 \\ 0.974$	$1.000 \\ 0.997$
Al_4Mn	0.800 0.800	-219 -6113	$2347 \\ -27287$	2.565 -21.174	25	0.022	$0.974 \\ 0.479$	0.001
Al ₁₁ Mn ₈	$\begin{array}{c} 0.733 \\ 0.733 \end{array}$	$-6113 \\ -8252$	$-27287 \\ -23993$	$-21.174 \\ -15.741$			$\begin{array}{c} 0.479 \\ 0.371 \end{array}$	
Al ₈ Mn ₅	$\begin{array}{c} 0.658 \\ 0.650 \\ 0.600 \\ 0.550 \\ 0.500 \\ 0.499 \end{array}$	$-8252 \\ -9076 \\ -14177 \\ -19460 \\ -25842 \\ -25999$	$\begin{array}{r} -21508 \\ -22657 \\ -31373 \\ -43260 \\ -58793 \\ -59131 \end{array}$	$-13.255 \\ -13.581 \\ -17.196 \\ -23.800 \\ -32.951 \\ -33.132$	$-6163 \\ -6744 \\ -10174 \\ -13215 \\ -15668 \\ -15708$	$-15.344 \\ -15.913 \\ -21.199 \\ -30.046 \\ -43.125 \\ -43.423$	$\begin{array}{c} 0.371 \\ 0.336 \\ 0.182 \\ 0.096 \\ 0.045 \\ 0.044 \end{array}$	$\begin{array}{c} 0.477 \\ 0.444 \\ 0.294 \\ 0.204 \\ 0.152 \\ 0.151 \end{array}$
cub	$\begin{array}{c} 0.401 \\ 0.400 \\ 0.350 \\ 0.300 \\ 0.250 \\ 0.200 \\ 0.150 \\ 0.100 \\ 0.050 \\ 0.000 \end{array}$	$\begin{array}{r} -25999\\ -26092\\ -31071\\ -36403\\ -42132\\ -48346\\ -55222\\ -63183\\ -73625\\ -\infty\end{array}$	$\begin{array}{r} -43380\\ -43513\\ -50591\\ -58107\\ -66044\\ -74381\\ -83101\\ -92185\\ -101613\\ -111367\end{array}$	$-17.381 \\ -17.421 \\ -19.520 \\ -21.704 \\ -23.911 \\ -26.035 \\ -27.880 \\ -29.002 \\ -27.988 \\ \infty$	$\begin{array}{r} -18401 \\ -18474 \\ -22342 \\ -26392 \\ -30606 \\ -34964 \\ -39448 \\ -44038 \\ -44038 \\ -48717 \\ -53464 \end{array}$	$\begin{array}{r} -24.979 \\ -25.039 \\ -28.248 \\ -31.715 \\ -35.438 \\ -39.417 \\ -43.654 \\ -48.147 \\ -52.897 \\ -57.903 \end{array}$	$\begin{array}{c} 0.044\\ 0.043\\ 0.024\\ 0.013\\ 0.006\\ 0.003\\ 0.001\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.109\\ 0.108\\ 0.068\\ 0.042\\ 0.025\\ 0.015\\ 0.009\\ 0.005\\ 0.003\\ 0.002\\ \end{array}$

Table IVb. Partial quantities for Al in the stable phases at 1000 K.

Reference state: Al(liquid)

	-			-				
Phase	x_{Mn}	$\Delta G_{ m Mn}$ [J/mol]	$\Delta H_{ m Mn}$ [J/mol]	$\Delta S_{ m Mn}$ [J/(mol·K)]	$G_{ m Mn}^{ m E}$ [J/mol]	S_{Mn}^{E} [J/(mol·K)]	a_{Mn}	$\gamma_{ m Mn}$
liquid	0.000	$-\infty$	-60658	∞	-38459	-22.198	0.000	0.010
1	0.023	-67432	-56171	11.261	-35897	-20.274	0.000	0.013
Al_4Mn	0.200	-67432	-160181	-92.749			0.000	
	0.200	-43854	-41647	2.207			0.005	
$Al_{11}Mn_4$	0.267	-43854	-41647	2.207			0.005	
_	0.267	-37971	-50704	-12.733			0.010	
Al_8Mn_5	0.342	-37971	-55489	-17.518	-35511	-19.978	0.010	0.014
	0.350	-36413	-53317	-16.904	-34414	-18.903	0.013	0.016
	0.400	-27894	-38843	-10.949	-28675	-10.168	0.035	0.032
	0.450	-20740	-22806	-2.066	-24541	1.735	0.083	0.052
	0.500	-13717	-5680	8.038	-21812	16.132	0.192	0.073
	0.501	-13560	-5342	8.218	-21772	16.430	0.196	0.073
cub	0.599	-13560	-17555	-3.995	-9299	-8.256	0.196	0.327
	0.600	-13498	-17467	-3.969	-9251	-8.216	0.197	0.329
	0.650	-10510	-13219	-2.709	-6928	-6.290	0.283	0.435
	0.700	-7943	-9599	-1.656	-4977	-4.622	0.385	0.550
	0.750	-5770	-6587	-0.817	-3378	-3.209	0.500	0.666
	0.800	-3967	-4165	-0.199	-2111	-2.054	0.621	0.776
	0.850	-2511	-2315	0.196	-1159	-1.155	0.739	0.870
	0.900	-1379	-1016	0.363	-503	-0.513	0.847	0.941
	0.950	-549	-251	0.298	-123	-0.128	0.936	0.985
	1.000	0	0	0.000	0	0.000	1.000	1.000

Table IVc. Partial quantities for Mn in the stable phases at 1000 K.

Reference state: Mn(cub)

Table V. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Mn}	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/({\rm mol} \cdot {\rm K}))$
$Al_{12}Mn_1$	0.077	-7404	-8174	-2.583	0.000
Al_6Mn_1	0.143	-13673	-15064	-4.665	-0.001
Al_4Mn_1	0.200	-19157	-21230	-6.952	-0.001
$Al_{11}Mn_4$	0.267	-20957	-22746	-6.000	-0.001

References

[87McA]	A.J. McAlister, J.L.	Murray: Bu	ıll. Alloy Phase	Diagrams 8	(1987) 438–447.
---------	----------------------	------------	------------------	-------------------	-----------------

- [92Jan] A. Jansson: Metall. Trans. **23A** (1992) 2953–2962.
- [99Liu] X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida: J. Phase Equilibria **20** (1999) 45–56.

Al – Mo (Aluminium – Molybdenum)

Fig. 1. Calculated phase diagram for the system Al-Mo.

The system is well known in the Al-rich end and there are several Al-rich compounds, the first is $Al_{12}Mo$. At higher Mo content the system is only estimated and the intermetallic phases are treated as stoichiometric as there is little or no experimental information.

The system is of interest for Mo as addition to Al alloys. It is possible to form an icosahedral phase in the Al-rich side. This is not included in the modelling where all phases are treated as compounds except the fcc-Al and bcc-Mo and the liquid which are all treated as substitutional regular solutions. The AlMo phase is modelled as an ordered B_2 phase. The accepted dataset has been critically evaluated by [98Sau].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Al ₁₂ Mo Al ₅ Mo Al ₄ Mo Al ₈ Mo ₃	A1 	$\begin{array}{c} Cu\\ Al_{12}W\\ Al_5W\\ Al_4W\\ Al_8Mo_3 \end{array}$	cF4 cI26 hP12 mC30 mC22	Fm <u>3</u> m Im <u>3</u> P6 ₃ Cm C2/m	LIQUID FCC_A1 AL12MO AL5MO AL4MO AL8MO3	$(Al,Mo)_1$ $(Al,Mo)_1$ $Al_{12}Mo_1$ Al_5Mo_1 Al_4Mo_1 Al_8Mo_3
Al ₆₃ Mo ₃₇ AlMo AlMo ₃ bcc	B2 A15 A2	CsCl Cr ₃ Si W	 cP2 cP8 cI2	$\begin{array}{c} \dots \\ Pm3m \\ Pm\overline{3}n \\ Im\overline{3}m \end{array}$	AL63MO37 BCC_B2 CUB_A15 BCC_A2	$Al_{63}Mo_{37}$ (Al,Mo) ₁ (Al,Mo) ₁ Al_1Mo_3 (Al,Mo) ₁

Table I. Phases, structures and models.

Reaction	Туре	<i>T /</i> K	Comp	oositions	/ $x_{ m Mo}$	$\Delta_{ m r} H$ / (J/mol)
liquid + bcc \rightleftharpoons AlMo ₃	peritectic	2418.9	0.621	0.791	0.750	-11577
liquid + AlMo ₃ \rightleftharpoons AlMo	peritectic	1976.9	0.415	0.750	0.533	-7021
liquid \rightleftharpoons Al ₈ Mo ₃	congruent	1850.6	0.273	0.273		-35294
liquid + AlMo \rightleftharpoons Al ₆₃ Mo ₃₇	peritectic	1844.4	0.357	0.496	0.370	-19157
$liquid \rightleftharpoons Al_8Mo_3 + Al_{63}Mo_{37}$	eutectic	1836.4	0.333	0.273	0.370	-25902
$Al_{63}Mo_{37} \rightleftharpoons Al_8Mo_3 + AlMo$	eutectoid	1765.6	0.370	0.273	0.506	-5422
$AlMo \rightleftharpoons Al_8Mo_3 + AlMo_3$	eutectoid	1739.8	0.513	0.273	0.750	-13770
liquid + Al_8Mo_3 \rightleftharpoons Al_4Mo	peritectic	1397.7	0.028	0.273	0.200	-3624
liquid + Al ₄ Mo \rightleftharpoons Al ₅ Mo	peritectic	1025.2	0.001	0.200	0.167	-2041
liquid + Al ₅ Mo \rightleftharpoons Al ₁₂ Mo	peritectic	971.6	0.001	0.167	0.077	-5767
liquid + Al ₁₂ Mo \rightleftharpoons fcc	peritectic	933.8	0.000	0.077	0.001	-10607
$Al_4Mo \rightleftharpoons Al_5Mo + Al_8Mo_3$	eutectoid	332.1	0.200	0.167	0.273	-169

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 2900 K.

x_{Mo}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-7468	-10080	-0.901	370	-3.604	0.000	
0.200	-11512	-17440	-2.044	554	-6.205	0.000	
0.300	-14140	-22260	-2.800	590	-7.879	0.000	
0.400	-15711	-24720	-3.107	517	-8.702	0.000	
0.500	-16338	-25000	-2.987	375	-8.750	0.000	
0.600	-16025	-23280	-2.502	203	-8.098	0.000	
0.700	-14689	-19740	-1.742	40	-6.821	0.000	
0.800	-12140	-14560	-0.835	-74	-4.995	0.000	
0.900	-7939	-7920	0.007	-100	-2.696	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Mo(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 2900 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
$\begin{array}{c} 1.000 \\ 0.900 \\ 0.800 \\ 0.700 \\ 0.600 \end{array}$	0 -2440 -5033 -7935 -11345	$0 \\ -1390 \\ -5320 \\ -11430 \\ -19360$	$\begin{array}{c} 0.000 \\ 0.362 \\ -0.099 \\ -1.205 \\ -2.764 \end{array}$	$\begin{array}{c} 0 \\ 100 \\ 348 \\ 665 \\ 972 \end{array}$	$\begin{array}{r} 0.000 \\ -0.514 \\ -1.954 \\ -4.171 \\ -7.011 \end{array}$	$\begin{array}{c} 1.000 \\ 0.904 \\ 0.812 \\ 0.720 \\ 0.625 \end{array}$	$1.000 \\ 1.004 \\ 1.015 \\ 1.028 \\ 1.041$	
$\begin{array}{c} 0.500 \\ 0.400 \\ 0.300 \\ 0.200 \\ 0.100 \\ 0.000 \end{array}$	-15521 -20847 -27975 -38266 -55894 $-\infty$	$-28750 \\ -39240 \\ -50470 \\ -62080 \\ -73710 \\ -85000$	$-4.562 \\ -6.342 \\ -7.757 \\ -8.212 \\ -6.143 \\ \infty$	$1193 \\ 1246 \\ 1055 \\ 541 \\ -374 \\ -1770$	$-10.325 \\ -13.961 \\ -17.767 \\ -21.594 \\ -25.288 \\ -28.700$	$\begin{array}{c} 0.525 \\ 0.421 \\ 0.313 \\ 0.205 \\ 0.098 \\ 0.000 \end{array}$	$1.051 \\ 1.053 \\ 1.045 \\ 1.023 \\ 0.985 \\ 0.929$	

Reference state: Al(liquid)

		1	1	I				
x_{Mo}	$\Delta G_{ m Mo}$ [J/mol]	$\Delta H_{ m Mo}$ [J/mol]	$\Delta S_{ m Mo}$ [J/(mol·K)]	$G^{ m E}_{ m Mo}$ [J/mol]	$S_{ m Mo}^{ m E}$ [J/(mol·K)]	$a_{ m Mo}$	$\gamma_{ m Mo}$	
0.000	$-\infty$	-115000	∞	4770	-41.300	0.000	1.219	
0.100	-52716	-88290	-12.267	2804	-31.412	0.112	1.123	
0.200	-37428	-65920	-9.825	1379	-23.206	0.212	1.059	
0.300	-28616	-47530	-6.522	415	-16.533	0.305	1.017	
0.400	-22260	-32760	-3.621	-166	-11.239	0.397	0.993	
0.500	-17156	-21250	-1.412	-443	-7.175	0.491	0.982	
0.600	-12810	-12640	0.058	-492	-4.189	0.588	0.980	
0.700	-8995	-6570	0.836	-395	-2.129	0.689	0.984	
0.800	-5608	-2680	1.010	-228	-0.846	0.792	0.991	
0.900	-2610	-610	0.690	-70	-0.186	0.897	0.997	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Mo in the liquid phase at 2900 K.

Reference state: Mo(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2900 K.

Fig. 3. Activities in the liquid phase at T=2900 K.

 $a_{\mathtt{Mo}}$

0.6

 x_{Mo}

0.8

1.0

Mo

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Mo}	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathbf{J}/(\mathrm{mol}\cdot\mathbf{K}))$
$Al_{12}Mo_1$	0.083	-10081	-10700	-2.075	0.000
Al_5Mo_1	0.167	-21685	-23184	-5.026	0.000
Al_4Mo_1	0.200	-25744	-27514	-5.938	0.000
Al ₈ Mo ₃	0.273	-34653	-37500	-9.550	0.000
Al ₆₃ Mo ₃₇	0.370	-22182	-22681	-1.672	0.000
Al_1Mo_3	0.750	-20826	-22183	-4.553	0.447

References

[98Sau] N. Saunders in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical database for light metal alloys", Vol. 2, EUR 18499, 1998, 59–64.

Al – **N** (Aluminium – Nitrogen)

Fig. 1. Calculated phase diagram for the system Al-N.

The Si-Al-O-N system and its sub-systems are of considerable technical importance for silicon nitride and oxynitride ceramics. The thermodynamic description of [98Luk] is recommended for the Al-N system. This optimisation is based on experimental data reviewed by [71Stu] and [86Wri]. The data recommended in [71Stu] on the heat capacity and the entropy have been measured by adiabatic and drop calorimetry. The enthalpy of formation of AIN is based on calorimetric data and dissociation pressure measurements. More recent data on the enthalpy of formation of AIN derived from alkali borate solution calorimetry [97Nav, 99Lia] are in a good agreement with the value recommended by [71Stu]. The melting temperature of AlN has not been measured due to sublimation under normal pressure. The reported melting temperatures are in the range from 2423 K to 3123 K [86Wri]. This author recommends 2800 K to be the most credible melting temperature, because it has been determined under high pressure of N2 in order to retard evaporation. Liquid Al is stable only at very low partial pressures of N₂ [86Wri]. The solubility of nitrogen in molten aluminium has been determined by several authors and it is discussed in [86Wri]. In spite of high uncertainties in the experimental data of [26Iwa], these results are recommended by [86Wri] and they are used in the assessment of [98Luk]. The solubility of nitrogen in solid aluminium is very low and no credible measurements have been reported. The liquid phase is described by a substitutional model. The sublattice model is applied to the fcc phase, and AIN is treated as a stoichiometric compound. The gas phase is considered to consist of the species Al, Al₂, N, N₂ and N₃.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AlN	A1 B4	Cu ZnS(Wurtzite)	cF4 hP4	$Fm\overline{3}m$ $P6_3mc$	LIQUID FCC_A1 ALN	$\begin{array}{l} (Al,N)_1\\ Al_1(N,\Box)_1\\ Al_1N_1 \end{array}$

Table I. Phases, structures and models.

Reaction	Туре	<i>T /</i> K	Compos	sitions / $x_{ m N}$	$\Delta_{ m r} H$ / (J/mol)
liquid + gas ≓ AlN liquid ≓ fcc + AlN	gas-peritectic degenerate	$2707.1 \\ 933.3$	$\begin{array}{ccc} 0.002 & 0.\\ 0.000 & 0. \end{array}$.505 0.50 .000 0.50	$\begin{array}{rrr} 00 & -307637 \\ 00 & -10712 \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	liquid 4 0.6 0.8 1 1000	0 1.2 K / T	AlN fcc	1.8 2.0	Fig. 2. Calculated temperature activity phase diagram. Reference state: N(gas, 0.1 MPa).

Table II. Invariant reactions.

Table III. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m N}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J/(mol \cdot K)})$
Al_1N_1	0.500	-143503	-158990	-51.945	-5.264

References

[26Iwa]	K. Iwase: Sci. Rep. Tohoku Imp. Univ., Ser. 1, 15 (1926) 534–566.
[71Stu]	D.R. Stull, H. Prophet: "JANAF Thermochemical Tables", 2nd ed., NSRDS-NBS37, USGPO,
	Washington, DC, 1971.
[86Wri]	H.A. Wriedt: Bull. Alloy Phase Diagrams 7 (1986) 329–333.
[97Nav]	A. Navrotsky, S.H. Risbud, J. Liang, V.J. Leppert: J. Phys. Chem. B101 (1997) 9433–9435.
[98Luk]	H.L. Lukas in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical
	database for light metal alloys", Vol. 2, EUR 18499, 1998, 65-68.
[99Lia]	J. Liang, A. Navrotsky, V.J. Leppert, M. Pashkowitz, S.H. Risbud: J. Mater. Res. 14 (1999)
	4630-4636.

Al – Nb (Aluminium – Niobium)

Fig. 1. Calculated phase diagram for the system Al-Nb.

Aluminium and Niobium are both important alloying elements for high temperature alloys, such as superalloys. The intermetallic AlNb₃ phase is also of interest because of its superconducting properties. The experimental data reported for this system scatter significantly, for example the congruent melting temperature of Al₃Nb reported by several investigations ranges from 1878 K to 2023 K. The most consistent phase diagram can be constructed from the data reported by [80Jor] and [76Yer]. The majority of thermodynamic assessments of this system are based on these data. The recommended assessment of [97Ser] reproduces these data well, including liquidus and solidus data, phase boundary data for AlNb₂, AlNb₃ and bcc-Nb and the melting point of Al₃Nb, and the enthalpy of formation data of the intermediate compounds reported by [93Mes]. However, the description of the liquid phase results in the formation of an inverse miscibility gap at temperatures above 4284 K, and the description of this system should, therefore, not be used for calculations at temperatures above 4000 K.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Al ₃ Nb AlNb ₂ AlNb ₃ bcc	$\begin{array}{c} A1\\ D0_{22}\\ D8_{\rm b}\\ A15\\ A2 \end{array}$	Cu Al₃Ti σCrFe Cr₃Si W	cF4 tI8 tP30 cP8 cI2	Fm3m I4/mmm P4 ₂ /mnm Pm3n Im3m	LIQUID FCC_A1 NBAL3 NB2AL A15_NB3AL BCC_A2	$\begin{array}{l} (Al,Nb)_1 \\ (Al,Nb)_1 \\ (Al,Nb)_1 (Al,Nb)_3 \\ (Al,Nb)_8 (Al,Nb)_5 Nb_2 \\ (Al,Nb)_3 (Al,Nb)_1 \\ (Al,Nb)_1 \end{array}$

Table I. Phases, structures and models.

Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Nb}$	$\Delta_{ m r} H$ / (J/mol)
liquid + bcc \rightleftharpoons AlNb ₃	peritectic	2324.0	0.712	0.820	0.783	-9687
$liquid + AlNb_3 \rightleftharpoons AlNb_2$	peritectic	2208.9	0.632	0.746	0.694	-13316
liquid \rightleftharpoons Al ₃ Nb	congruent	1967.5	0.251	0.251		-38805
$liquid \rightleftharpoons Al_3Nb + AlNb_2$	eutectic	1869.5	0.419	0.255	0.596	-29078
liquid + Al ₃ Nb \rightleftharpoons fcc	peritectic	934.2	0.000	0.250	0.001	-10629

Table IIIa. Integral quantities for the liquid phase at 2800 K.

x _{Nb}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot \text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6640	-7867	-0.438	928	-3.141	0.000	
0.200	-11230	-13937	-0.967	420	-5.127	0.000	
0.300	-15085	-18027	-1.051	-864	-6.130	0.000	
0.400	-18044	-20071	-0.724	-2376	-6.320	0.000	
0.500	-19821	-20118	-0.106	-3684	-5.869	0.000	
0.600	-20138	-18326	0.647	-4470	-4.949	0.000	
0.700	-18750	-14973	1.349	-4528	-3.730	0.000	
0.800	-15418	-10447	1.776	-3768	-2.385	0.000	
0.900	-9781	-5250	1.618	-2213	-1.085	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Nb(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 2800 K.

$x_{ m Al}$	$\Delta G_{\rm A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1615	-860	0.270	838	-0.606	0.933	1.037	
0.800	-2782	-3736	-0.341	2412	-2.196	0.887	1.109	
0.700	-4729	-8820	-1.461	3575	-4.427	0.816	1.166	
0.600	-8377	-15959	-2.708	3516	-6.955	0.698	1.163	
0.500	-14368	-24662	-3.676	1769	-9.439	0.539	1.079	
0.400	-23122	-34092	-3.918	-1790	-11.536	0.370	0.926	
0.300	-34974	-43073	-2.892	-6944	-12.903	0.223	0.742	
0.200	-50604	-50086	0.185	-13135	-13.196	0.114	0.569	
0.100	-73068	-53271	7.070	-19462	-12.075	0.043	0.433	
0.000	$-\infty$	-50426	∞	-24683	-9.194	0.000	0.346	

Reference state: Al(liquid)

	1 unitities it		ara priase e			
$\Delta G_{ m Nb}$ [J/mol]	$\Delta H_{ m Nb}$ [J/mol]	$\Delta S_{ m Nb}$ [J/(mol·K)]	$G^{ m E}_{ m Nb}$ [J/mol]	$S_{ m Nb}^{ m E}$ [J/(mol·K)]	$a_{ m Nb}$	$\gamma_{ m Nb}$
$-\infty$	-86778	∞	18944	-37.758	0.000	2.256
-51865	-70938	-6.812	1740	-25.957	0.108	1.078
-45020	-54739	-3.471	-7551	-16.853	0.145	0.723
-39249	-39510	-0.093	-11220	-10.104	0.185	0.618
-32545	-26239	2.252	-11213	-5.366	0.247	0.618
-25275	-15573	3.465	-9138	-2.299	0.338	0.675
-18149	-7816	3.690	-6257	-0.557	0.459	0.764
-11797	-2931	3.166	-3493	0.201	0.602	0.861
-6622	-537	2.173	-1427	0.318	0.752	0.941
-2750	86	1.013	-297	0.137	0.889	0.987
0	0	0.000	0	0.000	1.000	1.000
	$\begin{array}{c} \Delta G_{\rm Nb} \\ [\rm J/mol] \\ \hline -\infty \\ -51865 \\ -45020 \\ -39249 \\ -32545 \\ -25275 \\ -18149 \\ -11797 \\ -6622 \\ -2750 \\ 0 \end{array}$	$\begin{array}{c c} \Delta G_{\rm Nb} & \Delta H_{\rm Nb} \\ [\rm J/mol] & [\rm J/mol] \\ \hline -\infty & -86778 \\ -51865 & -70938 \\ -45020 & -54739 \\ -39249 & -39510 \\ -32545 & -26239 \\ -25275 & -15573 \\ -18149 & -7816 \\ -11797 & -2931 \\ -6622 & -537 \\ -2750 & 86 \\ 0 & 0 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table IIIc. Partial quantities for Nb in the liquid phase at 2800 K

Reference state: Nb(liquid)

Fig. 3. Activities in the liquid phase at T=2800 K.

References

[76Yer]	V.N. Yeremenko, Ya.V. Natazon, V.I. Dybkov: J. Less-Common Met. 50 (1976) 29-48.
[80Jor]	J.L. Jorda, R. Flükiger, J. Müller: J. Less-Common Met. 75 (1980) 227–239.
[93Mes]	S.V. Meschel, O.J. Kleppa: J. Alloys Comp. 191 (1993) 111–116.
[97Ser]	C. Servant, I. Ansara: J. Chim. Phys. 94 (1997) 869-888.

Al – Nd (Aluminium – Neodymium)

Fig. 1. Calculated phase diagram for the system Al-Nd.

The Al-Nd system is one of a number of rare earth systems of interest for its potential for forming metallic glasses [93Bar] with the possibilities for the development of high strength materials. The phase diagram for the system is dominated by the appearance of a number of intermetallic compounds which, with the exception of Al₂Nd, melt peritectically. There appears to be very little solubility of Nd in solid Al. However, the solubility of Al in both crystalline phases of Nd is appreciable - perhaps 10% Al in the high temperature bcc phase and 2% Al in the low temperature dhcp phase. The liquid phase boundaries in equilibrium with the compound phases seem to be fairly well defined. Thermodynamic studies have concerned the enthalpies of formation and heat capacities of the compounds, enthalpies of mixing in the liquid, emf and vapour pressure measurements. The data for the system have been reviewed by Clavaguera and Du [96Cla] who also provided a full critical assessment of thermodynamic and phase diagram data for the system. A similar evaluation has also been undertaken by Wang [96Wan]. The dataset adopted by SGTE was an updated version of that provided by Cacciamani et al. [91Cac], published in the COST 507 final report [98Ans]. A particular advantage of the data of [91Cac] over those of [96Cla, 96Wan] is that it models the solubility of Al in the high temperature solid phase of Nd.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
$\begin{array}{c} \text{liquid} \\ \text{fcc} \\ \alpha \text{Al}_{11}\text{Nd}_3 \\ \beta \text{Al}_{11}\text{Nd}_3 \\ \text{Al}_3\text{Nd} \\ \text{Al}_2\text{Nd} \end{array}$	$A1 \\ \dots \\ D1_3 \\ D0_{19} \\ C15$	Cu αAl ₁₁ La ₃ Al ₄ Ba Ni ₃ Sn Cu ₂ Mg	cF4 oI28 tI10 hP8 cF24	$Fm\overline{3}m$ Immm I4/mmm P6 $_3/mmc$ Fd $\overline{3}m$	LIQUID FCC_A1 AL11M3 D13_AL11M3 D019_AL3M1 C15_AL2M1	$\begin{array}{c} ({\rm Al,Nd})_1 \\ ({\rm Al,Nd})_1 \\ {\rm Al_{11}Nd_3} \\ {\rm Al_{11}Nd_3} \\ {\rm Al_3Nd_1} \\ {\rm Al_2Nd_1} \end{array}$
AlNd AlNd ₂ AlNd ₃ bcc dhcp	$C23$ $D0_{19}$ $A2$ $A3'$	AlCe Co ₂ Si Ni ₃ Sn W αLa	oC16 oP12 hP8 cI2 hP4	Cmcm Pnma $P6_3/mmc$ $Im\overline{3}m$ $P6_3/mmc$	AL1M1 C23_ALND2 D019_ALM3 BCC_A2 DHCP_A3	$\begin{array}{l} Al_1Nd_1\\ Al_1Nd_2\\ Al_1Nd_3\\ (Al,Nd)_1\\ Nd_1 \end{array}$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Comp	ositions	/ $x_{ m Nd}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons Al ₂ Nd	congruent	1757.1	0.333	0.333		-29461
$liquid + Al_2Nd \rightleftharpoons \beta Al_{11}Nd_3$	peritectic	1506.6	0.170	0.333	0.214	-14274
$\beta Al_{11}Nd_3 + Al_2Nd \rightleftharpoons Al_3Nd$	peritectoid	1475.8	0.214	0.333	0.250	-3060
$\beta Al_{11}Nd_3 \rightleftharpoons \alpha Al_{11}Nd_3$	polymorphic	1224.7	0.214	0.214		-1538
$Al_2Nd + liquid \rightleftharpoons AlNd$	peritectic	1220.3	0.333	0.643	0.500	-11500
$AINd + liquid \rightleftharpoons AINd_2$	peritectic	1122.2	0.500	0.696	0.667	-8761
$AINd_2 + liquid \rightleftharpoons AINd_3$	peritectic	1037.9	0.667	0.780	0.750	-5087
$liquid \rightleftharpoons AlNd_3 + bcc$	eutectic	1008.9	0.815	0.750	0.920	-5234
$liquid \rightleftharpoons fcc + \alpha Al_{11}Nd_3$	eutectic	898.6	0.030	0.000	0.214	-10081
$bcc \rightleftharpoons AlNd_3 + dhcp$	eutectoid	855.3	0.939	0.750	1.000	-2555

Table IIIa. Integral quantities for the liquid phase at 1800	K
---	---

		-	-					
	$x_{ m Nd}$	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$	$G_{\rm m}^{\rm E}$	$S_{\rm m}^{\rm E}$	ΔC_p	
		[J/mol]	[J/mol]	$[J/(\text{mol}\cdot\mathbf{K})]$	[J/mol]	$[J/(\text{mol}\cdot\mathbf{K})]$	$[J/(\text{mol}\cdot\mathbf{K})]$	
_	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-11284	-13592	-1.282	-6419	-3.985	2.662	
	0.200	-17525	-24128	-3.668	-10036	-7.829	4.088	
	0.300	-20509	-31622	-6.174	-11367	-11.253	4.519	
	0.400	-20999	-36086	-8.382	-10927	-13.977	4.198	
	0.500	-19606	-37535	-9.960	-9232	-15.723	3.365	
	0.600	-16872	-35981	-10.616	-6800	-16.212	2.263	
	0.700	-13286	-31437	-10.084	-4144	-15.163	1.134	
	0.800	-9271	-23917	-8.137	-1782	-12.297	0.219	
	0.900	-5093	-13433	-4.633	-228	-7.336	-0.239	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Nd(liquid)

		1	1.	I				
$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-3064	-1530	0.852	-1487	-0.024	0.815	0.905	
0.800	-8600	-6102	1.388	-5261	-0.468	0.563	0.704	
0.700	-15627	-13691	1.076	-10289	-1.890	0.352	0.503	
0.600	-23184	-24269	-0.602	-15539	-4.850	0.212	0.354	
0.500	-30354	-37810	-4.142	-19981	-9.905	0.132	0.263	
0.400	-36294	-54287	-9.996	-22581	-17.615	0.088	0.221	
0.300	-40328	-73676	-18.527	-22309	-28.537	0.068	0.225	
0.200	-42219	-95948	-29.849	-18132	-43.231	0.060	0.298	
0.100	-43480	-121078	-43.110	-9019	-62.255	0.055	0.547	
0.000	$-\infty$	-149039	∞	6063	-86.168	0.000	1.499	

Table IIIb. Partial quantities for Al in the liquid phase at 1800 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Nd in the liquid phase at 1800 K.

$x_{ m Nd}$	$\Delta G_{ m Nd}$ [J/mol]	$\Delta H_{ m Nd}$ [J/mol]	$\Delta S_{ m Nd}$ [J/(mol·K)]	$G_{ m Nd}^{ m E}$ [J/mol]	$S_{ m Nd}^{ m E}$ [J/(mol·K)]	$a_{ m Nd}$	$\gamma_{ m Nd}$	
0.000	$-\infty$	-151238	∞	-79922	-39.620	0.000	0.005	
0.100	-85268	-122147	-20.488	-50808	-39.633	0.003	0.034	
0.200	-53225	-96229	-23.891	-29138	-37.273	0.029	0.143	
0.300	-31901	-73460	-23.088	-13882	-33.099	0.119	0.396	
0.400	-17722	-53812	-20.050	-4008	-27.669	0.306	0.765	
0.500	-8858	-37260	-15.779	1516	-21.542	0.553	1.107	
0.600	-3924	-23776	-11.029	3722	-15.276	0.769	1.282	
0.700	-1697	-13334	-6.465	3641	-9.431	0.893	1.275	
0.800	-1033	-5909	-2.709	2306	-4.564	0.933	1.167	
0.900	-828	-1473	-0.358	749	-1.234	0.946	1.051	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Nd(liquid)

Fig. 3. Activities in the liquid phase at T=1800 K.

Compound	$x_{ m Nd}$	$\Delta_{\mathbf{f}} G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/\!({\rm mol}{\cdot}{\rm K}))$
$\alpha Al_{11}Nd_3$	0.214	-36350	-39165	-9.440	0.000
$\beta Al_{11}Nd_3$	0.214	-35187	-37627	-8.184	0.000
Al_3Nd_1	0.250	-41732	-45292	-11.940	0.000
Al_2Nd_1	0.333	-48867	-52978	-13.791	0.000
Al_1Nd_1	0.500	-44811	-49927	-17.161	0.000
Al_1Nd_2	0.667	-32252	-35929	-12.333	0.000
Al_1Nd_3	0.750	-24259	-26869	-8.754	0.000

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[91Cac] G. Cacciamani, G. Borzone, R. Ferro: An. Fis. **86B** (1991) 160–162.

- [93Bar] M. Baricco, L. Battezzati, G. Borzone, G. Cacciamani: J. Chim. Phys. 90 (1993) 261–268.
- [96Cla] N. Clavaguera, Y. Du: J. Phase Equilibria 17 (1996) 107–111.
- [96Wan] J. Wang: Calphad **20** (1996) 135–138.
- [98Ans] I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical database for light metal alloys", Vol. 2, EUR 18499, 1998, 75–78.

Al – Ni (Aluminium – Nickel)

Fig. 1. Calculated phase diagram for the system Al-Ni.

This system is the foundation of all Ni-base superalloys with good high temperature properties and good corrosion resistance. The $L1_2$ ordered phase, AlNi₃, also known as γ' , has unique mechanical properties with increasing strength at high temperature. It can also form a coherent precipitation for strengthening the alloys. The ordered B2 phase, AlNi is also an interesting candidate for shape memory alloys and for high temperature applications.

The Al-rich part of the system is of less practical interest. There are several assessments of this system, [97Ans] is preferred as it has been integrated into multicomponent databases and uses a consistent modelling of the ordered phases based on the Compound Energy Formalism. More theoretically based assessments using Cluster Variation Methods or Monte-Carlo techniques are available but these have not been extended to multicomponent alloys.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
	liquid fcc Al ₃ Ni Al ₃ Ni ₂ AlNi Al ₃ Ni ₅	$A1 \\ D0_{11} \\ D5_{13} \\ B2 \\ \dots$	$\begin{array}{c} Cu\\ Fe_3C\\ Al_3Ni_2\\ CsCl\\ Ga_3Pt_5\\ \end{array}$	cF4 oP16 hP5 cP2 oC16	$Fm\overline{3}m$ Pnma $P\overline{3}m1$ Pm3m Cmmm	LIQUID FCC_A1 D011_AL3NI1 D513_AL3NI2 BCC_B2 AL3NI5	$(Al,Ni)_1$ $(Al,Ni)_1$ Al_3Ni_1 $Al_3(Al,Ni)_2(Ni,\Box)_1$ $(Al,Ni,\Box)_1(Al,Ni,\Box)_1$ Al_3Ni_5

Table I. Phases, structures and models.

	-						
Reaction	Туре	T / K	Com	positions	/ $x_{ m Ni}$	$\Delta_{ m r} H$ / (J/mol)	
liquid ≓ AlNi	congruent	1950.0	0.498	0.498		-27660	
$fcc \rightleftharpoons liquid + AlNi_3$	peritectic	1643.4	0.756	0.760	0.788	-16957	
liquid ≓ AlNi + AlNi₃	eutectic	1642.2	0.707	0.746	0.750	-19446	
liquid + AlNi \rightleftharpoons Al ₃ Ni ₂	peritectic	1406.5	0.257	0.410	0.401	-4833	
liquid + Al ₃ Ni ₂ \rightleftharpoons Al ₃ Ni	peritectic	1123.5	0.172	0.359	0.250	-16100	
$AlNi + AlNi_3 \rightleftharpoons Al_3Ni_5$	peritectoid	972.5	0.625	0.728	0.601	-1902	
liquid ≓ fcc + Al₃Ni	eutectic	914.8	0.029	0.002	0.250	-11865	

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 2000 K.

$x_{ m Ni}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-15376	-15309	0.033	-9970	-2.670	0.000	
0.200	-27028	-29745	-1.359	-18707	-5.519	0.000	
0.300	-35573	-41680	-3.053	-25415	-8.133	0.000	
0.400	-40826	-49416	-4.295	-29634	-9.891	0.000	
0.500	-42646	-51777	-4.566	-31120	-10.329	0.000	
0.600	-40972	-48455	-3.741	-29781	-9.337	0.000	
0.700	-35817	-40086	-2.135	-25659	-7.214	0.000	
0.800	-27281	-28091	-0.405	-18960	-4.566	0.000	
0.900	-15539	-14245	0.647	-10133	-2.056	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Ni(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 2000 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2201	-210	0.996	-449	0.120	0.876	0.973	
0.800	-6772	-2772	2.000	-3062	0.145	0.665	0.832	
0.700	-14788	-11410	1.689	-8857	-1.276	0.411	0.587	
0.600	-26613	-28698	-1.043	-18119	-5.290	0.202	0.336	
0.500	-42257	-54324	-6.033	-30731	-11.797	0.079	0.158	
0.400	-61514	-84616	-11.551	-46277	-19.170	0.025	0.062	
0.300	-83913	-113349	-14.718	-63892	-24.729	0.006	0.021	
0.200	-108634	-133824	-12.595	-81870	-25.977	0.001	0.007	
0.100	-135324	-142213	-3.444	-97034	-22.589	0.000	0.003	
0.000	$-\infty$	-142186	∞	-103853	-19.166	0.000	0.002	

Reference state: Al(liquid)

	1		1	1				
$x_{ m Ni}$	$\Delta G_{ m Ni}$ [J/mol]	$\Delta H_{ m Ni}$ [J/mol]	$\Delta S_{ m Ni}$ [J/(mol·K)]	$G^{ m E}_{ m Ni}$ [J/mol]	$S_{ m Ni}^{ m E}$ [J/(mol·K)]	$a_{ m Ni}$	$\gamma_{ m Ni}$	
0.000	$-\infty$	-153827	∞	-102074	-25.876	0.000	0.002	
0.100	-133949	-151208	-8.630	-95659	-27.774	0.000	0.003	
0.200	-108051	-137638	-14.794	-81287	-28.176	0.002	0.008	
0.300	-84071	-112311	-14.120	-64050	-24.130	0.006	0.021	
0.400	-62144	-80492	-9.174	-46907	-16.792	0.024	0.060	
0.500	-43035	-49231	-3.098	-31509	-8.861	0.075	0.150	
0.600	-27278	-24347	1.465	-18784	-2.782	0.194	0.323	
0.700	-15204	-8688	3.258	-9273	0.293	0.401	0.573	
0.800	-6943	-1658	2.642	-3232	0.787	0.659	0.823	
0.900	-2229	-26	1.101	-477	0.225	0.875	0.972	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Ni in the liquid phase at 2000 K.

Reference state: Ni(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2000 K.

Fig. 4. Integral quantities of the stable phases at T=900 K.

Fig. 3. Activities in the liquid phase at T=2000 K.

Fig. 5. Activities in the stable phases at T=900 K.

Landolt-Börnstein New Series IV/19B

SGTE

	υ	1		1				
Phase	$x_{ m Ni}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	$\begin{array}{c} 0.000\\ 0.002 \end{array}$	$0 \\ -292$	$0 \\ -160$	$\begin{array}{c} 0.000\\ 0.146\end{array}$	0 —190	$\begin{array}{c} 0.000\\ 0.034\end{array}$	$0.000 \\ -0.001$	
Al ₃ Ni	0.250	-37409	-48455	-12.274			-0.129	
Al ₃ Ni ₂	$\begin{array}{c} 0.374 \\ 0.400 \\ 0.407 \end{array}$	$-50984 \\ -53609 \\ -54067$	-59212 -61876 -62172	-9.142 -9.186 -9.006	$-50366 \\ -53476 \\ -53794$	-9.829 -9.334 -9.309	$-0.113 \\ 0.097 \\ -0.167$	
AlNi	$0.463 \\ 0.500 \\ 0.550 \\ 0.580$	-57428 -58679 -55369 -52872	-64431 -66692 -61542 -58158	-7.781 -8.903 -6.858 -5.872	-55936 -58619 -54150 -51224	-9.439 -8.970 -8.213 -7.704	-0.235 0.094 -0.254 -0.281	
Al ₃ Ni ₅	0.625	-48955	-55436	-7.201			-0.323	
AlNi ₃	$\begin{array}{c} 0.731 \\ 0.750 \\ 0.759 \end{array}$	$-39196 \\ -37233 \\ -35976$	-43997 -42260 -40492	-5.334 -5.586 -5.017	$-38529 \\ -37132 \\ -35658$	-6.075 -5.698 -5.371	-0.303 0.444 -0.105	
fcc	$0.876 \\ 0.900 \\ 0.950 \\ 1.000$	-19777 -16330 -8593 0	-20075 -16459 -8416 0	$-0.331 \\ -0.143 \\ 0.196 \\ 0.000$	$-16971 \\ -13897 \\ -7107 \\ 0$	-3.449 -2.846 -1.455 0.000	-0.443 -0.443 -0.375 0.000	

Table IVa. Integral quantities for the stable phases at 900 K.

Reference states: Al(fcc), Ni(fcc)

		1		I				
Phase	$x_{ m Al}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$
fcc	$\begin{array}{c} 1.000 \\ 0.998 \end{array}$	$0 \\ -14$	0 0	$0.000 \\ 0.016$	0 0	$0.000 \\ 0.000$	$\begin{array}{c} 1.000 \\ 0.998 \end{array}$	$\begin{array}{c} 1.000\\ 1.000\end{array}$
Al ₃ Ni	$0.750 \\ 0.750$	$-14 \\ -10004$	$\begin{array}{c} 201 \\ -26738 \end{array}$	$0.239 \\ -18.594$			$\begin{array}{c} 0.998 \\ 0.263 \end{array}$	
Al ₃ Ni ₂	$0.626 \\ 0.600 \\ 0.593$	$-10004 \\ -20719 \\ -30009$	$-17855 \\ -31929 \\ -49269$	$-8.724 \\ -12.456 \\ -21.400$	$-3401 \\ -18535 \\ -41229$	$-16.060 \\ -14.882 \\ -8.932$	$0.263 \\ 0.063 \\ 0.018$	$0.635 \\ 0.084 \\ 0.004$
AlNi	$0.537 \\ 0.500 \\ 0.450 \\ 0.420$	$-30009 \\ -74536 \\ -98361 \\ -103521$	-27646 -92064 -121570 -125157	2.626 -19.476 -25.789 -24.039	-17407 -76334 -106153 -109047	-11.377 -17.478 -17.131 -17.899	0.018 0.000 0.000 0.000	$0.098 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000$
Al ₃ Ni ₅	$\begin{array}{c} 0.375 \\ 0.375 \end{array}$	$-103521 \\ -106499$	$-93351 \\ -122887$	$11.300 \\ -18.209$			$\begin{array}{c} 0.000\\ 0.000\end{array}$	
AlNi ₃	$0.269 \\ 0.250 \\ 0.241$	-106499 -129762 -141542	-102835 -153175 -187863	4.072 - 26.014 - 51.467	$-86034 \\ -128175 \\ -159338$	-18.668 -27.777 -31.694	$0.000 \\ 0.000 \\ 0.000$	$0.000 \\ 0.000 \\ 0.000$
fcc	$0.124 \\ 0.100 \\ 0.050 \\ 0.000$	$-141542 \\ -148728 \\ -162552 \\ -\infty$	-147877 -155215 -166313 -168417	$-7.039 \\ -7.209 \\ -4.179 \\ \infty$	-125926 -131497 -140135 -143031	-24.390 -26.354 -29.087 -28.207	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000

Table IVb. Partial quantities for Al in the stable phases at 900 K.

Reference state: Al(fcc)

186

		1		I IIIII				
Phase	$x_{ m Ni}$	$\Delta G_{ m Ni}$ [J/mol]	$\Delta H_{ m Ni}$ [J/mol]	$\Delta S_{ m Ni}$ [J/(mol·K)]	$G_{ m Ni}^{ m E}$ [J/mol]	$S_{ m Ni}^{ m E}$ [J/(mol·K)]	$a_{ m Ni}$	$\gamma_{ m Ni}$
fcc	$\begin{array}{c} 0.000\\ 0.002 \end{array}$	$-\infty$ -149593	$-86162 \\ -86200$	∞ 70.437	$-102711 \\ -102529$	$\begin{array}{c} 18.389\\ 18.144\end{array}$	$\begin{array}{c} 0.000\\ 0.000\end{array}$	$0.000 \\ 0.000$
Al ₃ Ni	$\begin{array}{c} 0.250 \\ 0.250 \end{array}$	-149593 -119624	-194423 -113604	$\begin{array}{r}-49.812\\6.689\end{array}$			$0.000 \\ 0.000$	
Al ₃ Ni ₂	$\begin{array}{c} 0.374 \\ 0.400 \\ 0.407 \end{array}$	$-119624 \\ -102945 \\ -89181$	-128484 -106797 -81006	$-9.844 \\ -4.280 \\ 9.084$	-129032 -105887 -72133	$0.609 \\ -1.012 \\ -9.858$	$0.000 \\ 0.000 \\ 0.000$	$0.000 \\ 0.000 \\ 0.000$
AlNi	$0.463 \\ 0.500 \\ 0.550 \\ 0.580$	-89181 -42823 -20195 -16215	$-107031 \\ -41320 \\ -12428 \\ -9667$	$-19.834 \\ 1.670 \\ 8.630 \\ 7.276$	-100557 -40904 -11602 -9374	-7.194 -0.462 -0.917 -0.325	$0.000 \\ 0.003 \\ 0.067 \\ 0.115$	$\begin{array}{c} 0.000 \\ 0.004 \\ 0.212 \\ 0.286 \end{array}$
Al ₃ Ni ₅	$\begin{array}{c} 0.625\\ 0.625\end{array}$	$-16215 \\ -14429$	$-32686 \\ -14965$	$-18.301 \\ -0.596$			$\begin{array}{c} 0.115 \\ 0.145 \end{array}$	
AlNi ₃	$\begin{array}{c} 0.731 \\ 0.750 \\ 0.759 \end{array}$	$-14429 \\ -6390 \\ -2527$	$-22344 \\ -5289 \\ 6203$	$-8.795 \\ 1.224 \\ 9.701$	$-21047 \\ -6784 \\ 3531$	-1.441 1.662 2.969	$\begin{array}{c} 0.145 \\ 0.426 \\ 0.713 \end{array}$	$\begin{array}{c} 0.060 \\ 0.404 \\ 1.603 \end{array}$
fcc	$0.876 \\ 0.900 \\ 0.950 \\ 1.000$	$-2527 \\ -1619 \\ -490 \\ 0$	$-1970 \\ -1041 \\ -106 \\ 0$	$\begin{array}{c} 0.619 \\ 0.642 \\ 0.426 \\ 0.000 \end{array}$	$-1536 \\ -831 \\ -106 \\ 0$	-0.483 -0.234 0.000 0.000	$0.713 \\ 0.805 \\ 0.937 \\ 1.000$	$0.814 \\ 0.895 \\ 0.986 \\ 1.000$

Table IVc. Partial quantities for Ni in the stable phases at 900 K.

Reference state: Ni(fcc)

Table V. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Ni}$	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al ₃ Ni ₁	0.250	-44598	-48024	-11.492	-0.191
Al ₃ Ni ₂	0.400	-58870	-61274	-8.063	-0.301
Al ₁ Ni ₁	0.500	-63672	-65880	-7.405	-0.382
Al ₃ Ni ₅	0.625	-52794	-54358	-5.248	-0.478
Al_1Ni_3	0.750	-40064	-41069	-3.372	-0.562

References

[97Ans] I. Ansara, N. Dupin, H.L. Lukas, B. Sundman: J. Alloys Comp. 247 (1997) 20–30.

Al – O (Aluminium – Oxygen)

Fig. 1. Calculated phase diagram for the system Al-O.

The Al-O system is part of many industrially important systems, ranging from the aluminium production to ceramics. The compound Al₂O₃ is a major constituent of many slag systems and ceramic systems. A critical review of experimental studies in the Al-O system is given by [85Wri]. The thermodynamic description of this system is presented by [93Hal] based on a previous assessment of [92Tay]. The only stable compound in the system is corundum, α -Al₂O₃. It is essentially a stoichiometric compound with a congruent melting point of 2327 K [85Wri]. The solubility of oxygen in the metallic melt and the solubility of aluminium in liquid Al₂O₃ are very low and their measurement is difficult [85Wri]. Liquid Al exists only at very low oxygen partial pressures and the experimental data on oxygen solubilities in liquid Al are contradictory [85Wri]. The oxygen solubility in liquid Al presented by [92Tay] is derived from correlations between the enthalpy and entropy of solution of oxygen in other liquid metals. The data for the liquid phase given by [92Tay] have been re-evaluated by [93Hal] assuming that oxygen dissolves as AlO_{3/2} in the melt yielding the same oxygen solubility as in [92Tay]. The solubility of Al in Al₂O₃ is much lower than given in [92Tay], however, due to a lack of experimental data no optimisation has been done. According to both datasets [92Tay, 93Hal] oxide and metallic liquids react forming a gas phase at 2490 K. The boiling points of Al and Al₂O₃ are calculated to be 2791 and 4000 K, respectively.

Metallic and oxide liquid are described as a single phase exhibiting a very wide miscibility gap. This phase is described by a two-sublattice ionic model with Al^{3+} -species on the cation sublattice and O^{2-} , vacancies and $AlO_{3/2}$ on the anion sublattice. The gas phase is assumed to consist of the species Al, AlO, AlO₂, Al₂O, Al₂O₂, O, O₂ and O₃. Al₂O₃ is treated as a stoichiometric phase.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Al ₂ O ₃	A1 $D5_1$	Cu αAl_2O_3	cF4 hR10	$Fm\overline{3}m$ $R\overline{3}c$	IONIC_LIQ FCC_A1 CORUNDUM_D51	$Al_p^{3+}(O^{2-},AlO_{3/2},\Box)_3$ (Al,O) ₁ $Al_2^{3+}O_2^{2-}$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	<i>T /</i> K	Com	positions	$x_{\rm O}$	$\Delta_{ m r} H$ / (J/mol)
$gas \rightleftharpoons liquid''$	congruent	4000.0	0.600	0.600		-360973
$gas \rightleftharpoons liquid' + liquid''$	gas-eutectic	2490.2	0.306	0.001	0.600	-123298
$liquid'' \rightleftharpoons Al_2O_3$	congruent	2327.0	0.600	0.600		-22217
$liquid' \rightleftharpoons fcc + Al_2O_3$	eutectoid	933.5	0.000	0.000	0.600	-10711

Fig. 2. Calculated temperatureactivity phase diagram. Reference state: O(gas, 0.1 MPa).

Table III. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m O}$	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol} \cdot \mathrm{K}))$
Al_2O_3	0.600	-316461	-335138	-62.643	-2.727

References

[85Wri]	H.A. Wriedt: Bull. Alloy Phase Diagrams 6 (1985) 548–553.
[92Tay]	J.R. Taylor, A.T. Dinsdale, M. Hillert, M. Selleby: Calphad 16 (1992) 173–179.
[93Hal]	B. Hallstedt: J. Phase Equilibria 14 (1993) 662-675.

Al – P (Aluminium – Phosphorus)

Fig. 1. Calculated phase diagram for the system Al-P.

The Al-P system belongs to the group of III-V semiconductor compounds which are important materials for opto-electronic devices. The Al-P system is characterised by a single very highly melting compound AlP which is isoelectronic to diamond-type Si.

A review of experimental data was presented in [85McA]. There are several thermodynamic assessments [81Kau, 94Ans, 01Luk]. The selected assessment for the SGTE database [01Luk] is composed of the descriptions for the AlP compound and the gas species in the SGTE substance database [99SGTE] and a single linearly temperature dependent Redlich-Kister excess term for the liquid to reproduce the measured solubilities [69Bee] of AlP in liquid Al. For the pure elements the SGTE data [91Din] are used. An earlier assessment [94Ans] includes an additional experimental value, the melting temperature of AlP [74Pev], but contains a description of AlP with physically impossible negative heat capacity. The selected description of the liquid is valid only for high Al concentrations. To generate a description covering both, this dilute range and molten AlP, needs more experimental information. The model for the gas phase contains the species Al, AlP, AlP₂, Al₂, P, P₂, P₃, and P₄. The liquid phase is described by the substitutional model. AlP and fcc-Al are treated as stoichiometric phases.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AlP P(red) α P	A1 B3 	Cu ZnS αP	cF4 cF8 \cdots c**	$Fm\overline{3}m$ $F\overline{4}3m$	LIQUID FCC_A1 B3_ZINCBLENDE RED_P WHITE_P	$(Al,P)_1$ Al_1 Al_1P_1 P_1 P_1

Table I. Phases, structures and models.

Table II. Invariant read	ctions.					
Reaction	Туре	T / K	Com	positions	s / $x_{ m P}$	$\Delta_{ m r} H$ / (J/mol)
liquid + gas \rightleftharpoons AlP liquid \rightleftharpoons fcc + AlP AlP + gas \rightleftharpoons P(red)	gas-peritectic eutectic degenerate	2377.5 933.2 704.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0.500 \\ 0.500 \\ 1.000 \end{array}$	-130556 -10723 -29925
$ \begin{array}{c} 0 \\ -2 \\ -2 \\ -2 \\ -2 \\ -3 \\ -4 \\ -4 \\ -6 \\ -6 \\ -8 \\ -10 \\ 0.2 \\ 0.4 \\ \end{array} $	liquid	D.8 T	AlP fcc	1.2	1.4	Fig. 2. Calculated temperature- activity phase diagram. Reference state: P(gas, 0.1 MPa).

Table III. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m P}$	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al_1P_1	0.500	-78919	-82215	-11.055	-3.040

References

[69Bee]	S.Z. Beer: J. Electrochem. Soc. 116 (1969) 263–265.
[74Pev]	S.O. Peviak, A.V. Sandulova: Izv. Akad. Nauk SSSR, Neorg. Mater. 10 (1974) 146–147.
[81Kau]	L. Kaufman, J. Nell, K. Taylor, F. Hayes: Calphad 5 (1981) 185–215.
[85McA]	A.J. McAlister: Bull. Alloy Phase Diagrams 6 (1985) 222–224.
[94Ans]	I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sund-
	man, B.B. Argent, A. Watson, T.G. Chart, T. Anderson: Calphad 18 (1994) 177–222.
[99SGTE]	Scientific Group Thermodata Europe: "Thermodynamic Properties of Inorganic Materials
	compiled by SGTE", Landolt-Börnstein New Series IV/19A1, Springer Verlag, Berlin Hei-
	delberg, 1999.

[01Luk] H.L. Lukas: unpublished optimization 2001.

Fig. 1. Calculated phase diagram for the system Al-Pb.

The Al-Pb system is a very simple system showing a wide range of immiscibility in the liquid phase up to 1695 K where the miscibility gap closes at a composition approximately 34 at.% Pb. It has potential importance as a key subsystem for bearing alloys and automotive applications. The selected data for the Al-Pb system are from the critical assessment of Yu et al. [96Yu]. The system had also been assessed by Ansara [86Ans]. The assessment of Yu et al. is preferred being based on more recent experimental data. Although Al and Pb crystallise in the same structure terminal solid solutions are very limited. The miscibility gap has been studied extensively between the monotectic temperature of 932 K and the upper consolute temperature, and the solubility of Al in the liquid at temperatures below the monotectic and the eutectic at about 600 K. The limited experimental thermodynamic studies have concerned the enthalpies of mixing and the partial Gibbs energies of both Al and Pb. The assessed data are in very good agreement with all the experimental data for the system.

Table	I . I	Phases,	structures	and	mod	lels.
-------	--------------	---------	------------	-----	-----	-------

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	<i>A</i> 1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	(Al,Pb) ₁ (Al,Pb) ₁

Table	e II.	Invariant	react	tions.	

Reaction	Туре	T / K	Comp	oositions	/ $x_{ m Pb}$	$\Delta_{ m r} H$ / (J/mol)			
$\begin{aligned} \text{liquid} &\rightleftharpoons \text{liquid'} + \text{liquid''} \\ \text{liquid'} &\rightleftharpoons \text{fcc'} + \text{liquid''} \\ \text{liquid''} &\rightleftharpoons \text{fcc'} + \text{fcc''} \end{aligned}$	critical monotectic eutectic	$1695.2 \\932.4 \\600.4$	$0.336 \\ 0.002 \\ 1.000$	$0.336 \\ 0.000 \\ 0.000$	$\begin{array}{c} 0.336 \\ 0.986 \\ 1.000 \end{array}$	$0 \\ -10800 \\ -4791$			
rando renderal damanado ror monderio hando an renderal									
--	---------------------------	------------------------------	-------------------------------	---------------------------	-------------------------------	--	--	--	--
x_{Pb}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot\text{K})]}$			
0.000	0	0	0.000	0	0.000	0.000			
0.100	-1495	5625	4.188	3100	1.485	0.000			
0.200	-1819	9326	6.556	5254	2.395	0.000			
0.300	-2017	11436	7.913	6617	2.834	0.000			
0.400	-2200	12241	8.495	7313	2.899	0.000			
0.500	-2370	11983	8.443	7427	2.680	0.000			
0.600	-2497	10858	7.856	7015	2.260	0.000			
0.700	-2537	9015	6.796	6097	1.717	0.000			
0.800	-2414	6559	5.279	4659	1.118	0.000			
0.900	-1941	3550	3.230	2653	0.527	0.000			
1.000	0	0	0.000	0	0.000	0.000			

Table IIIa. Integral quantities for the liquid phase at 1700 K

Reference states: Al(liquid), Pb(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1700 K.

x_{A1}	$\Delta G_{\rm A1}$ [J/mol]	$\Delta H_{\rm A1}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-988	1021	1.182	501	0.306	0.933	1.036	
0.800	-1372	3618	2.935	1782	1.080	0.907	1.134	
0.700	-1461	7194	5.091	3581	2.126	0.902	1.288	
0.600	-1480	11291	7.513	5740	3.265	0.901	1.501	
0.500	-1596	15585	10.106	8202	4.343	0.893	1.786	
0.400	-1942	19890	12.842	11010	5.224	0.872	2.179	
0.300	-2708	24156	15.802	14310	5.792	0.826	2.752	
0.200	-4401	28469	19.336	18348	5.954	0.732	3.662	
0.100	-9075	33054	24.781	23471	5.637	0.526	5.262	
0.000	$-\infty$	38269	∞	30130	4.787	0.000	8.429	

Reference state: Al(liquid)

Table IIIc. Partial quantities for Pb in the liquid phase at 1700 K.

x_{Pb}	$\Delta G_{ m Pb}$ [J/mol]	$\Delta H_{ m Pb}$ [J/mol]	$\Delta S_{ m Pb}$ [J/(mol·K)]	$G_{ m Pb}^{ m E}$ [J/mol]	$S_{ m Pb}^{ m E}$ [J/(mol·K)]	a_{Pb}	γ_{Pb}
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600\\ 0.700\\ 0.800\\ 0.900 \end{array}$	$-\infty$ -6064 -3608 -3315 -3280 -3144 -2868 -2464 -1917 -1149	$\begin{array}{c} 67083\\ 47057\\ 32157\\ 21332\\ 13666\\ 8382\\ 4837\\ 2526\\ 1082\\ 272\\ \end{array}$	$\begin{array}{c}\infty\\31.248\\21.039\\14.498\\9.968\\6.780\\4.532\\2.936\\1.764\\0.836\end{array}$	$\begin{array}{c} 36325\\ 26482\\ 19141\\ 13703\\ 9672\\ 6653\\ 4352\\ 2577\\ 1237\\ 340\\ \end{array}$	$\begin{array}{c} 18.093 \\ 12.103 \\ 7.657 \\ 4.488 \\ 2.350 \\ 1.017 \\ 0.285 \\ -0.030 \\ -0.091 \\ -0.040 \end{array}$	$\begin{array}{c} 0.000\\ 0.651\\ 0.775\\ 0.791\\ 0.793\\ 0.801\\ 0.816\\ 0.840\\ 0.873\\ 0.922 \end{array}$	$\begin{array}{c} 13.065\\ 6.511\\ 3.873\\ 2.636\\ 1.982\\ 1.601\\ 1.361\\ 1.200\\ 1.091\\ 1.024\end{array}$
1.000	0	0	0.000	0	0.000	1.000	1.000

Reference state: Pb(liquid)

Landolt-Börnstein New Series IV/19B

Fig. 2. Integral quantities of the liquid phase at T=1700 K.

Fig. 3. Activities in the liquid phase at T=1700 K.

References

[84McA]	A.J. McAlister:	Bull. Allov	Phase Diagrams	5 (1984) 69-73.
[- (-/ 0 / / 0/ / 0/

[96Yu] S.K. Yu, F. Sommer, B. Predel: Z. Metallkd. 87 (1996) 574–580.

Fig. 1. Calculated phase diagram for the system Al-Sb (constrained system).

The ability of group III-V compound semiconductors to form miscible substitutional solutions with each other results in materials with a wide range of electrical and optical properties.

The Al-Sb system is a simple system with one intermediate phase, AlSb, which is isotypic with ZnS (sphalerite). None of the solid phases reveals significant homogeneity ranges. Several thermodynamic assessments of this system are published in the literature. Since the liquid phase in this system reveals an ordering tendency the associate model was used for its description in some of these assessments. The recommended assessment of [90Cou] used the associate as well as the Redlich-Kister model for the description of the liquid phase. However, for the construction of multicomponent databases the more general character of the Redlich-Kister model description is preferable. The assessment of [90Cou] is based on liquidus temperature, enthalpy of mixing of the liquid, enthalpy content of AlSb and partial Gibbs energy data.

Table I.	Phases,	structures	and	models.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AlSb A7	A1 B3 A7	Cu ZnS αAs	cF4 cF8 hR2	$Fm\overline{3}m$ $F\overline{4}3m$ $R\overline{3}m$	LIQUID FCC_A1 B3_ZINCBLENDE RHOMBOHEDRAL_A7	$(Al,Sb)_1$ Al_1 Al_1Sb_1 Sb_1

Table II. Invariant reaction	IS.
------------------------------	-----

Reaction	Туре	T / K	Com	positions	/ $x_{ m Sb}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons AlSb liquid \rightleftharpoons fcc + AlSb liquid \rightleftharpoons AlSb + A7	congruent eutectic eutectic	$\begin{array}{c} 1332.1 \\ 932.1 \\ 896.9 \end{array}$	$\begin{array}{c} 0.500 \\ 0.004 \\ 0.979 \end{array}$	$\begin{array}{c} 0.500 \\ 0.002 \\ 0.500 \end{array}$	$\begin{array}{c} 0.500 \\ 1.000 \end{array}$	-40419 -10842 -20526

195

Fig. 3. Calculated partial pressures of gaseous species in the phase equilibria of the constrained system.

Table IIIa. Integral quantities for the liquid phase at 1400 K.

$x_{ m Sb}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-4043	485	3.234	-259	0.531	2.041	
0.200	-6723	-89	4.739	-898	0.578	3.628	
0.300	-8802	-1077	5.518	-1691	0.439	4.762	
0.400	-10279	-1997	5.915	-2445	0.319	5.443	
0.500	-11072	-2537	6.097	-3004	0.334	5.669	
0.600	-11084	-2543	6.101	-3250	0.505	5.443	
0.700	-10212	-2032	5.843	-3101	0.764	4.762	
0.800	-8335	-1181	5.110	-2510	0.949	3.628	
0.900	-5251	-334	3.512	-1467	0.809	2.041	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Sb(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1400 K.

$x_{ m Al}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{\rm Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-995	650	1.175	232	0.299	0.918	1.020	
0.800	-1994	1659	2.609	604	0.754	0.843	1.053	
0.700	-3437	1985	3.872	715	0.907	0.744	1.063	
0.600	-5673	1078	4.822	273	0.575	0.614	1.024	
0.500	-8974	-1115	5.614	-906	-0.149	0.463	0.925	
0.400	-13561	-4154	6.719	-2895	-0.899	0.312	0.780	
0.300	-19674	-7105	8.978	-5660	-1.032	0.184	0.615	
0.200	-27790	-8539	13.750	-9056	0.369	0.092	0.459	
0.100	-39632	-6534	23.641	-12829	4.496	0.033	0.332	
0.000	$-\infty$	1326	∞	-16617	12.816	0.000	0.240	

Reference state: Al(liquid)

		1		1. 1				
x_{Sb}	$\Delta G_{ m Sb}$	$\Delta H_{ m Sb}$	$\Delta S_{ m Sb}$	$G_{ m Sb}^{ m E}$	$S_{ m Sb}^{ m E}$	$a_{ m Sb}$	$\gamma_{ m Sb}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
0.000	$-\infty$	12698	∞	168	8.950	0.000	1.015	
0.100	-31474	-1008	21.762	-4671	2.617	0.067	0.669	
0.200	-25641	-7084	13.256	-6907	-0.126	0.110	0.552	
0.300	-21319	-8219	9.357	-7305	-0.653	0.160	0.534	
0.400	-17187	-6610	7.554	-6521	-0.064	0.228	0.571	
0.500	-13171	-3958	6.580	-5102	0.817	0.323	0.645	
0.600	-9433	-1469	5.688	-3487	1.441	0.445	0.741	
0.700	-6156	142	4.499	-2004	1.533	0.589	0.842	
0.800	-3471	659	2.950	-873	1.094	0.742	0.928	
0.900	-1431	355	1.276	-205	0.400	0.884	0.983	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Sb in the liquid phase at 1400 K.

Reference state: Sb(liquid)

Fig. 4. Integral quantities of the liquid phase at T=1400 K.

Fig. 5. Activities in the liquid phase at T=1400 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Sb}$	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al_1Sb_1	0.500	-23409	-24477	-3.582	-0.770

References

[90Cou] C.A. Coughanowr, U.R. Kattner, T.J. Anderson: Calphad 14 (1990) 193–202.

Al – Si (Aluminium – Silicon)

Fig. 1. Calculated phase diagram for the system Al-Si.

Al-Si alloys are the basis of technologically important aluminium castings. Small additions of Na and Mg vastly improve the properties of binary alloys. The thermodynamic parameters of the Al-Si system have been optimised in several works [80Doe, 86Mey, 92Cha, 97Feu]. The new dilatometric determination of the solvus temperature for alloys containing 0.84 mass-% Si by [97Feu] is taken into account in addition to the experimental data used by previous assessments. The assessment of [97Feu] is recommended here because more experimental data are taken into account, but the difference between calculations based on data of [97Feu] and others is quite small.

The phase diagram of the Al-Si systems is a eutectic phase diagram with fcc solid solution. The experimental phase equilibrium data and thermodynamic measurements mentioned below are used in the optimisation. Partial Gibbs energy values of the melt are derived from EMF data and vapour pressure measurements. The calorimetric data for the Al-Si liquid are the enthalpy content, the heat capacity and the enthalpy of mixing. The maximal solid solubility of silicon in aluminium is determined to be 1.5 at.% at 850 K. The solubility of aluminium in silicon is as low as 0.016 at.%. The liquid and the fcc phases are described by a substitutional model and solid Si is treated as a stoichiometric phase.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A4	$\begin{array}{c} A1\\ A4 \end{array}$	Cu C(diamond)	cF4 cF8	$Fm\overline{3}m$ $Fd\overline{3}m$	LIQUID FCC_A1 DIAMOND_A4	(Al,Si) ₁ (Al,Si) ₁ Si ₁

Table I. Phases, structures and models.

m 1 1	TT	T .	. •
Table		Invariant	reactions
Lanc		munum	reactions.

Reaction	Туре	<i>T /</i> K	Compositions / $x_{\rm Si}$		/ $x_{ m Si}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc + A4	eutectic	850.1	0.121	0.015	1.000	-13675

Table IIIa. Integral quantities for the liquid phase at 1700 K.

$x_{ m Si}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5762	-1144	2.716	-1167	0.013	0.000	
0.200	-9210	-2023	4.227	-2137	0.067	0.000	
0.300	-11483	-2602	5.224	-2848	0.145	0.000	
0.400	-12775	-2869	5.827	-3262	0.231	0.000	
0.500	-13157	-2835	6.072	-3359	0.308	0.000	
0.600	-12658	-2530	5.957	-3145	0.361	0.000	
0.700	-11278	-2009	5.452	-2643	0.373	0.000	
0.800	-8976	-1345	4.489	-1903	0.328	0.000	
0.900	-5586	-636	2.912	-991	0.209	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Si(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1700 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{\rm Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1576	-125	0.853	-86	-0.023	0.895	0.994	
0.800	-3592	-558	1.785	-438	-0.070	0.776	0.969	
0.700	-6187	-1332	2.856	-1146	-0.109	0.645	0.922	
0.600	-9455	-2417	4.140	-2235	-0.107	0.512	0.854	
0.500	-13462	-3718	5.732	-3664	-0.031	0.386	0.772	
0.400	-18281	-5073	7.769	-5329	0.150	0.274	0.686	
0.300	-24077	-6258	10.482	-7059	0.471	0.182	0.607	
0.200	-31367	-6980	14.345	-8618	0.964	0.109	0.544	
0.100	-42251	-6882	20.805	-9705	1.660	0.050	0.503	
0.000	$-\infty$	-5544	∞	-9953	2.594	0.000	0.495	

Reference state: Al(liquid)

		1	1.	I				
$x_{ m Si}$	$\Delta G_{ m Si}$ [J/mol]	$\Delta H_{ m Si}$ [J/mol]	$\Delta S_{ m Si}$ [J/(mol·K)]	$G_{ m Si}^{ m E}$ [J/mol]	$S_{ m Si}^{ m E}$ [J/(mol·K)]	$a_{ m Si}$	$\gamma_{ m Si}$	
0.000	$-\infty$	-12606	∞	-12392	-0.126	0.000	0.416	
0.100	-43436	-10314	19.483	-10890	0.339	0.046	0.463	
0.200	-31679	-7884	13.997	-8930	0.616	0.106	0.532	
0.300	-23838	-5566	10.748	-6820	0.738	0.185	0.617	
0.400	-17754	-3548	8.356	-4803	0.738	0.285	0.712	
0.500	-12852	-1952	6.412	-3055	0.648	0.403	0.806	
0.600	-8909	-835	4.749	-1689	0.502	0.532	0.887	
0.700	-5792	-188	3.297	-751	0.331	0.664	0.948	
0.800	-3378	64	2.024	-224	0.169	0.787	0.984	
0.900	-1512	58	0.924	-23	0.048	0.899	0.998	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Si in the liquid phase at 1700 K.

Reference state: Si(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1700 K.

Fig. 3. Activities in the liquid phase at T=1700 K.

References

[80Doe]	P. Dörner, E.T. Henig	H. Krieg, H.L. Lukas,	G. Petzow: Calphad 4	(1980) 241–254.
---------	-----------------------	-----------------------	----------------------	-----------------

- [86Mey] S. an Mey, K. Hack: Z. Metallkd. 77 (1986) 454–459.
- [92Cha] N. Chakraborti, H.L. Lukas: Calphad 16 (1992) 79–86.
- [97Feu] H. Feufel, T. Gödecke, H.L. Lukas, F. Sommer: J. Alloys Comp. 247 (1997) 31–42.

Al – Ta (Aluminium – Tantalum)

Fig. 1. Calculated phase diagram for the system Al-Ta.

Aluminum and Tantalum are both important alloying elements for high temperature alloys, such as superalloys.

Three different versions of the phase diagram have been published as result of different experimental investigations [85Sch, 90Sub, 95Mah]. Common to all phase diagram versions are the Al₃Ta and AlTa₂ phases in addition to the liquid and two terminal solid solution phases. It is also common that the AlTa₂ phase forms peritectically from the liquid and bcc-Ta at temperatures between 2273 K and 2373 K. The Al₃Ta phase is shown to form either peritectically or congruently at temperatures between 1823 K and 1903 K. The number and stoichiometries of the phases reported for the composition regime between Al₃Ta and AlTa₂ differs between these experimental investigations.

Several assessments are based on these different versions of the phase diagram. The assessment of [96Du] is preferred since it is based on the most comprehensive dataset available for this system. This dataset includes phase diagram, enthalpy and partial Gibbs energy data. The assessment reproduces the phase diagram of [95Mah]. The description of the liquid phase results in the formation of an inverse miscibility gap at temperatures above 5667 K, and the description of this system should, therefore, not be used for calculations at temperatures above 5400 K.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	$(Al,Ta)_1$
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	(Al,Ta) ₁
Al ₃ Ta	$D0_{22}$	Al ₃ Ti	tI8	I4/mmm	D022_AL3TA1	Al_3Ta_1
Al ₆₉ Ta ₃₉	•••	• • •	cF432	$F\overline{4}3m$	AL69TA39	$Al_{69}Ta_{39}$
Al_3Ta_2	•••	• • •	cF^*	•••	AL3TA2	Al_3Ta_2
$Al_7 Ta_5$	•••	• • •	hP^*	•••	AL7TA5	Al ₇ Ta ₅
AlTa	•••	•••	mP^*	•••	ALTA	Al_1Ta_1
AlTa ₂	$D8_{ m b}$	σ CrFe	tP30	$P4_2/mnm$	SIGMA10_D8B	$(Al,Ta)_5Ta_2(Al,Ta)_8$
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	(Al,Ta) ₁

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Compositions / x_{Ta}			$\Delta_{ m r} H$ / (J/mol)
liquid + bcc \rightleftharpoons AlTa ₂	peritectic	2334.2	0.637	0.919	0.756	-11534
liquid ≓ Al ₃ Ta	congruent	1881.2	0.250	0.250		-27120
$Al_3Ta + liquid \rightleftharpoons Al_{69}Ta_{39}$	peritectic	1820.8	0.250	0.367	0.361	-18237
liquid \rightleftharpoons Al ₆₉ Ta ₃₉ + AlTa ₂	eutectic	1772.5	0.451	0.361	0.651	-16104
$Al_{69}Ta_{39} + AlTa_2 \rightleftharpoons AlTa_2$	peritectoid	1718.9	0.361	0.654	0.500	-1688
$Al_{69}Ta_{39} + AlTa_2 \rightleftharpoons Al_7Ta_5$	peritectoid	1618.4	0.361	0.500	0.417	-1104
$Al_{69}Ta_{39} + Al_7Ta_5 \rightleftharpoons Al_3Ta_2$	peritectoid	1498.7	0.361	0.417	0.400	-559
$Al_{69}Ta_{39} \rightleftharpoons Al_3Ta + Al_3Ta_2$	eutectoid	1456.1	0.361	0.250	0.400	-1871
liquid + Al ₃ Ta \rightleftharpoons fcc	peritectic	936.5	0.000	0.250	0.005	-10402

Table IIIa. Integral quantities for the liquid phase at 3300 K.

x_{Ta}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-8803	-6331	0.749	117	-1.954	0.000	
0.200	-13316	-11957	0.412	414	-3.749	0.000	
0.300	-15946	-16614	-0.202	815	-5.281	0.000	
0.400	-17225	-20038	-0.853	1242	-6.448	0.000	
0.500	-17402	-21969	-1.384	1616	-7.147	0.000	
0.600	-16604	-22141	-1.678	1862	-7.274	0.000	
0.700	-14860	-20294	-1.647	1901	-6.726	0.000	
0.800	-12075	-16163	-1.239	1655	-5.399	0.000	
0.900	-7872	-9486	-0.489	1047	-3.192	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Ta(liquid)

		1		1				
$x_{\rm A1}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2994	-309	0.814	-103	-0.062	0.897	0.996	
0.800	-6433	-1587	1.468	-310	-0.387	0.791	0.989	
0.700	-10251	-4360	1.785	-465	-1.180	0.688	0.983	
0.600	-14429	-9153	1.599	-413	-2.648	0.591	0.985	
0.500	-19018	-16492	0.765	1	-4.998	0.500	1.000	
0.400	-24209	-26903	-0.816	932	-8.435	0.414	1.035	
0.300	-30500	-40912	-3.155	2535	-13.166	0.329	1.097	
0.200	-39194	-59044	-6.015	4965	-19.397	0.240	1.198	
0.100	-54800	-81825	-8.189	8378	-27.334	0.136	1.357	
0.000	$-\infty$	-109781	∞	12928	-37.185	0.000	1.602	

Table IIIb. Partial quantities for Al in the liquid phase at 3300 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Ta in the liquid phase at 3300 K.

x_{Ta}	ΔG_{Ta} [J/mol]	ΔH_{Ta} [J/mol]	ΔS_{Ta} [J/(mol·K)]	$G_{\mathrm{Ta}}^{\mathrm{E}}$ [J/mol]	$S_{ ext{Ta}}^{ ext{E}}$ [J/(mol·K)]	a_{Ta}	$\gamma_{ m Ta}$	
0.000	$-\infty$	-65968	∞	3	-19.991	0.000	1.000	
0.100 0.200	-61082 -40849	-53436	-3.814	$\frac{2097}{3311}$	-18.978 -17.196	$0.108 \\ 0.226$	1.128	
0.300	-29233	-45205	-4.840	$\frac{3801}{2722}$	-14.851	0.345	1.149	
0.400 0.500	-21418 -15787	-30307 -27445	-4.530 -3.533	3723 3232	-12.149 -9.296	0.458 0.563	$1.145 \\ 1.125$	
0.600	-11534 -8158	-18967 -11458	-2.252 -1.000	$2482 \\ 1629$	-6.500 -3.966	0.657 0.743	1.095 1.061	
0.800	-5295	-5443	-0.045	827	-1.900	$0.145 \\ 0.824$	1.031	
$\begin{array}{c} 0.900 \\ 1.000 \end{array}$	-26580	$-1448 \\ 0$	$\begin{array}{c} 0.367 \\ 0.000 \end{array}$	$\begin{array}{c} 233 \\ 0 \end{array}$	$-0.509 \\ 0.000$	$\begin{array}{c} 0.908 \\ 1.000 \end{array}$	$1.009 \\ 1.000$	

Reference state: Ta(liquid)

Fig. 2. Integral quantities of the liquid phase at T=3300 K.

Fig. 3. Activities in the liquid phase at T=3300 K.

Landolt-Börnstein

New Series IV/19B

Compound	x_{Ta}	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}} S^{\circ} / (\mathrm{J}/(\mathrm{mol} \cdot \mathrm{K}))$	$\Delta_{\rm f} C_P^{\circ} / ({\rm J} / ({\rm mol} \cdot {\rm K}))$
Al ₃ Ta ₁	0.250	-24824	-25916	-3.663	0.000
Al ₆₉ Ta ₃₉	0.361	-20234	-20532	-1.000	0.000
Al_3Ta_2	0.400	-20636	-21173	-1.802	0.000
$Al_7 Ta_5$	0.417	-20168	-20649	-1.613	0.000
Al_1Ta_1	0.500	-17817	-18064	-0.827	0.000

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[85Sch]	J.C. Schuster: Z. Metallkd. 76 (1985) 724–727.
[90Sub]	P.R. Subramanian, D.B. Miracle, S. Mazdiyasni: Metall. Trans. 21A (1990) 539–545.
[95Mah]	S. Mahne, B. Harbrecht, F. Krumeich: J. Alloys Comp. 218 (1995) 177-182.
[96Du]	Y. Du, R. Schmid-Fetzer: J. Phase Equilibria 17 (1996) 311-324.

Al – Ti (Aluminium – Titanium)

Fig. 1. Calculated phase diagram for the system Al-Ti.

This system is of great interest for high temperature applications and for good corrosion resistance. The ordered $L1_0$ phase, AlTi, has good mechanical properties. The hcp/bcc transition in Ti is moved to higher temperatures by Al and the shape of this two-phase region has been studied by many authors. The ordering in the hcp phase at lower temperature, forming a $D0_{19}$ structure is very close to this two-phase region and recently it has been confirmed that B2 ordering of the bcc phase is also stable [94Kai]. But this transformation has not been included in the present diagram which is from [98Sau] with small modifications. The modelling is based on CEF but the ordered phases are modelled separately from the disordered parent phases. A full assessment of the whole phase diagram with consistent modelling of the order/disorder transformations is in progress.

Phase	Struktur-	Prototype	Pearson	Space	SGTE	Model
	bericht		symbol	group	name	
liquid					LIQUID	(Al,Ti)1
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	(Al,Ti) ₁
Al ₃ Ti	$D0_{22}$	Al ₃ Ti	tI8	I4/mmm	D022_AL3M1	(Al,Ti) ₃ Ti ₁
$Al_{11}Ti_5$	•••	• • •	•••	•••	AL11TI5	Al ₁₇ Ti ₈
Al ₂ Ti	•••	• • •	tI24	$I4_1/amd$	AL2TI	Al_2Ti_1
AlTi	$L1_0$	AuCu	tP2	P4/mmm	L10_ALTI	$(Al,Ti)_1(Al,Ti)_1$
AlTi ₃	$D0_{19}$	Ni ₃ Sn	hP8	$P6_3/mmc$	D019_AL1M3	$(Al,Ti)_3(Al,Ti)_1$
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	(Al,Ti) ₁
hcp	<i>A</i> 3	Mg	hP2	$P6_3/mmc$	HCP_A3	$(Al,Ti)_1$

Tal	ble	I.	Phases,	structures	and	mod	lels.
-----	-----	----	---------	------------	-----	-----	-------

Landolt-Börnstein New Series IV/19B

Reaction	Туре	T / K	Com	positions	/ x_{Ti}	$\Delta_{ m r} H$ / (J/mol)	
liquid ≓ bcc	congruent	1988.5	0.799	0.799		-15738	
liquid + bcc \rightleftharpoons hcp	peritectic	1775.9	0.491	0.555	0.540	-6380	
liquid + hcp ≓ AlTi	peritectic	1716.6	0.436	0.498	0.459	-16846	
liquid + AlTi \rightleftharpoons Al ₁₁ Ti ₅	peritectic	1651.9	0.311	0.380	0.320	-23232	
liquid \rightleftharpoons Al ₃ Ti	congruent	1646.2	0.274	0.274		-24885	
liquid \rightleftharpoons Al ₃ Ti + Al ₁₁ Ti ₅	eutectic	1645.9	0.283	0.276	0.320	-24944	
$hcp \rightleftharpoons AlTi_3$	congruent	1462.5	0.684	0.684		-3259	
$Al_{11}Ti_5 + AlTi \rightleftharpoons Al_2Ti$	peritectoid	1454.4	0.320	0.388	0.333	-1607	
hcp ≓ AlTi + AlTi ₃	eutectoid	1399.3	0.593	0.516	0.603	-3207	
$Al_{11}Ti_5 \rightleftharpoons Al_3Ti + Al_2Ti$	eutectoid	1269.1	0.320	0.254	0.333	-897	
liquid + Al ₃ Ti \rightleftharpoons fcc	peritectic	938.0	0.001	0.250	0.007	-10180	

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 2000 K.

x_{Ti}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-7156	-9311	-1.077	-1751	-3.780	0.000	
0.200	-12233	-17032	-2.399	-3912	-6.560	0.000	
0.300	-16091	-22733	-3.321	-5933	-8.400	0.000	
0.400	-18596	-26124	-3.764	-7404	-9.360	0.000	
0.500	-19589	-27063	-3.737	-8063	-9.500	0.000	
0.600	-18980	-25548	-3.284	-7788	-8.880	0.000	
0.700	-16763	-21725	-2.481	-6605	-7.560	0.000	
0.800	-13001	-15880	-1.439	-4680	-5.600	0.000	
0.900	-7732	-8447	-0.357	-2327	-3.060	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Ti(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 2000 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m A1}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1443	-711	0.366	310	-0.510	0.917	1.019	
0.800	-3281	-3490	-0.105	430	-1.960	0.821	1.026	
0.700	-6458	-8987	-1.264	-527	-4.230	0.678	0.969	
0.600	-11511	-17416	-2.953	-3016	-7.200	0.500	0.834	
0.500	-18589	-28563	-4.987	-7063	-10.750	0.327	0.654	
0.400	-27495	-41778	-7.141	-12258	-14.760	0.191	0.478	
0.300	-37783	-55983	-9.100	-17763	-19.110	0.103	0.344	
0.200	-49067	-69664	-10.298	-22304	-23.680	0.052	0.262	
0.100	-62468	-80879	-9.205	-24179	-28.350	0.023	0.234	
0.000	$-\infty$	-87250	∞	-21250	-33.000	0.000	0.279	

Reference state: Al(liquid)

206

14010 11	ici i uitiui t	1 uuninines it	n ii iii uie iiqe	ind pridoe di	2000 11.			
x_{Ti}	ΔG_{Ti}	ΔH_{Ti}	$\Delta S_{ m Ti}$	$G_{ m Ti}^{ m E}$	$S_{ m Ti}^{ m E}$	a_{Ti}	$\gamma_{ m Ti}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
0.000	$-\infty$	-99250	∞	-13250	-43.000	0.000	0.451	
0.100	-58580	-86711	-14.065	-20291	-33.210	0.030	0.295	
0.200	-48043	-71200	-11.578	-21280	-24.960	0.056	0.278	
0.300	-38567	-54807	-8.120	-18547	-18.130	0.098	0.328	
0.400	-29223	-39186	-4.981	-13986	-12.600	0.173	0.431	
0.500	-20589	-25563	-2.487	-9063	-8.250	0.290	0.580	
0.600	-13303	-14728	-0.713	-4808	-4.960	0.449	0.749	
0.700	-7754	-7043	0.356	-1823	-2.610	0.627	0.896	
0.800	-3985	-2434	0.775	-274	-1.080	0.787	0.984	
0.900	-1651	-399	0.626	102	-0.250	0.906	1.006	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Ti in the liquid phase at 2000 K

Reference state: Ti(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2000 K.

Fig. 4. Integral quantities of the stable phases at T=900 K.

Fig. 3. Activities in the liquid phase at T=2000 K.

Fig. 5. Activities in the stable phases at T=900 K.

Landolt-Börnstein New Series IV/19B SGTE

Phase	x_{Ti}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G^{ m E}_{ m m}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	$\begin{array}{c} 0.000\\ 0.006 \end{array}$	0 -711	$0 \\ -645$	$\begin{array}{c} 0.000\\ 0.073\end{array}$	0 - 437	$0.000 \\ -0.232$	$0.000 \\ 0.000$	
Al ₃ Ti	$\begin{array}{c} 0.250 \\ 0.250 \end{array}$	$-27818 \\ -27824$	$-36148 \\ -36143$	$-9.256 \\ -9.244$	$-27818 \\ -27814$	$-9.256 \\ -9.254$	$\begin{array}{c} 0.000\\ 0.000\end{array}$	
Al ₂ Ti	0.333	-31140	-40500	-10.400			0.000	
AlTi AlTi ₃	$\begin{array}{c} 0.419\\ 0.450\\ 0.500\\ 0.505\\ 0.648\\ 0.650\\ 0.700\\ 0.750\\ 0.790\\ 0.750\\ 0.790\\ \end{array}$	$\begin{array}{r} -31958 \\ -32056 \\ -31330 \\ -31178 \\ -26967 \\ -26898 \\ -25029 \\ -22239 \\ -10156 \end{array}$	$\begin{array}{r} -40196\\ -40316\\ -39259\\ -38971\\ -31795\\ -31729\\ -29937\\ -27123\\ -22737\end{array}$	$\begin{array}{r} -9.153 \\ -9.178 \\ -8.810 \\ -8.659 \\ -5.364 \\ -5.367 \\ -5.454 \\ -5.427 \\ -3.970 \end{array}$	$\begin{array}{r} -30266\\ -30760\\ -30592\\ -30411\\ -24726\\ -24689\\ -23632\\ -21764\\ -18256\end{array}$	$\begin{array}{r} -11.033 \\ -10.618 \\ -9.630 \\ -9.511 \\ -7.855 \\ -7.822 \\ -7.006 \\ -5.955 \\ -4.978 \end{array}$	$\begin{array}{c} 0.293 \\ 0.667 \\ 2.408 \\ 2.333 \\ 0.068 \\ 0.072 \\ 0.243 \\ 1.883 \\ 0.674 \end{array}$	
hcp	$\begin{array}{c} 0.790 \\ 0.873 \\ 0.900 \\ 0.950 \\ 1.000 \end{array}$	-19150 -12253 -9949 -5325 0	-22737 -13091 -10513 -5426 0	$ \begin{array}{r} -3.979 \\ -0.931 \\ -0.627 \\ -0.112 \\ 0.000 \\ \end{array} $	-18250 -9404 -7516 -3840 0	-4.978 -4.096 -3.330 -1.762 0.000	$\begin{array}{c} 0.074 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	

Table IVa. Integral quantities for the stable phases at 900 K.

Reference states: Al(fcc), Ti(hcp)

Table IVb	• Partial	quantities for	or Al	in the	stable	phases	at 900	K.
-----------	-----------	----------------	-------	--------	--------	--------	--------	----

Phase	$x_{ m A1}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$
fcc	$\begin{array}{c} 1.000 \\ 0.994 \end{array}$	$0 \\ -45$	$0 \\ -2$	$\begin{array}{c} 0.000\\ 0.049\end{array}$	0 0	$0.000 \\ -0.001$	$\begin{array}{c} 1.000\\ 0.994 \end{array}$	1.000 1.000
Al ₃ Ti	$\begin{array}{c} 0.750 \\ 0.750 \end{array}$	$-45 \\ -17853$	$-45197 \\ -45199$	-50.169 -30.384	$-34060 \\ -34062$	-12.375 -12.375	$\begin{array}{c} 0.994 \\ 0.092 \end{array}$	$0.011 \\ 0.011$
Al ₂ Ti	$0.667 \\ 0.667$	$-17854 \\ -27947$	$-23046 \\ -41689$	-5.769 -15.270			$\begin{array}{c} 0.092 \\ 0.024 \end{array}$	
AlTi	$\begin{array}{c} 0.581 \\ 0.550 \\ 0.500 \\ 0.495 \end{array}$	-27947 -33554 -44768 -46130	-35387 -42045 -63980 -68068	-8.266 -9.434 -21.346 -24.375	-21498 -26023 -45306 -49432	-15.432 -17.802 -20.749 -20.706	$0.024 \\ 0.011 \\ 0.003 \\ 0.002$	$0.057 \\ 0.031 \\ 0.002 \\ 0.001$
AlTi ₃	$\begin{array}{c} 0.352 \\ 0.350 \\ 0.300 \\ 0.250 \\ 0.210 \end{array}$	-46130 -46536 -56625 -74579 -84482	-50182 -50585 -59964 -94605 -114156	-4.502 -4.499 -3.710 -22.251 -32.971	-35017 -35299 -41956 -73097 -92093	-16.850 -16.984 -20.009 -23.898 -24.514	$\begin{array}{c} 0.002 \\ 0.002 \\ 0.001 \\ 0.000 \\ 0.000 \end{array}$	0.009 0.009 0.004 0.001 0.000
hcp	$\begin{array}{c} 0.127 \\ 0.100 \\ 0.050 \\ 0.000 \end{array}$	$-84482 \\ -88902 \\ -97954 \\ -\infty$	-94171 -98483 -105594 -111269	$-10.765 \\ -10.645 \\ -8.489 \\ \infty$	-69042 -71672 -75536 -77789	-27.921 -29.790 -33.398 -37.200	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000$	0.000 0.000 0.000 0.000

Reference state: Al(fcc)

Landolt-Börnstein New Series IV/19B

		1		1				
Phase	x_{Ti}	ΔG_{Ti} [J/mol]	ΔH_{Ti} [J/mol]	ΔS_{Ti} [J/(mol·K)]	$G_{ m Ti}^{ m E}$ [J/mol]	$S_{ ext{Ti}}^{ ext{E}}$ [J/(mol·K)]	a_{Ti}	$\gamma_{ m Ti}$
fcc	0.000	$-\infty$	-107970	∞	-72960	-38.900	0.000	0.000
	0.006	-111134	-107429	4.117	-72838	-38.434	0.000	0.000
Al ₃ Ti	0.250	-111134	-9000	113.483	-9090	0.100	0.000	0.000
	0.250	-57714	-8995	54.133	-9085	0.100	0.000	0.297
Al ₂ Ti	0.333	-57711	-75408	-19.663			0.000	
	0.333	-37527	-38122	-0.661			0.007	
AlTi	0.419	-37527	-46873	-10.385	-42440	-4.925	0.007	0.003
	0.450	-30224	-38203	-8.865	-36548	-1.838	0.018	0.008
	0.500	-17891	-14538	3.725	-15878	1.489	0.092	0.120
	0.505	-16544	-10493	6.723	-11795	1.446	0.110	0.207
AlTi ₃	0.648	-16544	-21794	-5.833	-19129	-2.961	0.110	0.078
	0.650	-16324	-21576	-5.835	-18976	-2.889	0.113	0.079
	0.700	-11487	-17068	-6.201	-15779	-1.433	0.215	0.121
	0.750	-4792	-4629	0.181	-4653	0.026	0.527	0.537
	0.790	-1742	1633	3.750	1426	0.229	0.792	1.210
hcp	0.873	-1742	-1292	0.500	-725	-0.629	0.792	0.908
	0.900	-1176	-739	0.486	-388	-0.390	0.855	0.950
	0.950	-450	-154	0.329	-66	-0.098	0.942	0.991
	1.000	0	0	0.000	0	0.000	1.000	1.000

Table IVc. Partial quantities for Ti in the stable phases at 900 K.

Reference state: Ti(hcp)

Table V. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Ti}	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al ₃ Ti	0.250	-33388	-36148	-9.256	0.000
Al ₁₇ Ti ₈	0.320	-36026	-38845	-9.456	0.000
Al_2Ti_1	0.333	-37399	-40500	-10.400	0.000
AlTi	0.500	-36960	-39822	-9.599	0.011
AlTi ₃	0.750	-25740	-27520	-5.970	0.003

References

Landolt-Börnstein New Series IV/19B

[94Kai] R. Kainuma, M. Palm, G. Inden: Intermetallics 2 (1994) 321–332.

[98Sau] N. Saunders in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical database for light metal alloys", Vol. 2, EUR 18499, 1998, 89–94.

Al – V (Aluminium – Vanadium)

Fig. 1. Calculated phase diagram for the system Al-V.

An understanding of the Al-V system is necessary since it is an important sub- system in the commercial aerospace alloy Ti6Al4V and because vanadium is often added to aluminium alloys as a grain refiner. The basic phase diagram for the system is fairly well characterised, although the details of the liquidus surface on the aluminium rich side of the system remain unclear. The system is characterised by a continuous range of solutions in the liquid phase, substantial solubility of aluminium in bcc-V up to 50 at.% Al maximum at 1933 K, limited solubility of vanadium in fcc-Al with a maximum solubility of 0.3 at.% V and a variety of aluminium vanadium intermetallic compounds all of which melt peritectically.

The thermodynamic properties of the intermetallic phases have been studied by direct reaction calorimetry. More recently the enthalpies of mixing in the liquid phase have been measured for Al rich compositions. Partial Gibbs energies of Al in the bcc solid solution range have been studied by emf and by an isopiestic technique.

The phase diagram and thermodynamic data for this systems have been critically assessed by Lee and Lee [86Lee], Murray [89Mur] and Saunders [98Sau]. The data of Saunders have been adopted by SGTE and COST507 as a basis for the calculation of multicomponent phase equilibria.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	$(Al,V)_1$
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	$(Al,V)_1$
$Al_{10}V$	•••		cF176	$Fd\overline{3}m$	AL10V	$Al_{10}V_1$
Al_7V	•••	$Al_{45}V_7$	mC104	C2/m	AL7V	Al_7V_1
$Al_{23}V_4$	•••	$Al_{23}V_4$	hP54	$P6_3/mmc$	AL23V4	$Al_{23}V_4$
Al_3V	$D0_{22}$	Al ₃ Ti	tI8	I4/mmm	D022_AL3M1	$(Al,V)_3V_1$
Al_8V_5	$D8_2$	Cu ₅ Zn ₈	cI52	$I\overline{4}3m$	D82_AL8V5	Al_8V_5
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	$(Al,V)_1$

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Com	positions	/ $x_{ m V}$	$\Delta_{ m r} H$ / (J/mol)
liquid + bcc \rightleftharpoons Al ₈ V ₅	peritectic	1932.7	0.376	0.471	0.385	-22479
$liquid + Al_8V_5 \rightleftharpoons Al_3V$	peritectic	1640.8	0.167	0.385	0.250	-19772
$liquid + Al_3V \rightleftharpoons Al_{23}V_4$	peritectic	1007.3	0.003	0.250	0.148	-4918
$liquid + Al_{23}V_4 \rightleftharpoons Al_7V$	peritectic	969.0	0.002	0.148	0.125	-1836
$liquid + Al_7V \rightleftharpoons Al_{10}V$	peritectic	945.2	0.001	0.125	0.091	-3173
$liquid + Al_{10}V \rightleftharpoons fcc$	peritectic	937.6	0.001	0.091	0.006	-9815

Table IIIa. Integral quantities for the liquid phase at 2200 K.

$x_{ m V}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-8542	-5645	1.317	-2596	-1.386	0.000	
0.200	-13852	-9556	1.953	-4698	-2.208	0.000	
0.300	-17450	-11912	2.517	-6276	-2.562	0.000	
0.400	-19608	-12894	3.052	-7297	-2.544	0.000	
0.500	-20410	-12681	3.513	-7731	-2.250	0.000	
0.600	-19858	-11454	3.820	-7547	-1.776	0.000	
0.700	-17887	-9392	3.861	-6713	-1.218	0.000	
0.800	-14351	-6676	3.489	-5198	-0.672	0.000	
0.900	-8917	-3485	2.469	-2970	-0.234	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), V(liquid)

		1	1	1 1				
$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2169	-897	0.578	-242	-0.298	0.888	0.987	
0.800	-5090	-3349	0.791	-1008	-1.064	0.757	0.946	
0.700	-8886	-6995	0.860	-2362	-2.106	0.615	0.879	
0.600	-13710	-11476	1.015	-4366	-3.232	0.473	0.788	
0.500	-19760	-16431	1.513	-7081	-4.250	0.340	0.679	
0.400	-27332	-21501	2.651	-10571	-4.968	0.224	0.561	
0.300	-36921	-26325	4.816	-14899	-5.194	0.133	0.443	
0.200	-49565	-30544	8.646	-20125	-4.736	0.067	0.333	
0.100	-68432	-33797	15.743	-26313	-3.402	0.024	0.237	
0.000	$-\infty$	-35725	∞	-33525	-1.000	0.000	0.160	

Table IIIb. Partial quantities for Al in the liquid phase at 2200 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for V in the liquid phase at 2200 K.

$x_{ m V}$	$\Delta G_{ m V}$	$\Delta H_{ m V}$	$\Delta S_{ m V}$	$G_{\mathrm{V}}^{\mathrm{E}}$	$S_{ m V}^{ m E}$	$a_{ m V}$	$\gamma_{ m V}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
0.000	$-\infty$	-65725	∞	-28325	-17.000	0.000	0.213	
0.100	-65904	-48377	7.967	-23786	-11.178	0.027	0.272	
0.200	-48899	-34384	6.598	-19459	-6.784	0.069	0.345	
0.300	-37431	-23385	6.384	-15408	-3.626	0.129	0.431	
0.400	-28455	-15021	6.107	-11695	-1.512	0.211	0.528	
0.500	-21060	-8931	5.513	-8381	-0.250	0.316	0.632	
0.600	-14874	-4756	4.599	-5530	0.352	0.443	0.739	
0.700	-9729	-2135	3.452	-3204	0.486	0.588	0.839	
0.800	-5548	-709	2.199	-1466	0.344	0.738	0.923	
0.900	-2304	-117	0.994	-377	0.118	0.882	0.980	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: V(liquid)

Fig. 3. Activities in the liquid phase at T=2200 K.

Landolt-Börnstein New Series IV/19B

Compound	$x_{ m V}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ} \operatorname{/}(\operatorname{J/(mol} \cdot \mathbf{K}))$	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathbf{J}/(\mathrm{mol}\cdot\mathbf{K}))$
$Al_{10}V_1$	0.091	-9598	-10111	-1.719	0.000
Al_7V_1	0.125	-12974	-13600	-2.100	0.000
$Al_{23}V_4$	0.148	-15236	-15950	-2.395	0.000
Al_8V_5	0.385	-22938	-22640	1.000	0.000

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[86Lee]	S.K. Lee, D.N. Lee: J. Korean Inst. Met. 24 (1986) 1290–1301.
[89Mur]	J.L. Murray, in: "Phase diagrams of binary vanadium alloys", J.F. Smith (ed.), ASM Interna-
	tional, 1989, pp. 6–12.
[98Sau]	N. Saunders, in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical
	database for light metal alloys", Vol. 2, EUR 18499, 1998, pp. 95-98.

Fig. 1. Calculated phase diagram for the system Al-W.

An understanding of the Al-W system is necessary since it is an important component system in potential high temperature aerospace TiAl alloys.

The experimental information on the phase diagram for this system is somewhat sparse. The phase diagram is characterised by a continuous series of solutions in the liquid phase, significant solubility of Al in bcc-W with a maximum of about 15 at.% at 1600 K, low solubility of W in fcc-Al up to a maximum of approximately 0.02 close to the melting temperature of Al. There are several intermetallic compounds in the system, all of which appear to melt peritectically. The three intermetallic phases richest in W are stable over a relatively narrow temperature range decomposing on cooling by eutectoid reaction. There appear to be no experimental thermodynamic information available.

The thermodynamic and phase diagram data for the system have been critically assessed by Kaufman and Nesor [78Kau] and more recently by Saunders [98Sau]. The data of Saunders have been adopted by SGTE and COST 507 as a basis for the calculation of multicomponent phase equilibria.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	(Al,W) ₁
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	$(Al,W)_1$
$Al_{12}W$	•••	$Al_{12}W$	cI26	Im3	AL12W	$Al_{12}W_1$
Al_5W	•••	Al ₅ Mo	hP12	$P6_3$	AL5W	Al_5W_1
Al_4W	•••	Al_4W	mC30	Cm	AL4W	Al_4W_1
$Al_{77}W_{23}$		• • •	•••	• • •	AL77W23	$Al_{77}W_{23}$
Al_7W_3		• • •	•••	• • •	AL7W3	Al_7W_3
Al_2W		•••	•••	•••	AL2W	Al_2W_1
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	$(Al,W)_1$

Table I. Phases, structures and models.

SGTE

Reaction	Туре	T / K	Compositions / $x_{ m W}$		$/x_{ m W}$	$\Delta_{ m r} H$ / (J/mol)
liquid + bcc \rightleftharpoons Al ₂ W	peritectic	1925.7	0.243	0.901	0.333	-2689
$liquid + Al_2W \rightleftharpoons Al_7W_3$	peritectic	1706.8	0.190	0.333	0.300	-1973
$liquid + Al_7W_3 \rightleftharpoons Al_{77}W_{23}$	peritectic	1648.2	0.172	0.300	0.230	-8167
$liquid + Al_{77}W_{23} \rightleftharpoons Al_4W$	peritectic	1604.1	0.127	0.230	0.200	-12758
$Al_2W \rightleftharpoons Al_7W_3 + bcc$	eutectoid	1602.6	0.333	0.300	0.847	-1318
$Al_7W_3 \rightleftharpoons Al_{77}W_{23} + bcc$	eutectoid	1580.0	0.300	0.230	0.841	-5272
$Al_{77}W_{23} \rightleftharpoons Al_4W + bcc$	eutectoid	1571.0	0.230	0.200	0.840	-9120
$liquid + Al_4W \rightleftharpoons Al_5W$	peritectic	1149.6	0.002	0.200	0.167	-1951
$liquid + Al_5W \rightleftharpoons Al_{12}W$	peritectic	969.5	0.000	0.167	0.077	-6053
$liquid + Al_{12}W \rightleftharpoons fcc$	peritectic	933.6	0.000	0.077	0.000	-10676

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 3700 K.

$x_{ m W}$	$\Delta G_{\rm m}$	$\Delta H_{ m m}$	$\Delta S_{ m m}$	$G_{\mathrm{m}}^{\mathrm{E}}$	$S_{ m m}^{ m E}$	ΔC_p	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$	$[J/(mol \cdot K)]$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3782	-5436	-0.447	6219	-3.150	0.000	
0.200	-5010	-10336	-1.439	10384	-5.600	0.000	
0.300	-5793	-14196	-2.271	12999	-7.350	0.000	
0.400	-6280	-16656	-2.804	14424	-8.400	0.000	
0.500	-6449	-17500	-2.987	14875	-8.750	0.000	
0.600	-6280	-16656	-2.804	14424	-8.400	0.000	
0.700	-5793	-14196	-2.271	12999	-7.350	0.000	
0.800	-5010	-10336	-1.439	10384	-5.600	0.000	
0.900	-3782	-5436	-0.447	6219	-3.150	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), W(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 3700 K.

$x_{ m Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{\rm Al}$	$\gamma_{ m A1}$	
$\begin{array}{c} 1.000 \\ 0.900 \\ 0.800 \\ 0.700 \\ 0.600 \end{array}$	0 -2118 -3117 -3890 -4947	0 - 172 - 1432 - 4572 - 9952	$\begin{array}{c} 0.000 \\ 0.526 \\ 0.455 \\ -0.184 \\ -1.353 \end{array}$	$\begin{array}{c} 0\\ 1123\\ 3748\\ 7083\\ 10768\end{array}$	$\begin{array}{r} 0.000 \\ -0.350 \\ -1.400 \\ -3.150 \\ -5.600 \end{array}$	$\begin{array}{c} 1.000 \\ 0.933 \\ 0.904 \\ 0.881 \\ 0.851 \end{array}$	$ \begin{array}{r} 1.000 \\ 1.037 \\ 1.130 \\ 1.259 \\ 1.419 \\ \end{array} $	
$\begin{array}{c} 0.500 \\ 0.400 \\ 0.300 \\ 0.200 \\ 0.100 \\ 0.000 \end{array}$	$\begin{array}{r} -6449 \\ -8280 \\ -10236 \\ -12584 \\ -18753 \\ -\infty \end{array}$	$-17500 \\ -26712 \\ -36652 \\ -45952 \\ -52812 \\ -55000$	$\begin{array}{c} -2.987 \\ -4.981 \\ -7.140 \\ -9.018 \\ -9.205 \\ \infty \end{array}$	$\begin{array}{c} 14875\\ 19908\\ 26803\\ 36928\\ 52083\\ 74500 \end{array}$	$\begin{array}{r} -8.750 \\ -12.600 \\ -17.150 \\ -22.400 \\ -28.350 \\ -35.000 \end{array}$	$\begin{array}{c} 0.811 \\ 0.764 \\ 0.717 \\ 0.664 \\ 0.544 \\ 0.000 \end{array}$	$1.622 \\ 1.910 \\ 2.390 \\ 3.321 \\ 5.436 \\ 11.265$	

Reference state: Al(liquid)

		1	1	I			
$x_{ m W}$	$\Delta G_{ m W}$ [J/mol]	$\Delta H_{ m W}$ [J/mol]	$\Delta S_{ m W}$ [J/(mol·K)]	$G_{ m W}^{ m E}$ [J/mol]	$S_{ m W}^{ m E}$ [J/(mol·K)]	$a_{ m W}$	$\gamma_{ m W}$
0.000	$-\infty$	-55000	∞	74500	-35.000	0.000	11.265
0.100	-18753	-52812	-9.205	52083	-28.350	0.544	5.436
0.200	-12584	-45952	-9.018	36928	-22.400	0.664	3.321
0.300	-10236	-36652	-7.140	26803	-17.150	0.717	2.390
0.400	-8280	-26712	-4.981	19908	-12.600	0.764	1.910
0.500	-6449	-17500	-2.987	14875	-8.750	0.811	1.622
0.600	-4947	-9952	-1.353	10768	-5.600	0.851	1.419
0.700	-3890	-4572	-0.184	7083	-3.150	0.881	1.259
0.800	-3117	-1432	0.455	3748	-1.400	0.904	1.130
0.900	-2118	-172	0.526	1123	-0.350	0.933	1.037
1.000	0	0	0.000	0	0.000	1.000	1.000

Table IIIc. Partial quantities for W in the liquid phase at 3700 K.

Reference state: W(liquid)

Fig. 2. Integral quantities of the liquid phase at T=3700 K.

Fig. 3. Activities in the liquid phase at T=3700 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m W}$	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol} \cdot \mathrm{K}))$
$Al_{12}W_1$	0.077	-4582	-4800	-0.730	0.000
Al_5W_1	0.167	-9324	-9741	-1.400	0.000
Al_4W_1	0.200	-10920	-11500	-1.946	0.000
$Al_{77}W_{23}$	0.230	-3086	-1893	4.000	0.000
Al_7W_3	0.300	1383	3470	7.000	0.000
Al_2W_1	0.333	2288	4512	7.460	0.000

References

[78Kau] L. Kaufman, H. Nesor: Calphad 2 (1978) 325–348.

[98Sau] N. Saunders, in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): "Thermochemical database for light metal alloys", Vol. 2, EUR 18499, 1998, pp.95–98.

Al – Y (Aluminium – Yttrium)

Fig. 1. Calculated phase diagram for the system Al-Y.

Yttrium is an important additive to refine the macro- and micro- structure of aluminium and its alloys resulting in an increase of hardness and strength but with little change of ductility. The thermodynamic parameters of the Al-Y system have been assessed by [89Ran] based on the phase diagram, calorimetric measurements of enthalpies of formation of Al₃Y and Al₂Y, enthalpies of mixing in the liquid phase, the chemical potential of Y derived from EMF measurements, and the chemical potential of Al obtained from vapour pressure data. [95Gro] re-assessed the thermodynamic parameters taking into account new calorimetric data on the enthalpy of formation of Al₂Y and Al₂Y₃. The thermodynamic dataset of [95Gro] has been accepted here. More recent calorimetric measurements for Al₂Y, Al₃Y, and Al₂Y₃ reported by [97Tim] are in good agreement with calculations of [95Gro].

The system is characterised by a complete miscibility in the liquid and very low (less than 0.1 mass-%) mutual solubility in the solid state. Five intermetallic compounds Al_3Y , Al_2Y , AlY, Al_2Y_3 and AlY_2 have been reported. The compound Al_3Y_5 reported by [87Ric] is most probably metastable [95Gro]. Two modifications of Al_3Y have been found by [60Sny] but only the high-temperature modification has been confirmed independently as a stable compound. The thermodynamic data are in agreement with the phase diagram and thermodynamic measurements. The experimental data for the chemical potential of Y and Al contradict the calculated values and other experimental information on the system. The liquid phase is described by a substitutional model and the intermetallic compounds are treated as stoichiometric phases. The mutual solubility of Al and Y in the solid phases is lower than 0.1 mass-%. Therefore, solid Al and Y are treated as stoichiometric phases.

SGTE

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	A1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	(Al,Y) ₁ Al ₁
Al ₃ Y		BaPb ₃	hR12	$R\overline{3}m$	AL3Y	Al_3Y_1
$Al_2 Y$ AlV	C15 B33	Cu ₂ Mg CrB	cF'24	F'd3m Cmcm	C15_AL2Y	Al_2Y_1 Al. V.
Al_2Y_3		Al_2Zr_3	tP20	$P4_2/mnm$	AL2Y3	Al_2Y_3
AlY_2	C23	Co ₂ Si	oP12	Pnma	C23_ALY2	Al_1Y_2
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	Y ₁
hcp	A3	Mg	hP2	$P6_3/mmc$	HCP_A3	Y_1

Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	T / K	Com	positions	$/x_{ m Y}$	$\Delta_{ m r} H$ / (J/mol)
$liquid \rightleftharpoons Al_2Y$	congruent	1757.4	0.333	0.333		-24364
$bcc \rightleftharpoons liquid + hcp$	degenerate	1751.1	1.000	0.983	1.000	-4886
liquid ≓ AlY	congruent	1403.9	0.500	0.500		-16280
$liquid \rightleftharpoons Al_2Y_3 + AlY$	eutectic	1402.9	0.492	0.333	0.500	-16337
liquid \rightleftharpoons Al ₂ Y ₃	congruent	1372.9	0.600	0.600		-15827
$liquid \rightleftharpoons AlY + Al_2Y_3$	eutectic	1351.2	0.560	0.500	0.600	-15434
$Al_2Y_3 + liquid \rightleftharpoons AlY_2$	peritectic	1259.9	0.600	0.712	0.667	-9472
$liquid + Al_2Y_3 \rightleftharpoons Al_3Y_5$	peritectic	1253.0	0.127	0.333	0.250	-14327
liquid \rightleftharpoons AlY ₂ + hcp	eutectic	1237.7	0.741	0.667	1.000	-14037
$liquid \rightleftharpoons fcc + Al_3Y_5$	eutectic	914.1	0.022	0.000	0.250	-11441

Table IIIa. Integral quantities for the liquid phase at 1800 K.

$x_{ m Y}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-14569	-14976	-0.226	-9704	-2.929	0.000	
0.200	-25194	-27326	-1.184	-17705	-5.345	0.000	
0.300	-32649	-36277	-2.015	-23507	-7.094	0.000	
0.400	-36615	-40945	-2.406	-26543	-8.002	0.000	
0.500	-36931	-40936	-2.225	-26557	-7.988	0.000	
0.600	-33859	-36618	-1.533	-23786	-7.129	0.000	
0.700	-28078	-29099	-0.567	-18936	-5.646	0.000	
0.800	-20452	-19875	0.320	-12963	-3.840	0.000	
0.900	-11518	-10178	0.744	-6653	-1.958	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Y(liquid)

$x_{ m Al}$	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$		
1.000	0	0	0.000	0	0.000	1.000	1.000		
0.900	-2377	-1233	0.635	-800	-0.241	0.853	0.948		
0.800	-7033	-5700	0.741	-3693	-1.115	0.625	0.781		
0.700	-15355	-15485	-0.072	-10017	-3.037	0.358	0.512		
0.600	-28070	-31602	-1.963	-20424	-6.210	0.153	0.255		
0.500	-44235	-52401	-4.537	-33861	-10.300	0.052	0.104		
0.400	-61260	-73530	-6.817	-47547	-14.435	0.017	0.042		
0.300	-75975	-89480	-7.503	-57957	-17.513	0.006	0.021		
0.200	-86894	-96676	-5.434	-62807	-18.816	0.003	0.015		
0.100	-98502	-98148	0.197	-64041	-18.948	0.001	0.014		
0.000	$-\infty$	-109760	∞	-71817	-21.080	0.000	0.008		

Table IIIb. Partial quantities for Al in the liquid phase at 1800 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Y in the liquid phase at 1800 K.

$x_{ m Y}$	$\Delta G_{ m Y}$	$\Delta H_{ m Y}$	$\Delta S_{ m Y}$	$G_{ m Y}^{ m E}$	$S_{ m Y}^{ m E}$	$a_{ m Y}$	$\gamma_{ m Y}$
	[J/mol]	[J/mol]	[J/(mol·K)]	[J/mol]	[J/(mol·K)]		
0.000	$-\infty$	-162299	∞	-105172	-31.737	0.000	0.001
0.100	-124299	-138661	-7.979	-89838	-27.124	0.000	0.002
0.200	-97840	-113832	-8.885	-73753	-22.267	0.001	0.007
0.300	-73002	-84792	-6.550	-54983	-16.561	0.008	0.025
0.400	-49433	-54960	-3.070	-35720	-10.689	0.037	0.092
0.500	-29627	-29471	0.087	-19254	-5.676	0.138	0.276
0.600	-15591	-12010	1.989	-7946	-2.258	0.353	0.588
0.700	-7550	-3221	2.405	-2212	-0.560	0.604	0.863
0.800	-3841	-675	1.759	-501	-0.097	0.774	0.967
0.900	-1853	-403	0.805	-276	-0.071	0.884	0.982
1.000	0	0	0.000	0	0.000	1.000	1.000

Reference state: Y(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1800 K.

Fig. 3. Activities in the liquid phase at T=1800 K.

219

Landolt-Börnstein New Series IV/19B

Compound	$x_{ m Y}$	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathrm{J}/(\mathrm{mol}{\cdot}\mathrm{K}))$
Al_3Y_1	0.250	-44336	-47500	-10.613	0.000
Al_2Y_1	0.333	-48736	-50400	-5.581	0.000
Al_1Y_1	0.500	-43701	-45000	-4.358	0.000
Al_2Y_3	0.600	-38795	-40000	-4.040	0.000
$Al_1Y_2 \\$	0.667	-33658	-35000	-4.500	0.000

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[60Sny]	R.L. Snyder: Ph.D. Thesis, Iowa State University, 1960.
[87Ric]	R. Richter, Z. Altounian, J.O. Strom-Olsen, U. Koester, M. Blank-Bewersdorff: J. Mater. Sci.
	22 (1987) 2983–2986.
[89Ran]	Q. Ran, H.L. Lukas, G. Effenberg, G. Petzow: J. Less-Common Met. 146 (1989) 213–222.
[95Gro]	J. Gröbner, H.L. Lukas, F. Aldinger: J. Alloys Comp. 220 (1995) 8–14.
[97Tim]	V.S. Timofeev, A.A. Turchanin, A.A. Zubkov, I.A. Tomilin: Thermochim. Acta 299 (1997)
	37–41.

Fig. 1. Calculated phase diagram for the system Al-Zn.

The aluminium-zinc system is the basis of many technically important alloys. Medium-strength Al-Zn-Mg alloys are known for good weldability and the capability of hardening after welding. Adding Cu to these ternary alloys results in an appreciable increase of the strength.

An extensive review of experimental data on the Al-Zn system including an evaluation of the thermodynamic functions has been given by [83Mur]. The recommended assessment [93Mey] is an update of [86Mey]. The evaluation takes into account many experimental data from independent sources. The fit of the phase diagram is in very good agreement with experimental data throughout the whole composition and temperature range, except for the miscibility gap in the fcc-phase. Here, the experimental location of the critical point is around 40 at.% Zn, whereas the calculated value is 35 at.%. Accordingly, in fcc solid solutions calculated values for the enthalpy of mixing and the chemical potential of Zn differ from experimental data. In liquid alloys the corresponding calculated properties are in very good agreement with experiments.

1	able	I . I	Phases,	structu	es and	mode	ls.
---	------	--------------	---------	---------	--------	------	-----

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc hcp	A1 A3	Cu Mg	cF4 hP2	$Fm\overline{3}m$ $P6_3/mmc$	LIQUID FCC_A1 HCP_ZN	$\begin{array}{l} (Al,Zn)_1\\ (Al,Zn)_1\\ (Al,Zn)_1 \end{array}$

Table	II.	Invariant	reactions.

Reaction	Туре	T / K	Compositions / x_{Zn}			$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons fcc + hcp fcc \rightleftharpoons fcc' + fcc'' fcc'' \rightleftharpoons fcc' + hcp	eutectic critical monotectoid	$\begin{array}{c} 654.0 \\ 625.2 \\ 550.4 \end{array}$	$0.884 \\ 0.350 \\ 0.590$	$\begin{array}{c} 0.673 \\ 0.350 \\ 0.141 \end{array}$	$0.969 \\ 0.350 \\ 0.984$	-7371 0 -2207

Table II	ia. integre	ii quantitie	s for the fique	i pliase at	1000 11.		
x_{Zn}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-2066	942	3.008	637	0.305	0.000	
0.200	-3029	1674	4.703	1132	0.543	0.000	
0.300	-3594	2198	5.791	1485	0.712	0.000	
0.400	-3898	2512	6.410	1698	0.814	0.000	
0.500	-3995	2616	6.611	1768	0.848	0.000	
0.600	-3898	2512	6.410	1698	0.814	0.000	
0.700	-3594	2198	5.791	1485	0.712	0.000	
0.800	-3029	1674	4.703	1132	0.543	0.000	
0.900	-2066	942	3.008	637	0.305	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1000 K

Reference states: Al(liquid), Zn(liquid)

Table IIIb. Partial quantities for Al in the liquid phase at 1000 K.

x_{Al}	$\Delta G_{ m Al}$ [J/mol]	$\Delta H_{\rm Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m Al}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-805	105	0.910	71	0.034	0.908	1.009	
0.800	-1572	419	1.991	283	0.136	0.828	1.035	
0.700	-2329	942	3.271	637	0.305	0.756	1.080	
0.600	-3116	1674	4.790	1132	0.543	0.687	1.146	
0.500	-3995	2616	6.611	1768	0.848	0.618	1.237	
0.400	-5072	3768	8.840	2546	1.221	0.543	1.358	
0.300	-6545	5128	11.673	3466	1.662	0.455	1.517	
0.200	-8855	6698	15.553	4527	2.171	0.345	1.724	
0.100	-13416	8477	21.893	5729	2.748	0.199	1.992	
0.000	$-\infty$	10466	∞	7073	3.393	0.000	2.341	

Reference state: Al(liquid)

Table IIIc. Partial quantities for Zn in the liquid phase at 1000 K.

x_{Zn}	ΔG_{Zn} [J/mol]	ΔH_{Zn} [J/mol]	ΔS_{Zn} [J/(mol·K)]	$G_{ m Zn}^{ m E}$ [J/mol]	$S_{\mathrm{Zn}}^{\mathrm{E}}$ [J/(mol·K)]	a_{Zn}	$\gamma_{\rm Zn}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600\end{array}$	$-\infty$ -13416 -8855 -6545 -5072 -3995 2116	$10466 \\ 8477 \\ 6698 \\ 5128 \\ 3768 \\ 2616 \\ 1674$	∞ 21.893 15.553 11.673 8.840 6.611 4.700	$7073 \\ 5729 \\ 4527 \\ 3466 \\ 2546 \\ 1768 \\ 1122 \\$	$\begin{array}{r} 3.393 \\ 2.748 \\ 2.171 \\ 1.662 \\ 1.221 \\ 0.848 \\ 0.543 \end{array}$	$\begin{array}{c} 0.000\\ 0.199\\ 0.345\\ 0.455\\ 0.543\\ 0.618\\ 0.687\end{array}$	2.341 1.992 1.724 1.517 1.358 1.237	
$\begin{array}{c} 0.600\\ 0.700\\ 0.800\\ 0.900\\ 1.000 \end{array}$	$ \begin{array}{r} -3116 \\ -2329 \\ -1572 \\ -805 \\ 0 \\ \end{array} $	$ 1674 \\ 942 \\ 419 \\ 105 \\ 0 $	$\begin{array}{c} 4.790 \\ 3.271 \\ 1.991 \\ 0.910 \\ 0.000 \end{array}$	$ \begin{array}{r} 1132 \\ 637 \\ 283 \\ 71 \\ 0 \end{array} $	$\begin{array}{c} 0.543 \\ 0.305 \\ 0.136 \\ 0.034 \\ 0.000 \end{array}$	$\begin{array}{c} 0.687\\ 0.756\\ 0.828\\ 0.908\\ 1.000 \end{array}$	$ 1.146 \\ 1.080 \\ 1.035 \\ 1.009 \\ 1.000 $	

Reference state: Zn(liquid)

Landolt-Börnstein New Series IV/19B

Fig. 2. Integral quantities of the liquid phase at T=1000 K.

Fig. 3. Activities in the liquid phase at T=1000 K.

Phase	x_{Zn}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-671	1251	2.957	1086	0.254	0.000	
	0.200	-804	2218	4.649	1901	0.488	0.000	
	0.300	-846	2875	5.725	2455	0.646	0.000	
	0.400	-867	3227	6.298	2770	0.702	0.000	
	0.500	-870	3309	6.429	2876	0.666	0.000	
	0.600	-825	3186	6.171	2812	0.576	0.000	
	0.671	-734	3024	5.782	2689	0.516	0.000	
hcp	0.970	-204	735	1.444	529	0.317	0.000	
-	1.000	0	0	0.000	0	0.000	0.000	

Table IVa. Integral quantities for the stable phases at 650 K.

Reference states: Al(fcc), Zn(hcp)

Table IVb. Partial quantities for Al in the stable phases at 650 K.

Phase	$x_{ m Al}$	$\Delta G_{\rm A1}$ [J/mol]	$\Delta H_{\rm Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m Al}^{ m E}$ [J/mol]	$S_{ m Al}^{ m E}$ [J/(mol·K)]	$a_{\rm Al}$	$\gamma_{ m Al}$
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000
	0.900	-432	136	0.874	137	-0.002	0.923	1.026
	0.800	-669	591	1.939	537	0.083	0.884	1.104
	0.700	-764	1371	3.286	1163	0.320	0.868	1.240
	0.600	-810	2391	4.925	1951	0.677	0.861	1.435
	0.500	-937	3478	6.792	2809	1.029	0.841	1.682
	0.400	-1334	4368	8.772	3618	1.154	0.781	1.953
	0.329	-1927	4691	10.182	4084	0.934	0.700	2.129
hcp	0.030	-1927	23624	39.309	16982	10.219	0.700	23.154
	0.000	$-\infty$	25006	∞	18017	10.752	0.000	28.041

Reference state: Al(fcc)

Landolt-Börnstein New Series IV/19B

		1		1				
Phase	x_{Zn}	ΔG_{Zn} [J/mol]	$\Delta H_{ m Zn}$ [J/mol]	ΔS_{Zn} [J/(mol·K)]	$G_{\mathrm{Zn}}^{\mathrm{E}}$ [J/mol]	$S_{\mathrm{Zn}}^{\mathrm{E}}$ [J/(mol·K)]	$a_{\rm Zn}$	$\gamma_{\mathbf{Zn}}$
fcc	0.000	$-\infty$	13783	∞	12236	2.379	0.000	9.623
	0.100	-2816	11292	21.704	9628	2.559	0.594	5.939
	0.200	-1343	8725	15.489	7355	2.107	0.780	3.900
	0.300	-1037	6383	11.416	5470	1.405	0.825	2.751
	0.400	-952	4481	8.359	4000	0.740	0.838	2.096
	0.500	-802	3141	6.066	2944	0.303	0.862	1.724
	0.600	-486	2398	4.437	2275	0.190	0.914	1.523
	0.671	-150	2207	3.627	2005	0.311	0.973	1.449
hcp	0.970	-150	21	0.263	16	0.008	0.973	1.003
	1.000	0	0	0.000	0	0.000	1.000	1.000

1.0

Table IVc. Partial quantities for Zn in the stable phases at 650 K.

Reference state: Zn(hcp)

Fig. 4. Integral quantities of the stable phases at T=650 K.

Fig. 5. Activities in the stable phases at T=650 K.

References

[83Mur]	J.L. Murray:	Bull. Alloy I	Phase Diagrams 4	(1983)	55–73.
---------	--------------	---------------	------------------	--------	--------

- [86Mey] S. an Mey, G. Effenberg: Z. Metallkd. 77 (1986) 449–453.
- [93Mey] S. an Mey: Z. Metallkd. **84** (1993) 451–455.

Fig. 1. Calculated phase diagram for the system Al-Zr.

Zirconium can be added in combination with Cr to Al-alloys in order to produce alloys with high specific modulus and desirable high-temperature properties. The System Al–Zr has been reviewed and critically assessed by [86Sau, 92Mur, 92Mas]. The selected dataset [98Sau] is an update of [86Sau]. The liquidus curve, the solidus curve with bcc-Zr, the phase boundaries between hcp-Zr and bcc-Zr as well as those between bcc-Zr and Zr₃Al have to be considered uncertain. According to Saunders [86Sau] the phase Zr₄Al₃ does not exist while Zr₅Al₄ is stable down to low temperatures. An internally consistent set of Gibbs energy data for the system has been derived from an optimization including phase diagram data and heats of formations of the compounds.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	$(Al,Zr)_1$
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	$(Al,Zr)_1$
Al ₃ Zr	$D0_{23}$	Al ₃ Zr	tI16	I4/mmm	D022_AL3ZR	Al_3Zr_1
Al_2Zr	C14	$MgZn_2$	hP12	$P6_3/mmc$	C14_AL2ZR	Al_2Zr_1
Al_3Zr_2		Al_3Zr_2	oF40	Fdd2	AL3ZR2	Al_3Zr_2
AlZr	$B_{ m f}$	BCr	oC8	Cmcm	C23_ALZR	Al_1Zr_1
Al_4Zr_5	•••	Ga ₄ Ti ₅	hP18	$P6_3/mcm$	AL4ZR5	Al_4Zr_5
Al_2Zr_3	•••	Al_2Zr_3	tP20	$P4_2/mnm$	AL2ZR3	Al_2Zr_3
Al_3Zr_5	$D8_{ m m}$	W_5Si_3	tI32	I4/mcm	D8M_AL3ZR5	Al_3Zr_5
$AlZr_2$	$B8_2$	Ni ₂ In	hP6	$P6_3/mmc$	D82_ALZR2	Al_1Zr_2
AlZr ₃	$L1_2$	AuCu ₃	cP4	$Pm\overline{3}m$	L12_ALZR3	Al_1Zr_3
bcc	A2	W	cI2	$Im\overline{3}m$	BCC_A2	$(Al,Zr)_1$
hcp	A3	Mg	hP2	$P6_3/mmc$	HCP_A3	$(Al,Zr)_1$

Table I. Phases, structures and models.

Landolt-Börnstein New Series IV/19B 225

Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Zr}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons Al ₂ Zr	congruent	1906.9	0.333	0.333		-30688
liquid \rightleftharpoons Al ₃ Zr	congruent	1892.3	0.250	0.250		-29366
liquid \rightleftharpoons Al ₃ Zr + Al ₂ Zr	eutectic	1887.9	0.277	0.250	0.333	-29588
$Al_2Zr + liquid \rightleftharpoons Al_3Zr_2$	peritectic	1869.1	0.333	0.410	0.400	-26124
liquid \rightleftharpoons Al ₄ Zr ₅	congruent	1772.5	0.556	0.556		-25170
$liquid \rightleftharpoons Al_3Zr_2 + Al_4Zr_5$	eutectic	1765.3	0.525	0.400	0.556	-25613
$Al_4Zr_5 + liquid \rightleftharpoons Al_2Zr_3$	peritectic	1701.8	0.556	0.653	0.600	-10704
Al_2Zr_3 + liquid $\rightleftharpoons Al_3Zr_5$	peritectic	1655.8	0.600	0.696	0.625	-5422
liquid \rightleftharpoons Al ₃ Zr ₅ + bcc	eutectic	1648.7	0.702	0.625	0.769	-17128
$Al_3Zr_2 + Al_4Zr_5 \rightleftharpoons AlZr$	peritectoid	1529.5	0.400	0.556	0.500	-1379
$Al_3Zr_5 + bcc \rightleftharpoons AlZr_2$	peritectoid	1524.3	0.625	0.801	0.667	-2289
$AlZr_2 + bcc \rightleftharpoons AlZr_3$	peritectoid	1252.4	0.667	0.877	0.750	-3993
$Al_3Zr_5 \rightleftharpoons Al_2Zr_3 + AlZr_2$	eutectoid	1241.6	0.625	0.600	0.667	-285
$AlZr_3 + bcc \rightleftharpoons hcp$	peritectoid	1212.1	0.750	0.894	0.879	-2871
liquid + Al ₃ Zr \rightleftharpoons fcc	peritectic	933.8	0.000	0.250	0.001	-10657

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 2200 K.

$x_{ m Zr}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-9197	-11063	-0.848	-3251	-3.551	0.000	
0.200	-15710	-20053	-1.974	-6556	-6.135	0.000	
0.300	-20535	-26561	-2.739	-9361	-7.818	0.000	
0.400	-23571	-30329	-3.072	-11261	-8.667	0.000	
0.500	-24679	-31250	-2.987	-12000	-8.750	0.000	
0.600	-23788	-29369	-2.537	-11477	-8.133	0.000	
0.700	-20914	-24881	-1.803	-9740	-6.882	0.000	
0.800	-16143	-18133	-0.905	-6989	-5.065	0.000	
0.900	-9521	-9623	-0.046	-3575	-2.749	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Al(liquid), Zr(liquid)

		1		I IIIII				
$x_{\rm Al}$	$\Delta G_{ m A1}$ [J/mol]	$\Delta H_{ m Al}$ [J/mol]	$\Delta S_{ m Al}$ [J/(mol·K)]	$G_{ m A1}^{ m E}$ [J/mol]	$S_{ m A1}^{ m E}$ [J/(mol·K)]	$a_{ m Al}$	$\gamma_{ m A1}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1794	-956	0.381	133	-0.495	0.907	1.007	
0.800	-4367	-4444	-0.035	-285	-1.890	0.788	0.985	
0.700	-8665	-11056	-1.087	-2140	-4.052	0.623	0.890	
0.600	-15209	-20930	-2.600	-5865	-6.848	0.435	0.726	
0.500	-24116	-33750	-4.379	-11437	-10.142	0.268	0.535	
0.400	-35142	-48748	-6.185	-18381	-13.803	0.146	0.366	
0.300	-47792	-64700	-7.685	-25769	-17.696	0.073	0.244	
0.200	-61658	-79930	-8.305	-32218	-21.687	0.034	0.172	
0.100	-78012	-92308	-6.498	-35893	-25.643	0.014	0.141	
0.000	$-\infty$	-99250	∞	-34504	-29.430	0.000	0.152	

Table IIIb. Partial quantities for Al in the liquid phase at 2200 K.

Reference state: Al(liquid)

Table IIIc. Partial quantities for Zr in the liquid phase at 2200 K.

$x_{ m Zr}$	$\Delta G_{ m Zr}$ [J/mol]	$\Delta H_{ m Zr}$ [J/mol]	$\Delta S_{ m Zr}$ [J/(mol·K)]	$G_{ m Zr}^{ m E}$ [J/mol]	$S_{ m Zr}^{ m E}$ [J/(mol·K)]	$a_{ m Zr}$	$\gamma_{ m Zr}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500 \end{array}$	$-\infty$ -75821 -61081 -48234 -36115 25242	$-119250 \\ -102028 \\ -82490 \\ -62740 \\ -44428 \\ 28750$	∞ -11.912 -9.731 -6.594 -3.778	$\begin{array}{r} -29996 \\ -33702 \\ -31641 \\ -26211 \\ -19355 \\ 12564 \end{array}$	$-40.570 \\ -31.057 \\ -23.113 \\ -16.604 \\ -11.397 \\ 7.258$	$\begin{array}{c} 0.000\\ 0.016\\ 0.035\\ 0.072\\ 0.139\\ 0.252\end{array}$	$\begin{array}{c} 0.194 \\ 0.158 \\ 0.177 \\ 0.239 \\ 0.347 \\ 0.502 \end{array}$	
$\begin{array}{c} 0.300\\ 0.600\\ 0.700\\ 0.800\\ 0.900\\ 1.000 \end{array}$	$\begin{array}{r} -23243 \\ -16219 \\ -9395 \\ -4764 \\ -1911 \\ 0 \end{array}$	-28750 -16450 -7816 -2684 -436 0	$-1.394 \\ -0.105 \\ 0.718 \\ 0.945 \\ 0.671 \\ 0.000$	-12304 -6875 -2871 -682 16 0	$ \begin{array}{r} -7.338 \\ -4.352 \\ -2.248 \\ -0.910 \\ -0.205 \\ 0.000 \end{array} $	$\begin{array}{c} 0.232 \\ 0.412 \\ 0.598 \\ 0.771 \\ 0.901 \\ 1.000 \end{array}$	$\begin{array}{c} 0.303 \\ 0.687 \\ 0.855 \\ 0.963 \\ 1.001 \\ 1.000 \end{array}$	

Reference state: Zr(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2200 K.

Fig. 3. Activities in the liquid phase at T=2200 K.

Landolt-Börnstein New Series IV/19B

Compound	$x_{ m Zr}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Al_3Zr_1	0.250	-38469	-40625	-7.230	0.000
Al_2Zr_1	0.333	-43282	-45810	-8.480	0.000
Al_3Zr_2	0.400	-44310	-46940	-8.820	0.000
Al_1Zr_1	0.500	-41960	-44500	-8.519	0.000
Al_4Zr_5	0.556	-38928	-41000	-6.950	0.000
Al_2Zr_3	0.600	-36459	-38427	-6.600	0.000
Al ₃ Zr ₅	0.625	-34432	-36248	-6.090	0.000
Al_1Zr_2	0.667	-31631	-33375	-5.851	0.000
Al_1Zr_3	0.750	-25332	-27000	-5.595	0.000

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[86Sau]	N. Saunders, V.G. Rivlin: Mater. Sci. Technol. 2 (1986) 521–527.
[92Mur]	Z. Murray, A. Peruzzi, J.P. Abriata: J. Phase Equilibria 13 (1992) 277–291.
[92Mas]	T.B. Massalski, Ed.: "Binary Alloy Phase Diagrams", ASM International, Materials Park,
	Ohio, 1992.
[98Sau]	N. Saunders in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemical

[98Sau] N. Saunders in: I. Ansara, A.T. Dinsdale, M.H. Rand (eds.): COST 507, "Thermochemic database for light metal alloys", Vol. 2, EUR 18499, 1998, 112–116.
As – Au (Arsenic – Gold) 1400 1300 liquid 1200 1100 К ~ 1000 Ŀ 900 800 -A7fcc → 700 600 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.9 1.0 As x_{Au} $\mathbf{A}\mathbf{u}$

Fig. 1. Calculated phase diagram for the system As-Au.

The As-Au system is a simple eutectic with no significant solid state solubility of either component in the other. The present thermodynamic description [98Spe] gives a good representation of the reported phase diagram and indicates small positive departures from ideality of activity and enthalpy of mixing values for the liquid phase. The dataset is based on DTA data [76Gat] and on the critical assessment of [84Oka].

Phase	Struktur- bericht	Prototype	Pearson symbol	n Space l group	SGTE name		Model
liquid A7 fcc	A7 A1	αAs Cu	$hR2 \\ cF4$	$R\overline{3}m$ $Fm\overline{3}m$	LIQUID RHOMBO FCC_A1	OHEDRAL_A7	$(As,Au)_1$ As_1 $(As,Au)_1$
Table II.	Invariant re	actions.					
Reactio	on	Туре	T / K	Composition	ns / $x_{ m Au}$	$\Delta_{ m r} H$ / (J/mol)	
liquid =	≥ A7 + fcc	eutectic	911.8	0.451 0.000	0 1.000	-23246	

Table I. Phases	, structures and models.
-----------------	--------------------------

Tuble II	the first integral quantities for the riquid phase at 1400 fr.										
$x_{ m Au}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[\text{J/(mol·K)}]}$					
0.000	0	0	0.000	0	0.000	0.000					
0.100	-3851	405	3.040	-67	0.337	0.000					
0.200	-5895	1361	5.183	-70	1.022	0.000					
0.300	-7222	2545	6.977	-112	1.898	0.000					
0.400	-8078	3681	8.399	-244	2.804	0.000					
0.500	-8543	4540	9.345	-475	3.582	0.000					
0.600	-8596	4942	9.669	-761	4.074	0.000					
0.700	-8127	4751	9.199	-1017	4.120	0.000					
0.800	-6930	3883	7.723	-1105	3.562	0.000					
0.900	-4627	2296	4.945	-843	2.242	0.000					
1.000	0	0	0.000	0	0.000	0.000					

Table IIIa. Integral quantities for the liquid phase at 1400 K

Reference states: As(liquid), Au(liquid)

Table IIIb. Partial quantities for As in the liquid phase at 1400 K.

$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1279	-333	0.675	-52	-0.201	0.896	0.996	
0.800	-2649	-879	1.264	-51	-0.591	0.796	0.996	
0.700	-4017	-1061	2.112	134	-0.854	0.708	1.012	
0.600	-5453	-446	3.576	493	-0.671	0.626	1.043	
0.500	-7196	1257	6.038	873	0.274	0.539	1.078	
0.400	-9688	4198	9.919	977	2.300	0.435	1.088	
0.300	-13644	8385	15.734	371	5.724	0.310	1.032	
0.200	-20260	13682	24.245	-1526	10.863	0.175	0.877	
0.100	-32237	19815	37.180	-5434	18.035	0.063	0.627	
0.000	$-\infty$	26365	∞	-12215	27.558	0.000	0.350	

Reference state: As(liquid)

Table IIIc. Partial quantities for Au in the liquid phase at 1400 K.

		-						
$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
0.000	$-\infty$	100	∞	-1437	1.098	0.000	0.884	
0.100	-26999	7050	24.321	-196	5.176	0.098	0.983	
0.200	-18881	10320	20.858	-146	7.476	0.197	0.987	
0.300	-14700	10959	18.327	-685	8.317	0.283	0.943	
0.400	-12016	9871	15.634	-1350	8.016	0.356	0.890	
0.500	-9890	7823	12.653	-1822	6.889	0.428	0.855	
0.600	-7867	5437	9.503	-1921	5.256	0.509	0.848	
0.700	-5763	3194	6.398	-1612	3.433	0.609	0.871	
0.800	-3597	1433	3.593	-1000	1.737	0.734	0.918	
0.900	-1559	350	1.363	-333	0.487	0.875	0.972	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Au(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

References

- [76Gat] B. Gather, R. Blachnik: Z. Metallkd. 67 (1976) 168–169.
- [84Oka] H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams 5 (1984) 56–59.
- [98Spe] P.J. Spencer, unpublished assessment, 1998.

Fig. 1. Calculated phase diagram for the system As-Cu.

Arsenic is a harmful impurity in copper ores which deserves special special attention in copper smelting. The As-Cu system has been reviewed by [88Sub] and thermodynamically assessed by [91Tep, 94Pei]. The dataset of [94Pei] is recommendet here because it provides a good and consistent description of the available experimental data. The optimization includes data on the phase equilibria across the whole composition range. The liquidus in the concentration range below 50 at.% As has been determined in very many investigations. In addition, the component activies in the liquid have been optimised in the range below 40 at.% As. For the solid solution of As in fcc-Cu, the calculated partial molar Gibbs energy of As shows larger deviations from the experimental data. For the intermediate phases no other thermodynamic information have been available than the data from the phase diagram.

	table 1. I hases, structures and models.										
Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model					
liquid					IONIC_LIQ	$\operatorname{Cu}_{n}^{+}(\operatorname{As},\operatorname{As}^{3-},\Box^{-})_{1}$					
$\overline{A7}$	A7	αAs	hR2	$R\overline{3}m$	RHOMBO_A7	As ₁					
Cu ₈ As	A3	Mg	hP2	$P6_3/mmc$	CU8AS	As ₁ Cu ₈					
Cu ₃ As	•••	Cu ₃ As	hP24	$P\overline{3}c1$	CU3AS	$(Cu,\Box)_3As_1$					
$Cu_{12}As_5$	$D0_3$	BiF_3	cF16	$Fm\overline{3}m$	CU12AS5	$Cu_{12}As_5$					
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	(As,Cu) ₁					

Т	abl	e I.	Phases,	structures	and	moc	le.	ls
---	-----	------	---------	------------	-----	-----	-----	----

Reaction	Туре	<i>T /</i> K	Comp	positions	/ $x_{ m Cu}$	$\Delta_{ m r} H$ / (J/mol)
liquid \Rightarrow Cu ₃ As	congruent	1102.5	0.743	0.743		-6913
$liquid + Cu_3As \rightleftharpoons Cu_{12}As_5$	peritectic	982.7	0.652	0.729	0.706	-2929
liquid \rightleftharpoons Cu ₃ As + fcc	eutectic	960.1	0.805	0.747	0.933	-7020
liquid $\rightleftharpoons A7$ + Cu ₁₂ As ₅	eutectic	872.1	0.535	0.000	0.706	-15368
$Cu_3As + fcc \rightleftharpoons Cu_8As$	peritectoid	597.8	0.746	0.933	0.889	-183
$Cu_{12}As_5 \rightleftharpoons A7 + Cu_3As$	eutectoid	573.1	0.706	0.000	0.723	-407

Table IIIa. Integral quantities for the liquid phase at 1423 K.

$x_{ m Cu}$	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$	$G_{\rm m}^{\rm E}$	$S_{\rm m}^{\rm E}$	ΔC_p	
	[J/III0I]	[3/1101]	[J/(III01·K)]	[3/1101]	[J/(III01·K)]	[J/(III01·IX)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5874	709	4.627	-2028	1.924	0.000	
0.200	-10860	1326	8.564	-4940	4.404	0.000	
0.300	-15288	1732	11.961	-8060	6.882	0.000	
0.400	-19093	1814	14.693	-11130	9.097	0.000	
0.500	-22062	1377	16.472	-13861	10.709	0.000	
0.600	-23732	47	16.711	-15769	11.115	0.000	
0.700	-23096	-2702	14.332	-15869	9.253	0.000	
0.800	-18927	-4346	10.247	-13006	6.086	0.000	
0.900	-11109	-2301	6.190	-7263	3.487	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: As(liquid), Cu(liquid)

Table IIIb. Partial quantities for As in the liquid phase at 1423 K.

$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	ΔS_{As} [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	a_{As}	$\gamma_{ m As}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-587	23	0.430	658	-0.446	0.952	1.057	
0.800	-1449	282	1.217	1190	-0.638	0.885	1.106	
0.700	-2873	914	2.662	1346	-0.303	0.784	1.121	
0.600	-5342	2359	5.413	701	1.166	0.637	1.061	
0.500	-9919	5388	10.758	-1718	4.995	0.432	0.865	
0.400	-19228	11874	21.857	-8387	14.239	0.197	0.492	
0.300	-39203	20261	41.788	-24958	31.778	0.036	0.121	
0.200	-67372	-12284	38.713	-48330	25.331	0.003	0.017	
0.100	-95019	-23729	50.098	-67776	30.953	0.000	0.003	
0.000	$-\infty$	-23843	∞	-76887	37.276	0.000	0.002	

Reference state: As(liquid)

		1	1	1				
$x_{ m Cu}$	$\Delta G_{ m Cu}$ [J/mol]	$\Delta H_{ m Cu}$ [J/mol]	$\Delta S_{ m Cu}$ [J/(mol·K)]	$G^{ m E}_{ m Cu}$ [J/mol]	$S^{ m E}_{ m Cu}$ [J/(mol·K)]	$a_{ m Cu}$	$\gamma_{ m Cu}$	
0.000	$-\infty$	0	∞	0	0	0.000	1.000	
0.100	-53458	6960	42.459	-26215	23.314	0.011	0.109	
0.200	-48504	5536	37.977	-29462	24.595	0.017	0.083	
0.300	-44256	3608	33.637	-30011	23.627	0.024	0.079	
0.400	-39719	1009	28.622	-28878	21.003	0.035	0.087	
0.500	-34205	-2623	22.194	-26004	16.431	0.056	0.111	
0.600	-26735	-7840	13.278	-20691	9.031	0.104	0.174	
0.700	-16193	-12543	2.565	-11973	-0.400	0.254	0.363	
0.800	-6815	-2359	3.132	-4175	1.276	0.562	0.703	
0.900	-1786	331	1.489	-539	0.613	0.860	0.955	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Table IIIc. Partial quantities for Cu in the liquid phase at 1423 K.

Reference state: Cu(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1423 K.

Fig. 3. Activities in the liquid phase at T=1423 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Cu}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
$\begin{array}{c} Cu_{12}As_5\\ Cu_8As_1 \end{array}$	$\begin{array}{c} 0.706 \\ 0.889 \end{array}$	-548 -621	$\begin{array}{c} 5216\\ 1864\end{array}$	$\begin{array}{c} 19.334\\ 8.336\end{array}$	$0.000 \\ 0.000$

References

[88Sub]	P.R. Subramanian, D.E. Laughlin: Bull. Alloy Phase Diagrams 9 (1988) 605–618.
[91Tep]	O. Teppo, P. Taskinen: Scand. J. Metall. 20 (1991) 141-148.
[04Da:1	D. D.: D. Dissimum, D. Jansson, D. Sundman, 7. Matalillad 95 (1004) 179, 194

[94Pei] B. Pei, B. Björkman, B. Jansson, B. Sundman: Z. Metallkd. **85** (1994) 178–184.

1.0 Cu

Fig. 1. Calculated phase diagram for the system As-Fe.

The system As–Fe is of interest because As is a harmful constituent in certain Fe-Cu and Fe-ores. The system As–Fe has been reviewed by [91Oka] and a thermodynamic assessment has been given by [93Pei] which is presented here. For the optimisation of the system data on the phase diagram and the activities of As and Fe in the liquid have been used. In alloys with less than 50 at.% As there is plenty of experimental information available but at higher As contents the data are very scarce. The liquid has been modelled using the ionic 2-sublattice model in order to take account of the strong non-ideal mixing behavior. For the intermetallic compounds, the calculated Gibbs energies of formation deviate considerably from the experimental data.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid A7 FeAs ₂ FeAs	$egin{array}{c} A7 \ C18 \ B31 \end{array}$	lphaAs FeS $_2$ MnP	hR2 oP6 oP8	R 3 m Pnnm Pnma	IONIC_LIQ RHOMBO_A7 FEAS2 FEAS	$Fe_p^{2+}(As, As^{3-}, \Box^{2-})_2$ As_1 Fe_1As_2 Fe_1As_3
Fe_3As_2 Fe_2As fcc bcc	C38 A1 A2	Cu ₂ Sb Cu W	tP6 cF4 cI2	1 mma P4/nmm Fm <u>3</u> m Im <u>3</u> m	FE3AS2 FE2AS FCC_A1 BCC_A2	$Fe_4(As,\Box)_3$ Fe_2As_1 $(As,Fe)_1$ $(As,Fe)_1$

Table I. Phases, structures and models.

Туре	<i>T /</i> K	Com	positions	/ $x_{ m Fe}$	$\Delta_{ m r} H$ / (J/mol)	
congruent	1315.3	0.500	0.500		-22592	
congruent	1294.0	0.333	0.333		-28496	
eutectic	1271.4	0.412	0.333	0.500	-25203	
peritectic	1249.9	0.500	0.592	0.582	-9031	
congruent	1202.5	0.667	0.667		-14773	
eutectic	1196.7	0.646	0.601	0.667	-13855	
eutectic	1118.5	0.749	0.667	0.904	-12981	
eutectoid	1096.1	0.603	0.500	0.667	-4490	
eutectic	1077.5	0.041	0.000	0.333	-24739	
	Type congruent congruent eutectic peritectic congruent eutectic eutectic eutectic eutectid eutectic	Type T / K congruent1315.3congruent1294.0eutectic1271.4peritectic1249.9congruent1202.5eutectic1196.7eutectic1118.5eutectoid1096.1eutectic1077.5	Type T / K Compcongruent1315.30.500congruent1294.00.333eutectic1271.40.412peritectic1249.90.500congruent1202.50.667eutectic1196.70.646eutectic1118.50.749eutectoid1096.10.603eutectic1077.50.041	Type T / K Compositionscongruent1315.30.5000.500congruent1294.00.3330.333eutectic1271.40.4120.333peritectic1249.90.5000.592congruent1202.50.6670.667eutectic1196.70.6460.601eutectic1118.50.7490.667eutectic1096.10.6030.500eutectic1077.50.0410.000	Type $T \ / \ K$ Compositions / x_{Fe} congruent1315.30.5000.500congruent1294.00.3330.333eutectic1271.40.4120.3330.500peritectic1249.90.5000.5920.582congruent1202.50.6670.667eutectic1196.70.6460.6010.667eutectic1118.50.7490.6670.904eutectoid1096.10.6030.5000.667eutectic1077.50.0410.0000.333	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 1873 K.

$x_{ m Fe}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-9682	-4720	2.649	-4619	-0.054	0.000	
0.200	-17294	-9199	4.322	-9502	0.162	0.000	
0.300	-23539	-13235	5.501	-14026	0.422	0.000	
0.400	-28278	-16551	6.261	-17797	0.665	0.000	
0.500	-31089	-18644	6.645	-20295	0.881	0.000	
0.600	-31371	-18922	6.647	-20890	1.051	0.000	
0.700	-28476	-16873	6.195	-18963	1.116	0.000	
0.800	-22088	-12253	5.251	-14295	1.090	0.000	
0.900	-12783	-6393	3.411	-7720	0.709	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: As(liquid), Fe(liquid)

Table IIIb. Partial quantities for As in the liquid phase at 1873 K.

	-		-	-				
$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1331	-20	0.700	308	-0.176	0.918	1.020	
0.800	-3446	-621	1.509	28	-0.347	0.801	1.002	
0.700	-6919	-2070	2.589	-1364	-0.377	0.641	0.916	
0.600	-12812	-5304	4.009	-4857	-0.239	0.439	0.732	
0.500	-22834	-12334	5.606	-12039	-0.157	0.231	0.462	
0.400	-38518	-23435	8.053	-24248	0.434	0.084	0.211	
0.300	-61298	-41352	10.649	-42548	0.639	0.020	0.065	
0.200	-85649	-55797	15.938	-60585	2.556	0.004	0.020	
0.100	-108723	-62078	24.904	-72865	5.759	0.001	0.009	
0.000	$-\infty$	-65592	∞	-81381	8.430	0.000	0.005	

Reference state: As(liquid)

		1		P				
x_{Fe}	ΔG_{Fe}	$\Delta H_{ m Fe}$	$\Delta S_{ m Fe}$	$G_{ m Fe}^{ m E}$	$S_{ m Fe}^{ m E}$	$a_{ m Fe}$	$\gamma_{ m Fe}$	
	[J/mol]	[J/mol]	[J/(mol·K)]	[J/mol]	[J/(mol·K)]			
0.000	$-\infty$	0	∞	0	0.000	0.000	1.000	
0.100	-84834	-46462	20.487	-48976	1.342	0.004	0.043	
0.200	-72687	-43533	15.565	-47623	2.184	0.009	0.047	
0.300	-62319	-39399	12.237	-43570	2.227	0.018	0.061	
0.400	-51476	-33410	9.645	-37207	2.027	0.037	0.092	
0.500	-39345	-24954	7.683	-28550	1.920	0.080	0.160	
0.600	-26606	-15910	5.711	-18651	1.463	0.181	0.302	
0.700	-14410	-6376	4.289	-8855	1.324	0.396	0.566	
0.800	-6197	-1213	2.661	-2722	0.806	0.672	0.840	
0.900	-2122	-181	1.037	-482	0.161	0.873	0.970	
1.000	0	0	0.000	0	0.000	1.000	1.000	

1.0

0.8

0.6

0.4

0.2

0.0

0.0

 \mathbf{As}

Activities

Table IIIc. Partial quantities for Fe in the liquid phase at 1873 K.

Reference state: Fe(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1873 K.

0.4

0.6

0.8

1.0

Fe

0.2

 $a_{\scriptscriptstyle \rm As}$

 $a_{ extsf{re}}$

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Fe}	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathrm{J/(mol}\cdot\mathrm{K}))$
$\begin{array}{c} Fe_1 As_2 \\ Fe_1 As_1 \\ Fe_2 As_1 \end{array}$	$\begin{array}{c} 0.333 \\ 0.500 \\ 0.667 \end{array}$	-21110 -21544 -14600	-19952 -19048 -11050	$3.884 \\ 8.372 \\ 11.907$	-0.139 -0.209 -0.278

References

[910ka] H. Okamoto: J. Phase Equilibria 12 (1991) 457-461. [94Pei] B. Pei, B. Björkman, B. Jansson, B. Sundman: Z. Metallkd. 85 (1994) 171-177.

As – Ga (Arsenic – Gallium) liquid 1600 1400 1200 Х 1000 Е AsGa 800 A7600 400 A11200 0.8 0.1 0.2 0.3 0.4 0.6 0.7 0.9 0.0 0.5 1.0 AsGa $x_{\scriptscriptstyle {Ga}}$

Fig. 1. Calculated phase diagram for the system As-Ga (constrained system).

The As-Ga system is one of the most important of the group of III-V semiconductor systems used in optoelectronic and high speed electronic device applications. An understanding of the phase diagram and thermochemistry of this system is essential in order to model processes for the fabrication of these devices. The phase diagram for the As-Ga system is very simple featuring a near stoichiometric compound GaAs which melts congruently at 1510 K, complete miscibility within the liquid phase and negligible solubility of Ga in rhombohedral As and of As in crystalline Ga. There is a eutectic on the As rich side of the system at 1067 K and a eutectic on the Ga rich side of the system very close to the melting point of Ga itself. The critically assessed dataset for this system is from the work of Chatillon et al. [90Cha]. The calculated phase diagram is in very good agreement with the large number of measurements of the liquidus. The thermodynamic properties of the system have been studied by Knudsen cell mass spectrometry and drop calorimetry and are reproduced well by the critically assessed data.

Table 1	Ι.	Phases,	structures	and	mod	el	S
---------	----	---------	------------	-----	-----	----	---

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid A7 AsGa A11	A7 B3 A11	lphaAs ZnS lphaGa	hR2 cF8 oC8	$R\overline{3}m$ $F\overline{4}3m$ Cmca	LIQUID RHOMBOHEDRAL_A7 B3_ZINCBLENDE ORTHORHOMBIC_A11	(As,Ga) ₁ As ₁ Ga ₁ As ₁ Ga ₁

Table	II.	Invariant	reactions.

Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Ga}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons AsGa liquid \rightleftharpoons A7 + AsGa liquid \rightleftharpoons AsGa + A11	congruent eutectic degenerate	$1509.4 \\ 1066.6 \\ 302.9$	$0.500 \\ 0.047 \\ 1.000$	$0.500 \\ 0.000 \\ 0.500$	$\begin{array}{c} 0.500 \\ 1.000 \end{array}$	-53161 -26450 -5590

Fig. 2. Calculated phase diagram at 0.1 MPa.

the phase equilibria of the constrained system.

Table IIIa. Integral quantities for the liquid phase at 1550 K.

$x_{ m Ga}$	$\Delta G_{ m m}$	$\Delta H_{ m m}$	$\Delta S_{ m m}$	$G_{\mathrm{m}}^{\mathrm{E}}$	$S_{\mathrm{m}}^{\mathrm{E}}$	ΔC_p	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$	[J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-7459	-2668	3.091	-3269	0.388	0.000	
0.200	-12095	-4577	4.850	-5646	0.690	0.000	
0.300	-15066	-5790	5.984	-7194	0.905	0.000	
0.400	-16646	-6369	6.630	-7973	1.035	0.000	
0.500	-16979	-6376	6.841	-8046	1.078	0.000	
0.600	-16150	-5872	6.630	-7476	1.035	0.000	
0.700	-14197	-4921	5.984	-6324	0.905	0.000	
0.800	-11102	-3584	4.850	-4653	0.690	0.000	
0.900	-6714	-1923	3.091	-2524	0.388	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: As(liquid), Ga(liquid)

		1	1	1				
$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1814	-390	0.919	-456	0.043	0.869	0.965	
0.800	-4619	-1476	2.028	-1743	0.172	0.699	0.874	
0.700	-8332	-3134	3.354	-3735	0.388	0.524	0.748	
0.600	-12892	-5240	4.937	-6309	0.690	0.368	0.613	
0.500	-18273	-7670	6.841	-9340	1.078	0.242	0.484	
0.400	-24513	-10299	9.170	-12705	1.552	0.149	0.373	
0.300	-31794	-13004	12.123	-16278	2.112	0.085	0.283	
0.200	-40678	-15660	16.141	-19936	2.759	0.043	0.213	
0.100	-53230	-18143	22.637	-23555	3.492	0.016	0.161	
0.000	$-\infty$	-20329	∞	-27011	4.311	0.000	0.123	

Table IIIb. Partial quantities for As in the liquid phase at 1550 K.

Reference state: As(liquid)

Table IIIc. Partial quantities for Ga in the liquid phase at 1550 K.

$x_{ m Ga}$	$\Delta G_{ m Ga}$ [J/mol]	$\Delta H_{ m Ga}$ [J/mol]	$\Delta S_{ m Ga}$ [J/(mol·K)]	$G_{ m Ga}^{ m E}$ [J/mol]	$S_{ m Ga}^{ m E}$ [J/(mol·K)]	$a_{ m Ga}$	$\gamma_{ m Ga}$	
0.000	$-\infty$	-30678	∞	-37360	4.311	0.000	0.055	
0.100	-58260	-23173	22.637	-28585	3.492	0.011	0.109	
0.200	-42003	-16985	16.141	-21261	2.759	0.038	0.192	
0.300	-30780	-11990	12.123	-15264	2.112	0.092	0.306	
0.400	-22278	-8064	9.170	-10469	1.552	0.178	0.444	
0.500	-15686	-5082	6.841	-6753	1.078	0.296	0.592	
0.600	-10574	-2921	4.937	-3991	0.690	0.440	0.734	
0.700	-6655	-1457	3.354	-2058	0.388	0.597	0.852	
0.800	-3708	-565	2.028	-832	0.172	0.750	0.937	
0.900	-1545	-120	0.919	-187	0.043	0.887	0.986	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Ga(liquid)

Fig. 4. Integral quantities of the liquid phase at T=1550 K.

Fig. 5. Activities in the liquid phase at T=1550 K.

Table	IV	. Standar	d reaction	quantities at	298.15 K	for the compound	s per mole of atoms.
-------	----	-----------	------------	---------------	----------	------------------	----------------------

Compound	x_{Ga}	$\Delta_{\mathbf{f}} G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/({\rm mol}{\cdot}{\rm K}))$
As ₁ Ga ₁	0.500	-42408	-44422	-6.755	-1.969

References

[90Cha] C. Chatillon, I. Ansara, A. Watson, B.B. Argent: Calphad 14 (1990) 203–214.

As – Ge (Arsenic – Germanium)

Fig. 1. Calculated phase diagram for the system As-Ge.

Data for the As-Ge system are required in order to model processes for the fabrication of optoelectronic and high speed electronic devices. An understanding of the phase diagram and thermochemistry of this system is essential for this purpose.

The As-Ge system is characterised by complete miscibility in the liquid phase, negligible solubility of As in crystalline Ge (diamond structure), two intermetallic compounds GeAs and GeAs₂, and a range of solid solution of Ge in rhombohedral As. According to the selected SGTE assessment GeAs melts congruently at 1028 K while GeAs₂ melts congruently at 1026 K. The solubility of Ge in rhombohedral As is not well defined. According to [85Uga] this reaches 12 at.% at the eutectic temperature. In the selected dataset, which was derived by Ansara and Dutartre [84Ans] this solubility has been ignored. The dataset was based on experimental liquidus temperature and heat capacities of the compound phases. The two sets of measurements of the vapour pressures in the system were in poor agreement and were not used in the analysis.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid A7 As_2Ge AsGe A4	A7 A4	αAs C(diamond)	hR2 oP* mC24 cF8	R3m Pbam C2/m Fd3m	LIQUID RHOMBOHEDRAL_A7 AS2GE ASGE DIAMOND_A4	$(As,Ge)_1$ $(As,Ge)_1$ As_2Ge_1 As_1Ge_1 Ge_1

Table I. Phases, structures and models.

Table II. Invariant reactions.									
Reaction	Туре	T / K	Comp	positions	/ $x_{ m Ge}$	$\Delta_{ m r} H$ / (J/mol)			
$liquid \rightleftharpoons AsGe$ $liquid \rightleftharpoons As_2Ge$ $liquid \rightleftharpoons As_2Ge + AsGe$ $liquid \rightleftharpoons AsGe + A4$ $liquid \rightleftharpoons A7 + As_2Ge$	congruent congruent eutectic eutectic eutectic	$1028.4 \\ 1025.6 \\ 1020.7 \\ 1020.7 \\ 1006.5$	$\begin{array}{c} 0.500 \\ 0.333 \\ 0.405 \\ 0.596 \\ 0.203 \end{array}$	$\begin{array}{c} 0.500 \\ 0.333 \\ 0.333 \\ 0.500 \\ 0.046 \end{array}$	$0.500 \\ 1.000 \\ 0.333$	-31847 -28616 -29952 -32520 -26050			

Fig. 2. Calculated temperature-activity diagrams. Reference states: As(A7), Ge(A4)

$x_{ m Ge}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-4305	-791	2.703	-791	0.000	0.000	
0.200	-6815	-1406	4.161	-1406	0.000	0.000	
0.300	-8448	-1845	5.079	-1845	0.000	0.000	
0.400	-9383	-2109	5.596	-2109	0.000	0.000	
0.500	-9689	-2197	5.763	-2197	0.000	0.000	
0.600	-9383	-2109	5.596	-2109	0.000	0.000	
0.700	-8448	-1845	5.079	-1845	0.000	0.000	
0.800	-6815	-1406	4.161	-1406	0.000	0.000	
0.900	-4305	-791	2.703	-791	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1300 K.

Reference states: As(liquid), Ge(liquid)

		1		1 I				
$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1227	-88	0.876	-88	0.000	0.893	0.992	
0.800	-2763	-351	1.855	-351	0.000	0.774	0.968	
0.700	-4646	-791	2.966	-791	0.000	0.651	0.929	
0.600	-6927	-1406	4.247	-1406	0.000	0.527	0.878	
0.500	-9689	-2197	5.763	-2197	0.000	0.408	0.816	
0.400	-13067	-3163	7.619	-3163	0.000	0.299	0.746	
0.300	-17319	-4305	10.010	-4305	0.000	0.201	0.671	
0.200	-23019	-5623	13.382	-5623	0.000	0.119	0.594	
0.100	-32005	-7117	19.145	-7117	0.000	0.052	0.518	
0.000	$-\infty$	-8786	∞	-8786	0.000	0.000	0.444	

Table IIIb. Partial quantities for As in the liquid phase at 1300 K.

Reference state: As(liquid)

Table IIIc. Partial quantities for Ge in the liquid phase at 1300 K.

$x_{ m Ge}$	$\Delta G_{ m Ge}$ [J/mol]	$\Delta H_{ m Ge}$ [J/mol]	$\Delta S_{ m Ge}$ [J/(mol·K)]	$G_{ m Ge}^{ m E}$ [J/mol]	$S_{ m Ge}^{ m E}$ [J/(mol·K)]	$a_{ m Ge}$	$\gamma_{ m Ge}$	
0.000	$-\infty$	-8786	∞	-8786	0.000	0.000	0.444	
0.100	-32005	-7117	19.145	-7117	0.000	0.052	0.518	
0.200	-23019	-5623	13.382	-5623	0.000	0.119	0.594	
0.300	-17319	-4305	10.010	-4305	0.000	0.201	0.671	
0.400	-13067	-3163	7.619	-3163	0.000	0.299	0.746	
0.500	-9689	-2197	5.763	-2197	0.000	0.408	0.816	
0.600	-6927	-1406	4.247	-1406	0.000	0.527	0.878	
0.700	-4646	-791	2.966	-791	0.000	0.651	0.929	
0.800	-2763	-351	1.855	-351	0.000	0.774	0.968	
0.900	-1227	-88	0.876	-88	0.000	0.893	0.992	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Ge(liquid)

Fig. 3. Integral quantities of the liquid phase at T=1300 K.

Fig. 4. Activities in the liquid phase at T=1300 K.

Compound	$x_{ m Ge}$	$\Delta_{\mathbf{f}} G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
As_2Ge_1 As_1Ge_1	$\begin{array}{c} 0.333\\ 0.500 \end{array}$	$-3040 \\ -4122$	$-2347 \\ -4147$	$2.323 \\ -0.083$	-1.241 1.226

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

References

[84Ans] I. Ansara, D. Dutartre: Calphad **8** (1984) 323–342.

[85Uga] Ya.A. Ugai, S.P. Evseeva, A.E. Popov, E.G. Goncharov, O.V. Grigor'eva: Zh. Neorg. Khim. 30 (1985) 2951–2953 (in Russian); tr.: Russ. J. Inorg. Chem. 30 (1985) 1681–1682.

As – In (Arsenic – Indium)

Fig. 1. Calculated phase diagram for the system As-In (constrained system).

Data for the As-In system are required in order to model processes for the fabrication of optoelectronic and high speed electronic devices based on III-V semiconductor systems. An understanding of the phase diagram and thermochemistry of this system is essential for this purpose.

The phase diagram for the As-In system is very simple featuring a near stoichiometric compound InAs which melts congruently at 1211 K, complete miscibility within the liquid phase and negligible solubility of In in rhombohedral As and of As in crystalline In. There is a eutectic on the As rich side of the system at 1005 K and a eutectic on the In rich side of the system very close to the melting point of In itself. The critically assessed dataset for this system is from the work of Chatillon et al. [90Cha]. The calculated phase diagram is in very good agreement with the large number of measurements of the liquidus. The thermodynamic properties of the system have been studied by Knudsen cell mass spectrometry, drop calorimetry and emf measurements and are reproduced well by the critically assessed data.

Table I. Phases	, structures	and	mod	els	3
-----------------	--------------	-----	-----	-----	---

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid A7 AsIn A6	A7 B3 A6	αAs ZnS In	hR2 cF8 tI2	R 3 m F43m I4/mmm	LIQUID RHOMBOHEDRAL_A7 B3_ZINCBLENDE TETRAGONAL_A6	(As,In) ₁ (As,In) ₁ In ₁ As ₁ In ₁

Table	II.	Invariant	reactions.

Reaction	Туре	<i>T /</i> K	/ K Compositions / x_{In}		/ x_{In}	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons AsIn liquid \rightleftharpoons A7 + AsIn liquid \rightleftharpoons AsIn + A6	congruent eutectic degenerate	$1210.9 \\ 1004.7 \\ 429.8$	$0.500 \\ 0.143 \\ 1.000$	$0.500 \\ 0.000 \\ 0.500$	$\begin{array}{c} 0.500 \\ 1.000 \end{array}$	-38739 -27768 -3283

Fig. 2. Calculated phase diagram at 0.1 MPa.

Fig. 3. Calculated partial pressures of gaseous species in the phase equilibria of the constrained system.

Table IIIa. Integral quantities for the liquid phase at 1250 K.

	-	-		-		
x_{In}	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{\rm m}^{\rm E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]
			/-		/-	/-
0.000	0	0	0.000	0	0.000	0.000
0.100	-6161	-1514	3.717	-2782	1.014	0.000
0.200	-10108	-2653	5.964	-4907	1.803	0.000
0.300	-12739	-3431	7.446	-6390	2.367	0.000
0.400	-14239	-3863	8.301	-7244	2.705	0.000
0.500	-14689	-3963	8.581	-7485	2.818	0.000
0.600	-14122	-3746	8.301	-7127	2.705	0.000
0.700	-12534	-3226	7.446	-6185	2.367	0.000
0.800	_9874	-2419	5 964	-4673	1 803	0.000
0.000	5095	1990	9 717	2607	1.000	0.000
0.900	-9989	-1339	3.717	-2007	1.014	0.000
1.000	0	0	0.000	0	0.000	0.000

Reference states: As(liquid), In(liquid)

			1	-					
3	r_{As}	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$	
1.	000	0	0	0.000	0	0.000	1.000	1.000	
0.	900	-1426	-190	0.989	-331	0.113	0.872	0.969	
0.	800	-3624	-741	2.306	-1305	0.451	0.706	0.882	
0.	700	-6599	-1624	3.980	-2892	1.014	0.530	0.757	
0.	600	-10373	-2809	6.051	-5063	1.803	0.369	0.614	
0.	500	-14994	-4268	8.581	-7790	2.818	0.236	0.473	
0.	400	-20565	-5970	11.676	-11042	4.057	0.138	0.346	
0.	300	-27303	-7887	15.533	-14790	5.523	0.072	0.241	
0.	200	-35732	-9989	20.595	-19005	7.213	0.032	0.161	
0.	100	-47589	-12247	28.274	-23658	9.129	0.010	0.103	
0.	000	$-\infty$	-14632	∞	-28720	11.271	0.000	0.063	

Table IIIb. Partial quantities for As in the liquid phase at 1250 K.

Reference state: As(liquid)

Table IIIc. Partial quantities for In in the liquid phase at 1250 K.

x_{In}	ΔG_{In} [J/mol]	ΔH_{In} [J/mol]	ΔS_{In} [J/(mol·K)]	$G_{ m In}^{ m E}$ [J/mol]	$S_{ m In}^{ m E}$ [J/(mol·K)]	a_{In}	$\gamma_{ m In}$	
0.000	$-\infty$	-17071	∞	-31159	11.271	0.000	0.050	
0.100	-48775	-13432	28.274	-24843	9.129	0.009	0.092	
0.200	-36044	-10301	20.595	-19317	7.213	0.031	0.156	
0.300	-27064	-7647	15.533	-14551	5.523	0.074	0.247	
0.400	-20038	-5443	11.676	-10515	4.057	0.145	0.364	
0.500	-14384	-3658	8.581	-7180	2.818	0.251	0.501	
0.600	-9826	-2263	6.051	-4517	1.803	0.389	0.648	
0.700	-6204	-1229	3.980	-2497	1.014	0.551	0.786	
0.800	-3409	-527	2.306	-1090	0.451	0.720	0.900	
0.900	-1363	-127	0.989	-268	0.113	0.877	0.975	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: In(liquid)

1.0 0.8 Activities $a_{\mathbf{ir}}$ a. 0.6 0.4 0.2 0.0 0.2 0.0 0.4 0.6 0.8 1.0 In \mathbf{As} x_{In}

Fig. 4. Integral quantities of the liquid phase at T=1250 K.

Fig. 5. Activities in the liquid phase at T=1250 K.

249

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.											
	1	4	CO L (TL	1)	٨		1)		1.17))	1 00	1 /11/

Compound	x_{In}	$\Delta_{\rm f} G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^{\circ}$ / (J/mol)	$\Delta_{\mathbf{f}} S^{\circ} / (\mathrm{J}/(\mathrm{mol} \cdot \mathrm{K}))$	$\Delta_{\mathbf{f}} C_P^{\circ} / (\mathrm{J}/(\mathrm{mol} \cdot \mathrm{K}))$
As_1In_1	0.500	-26796	-29219	-8.128	-1.706

References

[90Cha] C. Chatillon, I. Ansara, A. Watson, B.B. Argent: Calphad 14 (1990) 203–214.

Fig. 1. Calculated phase diagram for the system As-P (constrained system).

An understanding of the thermodynamic data and equilibrium phase relationships for the As-P system is essential in order to model processes for the fabrication of optoelectronic and high speed electronic devices based on III-V semiconductor systems. The critically assessed data for the system are taken from the assessment of Ansara and Chatillon reported in [94Ans]. Earlier assessments of data were published by Kaufman et al. [81Kau] and Karakaya and Thompson [91Kar]. The phase diagram is characterised by complete mixing in the liquid phase, appreciable solubility of P in As and of As in red P and the formation of the intermediate AsP phase which itself exhibits a wide range of homogeneity. The experimental phase boundary data show considerable scatter reflecting the high vapour pressure experienced along the liquidus surface. No experimental thermodynamic data have been reported.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid A7 AsP P(red) α P	A7 	αAs αP	hR2 c**	$R\overline{3}m$ 	LIQUID RHOMBOHEDRAL_A7 ASP P_RED P_WHITE	$(As,P)_1$ As_1 $(As,P)_1$ P_1 P_1
Table II.	Invariant re	actions.				
Reactio	on	Туре	<i>T /</i> K	Cor	npositions / $x_{ m P}$ $\Delta_{ m r} H$ / ((J/mol)

0.187

0.457

0.521

0.775

0.408

0.664

Table I. Phases, structures and models.

peritectic

peritectic

954.7

887.7

Landolt-B	örnstein
New Series	IV/19B

-17330

-10382

SGTE

 $A7 + \text{liquid} \rightleftharpoons \text{AsP}$

AsP + liquid \rightleftharpoons P(red)

Fig. 2. Calculated partial pressures of gaseous species in the phase equilibria of the constrained system.

Fig. 3. Calculated phase diagram at 0.1 MPa.

Table IIIa. Integral quantities for the liquid phase at 1100 K.

$x_{ m P}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-2484	490	2.703	490	0.000	0.000	
0.200	-3763	813	4.161	813	0.000	0.000	
0.300	-4594	993	5.079	993	0.000	0.000	
0.400	-5106	1049	5.596	1049	0.000	0.000	
0.500	-5336	1004	5.763	1004	0.000	0.000	
0.600	-5277	878	5.596	878	0.000	0.000	
0.700	-4893	693	5.079	693	0.000	0.000	
0.800	-4105	471	4.161	471	0.000	0.000	
0.900	-2740	233	2.703	233	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: As(liquid), P(liquid)

		1		1 1				
$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-877	86	0.876	86	0.000	0.909	1.010	
0.800	-1724	317	1.855	317	0.000	0.828	1.035	
0.700	-2612	650	2.966	650	0.000	0.752	1.074	
0.600	-3631	1041	4.247	1041	0.000	0.672	1.121	
0.500	-4891	1449	5.763	1449	0.000	0.586	1.172	
0.400	-6551	1830	7.619	1830	0.000	0.489	1.221	
0.300	-8870	2142	10.010	2142	0.000	0.379	1.264	
0.200	-12379	2341	13.382	2341	0.000	0.258	1.292	
0.100	-18673	2386	19.145	2386	0.000	0.130	1.298	
0.000	$-\infty$	2234	∞	2234	0.000	0.000	1.277	

Table IIIb. Partial quantities for As in the liquid phase at 1100 K.

Reference state: As(liquid)

Table IIIc. Partial quantities for P in the liquid phase at 1100 K.

$x_{ m P}$	$\Delta G_{ m P}$	$\Delta H_{ m P}$	$\Delta S_{ m P}$	$G_{ m P}^{ m E}$	$S_{ m P}^{ m E}$	$a_{ m P}$	$\gamma_{ m P}$	
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$			
0.000	$-\infty$	5795	∞	5795	0.000	0.000	1.884	
0.100	-16942	4117	19.145	4117	0.000	0.157	1.569	
0.200	-11923	2797	13.382	2797	0.000	0.272	1.358	
0.300	-9219	1793	10.010	1793	0.000	0.365	1.217	
0.400	-7320	1061	7.619	1061	0.000	0.449	1.123	
0.500	-5781	558	5.763	558	0.000	0.531	1.063	
0.600	-4429	243	4.247	243	0.000	0.616	1.027	
0.700	-3189	73	2.966	73	0.000	0.706	1.008	
0.800	-2037	4	1.855	4	0.000	0.800	1.000	
0.900	-970	-6	0.876	-6	0.000	0.899	0.999	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: P(liquid)

Fig. 4. Integral quantities of the liquid phase at T=1100 K.

Fig. 5. Activities in the liquid phase at T=1100 K.

References

- [81Kau] L. Kaufman, J. Nell, K. Taylor, F. Hayes: Calphad 5 (1981) 185–215.
- [91Kar] I. Karakaya, W.T. Thompson: J. Phase Equilibria **5** (1991) 343–346.
- [94Ans] I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson: Calphad **18** (1994) 177–222.

As – Sb (Arsenic – Antimony)

Fig. 1. Calculated phase diagram for the system As-Sb (constrained system).

Data for the AsSb system are required in order to model processes for the fabrication of optoelectronic and high speed electronic devices based on III-V semiconductor systems. An understanding of the phase diagram and thermochemistry of this system is essential for this purpose.

The As-Sb system is characterised by complete solubility between the components in the liquid and in the rhombohedral phase above 400 K. Below 400 K a miscibility gap is predicted skewed towards Sb rich compositions, based on experimentally determined positive enthalpies of mixing. The thermodynamic properties of the liquid phase have also been determined by emf and vapour pressure studies. The critically assessed data selected are from Ohtani quoted by Ansara et al. [94Ans].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid A7	A7	αAs	hR2	$R\overline{3}m$	LIQUID RHOMBOHEDRAL_A7	(As,Sb) ₁ (As,Sb) ₁

Table I. Phases, structures and models.

Table	11.	Invariat	nt reactions.	

Reaction	Туре	<i>T /</i> K	Compositions / $x_{\rm Sb}$		/ $x_{ m Sb}$	$\Delta_{ m r} H$ / (J/mol)
liquid $\rightleftharpoons A7$ $A7 \rightleftharpoons A7' + A7''$	congruent critical	$\begin{array}{c} 884.8\\ 403.3\end{array}$	$0.775 \\ 0.779$	$0.775 \\ 0.779$	0.779	-176640

Fig. 2. Calculated phase diagram at 0.1 MPa.

Table IIIa.	Integral	quantities	for the l	iquid	phase at	1373	Κ
-------------	----------	------------	-----------	-------	----------	------	---

$x_{ m Sb}$	$\Delta G_{\rm m}$	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{\rm m}^{\rm E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]
	[*******]	[*******]	[0, (0,)]	[]	[0, (0,)]	[**(*********)]
0.000	0	0	0.000	0	0.000	0.000
0.100	-4428	-1819	1.900	-717	-0.803	0.000
0.200	-6827	-3073	2.734	-1114	-1.427	0.000
0.300	-8225	-3823	3.207	-1252	-1.873	0.000
0.400	-8873	-4128	3.456	-1190	-2.140	0.000
0.500	-8901	-4049	3.534	-989	-2.229	0.000
0.600	-8391	-3646	3.456	-708	-2.140	0.000
0.700	-7382	-2980	3.207	-409	-1.873	0.000
0.800	-5863	-2110	2.734	-151	-1.427	0.000
0.900	-3706	-1096	1.900	5	-0.803	0.000
1.000	0	0	0.000	0	0.000	0.000

Reference states: As(liquid), Sb(liquid)

		1	1	1			
$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	a_{As}	$\gamma_{ m As}$
1.000	0	0	0.000	0	0.000	1.000	1.000
0.900	-1373	-292	0.787	-170	-0.089	0.887	0.985
0.800	-3147	-1089	1.499	-600	-0.357	0.759	0.949
0.700	-5241	-2271	2.163	-1169	-0.803	0.632	0.903
0.600	-7588	-3716	2.821	-1757	-1.427	0.514	0.857
0.500	-10156	-5304	3.534	-2243	-2.229	0.411	0.822
0.400	-12968	-6915	4.409	-2508	-3.210	0.321	0.803
0.300	-16174	-8428	5.641	-2429	-4.369	0.242	0.808
0.200	-20262	-9724	7.675	-1889	-5.707	0.170	0.848
0.100	-27050	-10681	11.922	-764	-7.223	0.094	0.935
0.000	$-\infty$	-11179	∞	1064	-8.917	0.000	1.098

Table IIIb. Partial quantities for As in the liquid phase at 1373 K.

Reference state: As(liquid)

Table IIIc. Partial quantities for Sb in the liquid phase at 1373 K.

$x_{ m Sb}$	$\Delta G_{ m Sb}$ [J/mol]	$\Delta H_{ m Sb}$ [J/mol]	$\Delta S_{ m Sb}$ [J/(mol·K)]	$G_{ m Sb}^{ m E}$ [J/mol]	$S_{ m Sb}^{ m E}$ [J/(mol·K)]	$a_{ m Sb}$	$\gamma_{ m Sb}$	
0.000	$-\infty$	-21215	∞	-8972	-8.917	0.000	0.456	
0.100	-31928	-15558	11.922	-5642	-7.223	0.061	0.610	
0.200	-21546	-11008	7.675	-3173	-5.707	0.151	0.757	
0.300	-15190	-7445	5.641	-1446	-4.369	0.264	0.881	
0.400	-10800	-4747	4.409	-340	-3.210	0.388	0.971	
0.500	-7647	-2795	3.534	266	-2.229	0.512	1.024	
0.600	-5340	-1468	2.821	491	-1.427	0.626	1.044	
0.700	-3615	-645	2.163	457	-0.803	0.729	1.041	
0.800	-2264	-206	1.499	283	-0.357	0.820	1.025	
0.900	-1112	-32	0.787	91	-0.089	0.907	1.008	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Sb(liquid)

Fig. 3. Integral quantities of the liquid phase at T=1373 K.

Fig. 4. Activities in the liquid phase at T=1373 K.

	8	- 1		F				
Phase	$x_{ m Sb}$	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
A7	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-1981	-186	2.992	-359	0.289	0.000	
	0.200	-2966	-161	4.675	-469	0.515	0.000	
	0.300	-3441	12	5.754	-393	0.675	0.000	
	0.400	-3553	268	6.368	-195	0.772	0.000	
	0.500	-3396	544	6.567	62	0.804	0.000	
	0.600	-3044	777	6.368	314	0.772	0.000	
	0.700	-2550	902	5.754	497	0.675	0.000	
	0.800	-1948	857	4.675	548	0.515	0.000	
	0.900	-1218	577	2.992	404	0.289	0.000	
	1.000	0	0	0.000	0	0.000	0.000	

Table IVa. Integral quantities for the stable phases at 600 K.

Reference states: As(A7), Sb(A7)

Table IVb. Partial quantities for As in the stable phases at 600 K.

Phase	$x_{ m As}$	$\Delta G_{ m As}$ [J/mol]	$\Delta H_{ m As}$ [J/mol]	$\Delta S_{ m As}$ [J/(mol·K)]	$G_{ m As}^{ m E}$ [J/mol]	$S_{ m As}^{ m E}$ [J/(mol·K)]	$a_{ m As}$	$\gamma_{ m As}$
A7	1.000	0	0	0.000	0	0.000	1.000	1.000
	0.900	-661	-116	0.908	-135	0.032	0.876	0.973
	0.800	-1570	-379	1.984	-457	0.129	0.730	0.913
	0.700	-2616	-663	3.255	-836	0.289	0.592	0.846
	0.600	-3696	-839	4.762	-1148	0.515	0.477	0.794
	0.500	-4721	-781	6.567	-1263	0.804	0.388	0.776
	0.400	-5627	-361	8.776	-1056	1.158	0.324	0.809
	0.300	-6405	547	11.586	-399	1.576	0.277	0.923
	0.200	-7193	2071	15.440	836	2.058	0.236	1.182
	0.100	-8711	4339	21.750	2775	2.605	0.174	1.744
	0.000	$-\infty$	7476	∞	5546	3.216	0.000	3.040

Reference state: As(A7)

Table IVc. Partial quantities for Sb in the stable phases at 600 K.

Phase	$x_{ m Sb}$	$\Delta G_{ m Sb}$	$\Delta H_{ m Sb}$	$\Delta S_{ m Sb}$	$G_{ m Sb}^{ m E}$	$S_{ m Sb}^{ m E}$	$a_{ m Sb}$	$\gamma_{ m Sb}$
		[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$		
A7	0.000	$-\infty$	-3124	∞	-5054	3.216	0.000	0.363
	0.100	-13863	-813	21.750	-2376	2.605	0.062	0.621
	0.200	-8550	714	15.440	-521	2.058	0.180	0.901
	0.300	-5366	1586	11.586	640	1.576	0.341	1.137
	0.400	-3338	1928	8.776	1234	1.158	0.512	1.281
	0.500	-2071	1869	6.567	1387	0.804	0.660	1.320
	0.600	-1322	1535	4.762	1227	0.515	0.767	1.279
	0.700	-899	1054	3.255	881	0.289	0.835	1.193
	0.800	-637	553	1.984	476	0.129	0.880	1.100
	0.900	-385	160	0.908	140	0.032	0.926	1.029
	1.000	0	0	0.000	0	0.000	1.000	1.000

Reference state: Sb(A7)

Fig. 5. Integral quantities of the stable phases at T=600 K.

Fig. 6. Activities in the stable phases at T=600 K.

References

[94Ans] I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson: Calphad 18 (1994) 177–222.

Au – Bi (Gold – Bismuth)

Fig. 1. Calculated phase diagram for the system Au-Bi.

According to the review of [83Oka], the phase diagram shows only one intermetallic compound, Au_2Bi , stable in a limited temperature range. From lattice parameter measurements, [35Jur] reported a very narrow range of existence for the solid phase Au_2Bi , which was described as stoichiometric. The reported enthalpy of mixing shows very small deviation from ideality. The liquid was described by a simple substitutional solution. The dataset has been derived from the critical assessment by Chevalier [88Che].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Au ₂ Bi A7	A1 C15 A7	Cu Cu ₂ Mg αAs	cF4 cF24 hR2	Fm <u>3</u> m Fd <u>3</u> m R3m	LIQUID FCC_A1 AU2BI RHOMBOHEDRAL_A7	$(Au,Bi)_1 (Au,Bi)_1 Au_2Bi_1 Bi_1$

Table I. Phases, structures and models.

Table II. Invariant reaction	s.
------------------------------	----

Reaction	Туре	<i>T /</i> K	Compositions / $x_{\rm Bi}$			$\Delta_{\rm r} H /({ m J/mol})$	
fcc + liquid \rightleftharpoons Au ₂ Bi liquid \rightleftharpoons Au ₂ Bi + 47	peritectic eutectic	$647.0 \\ 514.3$	$0.001 \\ 0.868$	$0.667 \\ 0.333$	0.333 1 000	-4307 -11339	
$Au_2Bi \rightleftharpoons fcc + A7$	eutectoid	350.0	0.333	0.000	1.000 1.000	-1645	

iusie ii											
$x_{ m Bi}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]					
0.000	0	0	0.000	0	0.000	0.000					
0.000	0	0	0.000	0	0.000	0.000					
0.100	-4307	-118	2.992	-522	0.289	0.000					
0.200	-6755	50	4.860	-930	0.700	0.000					
0.300	-8349	316	6.189	-1238	1.110	0.000					
0.400	-9274	554	7.020	-1440	1.425	0.000					
0.500	-9584	692	7.340	-1515	1.577	0.000					
0.600	-9278	701	7.128	-1444	1.532	0.000					
0.700	-8329	589	6.370	-1219	1.291	0.000					
0.800	-6683	393	5.054	-858	0.893	0.000					
0.900	-4201	172	3.124	-417	0.421	0.000					
1.000	0	0	0.000	0	0.000	0.000					

Table IIIa. Integral quantities for the liquid phase at 1400 K

Reference states: Au(liquid), Bi(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{\rm Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G^{\mathrm{E}}_{\mathrm{Au}}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1290	-179	0.793	-63	-0.083	0.895	0.995	
0.800	-2812	-435	1.698	-215	-0.157	0.785	0.982	
0.700	-4616	-490	2.947	-464	-0.019	0.673	0.961	
0.600	-6817	-232	4.704	-871	0.456	0.557	0.928	
0.500	-9561	319	7.057	-1492	1.294	0.440	0.880	
0.400	-13002	1037	10.028	-2336	2.409	0.327	0.818	
0.300	-17324	1725	13.607	-3310	3.597	0.226	0.753	
0.200	-22905	2148	17.895	-4171	4.513	0.140	0.699	
0.100	-31281	2056	23.812	-4478	4.667	0.068	0.681	
0.000	$-\infty$	1224	∞	-3540	3.403	0.000	0.738	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Bi in the liquid phase at 1400 K.

$x_{ m Bi}$	ΔG_{Bi}	$\Delta H_{ m Bi}$	$\Delta S_{ m Bi}$	$G_{\mathrm{Bi}}^{\mathrm{E}}$	$S_{ m Bi}^{ m E}$	$a_{ m Bi}$	$\gamma_{ m Bi}$
	[J/mol]	[J/mol]	$[J/(mol \cdot K)]$	[J/mol]	$[J/(mol \cdot K)]$		
0.000	$-\infty$	-3387	∞	-5943	1.826	0.000	0.600
0.100	-31460	434	22.782	-4657	3.637	0.067	0.670
0.200	-22524	1989	17.509	-3790	4.128	0.144	0.722
0.300	-17059	2196	13.753	-3044	3.743	0.231	0.770
0.400	-12960	1734	10.495	-2294	2.877	0.328	0.821
0.500	-9607	1066	7.623	-1538	1.860	0.438	0.876
0.600	-6795	477	5.195	-849	0.947	0.558	0.930
0.700	-4474	102	3.269	-323	0.303	0.681	0.973
0.800	-2627	-46	1.844	-30	-0.012	0.798	0.997
0.900	-1192	-37	0.825	35	-0.051	0.903	1.003
1.000	0	0	0.000	0	0.000	1.000	1.000

Reference state: Bi(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Bi}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/({\rm mol} \cdot {\rm K}))$
Au_2Bi_1	0.333	240	1609	4.590	0.750

References

- [35Jur] T. Jurriaanse: Z. Krist. **90** (1935) 322-329.
- [830ka] H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams, 4 (1983) 401–407.
- [88Che] P.-Y. Chevalier: Thermochim. Acta 130 (1988) 15–24.

Fig. 1. Calculated partial phase diagram for the system Au-C.

The Au-C system, for which very limited experimental information is available (reviewed by [84Oka]), is presented by Massalski to a concentration of 6 at.% C only. The system displays eutectic behaviour in this range. The present thermodynamic description [98Spe] reproduces the reported behaviour satisfactorily, but should be viewed as being of only limited reliability.

References

[84Oka] H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams 5 (1984) 378–379.
[98Spe] P.J. Spencer, unpublished assessment, 1998.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc graphite	A1 A9	Cu C(graphite)	cF4 hP4	$Fm\overline{3}m$ $P6_3/mmc$	LIQUID FCC_A1 GRAPHITE	$(Au,C)_1 \\ Au_1(C,\Box)_1 \\ C_1$
Table II. It	nvariant reac	ctions.				
Reaction		Туре	T / K	Compositio	ns / $x_{\rm C}$ $\Delta_{\rm r}$	H / (J/mol)

0.040

0.001

1.000

-11693

Table I. Phases, structures and models.

262

liquid \rightleftharpoons fcc + graphite

eutectic

1276.0

	-	•	-			
$x_{ m C}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	G ^E m [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]
0.000	0	0	0.000	0	0.000	0.000
0.010	-334	-160	0.125	317	-0.341	0.000
0.020	-489	-266	0.159	652	-0.656	0.000
0.030	-565	-321	0.174	1003	-0.946	0.000
0.040	-584	-325	0.185	1371	-1.211	0.000

Table IIIa. Integral quantities for the liquid phase at 1400 K.

Reference states: Au(liquid), C(graphite)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{\rm Au}$ [J/mol]	$\Delta H_{\rm Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	G_{Au}^{E} [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.990	-126	-27	0.071	-9	-0.013	0.989	0.999	
0.980	-269	-105	0.117	-34	-0.051	0.977	0.997	
0.970	-430	-234	0.140	-76	-0.113	0.964	0.994	
0.960	-608	-412	0.140	-133	-0.199	0.949	0.989	

Reference state: Au(liquid)

Table IIIc. Partial quantities for C in the liquid phase at 1400 K.

$x_{ m C}$	$\Delta G_{ m C}$ [J/mol]	$\Delta H_{ m C}$ [J/mol]	$\Delta S_{ m C}$ [J/(mol·K)]	$G_{\mathrm{C}}^{\mathrm{E}}$ [J/mol]	$S_{\mathrm{C}}^{\mathrm{E}}$ [J/(mol·K)]	$a_{ m C}$	$\gamma_{ m C}$	
$\begin{array}{c} 0.000\\ 0.010\\ 0.020\\ 0.030\\ 0.040 \end{array}$	$-\infty$ -21017 -11285 -4938 0	$-18631 \\ -13337 \\ -8174 \\ -3141 \\ 1762$	∞ 5.486 2.222 1.283 1.258	$\begin{array}{r} 30887\\ 32588\\ 34252\\ 35880\\ 37470\end{array}$	$\begin{array}{r} -35.370 \\ -32.804 \\ -30.305 \\ -27.872 \\ -25.506 \end{array}$	$\begin{array}{c} 0.000\\ 0.164\\ 0.379\\ 0.654\\ 1.000 \end{array}$	$14.203 \\ 16.438 \\ 18.964 \\ 21.810 \\ 25.003$	

Reference state: C(graphite)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

Au – Cr (Gold – Chromium)

Fig. 1. Calculated phase diagram for the system Au-Cr.

Experimental phase boundary information is available for Au-rich alloys only. The phase diagram presented by Massalski is therefore indicated as being uncertain in the Cr-rich range. The present thermodynamic assessment [98Spe] reproduces the proposed diagram [85Oka] reasonably well, considering the limited information available, but omits the α' phase reported as existing at low temperatures in Au-rich alloys. The tabulated data should be regarded as of limited accuracy only.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc bcc	A1 A2	Cu W	cF4 cI2	$Fm\overline{3}m$ $Im\overline{3}m$	LIQUID FCC_A1 BCC_A2	$\begin{array}{c} (Au,Cr)_1 \\ (Au,Cr)_1 \\ (Au,Cr)_1 \end{array}$

Table I. Phases, structures and models.

Image: Table II. Invariant reactions.								
Reaction	Туре	T / K	Compositions / $x_{ m Cr}$			$\Delta_{ m r} H$ / (J/mol)		
liquid + bcc \rightleftharpoons fcc	peritectic	1489.6	0.287	0.977	0.508	-16894		
		4	for the figure	phase at 2				
-------------	------------------------------	------------------------------	-------------------------------	------------------------------	-------------------------------	-----------------------------	--	
$x_{ m Cr}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]		
0.000	0	0	0.000	0	0.000	0.000		
0.100	-8357	3393	5.341	-2410	2.638	0.000		
0.200	-12868	7403	9.214	-3715	5.053	0.000		
0.300	-15441	11376	12.189	-4267	7.110	0.000		
0.400	-16651	14739	14.268	-4340	8.672	0.000		
0.500	-16808	16997	15.366	-4128	9.602	0.000		
0.600	-16056	17736	15.360	-3746	9.764	0.000		
0.700	-14400	16621	14.101	-3226	9.021	0.000		
0.800	-11679	13397	11.398	-2526	7.238	0.000		
0.900	-7465	7889	6.979	-1518	4.276	0.000		
1.000	0	0	0.000	0	0.000	0.000		

Table IIIa. Integral quantities for the liquid phase at 2200 K

Reference states: Au(liquid), Cr(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 2200 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$
1.000	0	0	0.000	0	0.000	1.000	1.000
0.900	-2546	-424	0.964	-618	0.088	0.870	0.967
0.800	-6045	-785	2.391	-1963	0.535	0.719	0.898
0.700	-9970	105	4.580	-3446	1.614	0.580	0.828
0.600	-14065	3194	7.845	-4721	3.597	0.464	0.773
0.500	-18356	9191	12.522	-5677	6.758	0.367	0.733
0.400	-23207	18568	18.989	-6446	11.370	0.281	0.703
0.300	-29420	31555	27.716	-7397	17.706	0.200	0.667
0.200	-38578	48145	39.420	-9138	26.038	0.121	0.607
0.100	-54636	68091	55.785	-12517	36.640	0.050	0.504
0.000	$-\infty$	90906	∞	-18621	49.785	0.000	0.361

Reference state: Au(liquid)

Table IIIc. Partial quantities for Cr in the liquid phase at 2200 K.

$x_{ m Cr}$	$\Delta G_{ m Cr}$ [J/mol]	$\Delta H_{ m Cr}$ [J/mol]	$\Delta S_{ m Cr}$ [J/(mol·K)]	$G_{ m Cr}^{ m E}$ [J/mol]	$S_{ m Cr}^{ m E}$ [J/(mol·K)]	$a_{ m Cr}$	$\gamma_{ m Cr}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600\\ 0.700\\ 0.800 \end{array}$	$\begin{array}{r} -\infty \\ -60657 \\ -40164 \\ -28206 \\ -20531 \\ -15259 \\ -11289 \\ -7963 \\ -4954 \end{array}$	28465 37744 40153 37675 32056 24802 17181 10220 4710	∞ 44.728 36.508 29.946 23.903 18.209 12.941 8.265 4.393	$\begin{array}{r} -31010 \\ -18539 \\ -10724 \\ -6183 \\ -3770 \\ -2580 \\ -1945 \\ -1439 \\ -873 \end{array}$	$\begin{array}{c} 27.034\\ 25.583\\ 23.126\\ 19.935\\ 16.284\\ 12.446\\ 8.694\\ 5.300\\ 2.537\end{array}$	$\begin{array}{c} 0.000\\ 0.036\\ 0.111\\ 0.214\\ 0.325\\ 0.434\\ 0.539\\ 0.647\\ 0.763\\ \end{array}$	$\begin{array}{c} 0.184\\ 0.363\\ 0.556\\ 0.713\\ 0.814\\ 0.868\\ 0.899\\ 0.924\\ 0.953\end{array}$	
$\begin{array}{c} 0.900 \\ 1.000 \end{array}$	$-2224 \\ 0$	$\begin{array}{c} 1199 \\ 0 \end{array}$	$\begin{array}{c} 1.556 \\ 0.000 \end{array}$	$-296 \\ 0$	$\begin{array}{c} 0.680\\ 0.000\end{array}$	$\begin{array}{c} 0.886 \\ 1.000 \end{array}$	$\begin{array}{c} 0.984 \\ 1.000 \end{array}$	

Reference state: Cr(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2200 K.

Fig. 3. Activities in the liquid phase at T=2200 K.

Table IVa	. Integral	quantities	for the	stable	phases a	at 1300	Κ
-----------	------------	------------	---------	--------	----------	---------	---

Phase	$x_{ m Cr}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-3443	-2578	0.665	71	-2.038	0.000	
	0.200	-4562	-3146	1.089	847	-3.071	0.000	
	0.300	-4654	-2352	1.771	1948	-3.308	0.000	
	0.400	-4180	-750	2.639	3094	-2.957	0.000	
	0.402	-4170	-721	2.653	3112	-2.948	0.000	
bcc	0.982	-313	321	0.488	683	-0.278	0.000	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Au(fcc), Cr(bcc)

Table IVb. Partial quantities for Au in the stable phases at 1300 K.

Phase	$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$
fcc	$1.000 \\ 0.900$	0 - 1563	$0 \\ -1122$	$\begin{array}{c} 0.000\\ 0.339\end{array}$	$0 \\ -424$	$0.000 \\ -0.537$	$\begin{array}{c} 1.000 \\ 0.865 \end{array}$	$1.000 \\ 0.962$
	0.800	-3552 -5304	-3572	-0.015	-1141	-1.870 -3.584	0.720	0.900
	0.600	-6822	-8138	-1.013	-1300	-5.260	0.532	0.887
bcc	$\begin{array}{c} 0.598 \\ 0.018 \end{array}$	-6841 -6841	-8160 17138	-1.015 18.445	-1291 36291	-5.284 -14.732	$\begin{array}{c} 0.531 \\ 0.531 \end{array}$	0.887 28.717
	0.000	$-\infty$	17621	∞	37556	-15.335	0.000	32.283

Reference state: Au(fcc)

		-		1				
Phase	$x_{ m Cr}$	$\Delta G_{\rm Cr}$	$\Delta H_{ m Cr}$	$\Delta S_{\rm Cr}$	$G_{\rm Cr}^{\rm E}$	S_{Cr}^{E}	$a_{ m Cr}$	$\gamma_{ m Cr}$
		[0/mor]	[0/mor]		[0/mor]	[0,(1101 11)]		
fcc	0.000	$-\infty$	-38250	∞	-4324	-26.097	0.000	0.670
	0.100	-20363	-15685	3.598	4525	-15.546	0.152	1.520
	0.200	-8599	-1440	5.507	8797	-7.875	0.451	2.257
	0.300	-2929	6619	7.345	10085	-2.666	0.763	2.542
	0.400	-219	10332	8.116	9686	0.497	0.980	2.450
	0.402	-190	10365	8.119	9671	0.533	0.983	2.447
bcc	0.982	-190	5	0.150	12	-0.006	0.983	1.001
	1.000	-131	2	0.102	5	-0.003	0.988	1.000

Table IVc. Partial quantities for Cr in the stable phases at 1300 K.

Reference state: Cr(bcc)

Fig. 4. Integral quantities of the stable phases at T=1300 K.

Fig. 5. Activities in the stable phases at T=1300 K.

References

[850ka] H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams 6 (1985) 224–228.
[98Spe] P.J. Spencer, unpublished assessment, 1998.

Fig. 1. Calculated phase diagram for the system Au-Cu.

Au–Cu based alloys are encountered in jewelry, gold coins and dental alloys. In addition, this system is a treasure for investigations on order/disorder phenomena in alloys. Au–Cu alloys are among the earliest systems in which order/disorder phenomena have been discovered. Since then, this system has been the subject of intense experimental and theoretical studies. A comprehensive literature survey over the thermodynamics and crystal structure data has been given by Okamoto et al. [87Oka]. The recommended thermodynamic description of the system [98Sun] provides a compromise between the models which are presently available for the Calphad-type modelling and the need to incorporate the ordering phenomena. The ordered phases with $L1_0$ and $L1_2$ structure are described by a 4-sublattice model which becomes equivalent to a simple substitutional model for the fcc-phase above the critical temperatures. The dataset has been optimised in order to provide a good fit of the phase diagram over the whole composition and temperature range. In addition, experimental mixing enthalpies as well as activities of Cu and Au in liquid and solid solutions have been taken into consideration in the optimisation.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Au ₃ Cu, AuCu ₃ AuCu	$\begin{array}{c} A1\\ L1_2\\ L1_0 \end{array}$	Cu Cu ₃ Au AuCu	cF4 cP4 tP4	$Fm\overline{3}m$ $Pm\overline{3}m$ P4/mmm	LIQUID FCC_L102 FCC_L102 FCC_L102	(Au,Cu) ₁ (Au,Cu) ₁ 3(Au,Cu) ₁ 1(Au,Cu) ₁ 2(Au,Cu) ₁ 2(Au,Cu) ₁

Table I. Phases, structures and models.

Reaction	Туре	T / K	Com	positions	/ $x_{ m Cu}$	$\Delta_{ m r} H$ / (J/mol)	
liquid \rightleftharpoons fcc fcc \rightleftharpoons AuCu fcc \rightleftharpoons AuCu ₃ fcc \rightleftharpoons AuCu ₄ AuCu ₃ fcc \dotplus AuCu \Rightarrow AuCu ₃	congruent congruent congruent eutectoid	$1182.0 \\ 681.8 \\ 658.5 \\ 578.2 \\ 524.7$	$\begin{array}{c} 0.411 \\ 0.502 \\ 0.734 \\ 0.633 \\ 0.325 \end{array}$	$\begin{array}{c} 0.411 \\ 0.502 \\ 0.734 \\ 0.586 \\ 0.419 \end{array}$	0.666	-10682 -2591 -1719 -1477 -861	

Table II. Invariant reactions.

Table IIIa. Integral quantities for the liquid phase at 1400 K.

$x_{ m Cu}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5597	-1969	2.591	-1813	-0.112	0.000	
0.200	-9575	-3808	4.119	-3750	-0.042	0.000	
0.300	-12584	-5344	5.171	-5473	0.092	0.000	
0.400	-14558	-6435	5.802	-6724	0.206	0.000	
0.500	-15394	-6975	6.013	-7325	0.250	0.000	
0.600	-15013	-6889	5.802	-7178	0.206	0.000	
0.700	-13379	-6139	5.171	-6268	0.092	0.000	
0.800	-10483	-4716	4.119	-4658	-0.042	0.000	
0.900	-6278	-2650	2.591	-2494	-0.112	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Au(liquid), Cu(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G^{ m E}_{ m Au}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1101	-33	0.763	126	-0.113	0.910	1.011	
0.800	-2587	-381	1.576	10	-0.279	0.801	1.001	
0.700	-5055	-1342	2.652	-903	-0.313	0.648	0.925	
0.600	-8876	-3113	4.116	-2930	-0.131	0.466	0.777	
0.500	-14211	-5793	6.013	-6143	0.250	0.295	0.590	
0.400	-21039	-9375	8.331	-10373	0.713	0.164	0.410	
0.300	-29225	-13756	11.049	-15211	1.039	0.081	0.271	
0.200	-38737	-18730	14.290	-20003	0.909	0.036	0.179	
0.100	-50657	-23991	19.048	-23855	-0.097	0.013	0.129	
0.000	$-\infty$	-29130	∞	-25630	-2.500	0.000	0.111	

Reference state: Au(liquid)

		1	1	1				
$x_{ m Cu}$	$\Delta G_{ m Cu}$ [J/mol]	$\Delta H_{ m Cu}$ [J/mol]	$\Delta S_{ m Cu}$ [J/(mol·K)]	$G^{ m E}_{ m Cu}$ [J/mol]	$S^{ m E}_{ m Cu}$ [J/(mol·K)]	$a_{ m Cu}$	$\gamma_{ m Cu}$	
0.000	$-\infty$	-19670	∞	-16170	-2.500	0.000	0.249	
0.100	-46060	-19393	19.048	-19257	-0.097	0.019	0.191	
0.200	-37526	-17519	14.290	-18792	0.909	0.040	0.199	
0.300	-30152	-14683	11.049	-16138	1.039	0.075	0.250	
0.400	-23082	-11419	8.331	-12416	0.713	0.138	0.344	
0.500	-16576	-8158	6.013	-8508	0.250	0.241	0.481	
0.600	-10995	-5232	4.116	-5049	-0.131	0.389	0.648	
0.700	-6587	-2874	2.652	-2436	-0.313	0.568	0.811	
0.800	-3420	-1213	1.576	-822	-0.279	0.745	0.932	
0.900	-1347	-279	0.763	-120	-0.113	0.891	0.990	
1.000	0	0	0.000	0	0.000	1.000	1.000	

1.0

0.8

0.6

0.4

0.2

0.0

0.0

Au

Activities

Table IIIc. Partial quantities for Cu in the liquid phase at 1400 K.

Reference state: Cu(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

0.4

0.2

 $a_{\scriptscriptstyle {
m Au}}$

 $a_{ ext{cu}}$

0.6

 $x_{\mathtt{Cu}}$

0.8

1.0

 $\mathbf{C}\mathbf{u}$

Table IVa. Integral quantities for the stable phases at 800 K.

Phase	$x_{ m Cu}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-3413	-1462	2.439	-1251	-0.264	0.423	
	0.200	-5967	-2788	3.974	-2638	-0.187	0.751	
	0.300	-7999	-3920	5.098	-3936	0.019	0.986	
	0.400	-9434	-4795	5.799	-4958	0.203	1.127	
	0.500	-10155	-5324	6.038	-5544	0.275	1.174	
	0.600	-10042	-5402	5.799	-5565	0.203	1.127	
	0.700	-9002	-4923	5.098	-4939	0.019	0.986	
	0.800	-6998	-3819	3.974	-3670	-0.187	0.751	
	0.900	-4067	-2116	2.439	-1904	-0.264	0.423	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Au(fcc), Cu(fcc)

		1		I IIII					
Phase	x_{Au}	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000	
	0.900	-590	-58	0.665	111	-0.211	0.915	1.017	
	0.800	-1370	-311	1.325	114	-0.531	0.814	1.017	
	0.700	-2743	-872	2.339	-371	-0.627	0.662	0.946	
	0.600	-5040	-1921	3.899	-1642	-0.348	0.469	0.781	
	0.500	-8543	-3713	6.038	-3933	0.275	0.277	0.554	
	0.400	-13429	-6510	8.649	-7334	1.031	0.133	0.332	
	0.300	-19653	-10423	11.537	-11645	1.526	0.052	0.174	
	0.200	-26826	-15171	14.569	-16121	1.187	0.018	0.089	
	0.100	-34468	-19746	18.402	-19152	-0.743	0.006	0.056	
	0.000	$-\infty$	-22004	∞	-17843	-5.201	0.000	0.068	

Table IVb. Partial quantities for Au in the stable phases at 800 K

Reference state: Au(fcc)

Table IVc. Partial quantities for Cu in the stable phases at 800 K.

Phase	$x_{ m Cu}$	$\Delta G_{ m Cu}$ [J/mol]	$\Delta H_{ m Cu}$ [J/mol]	$\Delta S_{ m Cu}$ [J/(mol·K)]	$G^{ m E}_{ m Cu}$ [J/mol]	$S^{ m E}_{ m Cu}$ [J/(mol·K)]	$a_{ m Cu}$	$\gamma_{ m Cu}$
fcc	0.000	$-\infty$	-15074	∞	-10913	-5.201	0.000	0.194
	0.100	-28820	-14098	18.402	-13504	-0.743	0.013	0.131
	0.200	-24352	-12696	14.569	-13646	1.187	0.026	0.129
	0.300	-20262	-11032	11.537	-12254	1.526	0.048	0.158
	0.400	-16025	-9106	8.649	-9930	1.031	0.090	0.225
	0.500	-11766	-6936	6.038	-7156	0.275	0.171	0.341
	0.600	-7783	-4664	3.899	-4385	-0.348	0.310	0.517
	0.700	-4437	-2566	2.339	-2065	-0.627	0.513	0.733
	0.800	-2041	-982	1.325	-557	-0.531	0.736	0.920
	0.900	-689	-157	0.665	12	-0.211	0.902	1.002
	1.000	0	0	0.000	0	0.000	1.000	1.000

Reference state: Cu(fcc)

Fig. 4. Integral quantities of the stable phases at T=800 K.

Fig. 5. Activities in the stable phases at T =800 K.

SGTE

[870ka] H. Okamoto, D.J. Chakrabarti, D.E. Laughlin, T.B. Massalski: Bull. Alloy Phase Diagrams 8 (1987) 454–474.

[98Sun] B. Sundman, S.G. Fries, A. Oates: Calphad **22** (1998) 335–354.

Au – Ge (Gold – Germanium)

Fig. 1. Calculated phase diagram for the system Au-Ge.

This system is of interest for the electronic industry. An assessment has been provided by Chevalier [89Che]. The phase diagram is of a simple eutectic type, with a deep eutectic in the gold rich side. The solid solution of Ge in Au is going up to 3.1 at.% at the eutectic temperature, but the solubility of Au in Ge is negligible. Two types of metastable phases obtained by splat cooling have been reported for compositions of Ge in the range from 17.5 to 22.5 at.% [64Luo, 65Ana].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A4	$\begin{array}{c} A1\\ A4 \end{array}$	Cu C(diamond)	cF4 cF8	$Fm\overline{3}m$ $Fd\overline{3}m$	LIQUID FCC_A1 DIAMOND_A4	(Au,Ge) ₁ (Au,Ge) ₁ Ge ₁

Table I. Phas	es, structures	and models.
---------------	----------------	-------------

Table II. Invariant reactions.									
Reaction	Туре	<i>T /</i> K	Com	positions	/ $x_{ m Ge}$	$\Delta_{\rm r} H$ / (J/mol)			
liquid \rightleftharpoons fcc + A4	eutectic	633.5	0.284	0.031	1.000	-13884			

	8	1		P			
$x_{ m Ge}$	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{\mathrm{m}}^{\mathrm{E}}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
			/-		/-		
0.000	0	0	0.000	0	0.000	0.000	
0.100	-8951	-2714	4.455	-5167	1.752	0.000	
0.200	-13992	-4032	7.114	-8167	2.954	0.000	
0.300	-16648	-4576	8.623	-9537	3.544	0.000	
0.400	-17560	-4690	9.193	-9726	3.597	0.000	
0.500	-17163	-4515	9.035	-9095	3.271	0.000	
0.600	-15749	-4070	8.342	-7914	2.746	0.000	
0.700	-13478	-3327	7.250	-6367	2.171	0.000	
0.800	-10370	-2293	5.770	-4545	1.609	0.000	
0.900	-6236	-1082	3.681	-2452	0.979	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1400 K.

Reference states: Au(liquid), Ge(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G^{ m E}_{ m Au}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-2407	-829	1.127	-1180	0.251	0.813	0.904	
0.800	-6559	-2325	3.024	-3961	1.169	0.569	0.712	
0.700	-11552	-3702	5.607	-7400	2.642	0.371	0.530	
0.600	-16767	-4854	8.509	-10821	4.262	0.237	0.395	
0.500	-21882	-6048	11.310	-13813	5.547	0.153	0.305	
0.400	-26901	-7606	13.782	-16235	6.164	0.099	0.248	
0.300	-32229	-9599	16.164	-18214	6.153	0.063	0.209	
0.200	-38882	-11532	19.536	-20148	6.154	0.035	0.177	
0.100	-49511	-12034	26.769	-22708	7.624	0.014	0.142	
0.000	$-\infty$	-8542	∞	-26837	13.068	0.000	0.100	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Ge in the liquid phase at 1400 K.

$x_{ m Ge}$	$\Delta G_{ m Ge}$ [J/mol]	$\Delta H_{ m Ge}$ [J/mol]	$\Delta S_{ m Ge}$ [J/(mol·K)]	$G_{ m Ge}^{ m E}$ [J/mol]	$S_{ m Ge}^{ m E}$ [J/(mol·K)]	$a_{ m Ge}$	$\gamma_{ m Ge}$	
0.000	$-\infty$	-37046	∞	-64515	19.621	0.000	0.004	
$\begin{array}{c} 0.100 \\ 0.200 \end{array}$	-67849 -43724	-19677 -10857	$\begin{array}{c} 34.408\\ 23.476\end{array}$	-41046 -24990	15.263 10.095	$\begin{array}{c} 0.003 \\ 0.023 \end{array}$	$0.029 \\ 0.117$	
0.300	-28537	-6615	15.659	-14522	5.648	0.086	0.287	
0.400 0.500	-18750 -12445	-4443 -2982	6.759	-3084 -4376	0.996	0.200 0.343	$0.499 \\ 0.687$	
0.600	-8313 -5442	-1712 -639	4.715 3 430	-2367 -1290	$\begin{array}{c} 0.468 \\ 0.465 \end{array}$	$0.490 \\ 0.627$	$0.816 \\ 0.895$	
0.800	-3242	17	2.328	-645	0.405	0.021 0.757	0.055 0.946	
$\begin{array}{c} 0.900 \\ 1.000 \end{array}$	-1428 0	$134 \\ 0$	$\begin{array}{c} 1.116 \\ 0.000 \end{array}$	$-202 \\ 0$	$\begin{array}{c} 0.240 \\ 0.000 \end{array}$	$\begin{array}{c} 0.885 \\ 1.000 \end{array}$	$\begin{array}{c} 0.983 \\ 1.000 \end{array}$	

Reference state: Ge(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

- [64Luo] H.L. Luo, W. Klement jr.: CA Inst. Technol. Tech. Rept. 24 (1964) 1–6.
- [65Ana] T.R. Anantharaman, H.L. Luo, W. Klement jr.: Trans. AIME 233 (1965) 2014–2017.
- [89Che] P.-Y. Chevalier: Thermochim. Acta 141 (1989) 217–226.

Fig. 1. Calculated phase diagram for the system Au-In.

The thermodynamic assessment of this system by [92Ans] provides good agreement with the invariant reactions indicated in the phase diagram presented by Massalski [90Mas]. In this system several intermetallic phases with narrow homogeneity range transform between high- and low-temperature modifications but due to the lack of sufficient data they have been modelled as only one phase. Therefore, the phases β/β' , ϵ/ϵ' and γ/γ' are represented by the line compounds Au₃₉In₁₁, Au₃In and Au₇In, respectively. Similarly, the ψ phase with a broader stability range is also described as a stoichiometric compound, Au₃₁In₁₉. However, the thermodynamic modelling still allows the thermodynamic properties of this complex system to be described with some accuracy and allows portions of the diagram indicated by Massalski as being uncertain to be presented with greater confidence. The system displays significant negative departures from ideality.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	$(Au,In)_1$
fcc	A1	Cu	cF4	$Fm\overline{3}m$	FCC_A1	$(Au,In)_1$
Au ₇ In	$D0_{24}$	Ni ₃ Ti	hP16	$P6_3/mmc$	AUIN_ALPHA1	(Au,In)1
	or <i>A</i> 3′	or α La	or $hP4$			
hcp	A3	Mg	hP2	$P6_3/mmc$	HCP_A3	$(Au,In)_1$
$Au_{39}In_{11}$	•••	Cu ₃₃ Sb	hP26	$P\overline{3}$	AU4IN	$Au_{39}In_{11}$
		or Cu ₁₀ Sb ₃	or hP^*			
Au ₃ In	$D0_{\mathrm{a}}$	$\beta Cu_3 Ti$	oP8	Pmmn	AU3IN	Au_3In_1
Au_7In_3	•••	Au ₇ In ₃	hP60	$P\overline{3}$	AU7IN3	Au_7In_3
$Au_{31}In_{19}$	$D5_{13}$	Al ₃ Ni ₂	hP5	Pnma	D513_AUIN	$Au_{31}In_{19}$
AuIn	•••	•••	aP*		AUIN	Au_1In_1
$AuIn_2$	C1	CaF_2	cF12	$Fm\overline{3}m$	C1_AUIN2	Au_1In_2
A6	A6	In	tI2	I4/mmm	TETRAGONAL_A6	In ₁

 Table I. Phases, structures and models.

Table II. Invariant reactions.

Reaction	Туре	<i>T /</i> K	Com	positions	/ x_{In}	$\Delta_{ m r} H$ / (J/mol)
fcc + liquid \rightleftharpoons Au ₇ In	peritectic	930.9	0.124	0.219	0.134	-1518
Au ₇ In + liquid ≓ hcp	peritectic	907.1	0.141	0.228	0.163	-1657
liquid \rightleftharpoons AuIn ₂	congruent	811.9	0.667	0.667		-18855
liquid ≓ AuIn	congruent	783.3	0.500	0.500		-9424
liquid \rightleftharpoons AuIn + AuIn ₂	eutectic	770.3	0.547	0.500	0.667	-11699
hcp + liquid \rightleftharpoons Au ₃ In	peritectic	765.7	0.225	0.296	0.250	-2266
$Au_3In + liquid \rightleftharpoons Au_7In_3$	peritectic	759.4	0.250	0.301	0.300	-5221
liquid \rightleftharpoons Au ₃₁ In ₁₉	congruent	730.6	0.380	0.380		-5188
liquid \rightleftharpoons Au ₃₁ In ₁₉ + AuIn	eutectic	723.9	0.404	0.380	0.500	-5808
liquid \rightleftharpoons Au ₇ In ₃ + Au ₃₁ In ₁₉	eutectic	722.8	0.354	0.300	0.380	-5043
$hcp + Au_3In \rightleftharpoons Au_{39}In_{11}$	peritectoid	591.9	0.199	0.250	0.220	-143
$Au_{31}In_{19} \rightleftharpoons Au_7In_3 + AuIn$	eutectoid	486.6	0.380	0.300	0.500	-813
$Au_7 In \rightleftharpoons fcc + hcp$	eutectoid	439.4	0.094	0.066	0.121	-180
$liquid \rightleftharpoons AuIn_2 + A6$	eutectic	429.4	0.999	0.667	1.000	-3318

0	1	· · · · · · · · · · · · · · · · · · ·				
$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0	0	0.000	0	0.000	0.000	
-8630	-7201	1.021	-4846	-1.682	1.800	
-14346	-12267	1.485	-8521	-2.675	2.783	
-18171	-15397	1.981	-11060	-3.098	3.105	
-20333	-16794	2.528	-12499	-3.068	2.923	
-20940	-16657	3.059	-12872	-2.704	2.393	
-20049	-15188	3.472	-12215	-2.123	1.671	
-17675	-12587	3.634	-10564	-1.445	0.915	
-13779	-9055	3.375	-7954	-0.786	0.280	
-8205	-4792	2.438	-4421	-0.265	-0.077	
0	0	0.000	0	0.000	0.000	
	$\begin{array}{c} \Delta G_{\rm m} \\ [{\rm J/mol}] \\ 0 \\ -8630 \\ -14346 \\ -18171 \\ -20333 \\ -20940 \\ -20049 \\ -17675 \\ -13779 \\ -8205 \\ 0 \end{array}$	$\begin{array}{c c} \Delta G_{\rm m} & \Delta H_{\rm m} \\ [\rm J/mol] & [\rm J/mol] \\ \hline 0 & 0 \\ -8630 & -7201 \\ -14346 & -12267 \\ -18171 & -15397 \\ -20333 & -16794 \\ -20940 & -16657 \\ -20049 & -15188 \\ -17675 & -12587 \\ -13779 & -9055 \\ -8205 & -4792 \\ 0 & 0 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table IIIa. Integral quantities for the liquid phase at 1400 K.

Reference states: Au(liquid), In(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G^{ m E}_{ m Au}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1818	-1101	0.512	-592	-0.364	0.855	0.950	
0.800	-4917	-4137	0.557	-2319	-1.299	0.655	0.819	
0.700	-9264	-8707	0.398	-5112	-2.568	0.451	0.645	
0.600	-14845	-14408	0.312	-8899	-3.935	0.279	0.466	
0.500	-21678	-20840	0.599	-13610	-5.164	0.155	0.311	
0.400	-29839	-27600	1.599	-19173	-6.019	0.077	0.193	
0.300	-39532	-34288	3.746	-25518	-6.264	0.034	0.112	
0.200	-51308	-40501	7.719	-32574	-5.663	0.012	0.061	
0.100	-67072	-45839	15.167	-40269	-3.978	0.003	0.031	
0.000	$-\infty$	-49899	∞	-48534	-0.975	0.000	0.015	

Reference state: Au(liquid)

Table IIIc. Partial quantities for In in the liquid phase at 1400 K.

x_{In}	$\Delta G_{ m In}$ [J/mol]	ΔH_{In} [J/mol]	ΔS_{In} [J/(mol·K)]	$G_{ m In}^{ m E}$ [J/mol]	$S_{ m In}^{ m E}$ [J/(mol·K)]	a_{In}	γ_{In}	
0.000	$-\infty$	-83359	∞	-54439	-20.657	0.000	0.009	
0.100	-69942	-62100	5.601	-43139	-13.544	0.002	0.025	
0.200	-52064	-44784	5.200	-33329	-8.182	0.011	0.057	
0.300	-38954	-31009	5.675	-24939	-4.335	0.035	0.117	
0.400	-28563	-20373	5.850	-17897	-1.768	0.086	0.215	
0.500	-20202	-12475	5.519	-12134	-0.244	0.176	0.353	
0.600	-13523	-6913	4.721	-7576	0.474	0.313	0.522	
0.700	-8307	-3286	3.586	-4155	0.621	0.490	0.700	
0.800	-4397	-1193	2.289	-1800	0.433	0.685	0.857	
0.900	-1665	-231	1.024	-438	0.148	0.867	0.963	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: In(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{In}	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/({\rm mol}{\cdot}{\rm K}))$
Au ₃₉ In ₁₁	0.220	-10472	-9762	2.380	0.000
Au_3In_1	0.250	-11700	-11055	2.166	0.000
Au7In3	0.300	-13513	-12936	1.937	0.000
Au ₃₁ In ₁₉	0.380	-15429	-14805	2.093	0.000
Au_1In_1	0.500	-19088	-19639	-1.848	0.000
AuIn ₂	0.667	-23148	-26731	-12.016	0.000

- [90Mas] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak: "Binary Alloy Phase Diagrams", 2nd ed., ASM International, Materials Park, Ohio, USA, 1990.
- [92Ans] I. Ansara, J.-P. Nabot: Calphad 16 (1992) 13–18.

Fig. 1. Calculated phase diagram for the system Au-Pb.

The Au-Pb system is characterised by three peritectically forming compound phases, which in the thermodynamic assessment of the system by [86Nab] are modelled as being of stoichiometric composition. There is good agreement of calculated invariant reactions with those presented in the phase diagram due to Massalski.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc Au ₂ Pb AuPb ₂ AuPb ₃	A1 C15 C16	$egin{array}{c} { m Cu} { m Cu_2Mg} { m Al_2Cu} { m } { m AV_3S} \end{array}$	cF4 cF24 tI12 tI32	$Fm\overline{3}m$ $Fd\overline{3}m$ I4/mcm $I\overline{4}2m$	LIQUID FCC_A1 AU2PB AUPB2 AUPB3	(Au,Pb) ₁ (Au,Pb) ₁ Au ₂ Pb ₁ Au ₁ Pb ₂ Au ₁ Pb ₃

Table II. Invariant reactions.

Reaction	Туре	<i>T /</i> K	Comp	positions	/ $x_{ m Pb}$	$\Delta_{ m r} H$ / (J/mol)
fcc + liquid \rightleftharpoons Au ₂ Pb	peritectic	703.4	0.022	0.445	0.333	-7931
$Au_2Pb + liquid \rightleftharpoons AuPb_2$	peritectic	526.3	0.333	0.734	0.667	-5573
$AuPb_2 + liquid \rightleftharpoons AuPb_3$	peritectic	495.0	0.667	0.821	0.750	-2830
$liquid \rightleftharpoons AuPb_3 + fcc$	eutectic	487.0	0.845	0.750	0.994	-4969

Tuble II	tuble 111 megiai qualitates foi die riquid prase at 1700 fr.										
$x_{ m Pb}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]					
0.000	0	0	0.000	0	0.000	0.000					
0.100	-4824	-2191	1.881	-1040	-0.822	-2.454					
0.200	-7720	-3184	3.239	-1895	-0.921	-3.226					
0.300	-9659	-3247	4.580	-2548	-0.499	-2.742					
0.400	-10817	-2646	5.836	-2983	0.240	-1.428					
0.500	-11249	-1647	6.859	-3180	1.095	0.289					
0.600	-10957	-515	7.458	-3123	1.863	1.983					
0.700	-9905	481	7.419	-2794	2.340	3.227					
0.800	-8001	1077	6.484	-2176	2.323	3.595					
0.900	-5034	1005	4.314	-1250	1.611	2.662					
1.000	0	0	0.000	0	0.000	0.000					

Table IIIa. Integral quantities for the liquid phase at 1400 K

Reference states: Au(liquid), Pb(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{\rm Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1316	-643	0.480	-89	-0.396	0.893	0.992	
0.800	-2978	-2217	0.544	-380	-1.312	0.774	0.968	
0.700	-5060	-4188	0.622	-908	-2.343	0.647	0.925	
0.600	-7654	-6025	1.163	-1708	-3.084	0.518	0.864	
0.500	-10883	-7195	2.634	-2814	-3.129	0.393	0.785	
0.400	-14929	-7165	5.546	-4263	-2.073	0.277	0.693	
0.300	-20104	-5402	10.501	-6090	0.491	0.178	0.593	
0.200	-27063	-1375	18.349	-8329	4.967	0.098	0.489	
0.100	-37818	5451	30.906	-11015	11.762	0.039	0.388	
0.000	$-\infty$	15607	∞	-14185	21.280	0.000	0.296	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Pb in the liquid phase at 1400 K.

$x_{ m Pb}$	$\Delta G_{ m Pb}$ [J/mol]	$\Delta H_{ m Pb}$ [J/mol]	$\Delta S_{ m Pb}$ [J/(mol·K)]	$G_{ m Pb}^{ m E}$ [J/mol]	$S_{ m Pb}^{ m E}$ [J/(mol·K)]	a_{Pb}	γ_{Pb}	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\end{array}$	$-\infty$ -36396 -26688 -20391 -15562	$-28780 \\ -16121 \\ -7056 \\ -1052 \\ 2423 \\ 2000$	∞ 14.481 14.023 13.814 12.846	$-11257 \\ -9593 \\ -7954 \\ -6377 \\ -4896 \\ 2546$	-12.517 -4.663 0.641 3.803 5.227 5.220	$\begin{array}{c} 0.000 \\ 0.044 \\ 0.101 \\ 0.173 \\ 0.263 \\ 0.260 \end{array}$	$\begin{array}{c} 0.380 \\ 0.439 \\ 0.505 \\ 0.578 \\ 0.657 \\ 0.727 \end{array}$	
0.500 0.600 0.700 0.800 0.900 1.000	-11615 -8309 -5534 -3235 -1392 0	3902 3918 3003 1690 511 0	$11.083 \\ 8.734 \\ 6.097 \\ 3.518 \\ 1.359 \\ 0.000$	-3546 -2363 -1382 -638 -165 0	5.320 4.486 3.132 1.662 0.483 0.000	$\begin{array}{c} 0.369 \\ 0.490 \\ 0.622 \\ 0.757 \\ 0.887 \\ 1.000 \end{array}$	$\begin{array}{c} 0.737 \\ 0.816 \\ 0.888 \\ 0.947 \\ 0.986 \\ 1.000 \end{array}$	

Reference state: Pb(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Pb}	$\Delta_{\mathbf{f}}G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^\circ / ({\rm J}/({\rm mol} {\cdot} {\rm K}))$
Au_2Pb_1 Au_1Pb_2 Au_1Pb_2	$0.333 \\ 0.667 \\ 0.750$	-2222 -2059 -1597	-1519 -2170 -1656	$2.356 \\ -0.375 \\ -0.199$	-2.244 0.000 0.000

[86Nab] J.-P. Nabot: Thesis, INPG, Grenoble, 1986.

Fig. 1. Calculated phase diagram for the system Au-Pd.

The system displays a complete range of solid and liquid solutions with a narrow solidus- liquidus gap. The phase diagram and the compilation of data presented by [85Oka] have been used as basis for the present thermodynamic assessment [98Spe], but the reported ordering around the compositions Au_3Pd , AuPd and $AuPd_3$ has not been described. There is good agreement of the calculated solidus/liquidus boundaries with those in Massalski's diagram and the negative deviations from ideality in the solid phase are consistent with the reported ordering behaviour.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc	A1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	(Au,Pd) ₁ (Au,Pd) ₁

Table I. Phases, structures and models.

	8	1	11				
$x_{ m Pd}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-6206	-3060	1.573	-801	-1.130	0.000	
0.200	-9691	-5120	2.286	-1370	-1.875	0.000	
0.300	-11886	-6300	2.793	-1728	-2.286	0.000	
0.400	-13086	-6720	3.183	-1894	-2.413	0.000	
0.500	-13416	-6500	3.458	-1889	-2.305	0.000	
0.600	-12925	-5760	3.583	-1734	-2.013	0.000	
0.700	-11605	-4620	3.492	-1447	-1.587	0.000	
0.800	-9370	-3200	3.085	-1049	-1.076	0.000	
0.900	-5966	-1620	2.173	-560	-0.530	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIa. Integral quantities for the liquid phase at 2000 K.

Reference states: Au(liquid), Pd(liquid)

Table IIb. Partial quantities for Au in the liquid phase at 2000 K.

$x_{ m Au}$	ΔG_{Au} [J/mol]	$\Delta H_{ m Au}$ [J/mol]	ΔS_{Au} [J/(mol·K)]	G_{Au}^{E} [J/mol]	S_{Au}^{E} [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1871	-520	0.676	-119	-0.200	0.894	0.993	
0.800	-4160	-1920	1.120	-450	-0.735	0.779	0.973	
0.700	-6882	-3960	1.461	-951	-1.504	0.661	0.944	
0.600	-10079	-6400	1.839	-1584	-2.408	0.545	0.909	
0.500	-13834	-9000	2.417	-2308	-3.346	0.435	0.870	
0.400	-18319	-11520	3.400	-3082	-4.219	0.332	0.831	
0.300	-23888	-13720	5.084	-3867	-4.926	0.238	0.793	
0.200	-31386	-15360	8.013	-4623	-5.369	0.151	0.757	
0.100	-43598	-16200	13.699	-5309	-5.446	0.073	0.727	
0.000	$-\infty$	-16000	∞	-5885	-5.058	0.000	0.702	

Reference state: Au(liquid)

Table IIc. Partial quantities for Pd in the liquid phase at 2000 K.

$x_{ m Pd}$	$\Delta G_{ m Pd}$ [J/mol]	$\Delta H_{ m Pd}$ [J/mol]	$\Delta S_{ m Pd}$ [J/(mol·K)]	$G_{ m Pd}^{ m E}$ [J/mol]	$S_{ m Pd}^{ m E}$ [J/(mol·K)]	$a_{ m Pd}$	$\gamma_{ m Pd}$	
$\begin{array}{c} 0.000 \\ 0.100 \\ 0.200 \end{array}$	$-\infty$ -45225 -31814	$-36000 \\ -25920 \\ -17920$	$\infty 9.652 6.947$	$-9231 \\ -6935 \\ -5051$	-13.385 -9.493 -6.435	$0.000 \\ 0.066 \\ 0.148$	$0.574 \\ 0.659 \\ 0.738$	
$0.300 \\ 0.400$	-23560 -17596	$-11760 \\ -7200$	5.900 5.198	$-3539 \\ -2359$	-4.110 -2.420	$0.242 \\ 0.347$	0.808 0.868	
$0.500 \\ 0.600 \\ 0.700$	-12998 -9329 -6340	$-4000 \\ -1920 \\ -720$	$4.499 \\ 3.704 \\ 2.810$	$-1471 \\ -834 \\ -409$	-1.264 -0.543 -0.155	$0.458 \\ 0.571 \\ 0.683$	$0.915 \\ 0.951 \\ 0.976$	
0.800 0.900 1.000	$-3866 \\ -1784 \\ 0$	-160 0 0	1.853 0.892 0.000	$-155 \\ -32 \\ 0$	$-0.002 \\ 0.016 \\ 0.000$	0.793 0.898 1.000	$\begin{array}{c} 0.991 \\ 0.998 \\ 1.000 \end{array}$	

Reference state: Pd(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2000 K.

Fig. 3. Activities in the liquid phase at T=2000 K.

Table IIIa. Integral quantities for the stable phases at 1300 K.

Phase	$x_{ m Pd}$	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
fcc	0.000	0	0	0.000	0	0.000	0.000	
	0.100	-5865	-3820	1.573	-2351	-1.130	0.000	
	0.200	-9322	-6350	2.286	-3913	-1.875	0.000	
	0.300	-11388	-7757	2.793	-4785	-2.286	0.000	
	0.400	-12343	-8205	3.183	-5069	-2.413	0.000	
	0.500	-12355	-7860	3.458	-4863	-2.305	0.000	
	0.600	-11543	-6885	3.583	-4268	-2.013	0.000	
	0.700	-9987	-5447	3.492	-3384	-1.587	0.000	
	0.800	-7721	-3710	3.085	-2312	-1.076	0.000	
	0.900	-4664	-1839	2.173	-1150	-0.530	0.000	
	1.000	0	0	0.000	0	0.000	0.000	

Reference states: Au(fcc), Pd(fcc)

Table IIIb. Partial quantities for Au in the stable phases at 1300 K.

Phase	$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
fcc	1.000	0	0	0.000	0	0.000	1.000	1.000	
	0.900	-1550	-672	0.676	-411	-0.200	0.866	0.963	
	0.800	-3924	-2468	1.120	-1512	-0.735	0.696	0.869	
	0.700	-6957	-5057	1.461	-3102	-1.504	0.525	0.751	
	0.600	-10502	-8111	1.839	-4980	-2.408	0.378	0.631	
	0.500	-14440	-11298	2.417	-6948	-3.346	0.263	0.526	
	0.400	-18708	-14288	3.400	-8804	-4.219	0.177	0.443	
	0.300	-23362	-16753	5.084	-10348	-4.926	0.115	0.384	
	0.200	-28778	-18361	8.013	-11382	-5.369	0.070	0.349	
	0.100	-36591	-18783	13.699	-11703	-5.446	0.034	0.339	
	0.000	$-\infty$	-17688	∞	-11113	-5.058	0.000	0.358	

Reference state: Au(fcc)

Landolt-Börnstein New Series IV/19B 285

Phase	$x_{ m Pd}$	$\Delta G_{ m Pd}$ [J/mol]	$\Delta H_{ m Pd}$ [J/mol]	$\Delta S_{ m Pd}$ [J/(mol·K)]	$G_{ m Pd}^{ m E}$ [J/mol]	$S_{ m Pd}^{ m E}$ [J/(mol·K)]	$a_{ m Pd}$	$\gamma_{ m Pd}$
fcc	0.000	$-\infty$	-45190	∞	-27790	-13.385	0.000	0.076
	0.100	-44697	-32149	9.652	-19808	-9.493	0.016	0.160
	0.200	-30913	-21881	6.947	-13516	-6.434	0.057	0.286
	0.300	-21728	-14058	5.900	-8714	-4.110	0.134	0.447
	0.400	-15105	-8348	5.198	-5201	-2.420	0.247	0.618
	0.500	-10270	-4422	4.499	-2778	-1.264	0.387	0.773
	0.600	-6766	-1950	3.704	-1244	-0.543	0.535	0.891
	0.700	-4255	-602	2.810	-400	-0.155	0.675	0.964
	0.800	-2456	-47	1.853	-44	-0.002	0.797	0.996
	0.900	-1117	43	0.892	22	0.016	0.902	1.002
	1.000	0	0	0.000	0	0.000	1.000	1.000

Table IIIc. Partial quantities for Pd in the stable phases at 1300 K.

Reference state: Pd(fcc)

Fig. 4. Integral quantities of the stable phases at T=1300 K.

Fig. 5. Activities in the stable phases at T=1300 K.

References

[85Oka]	H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams 6 (1985) 229–235.
[98Spe]	P.J. Spencer, unpublished assessment, 1998.

Au – Rh (Gold – Rhodium)

Fig. 1. Calculated phase diagram for the system Au-Rh.

Experimental information for the Au-Rh system is very scarce. Available results are incorporated in the uncertain phase diagram proposed by Okamoto and Massalski [84Oka], which indicates restricted solid solubility of the components and an extensive miscibility gap in the liquid phase. The present assessment [98Spe] results in a calculated phase diagram which reproduces all the features proposed in the diagram of [84Oka], but with a miscibility gap with a lower critical temperature.

liquidLIQUID $(Au,Rh)_1$ fccA1Cu $cF4$ $Fm\overline{3}m$ FCC_A1 $(Au,Rh)_1$	Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
	liquid fcc	<i>A</i> 1	Cu	cF4	$Fm\overline{3}m$	LIQUID FCC_A1	(Au,Rh) ₁ (Au,Rh) ₁

Table I. Phases, structures and models.

Table II. Invariant reactions.						
Reaction	Туре	<i>T /</i> K	Comp	positions	$/x_{\rm Rh}$	$\Delta_{\rm r} H$ / (J/mol)
$liquid \rightleftharpoons liquid' + liquid''$	critical	2481.7	0.589	0.589	0.589	0
$liquid \rightleftharpoons liquid' + fcc$	monotectic	2135.7	0.879	0.229	0.983	-26586
liquid + fcc \rightleftharpoons fcc'	peritectic	1343.1	0.011	0.997	0.016	-12368

Table II Invariant reaction

Tuble II	ia. integre	ii quuninie	is for the fique	i pilase at i	2000 IX.		
$x_{ m Rh}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[\text{J/(mol·K)}]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3559	4578	3.255	3198	0.552	0.000	
0.200	-4548	8306	5.142	5854	0.981	0.000	
0.300	-4794	11122	6.367	7903	1.288	0.000	
0.400	-4706	12963	7.067	9284	1.472	0.000	
0.500	-4475	13765	7.296	9933	1.533	0.000	
0.600	-4203	13466	7.067	9787	1.472	0.000	
0.700	-3914	12003	6.367	8784	1.288	0.000	
0.800	-3542	9313	5.142	6860	0.981	0.000	
0.900	-2804	5333	3.255	3953	0.552	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 2500 K

Reference states: Au(liquid), Rh(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 2500 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1929	414	0.937	261	0.061	0.911	1.013	
0.800	-3510	1741	2.101	1128	0.245	0.845	1.056	
0.700	-4687	4106	3.517	2727	0.552	0.798	1.140	
0.600	-5435	7636	5.228	5183	0.981	0.770	1.283	
0.500	-5785	12455	7.296	8623	1.533	0.757	1.514	
0.400	-5875	18690	9.826	13171	2.207	0.754	1.884	
0.300	-6072	26466	13.015	18954	3.004	0.747	2.489	
0.200	-7356	35909	17.306	26098	3.924	0.702	3.510	
0.100	-13134	47145	24.111	34728	4.967	0.532	5.316	
0.000	$-\infty$	60300	∞	44971	6.132	0.000	8.701	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Rh in the liquid phase at 2500 K.

$x_{ m Rh}$	$\Delta G_{ m Rh}$ [J/mol]	$\Delta H_{ m Rh}$ [J/mol]	$\Delta S_{ m Rh}$ [J/(mol·K)]	$G_{ m Rh}^{ m E}$ [J/mol]	$S_{ m Rh}^{ m E}$ [J/(mol·K)]	$a_{ m Rh}$	$\gamma_{ m Rh}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600\\ 0.700\\ \end{array}$	$-\infty$ -18227 -8698 -5045 -3611 -3165 -3087 -2989	$\begin{array}{r} 49819\\ 42051\\ 34567\\ 27493\\ 20953\\ 15075\\ 9983\\ 5804 \end{array}$	∞ 24.111 17.306 13.015 9.826 7.296 5.228 3.517	$\begin{array}{c} 34490\\ 29635\\ 24757\\ 19981\\ 15435\\ 11243\\ 7531\\ 4425 \end{array}$	$\begin{array}{c} 6.132\\ 4.967\\ 3.924\\ 3.004\\ 2.207\\ 1.533\\ 0.981\\ 0.552\end{array}$	$\begin{array}{c} 0.000\\ 0.416\\ 0.658\\ 0.785\\ 0.841\\ 0.859\\ 0.862\\ 0.866\end{array}$	5.255 4.161 3.290 2.615 2.101 1.717 1.437 1.237	
$0.800 \\ 0.900 \\ 1.000$	$-2583 \\ -2588 \\ -1657 \\ 0$	$\begin{array}{c} 3604\\ 2664\\ 687\\ 0\end{array}$	$2.101 \\ 0.937 \\ 0.000$	$\begin{array}{c} 1129\\ 2050\\ 534\\ 0\end{array}$	$\begin{array}{c} 0.052 \\ 0.245 \\ 0.061 \\ 0.000 \end{array}$	$\begin{array}{c} 0.800\\ 0.883\\ 0.923\\ 1.000 \end{array}$	$ 1.104 \\ 1.026 \\ 1.000 $	

Reference state: Rh(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2500 K.

Fig. 3. Activities in the liquid phase at T=2500 K.

[84Oka] H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams **5** (1984) 384–387.

[98Spe] P.J. Spencer, unpublished assessment, 1998.

Au – Ru (Gold – Ruthenium)

Fig. 1. Calculated phase diagram for the system Au-Ru.

There is only very limited experimental information available for the Au-Ru system. Okamoto and Massalski [84Oka] have incorporated this rather uncertain data into a proposed phase diagram which indicates very limited solubility of Ru in Au and a small miscibility gap in the liquid phase. The present assessment [98Spe] reproduces the main features of the diagram in [84Oka], but results in a miscibility gap with a smaller concentration range.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc hcp	A1 A3	Cu Mg	cF4 hP2	$Fm\overline{3}m$ $P6_3/mmc$	LIQUID FCC_A1 HCP_A3	(Au,Ru) ₁ (Au,Ru) ₁ (Au,Ru) ₁

Table I. Phases, structures and models.

Table	II.	Invariant	reactions.

Reaction	Туре	<i>T /</i> K	Compositions / $x_{\rm Ru}$		/ $x_{ m Ru}$	$\Delta_{ m r} H$ / (J/mol)
liquid \rightleftharpoons liquid' + liquid'' liquid \rightleftharpoons liquid' + hcp liquid \rightleftharpoons fcc + hcp	critical monotectic peritectic	2464.4 2372.4 1339.0	$0.500 \\ 0.666 \\ 0.008$	$\begin{array}{c} 0.500 \\ 0.334 \\ 0.006 \end{array}$	$0.500 \\ 1.000 \\ 1.000$	$0 \\ -23352 \\ -12444$

14010 11	in most	quantitie	s for the liquit	· phuse at	2700 II.		
$x_{ m Ru}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3608	3690	2.703	3690	0.000	0.000	
0.200	-4674	6560	4.161	6560	0.000	0.000	
0.300	-5103	8610	5.079	8610	0.000	0.000	
0.400	-5269	9840	5.596	9840	0.000	0.000	
0.500	-5311	10250	5.763	10250	0.000	0.000	
0.600	-5269	9840	5.596	9840	0.000	0.000	
0.700	-5103	8610	5.079	8610	0.000	0.000	
0.800	-4674	6560	4.161	6560	0.000	0.000	
0.900	-3608	3690	2.703	3690	0.000	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 2700 K

Reference states: Au(liquid), Ru(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 2700 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1955	410	0.876	410	0.000	0.917	1.018	
0.800	-3369	1640	1.855	1640	0.000	0.861	1.076	
0.700	-4317	3690	2.966	3690	0.000	0.825	1.179	
0.600	-4908	6560	4.247	6560	0.000	0.804	1.339	
0.500	-5311	10250	5.763	10250	0.000	0.789	1.579	
0.400	-5810	14760	7.619	14760	0.000	0.772	1.930	
0.300	-6938	20090	10.010	20090	0.000	0.734	2.447	
0.200	-9891	26240	13.382	26240	0.000	0.644	3.218	
0.100	-18481	33210	19.145	33210	0.000	0.439	4.390	
0.000	$-\infty$	41000	∞	41000	0.000	0.000	6.211	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Ru in the liquid phase at 2700 K.

$x_{ m Ru}$	$\Delta G_{ m Ru}$ [J/mol]	$\Delta H_{ m Ru}$ [J/mol]	$\Delta S_{ m Ru}$ [J/(mol·K)]	$G_{ m Ru}^{ m E}$ [J/mol]	$S_{ m Ru}^{ m E}$ [J/(mol·K)]	$a_{ m Ru}$	$\gamma_{ m Ru}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600 \end{array}$	$-\infty$ -18481 -9891 -6938 -5810 -5311 -4908	$\begin{array}{r} 41000\\ 33210\\ 26240\\ 20090\\ 14760\\ 10250\\ 6560\end{array}$	∞ 19.145 13.382 10.010 7.619 5.763 4.247	$\begin{array}{r} 41000\\ 33210\\ 26240\\ 20090\\ 14760\\ 10250\\ 6560\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.439\\ 0.644\\ 0.734\\ 0.772\\ 0.789\\ 0.804 \end{array}$	$\begin{array}{c} 6.211 \\ 4.390 \\ 3.218 \\ 2.447 \\ 1.930 \\ 1.579 \\ 1.339 \end{array}$	
$\begin{array}{c} 0.700\\ 0.800\\ 0.900\\ 1.000 \end{array}$	-4317 -3369 -1955 0	3690 1640 410 0	$2.966 \\ 1.855 \\ 0.876 \\ 0.000$	$3690 \\ 1640 \\ 410 \\ 0$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.801\\ 0.825\\ 0.861\\ 0.917\\ 1.000 \end{array}$	$ 1.179 \\ 1.076 \\ 1.018 \\ 1.000 $	

Reference state: Ru(liquid)

Fig. 2. Integral quantities of the liquid phase at T=2700 K.

Fig. 3. Activities in the liquid phase at T=2700 K.

[84Oka] H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams **5** (1984) 388–390.

[98Spe] P.J. Spencer, unpublished assessment, 1998.

Fig. 1. Calculated phase diagram for the system Au-Sb.

The gold antimony system is of interest for solders, used in the electronic industry. The terminal gold-phase is modelled by a substitutional solution. Since there is no significant solubility of gold in antimony, this phase is treated stoichiometric. In the system, only one intermetallic phase is found, AuSb₂, which is described as a stoichiometric compound. The values for the invariant equilibria from the selected assessment [89Che] are in good agreement with data reported by [86Leg, 90Pri].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc AuSb ₂ A7	A1 C2 A7	Cu FeS $_2$ α As	cF4 cP12 hR2	Fm <u>3</u> m Pa <u>3</u> R3m	LIQUID FCC_A1 AUSB2 RHOMBOHEDRAL_A7	$\begin{array}{l} (Au,Sb)_1 \\ (Au,Sb)_1 \\ Au_1Sb_2 \\ Sb_1 \end{array}$

Table I. Phases	, structures	and	models	5
-----------------	--------------	-----	--------	---

Table II. h	ivariant reactions.
-------------	---------------------

Reaction	Туре	<i>T /</i> K	Com	Compositions / $x_{ m Sb}$		$\Delta_{ m r} H$ / (J/mol)
$\begin{array}{l} \text{liquid} + \text{A7} \rightleftharpoons \text{AuSb}_2 \\ \text{liquid} \rightleftharpoons \text{fcc} + \text{AuSb}_2 \end{array}$	peritectic eutectic	$\begin{array}{c} 732.1 \\ 630.3 \end{array}$	$\begin{array}{c} 0.660 \\ 0.349 \end{array}$	$\begin{array}{c} 1.000\\ 0.011 \end{array}$	$0.667 \\ 0.667$	-20000 -12740

	8	1	1	1			
$x_{ m Sb}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{ m m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-5784	-2993	1.993	-2000	-0.709	0.000	
0.200	-9286	-4526	3.400	-3461	-0.761	0.000	
0.300	-11602	-4969	4.738	-4492	-0.341	0.000	
0.400	-12991	-4651	5.957	-5157	0.361	0.000	
0.500	-13550	-3859	6.922	-5481	1.159	0.000	
0.600	-13284	-2841	7.459	-5450	1.863	0.000	
0.700	-12115	-1802	7.367	-5004	2.288	0.000	
0.800	-9872	-906	6.404	-4047	2.244	0.000	
0.900	-6223	-278	4.247	-2439	1.544	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1400 K.

Reference states: Au(liquid), Sb(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1517	-795	0.516	-290	-0.360	0.878	0.975	
0.800	-3596	-2666	0.664	-998	-1.192	0.734	0.918	
0.700	-6123	-4936	0.848	-1971	-2.118	0.591	0.844	
0.600	-9126	-7049	1.484	-3180	-2.763	0.457	0.761	
0.500	-12787	-8573	3.010	-4718	-2.753	0.333	0.667	
0.400	-17469	-9199	5.907	-6803	-1.711	0.223	0.557	
0.300	-23789	-8742	10.748	-9775	0.738	0.130	0.432	
0.200	-32829	-7139	18.351	-14095	4.969	0.060	0.298	
0.100	-47153	-4448	30.503	-20350	11.358	0.017	0.174	
0.000	$-\infty$	-855	∞	-29249	20.282	0.000	0.081	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Sb in the liquid phase at 1400 K.

$x_{ m Sb}$	$\Delta G_{ m Sb}$ [J/mol]	$\Delta H_{ m Sb}$ [J/mol]	$\Delta S_{ m Sb}$ [J/(mol·K)]	$G_{ m Sb}^{ m E}$ [J/mol]	$S_{ m Sb}^{ m E}$ [J/(mol·K)]	$a_{ m Sb}$	$\gamma_{ m Sb}$	
$\begin{array}{c} 0.000\\ 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500 \end{array}$	$-\infty$ -44187 -32048 -24388 -18788 -14313	$-38563 \\ -22775 \\ -11965 \\ -5047 \\ -1054 \\ 854$	∞ 15.294 14.345 13.815 12.667 10.834	$-23146 \\ -17384 \\ -13314 \\ -10373 \\ -8122 \\ -6244$	$-11.012 \\ -3.850 \\ 0.963 \\ 3.804 \\ 5.048 \\ 5.070$	$\begin{array}{c} 0.000\\ 0.022\\ 0.064\\ 0.123\\ 0.199\\ 0.292 \end{array}$	$\begin{array}{c} 0.137\\ 0.225\\ 0.319\\ 0.410\\ 0.498\\ 0.585\end{array}$	
$0.600 \\ 0.700 \\ 0.800 \\ 0.900 \\ 1.000$	$-10493 \\ -7112 \\ -4133 \\ -1675 \\ 0$	$1398 \\ 1173 \\ 652 \\ 185 \\ 0$	8.494 5.918 3.418 1.329 0.000	-4547 -2960 -1535 -449 0	$\begin{array}{c} 4.246 \\ 2.952 \\ 1.562 \\ 0.453 \\ 0.000 \end{array}$	$0.406 \\ 0.543 \\ 0.701 \\ 0.866 \\ 1.000$	$\begin{array}{c} 0.677 \\ 0.775 \\ 0.876 \\ 0.962 \\ 1.000 \end{array}$	

Reference state: Sb(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{ m Sb}$	$\Delta_{\rm f} G^\circ / ({\rm J/mol})$	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}}S^{\circ}$ / (J/(mol·K))	$\Delta_{\rm f} C_P^{\circ} / ({\rm J}/({\rm mol} \cdot {\rm K}))$
Au_1Sb_2	0.667	-4458	-5410	-3.192	0.620

- [86Leg] B. Legendre, Chhay Hancheng: Bull. Soc. Chim. Fr. 2 (1986) 138–144.
- [89Che] P.-Y. Chevalier: Thermochim. Acta 155 (1989) 211–225.
- [90Pri] A. Prince, G.V. Raynor, D.S. Evans: "Phase diagrams of ternary gold alloys", The Institute of Metals, 1990.

Fig. 1. Calculated phase diagram for the system Au-Si.

The Au-Si system has been critically assessed by Chevalier [89Che]. The phase diagram, reported by Okamoto and Massalski [83Oka], is a simple eutectic. It shows a complete mutual solubility in the liquid phase which is described by a simple substitutional model. The terminal solid phases are represented by practically pure elements.

The calculated liquidus is in satisfactory agreement with the experimental one determined by chemical analysis of gravity-segregated eutectic liquid [61Hea], thermal analysis [67Ger, 75Pre], equilibration of specimens at temperatures above and below the liquidus line followed by quenching into iced brine [75Ana]. The agreement between experimental and calculated data is better on the Si-rich side of the eutectic composition than on the other side.

The calculated enthalpy of mixing of the liquid phase agrees with the calorimetric results [83Has]. The calculated activities of the elements in the liquid phase are in good agreement with data from Knudsen-experiments [78Ber].

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid fcc A4 Table II.	A1 A4 Invariant rea	Cu C(diamond) actions.	cF4 cF8	$Fm\overline{3}m$ $Fd\overline{3}m$	LIQUID FCC_A1 DIAMOND_A4	(Au,Si) ₁ (Au,Si) ₁ Si ₁
Reaction	on	Type T	/K Co	mpositions	$\Delta_{ m r} H / ($	J/mol)
liquid -	rightarrow fcc + A4	eutectic 63	6.7 0.19	6 0.000	1.000 -12665	

Table I. Phases, structures and models.

10010 11		quantities	for the figure	pilube at 17	00 11.		
$x_{ m Si}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{ m m}^{ m E}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-12074	-5218	4.033	-7479	1.330	0.000	
0.200	-18505	-7411	6.526	-11432	2.365	0.000	
0.300	-21668	-7757	8.183	-13033	3.104	0.000	
0.400	-22627	-7084	9.143	-13115	3.547	0.000	
0.500	-22018	-5938	9.458	-12220	3.695	0.000	
0.600	-20185	-4642	9.143	-10672	3.547	0.000	
0.700	-17265	-3353	8.183	-8630	3.104	0.000	
0.800	-13227	-2133	6.526	-6154	2.365	0.000	
0.900	-7858	-1002	4.033	-3263	1.330	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1700 K

Reference states: Au(liquid), Si(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1700 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-3480	-1740	1.024	-1991	0.148	0.782	0.869	
0.800	-9361	-5202	2.447	-6207	0.591	0.516	0.645	
0.700	-15888	-8585	4.296	-10846	1.330	0.325	0.464	
0.600	-22242	-11001	6.612	-15022	2.365	0.207	0.345	
0.500	-28314	-12235	9.458	-18517	3.695	0.135	0.270	
0.400	-34491	-12493	12.940	-21539	5.321	0.087	0.218	
0.300	-41494	-12164	17.253	-24476	7.243	0.053	0.177	
0.200	-50397	-11566	22.841	-27648	9.460	0.028	0.141	
0.100	-63609	-10710	31.117	-31063	11.972	0.011	0.111	
0.000	$-\infty$	-9046	∞	-34173	14.781	0.000	0.089	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Si in the liquid phase at 1700 K.

$x_{ m Si}$	$\Delta G_{\rm Si}$	$\Delta H_{ m Si}$	$\Delta S_{\rm Si}$ [J/(mol·K)]	$G_{ m Si}^{ m E}$	$S_{\rm Si}^{\rm E}$ [J/(mol·K)]	$a_{ m Si}$	$\gamma_{ m Si}$	
	[*******]	[]	[*;()]	[*******]	[*; (********)]			
0.000	$-\infty$	-72203	∞	-97331	14.781	0.000	0.001	
0.100	-89416	-36516	31.117	-56870	11.972	0.002	0.018	
0.200	-55077	-16247	22.841	-32328	9.460	0.020	0.102	
0.300	-35154	-5824	17.253	-18136	7.243	0.083	0.277	
0.400	-23205	-1208	12.940	-10254	5.321	0.194	0.484	
0.500	-15721	358	9.458	-5924	3.695	0.329	0.658	
0.600	-10648	593	6.612	-3427	2.365	0.471	0.785	
0.700	-6881	422	4.296	-1839	1.330	0.615	0.878	
0.800	-3934	225	2.447	-780	0.591	0.757	0.946	
0.900	-1663	77	1.024	-174	0.148	0.889	0.988	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Si(liquid)

Fig. 2. Integral quantities of the liquid phase at T=1700 K.

Fig. 3. Activities in the liquid phase at T=1700 K.

[61Hea]	E.G. Heath: J. Electron. Control. 11 (1961) 13–15.
[67Ger]	W. Gerlach, B. Goel: Solid State Electron. 10 (1967) 589–592.
[75Ana]	R.P. Anantatmula, A.A. Johnson, S.P. Gupta, R.J. Horylev: J. Electron. Mater. 4 (1975) 445-
	463.

- [75Pre] B. Predel, H. Bankstahl: J. Less-Common Met. 43 (1975) 191–203.
- [78Ber] C. Bergman, R. Chastel, M. Gilbert, R. Castanet: High Temp. High Pressures **10** (1978) 581–589.
- [83Has] S. Hassam, M. Gaune-Escard, J.P. Bros: Ber. Bunsenges. Phys. Chem. 87 (1983) 785–792.
- [83Oka] H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams, **4** (1983) 190–198.
- [89Che] P.-Y. Chevalier: Thermochim. Acta 141 (1989) 217–226; updated (1999).

Au – Te (Gold – Tellurium)

Fig. 1. Calculated phase diagram for the system Au-Te.

According to the review of [84Oka] the system shows only one intermetallic compound and no terminal solid solution. The optimisation by [94Feu] is accepted here. The shape of the liquidus [10Pel, 65Cab, 77Ber, 94Feu] depicts a tendency for de-mixing on the gold-rich side in agreement with the positive enthalpy of mixing of the melt encountered in the same composition range [77Ber]. Heat capacity measurements in good agreement were reported by [71And] and [76Ita], while another value, significantly higher than that of the others was not used in the optimisation. Starting with the whole literature data set, a significantly lower mean square of error was obtained by removing the partial vapour pressure measurements carried out at 1281 K by [75Pre] and the enthalpies of mixing measured at 1200 K by [77Ber]. These two investigations, carried out at high temperature, may be inaccurate due to evaporation problems. The same observation occurred with C_P measurements in liquid AuTe₂ by [76Ita] who found a small positive excess C_P value which is in complete disagreement with the evolution of the enthalpy of mixing observed for the composition $x_{\rm Te} = 0.333$. This is not large enough to model the liquid phase with the associated solution model. The liquid was thus modelled using the general Redlich-Kister polynomial.

Phase Stru	ıktur- Prototyj	pe Pearson	Space	SGTE	Model
beri	cht	symbol	group	name	
liquid fcc $A1$ AuTe ₂ $C3^{4}$	Cu 4 AuTe ₂	cF4 mC6 hP3	$Fm\overline{3}m$ C2/m P3, 21	LIQUID FCC_A1 AUTE2 HEXAGONAL A8	$(Au,Te)_1$ Au_1 Au_1Te_2 Te_2

Table I. Phases, structures and models.

2	Ω	
Э	υU	

Table II. Invariant reactions.											
Reaction	Туре	<i>T /</i> K	Com	positions	/ x_{Te}	$\Delta_{ m r} H$ / (J/mol)					
liquid \rightleftharpoons AuTe ₂ liquid \rightleftharpoons fcc + AuTe ₂ liquid \rightleftharpoons AuTe ₂ + A8	congruent eutectic eutectic	736.7 721.2 690.0	$0.667 \\ 0.545 \\ 0.876$	$0.667 \\ 0.000 \\ 0.667$	$0.667 \\ 1.000$	-17313 -16042 -17061					

Table IIIa. Integral quantities for the liquid phase at 1350 K.

x_{Te}	$\Delta G_{\rm m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{\rm m}$ [J/(mol·K)]	$G_{\rm m}^{\rm E}$ [J/mol]	$S_{\rm m}^{\rm E}$ [J/(mol·K)]	ΔC_p [J/(mol·K)]	
			2 /3		2 ()3	. //	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3877	3205	5.246	-228	2.543	3.063	
0.200	-6120	2851	6.645	-503	2.484	3.845	
0.300	-7771	1307	6.725	-915	1.646	2.947	
0.400	-8816	-435	6.209	-1262	0.613	0.968	
0.500	-9109	-2054	5.226	-1329	-0.537	-1.491	
0.600	-8600	-3401	3.851	-1045	-1.745	-3.831	
0.700	-7399	-4231	2.347	-542	-2.732	-5.452	
0.800	-5706	-4138	1.162	-90	-2.999	-5.754	
0.900	-3580	-2729	0.630	69	-2.073	-4.136	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Au(liquid), Te(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1350 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1215	2333	2.628	-33	1.752	0.897	0.997	
0.800	-2280	5254	5.581	224	3.725	0.816	1.020	
0.700	-3654	6503	7.523	350	4.558	0.722	1.032	
0.600	-6058	6392	9.223	-325	4.975	0.583	0.971	
0.500	-9677	5500	11.242	-1896	5.479	0.422	0.845	
0.400	-13914	3467	12.874	-3629	5.256	0.290	0.724	
0.300	-17753	-1122	12.319	-4239	2.309	0.206	0.685	
0.200	-20807	-9747	8.193	-2742	-5.189	0.157	0.783	
0.100	-25691	-21878	2.825	154	-16.320	0.101	1.014	
0.000	$-\infty$	-31799	∞	99	-23.628	0.000	1.009	

Reference state: Au(liquid)
	1	1	1				
ΔG_{Te} [J/mol]	$\Delta H_{ m Te}$ [J/mol]	$\Delta S_{ m Te}$ [J/(mol·K)]	$G_{ m Te}^{ m E}$ [J/mol]	$S_{ m Te}^{ m E}$ [J/(mol·K)]	a_{Te}	$\gamma_{ m Te}$	
$-\infty$	62993	∞	-3792	49.471	0.000	0.713	
-27831	11054	28.804	-1985	9.659	0.084	0.838	
-21478	-6762	10.901	-3413	-2.480	0.148	0.738	
-17379	-10816	4.862	-3865	-5.149	0.213	0.709	
-12953	-10675	1.688	-2668	-5.931	0.315	0.788	
-8541	-9607	-0.790	-761	-6.553	0.467	0.934	
-5057	-7980	-2.165	677	-6.413	0.637	1.062	
-2961	-5563	-1.927	1042	-4.893	0.768	1.097	
-1931	-2736	-0.596	573	-2.452	0.842	1.052	
-1123	-602	0.386	60	-0.490	0.905	1.005	
0	0	0.000	0	0.000	1.000	1.000	
	$\begin{array}{c} \Delta G_{\rm Te} \\ [\rm J/mol] \\ \hline -\infty \\ -27831 \\ -21478 \\ -17379 \\ -12953 \\ -8541 \\ -5057 \\ -2961 \\ -1931 \\ -1123 \\ 0 \end{array}$	$\begin{array}{c ccc} \Delta G_{\mathrm{Te}} & \Delta H_{\mathrm{Te}} \\ [\mathrm{J/mol}] & [\mathrm{J/mol}] \\ \hline & & [\mathrm{J/mol}] \\ \hline & & -\infty & 62993 \\ -27831 & 11054 \\ -21478 & -6762 \\ -17379 & -10816 \\ -12953 & -10675 \\ -8541 & -9607 \\ -5057 & -7980 \\ -2961 & -5563 \\ -1931 & -2736 \\ -1123 & -602 \\ 0 & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Table IIIc. Partial quantities for Te in the liquid phase at 1350 K.

Reference state: Te(liquid)

Fig. 2. Integral quantities of the liquid phase at **Fig. 3.** Activities in the liquid phase at T=1350 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	x_{Te}	$\Delta_{\mathrm{f}}G^{\circ}$ / (J/mol)	$\Delta_{\rm f} H^\circ$ / (J/mol)	$\Delta_{\mathbf{f}} S^{\circ} / (\mathrm{J}/(\mathrm{mol} \cdot \mathrm{K}))$	$\Delta_{\mathrm{f}} C_P^{\circ} / (\mathrm{J/(mol \cdot K)})$
Au ₁ Te ₂	0.667	-3103	-2826	0.930	-0.276

References

[10Pel]	G. Pellini, E. Quercigh: Atti Accad. Naz. Lincei 19 (1910) 445–449.
[65Cab]	L.J. Cabri: Economic Geology 60 (1965) 1569–1606.
[71And]	R.J.L. Andon, J.F. Martin, K.C. Mills: J. Chem. Soc. A 11 (1971) 1788-1791.
[75Pre]	B. Predel, J. Piehl: Z. Metallkd. 66 (1975) 33-38.
[76Ita]	K. Itagaki: J. Jpn. Inst. Met. 40 (1976) 1038–1046.
[77Ber]	C. Bergman, R. Castanet: Ber. Bunsenges. Phys. Chem. 81 (1977) 1000–1003.
[84Oka]	H. Okamoto, T.B. Massalski: Bull. Alloy Phase Diagrams 5 (1984) 172–177.
[94Feu]	Y. Feutelais, D. Mouani, JR. Didry, B. Legendre: J. Phase Equilibria 15 (1994) 380-385.

Landolt-Börnstein New Series IV/19B

Fig. 1. Calculated phase diagram for the system Au-Tl.

The Au-Tl system has been critically assessed by Chevalier [89Che]. The phase diagram is a simple eutectic. It shows a complete mutual solubility in the liquid state, a small solubility of thallium in the gold rich terminal solid solution, fcc-Au, and a negligible solubility of gold bcc-Tl and hcp-Tl. There is no compound in the system and all the solution phases were modelled with a simple substitutional model. The calculated liquidus is in satisfactory agreement with data obtained by thermal analysis [05Lev] and the

eutectic point reported by [48Haj]. The calculated solubility of Tl in solid Au is in acceptable agreement with the measurements of Raub and Engel [46Rau]. The calculated heat of formation of Tl-rich melts shows certain deviations from the experimental results [51Kle], whereas the calculated activity of thallium is in good agreement with EMF measurements at 973 K [56Kle,76Kam] and at 1073 K [76Kam].

liquidLIQUID $(Au,Tl)_1$ fccA1Cu $cF4$ $Fm\overline{3}m$ FCC_A1 $(Au,Tl)_1$	Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
bccA2W $cI2$ $Im\overline{3}m$ BCC_A2 $(Au,Tl)_1$ hcpA3Mg $hP2$ $P6_3/mmc$ HCP_A3 $(Au,Tl)_1$	liquid fcc bcc hcp	A1 A2 A3	Cu W Mg	cF4 cI2 hP2	$Fm\overline{3}m$ $Im\overline{3}m$ $P6_3/mmc$	LIQUID FCC_A1 BCC_A2 HCP_A3	$(Au,Tl)_1$ $(Au,Tl)_1$ $(Au,Tl)_1$ $(Au,Tl)_1$

Table I. Phases, structures and models.

I	at	ole	П.	Inv	ariant	t reac	ctions.
---	----	-----	----	-----	--------	--------	---------

Reaction	Туре	T / K	Compositions / $x_{\rm Tl}$			$\Delta_{ m r} H$ / (J/mol)	
$\begin{array}{l} \text{liquid} + \text{bcc} \rightleftharpoons \text{hcp} \\ \text{liquid} \rightleftharpoons \text{fcc} + \text{hcp} \end{array}$	peritectic eutectic	$\begin{array}{c} 508.8\\ 415.4\end{array}$	$0.894 \\ 0.723$	$\begin{array}{c} 1.000\\ 0.001 \end{array}$	$0.999 \\ 0.999$	$-372 \\ -5775$	

14,510 11	in incogie	quantitie	io for the liquit	· phase at	1100 11.		
$x_{ m Tl}$	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	G ^E _m [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	$\frac{\Delta C_p}{[J/(\text{mol}\cdot\text{K})]}$	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3709	-1361	1.677	75	-1.026	0.000	
0.200	-6005	-2135	2.764	-180	-1.396	0.000	
0.300	-7757	-2428	3.807	-646	-1.272	0.000	
0.400	-9042	-2348	4.782	-1208	-0.814	0.000	
0.500	-9816	-2001	5.582	-1747	-0.181	0.000	
0.600	-9981	-1494	6.062	-2147	0.466	0.000	
0.700	-9400	-933	6.047	-2289	0.968	0.000	
0.800	-7882	-427	5.325	-2057	1.165	0.000	
0.900	-5117	-80	3.598	-1333	0.895	0.000	
1.000	0	0	0.000	0	0.000	0.000	

Table IIIa. Integral quantities for the liquid phase at 1400 K

Reference states: Au(liquid), Tl(liquid)

Table IIIb. Partial quantities for Au in the liquid phase at 1400 K.

$x_{ m Au}$	$\Delta G_{ m Au}$ [J/mol]	$\Delta H_{ m Au}$ [J/mol]	$\Delta S_{ m Au}$ [J/(mol·K)]	$G_{ m Au}^{ m E}$ [J/mol]	$S_{ m Au}^{ m E}$ [J/(mol·K)]	$a_{ m Au}$	$\gamma_{ m Au}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-1042	-311	0.522	184	-0.354	0.914	1.016	
0.800	-2017	-1103	0.653	581	-1.203	0.841	1.051	
0.700	-3197	-2161	0.740	955	-2.226	0.760	1.085	
0.600	-4874	-3273	1.144	1072	-3.104	0.658	1.096	
0.500	-7371	-4225	2.248	697	-3.515	0.531	1.062	
0.400	-11070	-4803	4.477	-404	-3.142	0.386	0.966	
0.300	-16481	-4793	8.348	-2467	-1.662	0.243	0.809	
0.200	-24459	-3983	14.625	-5725	1.244	0.122	0.612	
0.100	-37216	-2159	25.040	-10413	5.895	0.041	0.409	
0.000	$-\infty$	892	∞	-16766	12.613	0.000	0.237	

Reference state: Au(liquid)

Table IIIc. Partial quantities for Tl in the liquid phase at 1400 K.

x_{Tl}	$\Delta G_{ m Tl}$ [J/mol]	$\Delta H_{ m Tl}$ [J/mol]	ΔS_{Tl} [J/(mol·K)]	$G_{ m Tl}^{ m E}$ [J/mol]	$S_{ m Tl}^{ m E}$ [J/(mol·K)]	a_{Tl}	$\gamma_{ m Tl}$	
0.000	$-\infty$	-16899	∞	2788	-14.062	0.000	1.271	
0.100	-27712	-10806	12.076	-910	-7.069	0.092	0.925	
0.200	-21956	-6261	11.211	-3222	-2.171	0.152	0.758	
0.300	-18398	-3050	10.963	-4383	0.952	0.206	0.686	
0.400	-15294	-960	10.239	-4628	2.620	0.269	0.672	
0.500	-12260	223	8.917	-4192	3.153	0.349	0.698	
0.600	-9255	712	7.119	-3308	2.872	0.452	0.753	
0.700	-6365	721	5.061	-2213	2.095	0.579	0.827	
0.800	-3737	463	3.000	-1140	1.145	0.725	0.907	
0.900	-1551	151	1.216	-324	0.340	0.875	0.973	
1.000	0	0	0.000	0	0.000	1.000	1.000	

Reference state: Tl(liquid)

Landolt-Börnstein New Series IV/19B

Fig. 2. Integral quantities of the liquid phase at T=1400 K.

Fig. 3. Activities in the liquid phase at T=1400 K.

References

- [05Lev] M. Levin: Z. Anorg. Chem. 45 (1905) 31–38.
- [46Rau] E. Raub, A. Engel: Z. Metallkd. **37** (1946) 76.
- [48Haj] O. Hajicek: Hutn. Listy **3** (1948) 265–270.
- [51Kle] O.J. Kleppa: J. Amer. Ceram. Soc. **73** (1951) 385–390.
- [56Kle] O.J. Kleppa: J. Phys. Chem. **60** (1956) 446–452.
- [76Kam] K. Kameda, S. Sakairi, Y. Yoshida: Nippon Kinzoku Gakkaishi 40 (1976) 387–392.
- [89Che] P.-Y. Chevalier: Thermochim. Acta 155 (1989) 211–225.