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Abstract 

 

The study of microscopic and macroscopic response of a particulate 
reinforced metal matrix composites (PRMMC) using finite element (FE) analysis 
is the aim of the current investigation. In this regard, three types of 
microstructure models are subjected to FE analysis. In the first part of the work, a 
technique is presented for the generation of artificial microstructures containing 
spherical and ellipsoid shaped inclusions. The problem of detection of ellipsoidal 
intersection is tackled using newly available algorithms. To account for higher-
scale effects such as clustering, information from the micro-scale model is input 
into a meso-scale model. 
 

The FE analysis of the artificial microstructure and a summary of the 
results form the second part of the study. It is seen that the newly developed 
models agree very well with the published results and that the microstructure 
generation technique can be reused in many computational micromechanics 
problems with minimum modifications. Finally, the results obtained from the 
new models are used to study a problem of practical significance, namely bolted 
joints made of MMC material.  
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Chapter One                                          

1 Introduction 
 

1.1 Background 
Metal matrix composites (MMC) despite their superior mechanical properties, 

have seen limited use in mainstream industries. This is due to the high fabrication and 

processing costs which are traditionally associated with MMCs. But with the introduction 

of liquid-state processing techniques for production, low-cost discontinuously reinforced 

aluminum (DRA) has become a reality in recent years. This has lead to several successful 

applications of these materials in the automobile and electronics industries.  

DRA exhibits several advantages over conventional aluminum alloys such as high 

strength-to-weight ratio, excellent thermal properties and high wear resistance. 

Additionally, they can be machined using conventional techniques. By varying the 

processing parameters during the time of production, the properties of the microstructure 

of the DRA, such as reinforcing particle size, matrix strength, residual stresses in the 

matrix, can be varied. If the influence of these microstructural features on the overall 

stress-strain response of the composite is known, it is possible, within limits, to tailor the 

DRA to the application at hand. Unfortunately, the way in which the microstructural 

features affect the macroscopic response is not fully understood.  

1.2 Analytical modeling of composites 
Since testing of various kinds of MMCs with varied microstructures is both time 

consuming and expensive, computational studies are required to effectively characterize 

the microstructures and predict their response – both plastic and elastic. Analytical 

models have been used extensively to estimate the elastic properties of the particulate 

reinforced metal matrix composites (PRMMCs). Almost all models assume that the 

composite is a heterogeneous material containing two phases, each phase being 

represented as an isotropic continuum.  The analytical models in use today can be 

classified based on their main characteristics, as follows [9] 
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1.2.1 Models derived using a variational principle 

This group contains the Voigt-Reuss (V-R) bounds and the Hashin-Shtrikman 

bounds which are derived from the variational principal [32]. The Voigt-Reuss bounds 

were obtained by using a combination of the theorem of minimum potential energy and 

the theorem of least work to determine the lower and upper bound of elastic constanr 

respectively. The expressions given below are assumed to be valid for any kind of 

composite regardless of the shape or size of the reinforcing phase.  
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where Em, Er  are the stiffness of the matrix and reinforcement respectively 

Vm, Vr are the volume fractions of the matrix and reinforcement and  

Ec
u, Ec

l are the upper and lower limits of the composite stiffness as predicted by the 

model. 

 

Eq. (1) also known as the rule of mixture (ROM), while Eq. (2) is the inverse rule 

of mixture. It is known that while the V-R bounds are reasonably accurate in predicting 

the stiffness of composites, they are fall well short in strength predictions.  

                                                                                                                                                                  

The Hashin-Shtrikman (H-S) bounds are also derived from variational principles and 

provide much tighter bounds on the bulk and shear modulus of the composite [32]. The 

Young’s modulus is obtained from the bulk and shear modulus using relations applicable 

to isotropic materials. Thus, for these bounds to be used, the composite in question must 

be statistically isotropic, such is the case of particulate reinforced composites. The H-S 

bounds are given by: 
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where G and K stand for the shear and bulk modulus, respectively, and the subscripts m, c 

and r denote the matrix, composite and reinforcement, respectively.  

 

The upper H-S bounds are obtained by interchanging m and r subscripts in the 

above two equations. Since the H-S bounds are much closer to the experimental values 

and are also easy to compute, they are used as a standard for verifying any new model or 

theory. In this study, a comparison of the new model’s predictions with the H-S bounds is 

presented.  

 

1.2.2 Models assuming ideal microstructure geometry 

This class of models treats the microstructure of the composite as being made of 

ideally shaped and equally spaced inclusions – in the form of spheres, cylinders or 

ellipses. A representative volume element (RVE), which is defined as the smallest part of 

the microstructure which can considered as statistically representative of the composite, 

is utilized in deriving expressions for material response. The periodic array model 

assumes that the inclusions are arranged at regular intervals throughout the composite and 

defines a unit cell to be analyzed either analytically or using finite element analysis. The 

arrangement of the inclusions in the matrix can be assumed to be in the shape of either 

hexagonal or square packing. The overall properties of the composite are different for 

different arrays having the same volume fraction. 

The unit cell used in the periodic array model contains 1 – 5 reinforcing particles 

embedded in the matrix. The radius of the particles is varied to achieve the required 

volume fraction in the unit cell, which is equal to the overall volume fraction of the 

composite. One of the important parameters of the cell is the aspect ratio, which is the 

ratio of the length of the cell to the diameter of the inclusion. When using finite elements 

to analyze unit cells, axisymmetric models are usually favored, as they reduce complexity 

by eliminating the need to perform a full 3D analysis [3, 5]. 
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The assemblage model is another analytical model which assumes an ideal 

reinforcement distribution, with inclusions in the form of spheres or cylinders. The 

microstructure is assumed to be constructed out of several spheres or cylinders which 

have reinforcing particles embedded within them. The local volume fraction in each 

sphere/cylinder is equal to the macroscopic volume fraction. The analytical solution 

obtained using this model gives limits for the overall properties of the composite, which 

are similar to the H-S bounds.  

 

1.2.3 Approximate Models 

This is a broad category of models comprising various methods to provide 

approximate solutions to the overall response of the composite. Though several 

researchers have contributed extensively to the development of approximate models, the 

principal models are: Self-consistent model [33], differential self-consistent model [34], 

generalized self-consistent model [35], dilute approximation model [36], Mori-Tanaka 

method [37]. All the models in this class contend that the inclusion strain is related to the 

overall elastic strain through a strain concentration tensor and hence the strain 

concentration tensor must be used in the estimation of the composite modulus [9].  

The self-consistent model estimates the strain concentration tensor by assuming 

that the inclusion particle in the form of an ellipsoid is embedded in the composite 

material whose properties are being estimated. This leads to the solution where the 

composite modulus is obtained by solving the following equations: 
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where α and β are functions of the Poisson’s ratio of the overall composite. 

 

In the differential self-consistent model [34], a spherical inclusion is assumed to be 

embedded in the composite, which has an inclusion volume fraction Vr. This leads to a 
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set of differential equations which is solved with the initial conditions being assumed as 

Vr=0 at t=0 and Kc=Km, Gc=Gm respectively.  

The difference between the self-consistent model and the generalized self-

consistent model is that in the latter, the inclusion is surrounded first by the matrix 

material, which is, in turn, embedded in the overall composite material. The model is so 

constructed as to match the local reinforcement fraction with the overall volume fraction 

of the composite. This leads to a solution whose bulk modulus is the same as the H-S 

lower bound. The shear modulus is obtained by solving the equation: 
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where A, B and C are constants. 

 

In the dilute approximation model [36], the inclusions are treated as ellipsoidal 

particles and only one particle is considered, thus neglecting inter-particle effects on the 

overall response of the composite. The Mori-Tanaka model [37] does not provide any 

physical interpretation, but uses the eigen-strains in spherical reinforcing particles to 

estimate the average overall composite stress. The predictions from this model are close 

to the values from the generalized self-consistent model. 

Due to the inherent complexity in deriving closed-form solutions from analytical 

models, computational methods like finite element (FE) models of unit cells have been 

preferred in recent years. FE models also provide microscopic stress and strain 

distributions, which are not available in most analytical models. Additionally, due to the 

increase in computational power available to researchers, more complex and more 

detailed FE models of microstructures have been developed [1,2,7]. Unlike traditional 

efforts, which depended on axisymmetric analysis of unit cells, it has now become 

feasible to conduct complete 3D FE investigations using models which contain realistic 

MMC microstructure information.  

The current study aims at providing a computationally efficient technique, which 

can be used to build FE models that simulate the real original microstructure.  
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1.3 Problem Statement 
Two and three dimensional unit cell models being used today assume ideal 

microstructural conditions and employ unrealistic boundary conditions. While they may 

serve to reasonably predict the properties of fiber reinforced composites, the highly 

complex 3D microstructures of PRMMCs cannot be described using such models. To 

completely quantify microstructures of PRMMCs, the model has to contain information 

about the size, distribution, orientation and aspect ratio of the inclusions as well as other 

microstructural features such as particle clustering, at different modeling scales. Also, it 

is desired to develop a model that is easy to generate and computationally inexpensive.   

The effort, to create a multi-scale modeling technique which predicts the 

microscopic as well as the overall response, of particulate reinforced composites is 

undertaken here.  

1.4 Research Objectives 
A central objective of this study is to characterize Aluminum 6061 reinforced 

with silicon carbide (SiC) particles at various volume fractions, which is produced 

commercially by the DURALCAN Corporation by using a low-cost stir-casting 

technique. For this purpose a new unit cell model, which contains randomly distributed 

inclusion particles, in the form of spheres or ellipsoids is developed. To account for 

higher-scale effects such as clustering, information from the micro-scale model is input 

into a meso-scale model. Finally, the material response as predicted by the micro and 

meso-scale models is used in a macro-scale FE problem of practical significance to 

MMCs, namely the modeling and analysis of bolted joint connections. 

In each stage of the study, the predictions of the FE model are validated through 

correlations with, values from experiments conducted by the author, or values from the 

literature. ANSYS and LS-DYNA are the commercial FEA software used in the study. 

The algorithms used to generate the artificial microstructure are implemented in the 

MATLAB computing environment. 
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1.5 Organization of the thesis 
1. In the next chapter, an extensive literature review is presented about previous 

attempts at modeling PRMMCs. The literature review also covers earlier 

modeling and testing of bolted joints. 

2. In Chapter 3, three FE models are generated to represent the microstructure of the 

Al/SiC composite. Two of these models involve iterative procedures whose 

algorithms are explained in detail. Furthermore, boundary conditions and loads 

are defined before the models are solved.  

3. The results from all the three FE models are compared with each other and with 

experimental values. Microscopic responses of the composite are discussed in this 

chapter 

4. In Chapter 5, the generation of a mesoscale model and a macroscopic model of a 

bolted joint are discussed. 

5. The testing of bolted joints is discussed in Chapter 6, along with the validation of 

the FE model, by comparing its predictions with experimental values. 

6.  Chapter 7 presents a summary of conclusions drawn from the study, along with 

suggestions for future work. 
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Chapter Two 

2 Literature review of microstructure modeling and 
testing of metal matrix composites 

 

2.1 Microstructure Modeling 
Metal matrix composites (MMC) have been extensively studied for the past 

decade in order to understand the effect of various microstructural parameters on their 

properties. Many attempts have been made at representing the microstructure of the 

MMC in a computational model in order to predict their properties. The simplest finite 

element representation of a discontinuously reinforced material is the unit cell model 

(UCM). A UCM treats the material as a periodic arrangement of RVEs, each having a 

single reinforcement particle embedded in the matrix. The RVEs may be square shaped 

for a 2-dimensional model or a cube for a 3D model and the inclusions are generally 

approximated as circles or spheres. The main drawbacks of the UCMs are that they fix 

the inter-particle distances and that the predicted stress distribution does not take into 

consideration the effect of neighboring particles.  

2.1.1 Unit Cell Models 

Taggard and Qin [9] reviewed a comprehensive set of classical analytical and 

numerical models used to predict the elastic and elastic-plastic response of particle and 

whisker reinforced composites. They provided a comparison between all the analytical 

methods and numerical modeling techniques in use today and concluded that the Mori-

Tanaka [10] model was best suited for predicting the overall elastic-plastic response of the 

material and that the periodic array model had to be used to obtain microscopic stress 

information. The effect of inclusion aspect ratio on the microscopic stresses was also 

illustrated. 

 

Bruzzi et al [1] developed a periodic unit cell model for the numerical prediction of 

material properties of Al-2124/SiC MMC with 17% reinforcement volume fraction. 
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Initially, 2D plain strain finite element models with idealized inclusion shaped were 

developed. This model was upgraded to include more realistic shapes of reinforcing 

particles, which were obtained from actual scanning electron microscopy (SEM) images 

of the material. A 3D model having multiple particles, which includes residual stresses in 

the material due to the thermal expansion mismatch of the constituents, was the most 

realistic model analyzed.  

Initially, the material was assumed to be an infinite periodic array of unit cells, 

with ideal bonding between the inclusion and the matrix. Simple symmetry boundary 

conditions were assumed for the 2D and 3D models such that they remain square and 

orthorhombic respectively. Loading was applied on the remaining surfaces in the form of 

uniform displacement conditions. 4 noded plain strain elements were used to mesh the 

matrix while plain strain elements having 3 or 6 nodes were used to mesh the inclusions 

in the 2D model. 8 noded linear or 20 noded hexahedron elements were used to mesh the 

3D model. 

A simple iterative embedding technique as an alternative to periodic boundary 

conditions was implemented. A unit cell with distinct inclusion and matrix phases was 

embedded in a homogeneous material having the overall composite properties. Boundary 

conditions and loading were applied on the homogeneous material. This configuration 

allowed realistic deformation of the unit cell such as rotation of the unit cell boundaries 

and non-uniform deformation of the cell boundaries. 

All the models having idealized particle shapes reasonably predicted the MMC 

modulus but underestimated the MMC strength. In models having realistic particle 

geometries, it was seen that higher plastic strain was recorded when inclusions were 

closer together and particle distribution was non-uniform. The results showed that models 

having realistic particle geometries made a more accurate prediction than models 

considering ideal particle geometries. The same was true for the 3D models. 

The embedded unit cell model predicted that the cell boundaries do not remain 

straight after loading, but since the difference in the value of flow stress levels obtained 

by the two approaches was less than 3%, it was concluded that the periodic cell approach 

predicted the overall behavior with sufficient accuracy using much less computational 

resources.  
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Another criticism of the periodic array model is that the particles are idealized as 

spheres or cubes. To overcome this simplification, Shen et al [2] used 2D and 3D UCMs 

having single and multiple particles to study the deformation in MMCs. A 24-faced solid 

was used to approximate the shape of the inclusion. The model assumes elastic particles 

and an elasto-plastic matrix with linear hardening used for the plastic region of the matrix 

material. Internal thermal stresses and damage progression were ignored. Volume-

weighted averages were used to calculate the overall stress and strain in the cubic 

domain. The loading was assumed to be at room temperature and particle cracking was 

ignored.  

A 3D unit cell model was created for the sake of comparison with the 3D multi-

particle model. The 3D unit cell (UC) was meshed using 10 node tetrahedral elements 

and symmetry conditions were applied on 3 of its coordinate directions. A 3D multi-

particle model was created with each side of the representative volume element (RVE) at 

50 μm. The centers of the inclusions were determined using a random number generator 

based on inverse cumulative distribution function method [38]. Along with the 3D models, 

several 2D FE models were generated which had area fractions of 9%. 17.5% and 26%. 6 

noded triangular elements were used to mesh these 2D models. Generalized plane strain 

was assumed and it was found that the results from the 2D models were in close 

agreement with the values from the 3D model.  

The values of stiffness and flow stress from the 2D model varied with the area 

fraction of the inclusion. Convergence of the solution was checked by measuring the 

effective plastic stress at a particular point and by comparing the change in the plastic 

strain from a series of fine meshes. It was also concluded that while a clear plastic strain 

distribution can be seen in 2D models, such a distribution is not visible in 3D models. 

They also confirmed that the maximum tri-axial stresses are induced between particles in 

the loading direction. Significant differences were observed between the predictions of 

2D and 3D models regarding the distribution of principal stresses and plastic strains.  

 

Huang and Bush [3] studied the elastic and plastic properties of alumina/aluminum 

MMC having an ultra-fine microstructure by using FE models. They investigated the 
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effect of grain size of the matrix material on the mechanical properties of the material. 

The finite element model incorporated a weak phase to represent the porosity of the 

material, which is inherent to MMCs produced by powder metallurgy method [39]. The 

first part of the study concentrated on predicting the elastic modulus of the MMC using a 

unit cell model and by comparing this with published values, predicts an effective 

modulus for the weak phase. In the second part, to study the plastic properties of the 

material, an indentation process was simulated and its results compared with 

experimental values to gain an insight into the properties of ultra-fine grained MMCs.  

The MMC specimens required for experimental evaluation (0%, 10%, 20% and 

30%) were prepared by powder metallurgy process. The vacuum dried alumina and 

aluminum powders were compacted in a sealed die using a 64 kg mass falling from 4.5 

meters. The compacted specimens were subjected to sintering at 600 °C for one hour. The 

specimens, which were 35 mm in diameter and 5 mm. thick, were polished using 

diamond plates and hardness tests were carried out.  The grain size of the matrix was 

measured by using the X-ray diffraction spectra with the Williamson-Hall method [4].  

The FE model consisted of repeated unit cells with hexagonal arrangement, which 

incorporated porosity by use of a weak phase. Perfect bonding was assumed between the 

particle and the matrix. The model was meshed with 4 noded quadrilateral elements and 

loading was carried out by imposing uniform displacement condition on the top row of 

nodes. A series of models with successively finer meshes were produced to check for 

adequacy of finite element discretization. The indentation model consists of a circular 

indenter and cylindrical composite specimen. The contact between the indenter and the 

specimen was addressed as contact between two closely spaced deformable bodies 

capable of undergoing small sliding relative to each other.  

The comparison between the experimental hardness testing and the FE indentation 

model showed a satisfactory agreement. The elastic properties predicted by the FE model 

were found to be slightly higher than the experimentally found values. The experimental 

values were also found to stray beyond the Hashin-Shtrikman bounds. Porosity was cited 

as the reason for this lower value. FE analysis of a model which incorporated the weak 

porous phase confirmed this contention. A reasonable agreement between the 

experimental values and indentation model were seen for 10% volume fraction, but 
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deviations were found for 20% and 30% volume fraction. A high dislocation density and 

the pattern of reinforcement distribution were cited as reasons for this behavior.  

Leggoe et al [5] used a two-scale finite element approach to study deformation in 

PRMMCs. Axisymmetric unit cell models were used to predict the mesoscale properties 

of composites, while macroscale properties of the composite were predicted using a 

random array of such finite elements. Due to the highly three-dimensional microstructure 

of PRMMCs, a 3D unit cell model was developed in the first stage to accurately predict 

the properties of the PRMMC. A family of constitutive properties on the mesoscale was 

generated for a wide range of volume fractions (5%-40%). To determine the macroscale 

response, a solid member was meshed with each element being treated as an isotropic, 

homogeneous region. The properties of each element were randomly assigned in 

accordance with a governing statistical distribution – as having 0% to 40% volume 

fraction, thus producing a random finite element array. Random arrays in 2 and 3 

dimensions were produced with varying degree of heterogeneity to study its effect on the 

material response. For each reinforcement distribution a set of 10 random arrays were 

analyzed to quantify the variation in the predicted response.  

The mesoscale response was generated by using axisymmetric unit cell models 

which had hexagonal prisms containing a single spherical inclusion at its center. The 

mesh was generated using isoparametric 4 node quadratic elements. The inclusion was 

assumed to be perfectly elastic, while a bilinear approximation was used for the matrix. 

The usual symmetry and uniform displacement boundary conditions were imposed on the 

4 faces and the model was loaded by applying an incremental displacement on the top 

surface  

In the macro-scale model, zero displacement boundary condition was imposed on 

the faces intersecting at the origin, while the other three faces had the same displacement 

on all points. The random array was loaded by imposing incremental displacement on the 

right hand face. Various random arrays with varying deviations in the volume fractions 

were analyzed to study the material behavior.  

It was found that the axisymmetric models predicted the elastic modulus between 

the Hashin-Strikman range and that the model displayed pseudo-strain hardening. It was 

found that the effect of boundary conditions on the material response was negligible for 
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low volume fractions but was significant at higher volume fractions. For the macro-scale 

model, the plastic strain accumulated at regions which had un-reinforced elements. With 

increase in loading, these zones of high strain joined to form bands and the high stresses 

at these bands promoted yielding. The array size had little effect on the predicted elastic 

modulus, but the peak stress decreased with increase in the array size. The predicted 

responses were in-line with the previously obtained results from 2D models of 

heterogeneous materials.   

 

Another comprehensive review of the current state of the art in the computational 

mechanics was carried out by Schmauder [13]. He concentrated especially on numerical 

homogenization techniques for simulation of real microstructural behavior of MMCs 

reinforced by continuous fibers and discrete particles. Special emphasis was laid on the 

embedded cell technique and a comparison between the results of UCMs and embedded 

cell models (ECM) was carried out.  The ECM contains a single spherical inclusion 

surrounded by the matrix, which is in turn embedded in an equivalent composite material. 

The advantage of this kind of model is that the symmetry boundary conditions are not 

applied directly on the constituent materials, but on the surrounding equivalent material. 

The properties of the surrounding material are found in an iterative manner with its 

properties being updated with the results from the inner cell for each iteration, until they 

converge to an invariant value. 2-D and axisymmetric 3D models were analyzed for 

various shapes of embedded cells and it was found that the shape of the embedded cell 

has little effect on the overall response.  

The results from the ECM agreed very well with the experimental results and less 

with the UCM results. The strength of the composite as predicted by different models 

was compared and an equation for predicting the strengthening of the composite, given 

the matrix yield stress, matrix strain hardening component and the reinforcement volume 

fraction was proposed.  
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where c1, c2, c3, c4 are constants. 

  

Baptiste[8] included the effects of plasticity and damage in the prediction of 

mechanical properties of particle reinforced metal matrix composites. He provides a 

homogenization frame work in which damage can be included in the micromechanical 

response of the material through the use of Weibull Law [11] to account for fractured 

reinforcement particles. The Weibull law gives probability that a particle has fractured 

dependent on the size of the inclusion and maximum principal stress it experiences. 

Though a broken particle continues to contribute to the overall stiffness of the composite, 

they also give rise to cracks. A criterion which has a linear combination of interfacial 

normal and shear stress is used to determine whether de-bonding has occurred or not and 

accordingly, the effective stiffness of the composite is adjusted. The damage is modeled 

in the form of ellipsoidal cracks having a stiffness of zero and the anisotropy caused due 

to the accumulation of damage is also taken into consideration.   

All of the computational models explained above suffer from same shortcomings 

that they idealize the microstructure of the MMC. The particles are idealized as spheres 

or ellipses. Further, a single particle is considered per unit cell, and even when multi-

particle unit cells are produced, the inter-particle is held constant. This is not only an 

unrealistic assumption, but also results in the inclusion having unreasonable correlation 

lengths with respect to the unit cell. As a result, although unit cells are reasonably 

accurate in predicting the stiffness of MMCs, they vary widely in their strength 

predictions. Consequently, there has been an effort in recent years to develop FE models 

which incorporate real microstructures in them. Several strategies ranging from image 

analysis to fractal geometry have been used in this direction. 

 

2.1.2 Voronoi Cell Models 

One of the most widely known methods for the reconstruction of PRMMC 

microstructures is through the use of Voronoi cells. In a series of papers, Ghosh et. al [14-

17] developed a method of microstructure reconstruction, which involved serial 

sectioning[18] of the material combined with Voronoi tessellation of the resulting 
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microstructure representation. Serial sectioning is a technique which involves gradual 

removal of parallel layers of MMC in order to obtain several optical micrographs. These 

micrographs represent the 2D microstructure of the material at various depths. Figure 2.1 

(a) shows such a 2D microstructure obtained from an optical micrograph. By stacking 

consecutive micrographs, a 3D representation of the microstructure is computationally 

generated. The critical parameter in this process is the depth of material removal for each 

micrograph, which depends on the amount of microstructural detail desired in the model. 

The digitized 2D images were stacked and assembled together using special software 

packages.  

Due to the computational expense of analyzing microstructures with arbitrary 

particle shapes, the digitized particles were converted to ellipses for 2D microstructures 

and ellipsoids for 3D representations. This microstructure is further modified to eliminate 

inclusion impingement. 

 
Figure 2.1 (a) Optical micrograph of a section having 10% inclusion fraction (b) Voronoi cell 

tessellation of the equivalent microstructure. [15] 

 

This representative domain was discretized by Dirichlet tessellation [40], producing 

Voronoi diagram partitions, which is a collection of convex polygons. Dirichlet 

tessellation of a matrix containing inclusions is defined as the subdivision of the domain 

such that each inclusion has a region associated with it, which is closer to it than any 

other particle. The Voronoi polygons produced in this manner were considered as 

elements in the finite element formulation. Thus, each element in the domain had a single 
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reinforcing particle at its center. Fig 2.1 (b) shows a tessellated 2D microstructure with 

the particles approximated as ellipses.  

A special finite element having arbitrary number of edges was formulated using 

the stress-hybrid finite element method [41]. The formulation assumed inter-element 

continuity in displacements and the stress was interpolated within the element using a 

function such that the equilibrium condition is satisfied. Additionally, traction and 

displacement continuity is enforced across the particle-matrix interface but the stresses 

may be discontinuous. Lastly, for each element, the rigid body modes of the 

particle/matrix interface are set equal to that of the element boundary.  

Grujicic and Zhang [19] used the Voronoi scheme to evaluate the elastic properties 

of a functionally graded material. A functionally graded material of Ni/MgO was selected 

with the volume fraction varying from 0 to 0.3. A 2D representation of the microstructure 

in a square domain was used for the analysis. The microstructure contained three types of 

inclusions – nickel, magnesium oxide and porosities. The microstructure was loaded in 

tension and the in-plane Young’s modulus was calculated. A comparison of predictions 

with experimental values showed that the results were closer to experimental values than 

those predicted by the self-consistent method [33] and equivalent inclusion method. 

 

2.1.3 Multi-scale Models 

A multi-scale model for damage prediction in fiber reinforced composites, 

developed by Raghavan et al. [20] also made use of Voronoi elements. The problem 

selected for analysis was that of a bonded double lap joint containing boron-epoxy 

composite. The multi-scale model consisted of three levels – level 0 was the purely 

macroscopic level with homogenized material properties, level 1 was the meso-scale 

level used to signal if a switch to purely microscopic analysis was required in the region 

and level 2, which was a purely microscopic level was produced from the Dirichlet 

tessellation of optical micrographs of real microstructures.  

 

Kenesei et al [6] used holo-tomography to obtain a real 3D microstructure of the 

material which was used as input to the model. They started with the contention that 
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particle arrangements in real materials are not random and so it is easier to model real 

microstructure instead of using computer generated microstructures. The tomography 

study was carried out at the European Synchrotron Radiation Facility on a commercially 

available MMC sample. The microstructure thus produced was correlated using a 2-point 

probability function P11, which is defined as the probability that two points separated by a 

distance r and randomly chosen, both lie in the matrix phase. The contour of this P11 

function is shown in Figure 2.2 (a) and (b) for cuts perpendicular and parallel to the 

extrusion axis. The correlation lengths are determined from this plot and suitable RVE 

dimensions are determined from these correlation lengths.   

 

 
(a) along the extrusion direction    (b) perpendicular to the protrusion direction 

Figure 2.2- Plot of the P11 functions [6] 

 

 

A cubical volume, which is assumed to be mechanically representative of the 

macroscopic material and having each side of length 9-10 times the correlation length 

was considered directly from the binarized tomographic reconstruction. Due to the huge 

number of elements in the model, it was further sub-divided into windows. Depending on 

the ceramic content of each of the window, either it was assigned particle or 

reinforcement properties. It was seen that a smaller averaging window size resulted in a 

more accurate representation of the microstructure and that larger window sizes resulted 

in concave particles. Compression tests which were simulated were compared with 
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experimental compression tests. The FE modeling was done using MSC.MARC and 

damage was neglected during analysis. The meshing was performed using isoparametric 

elements with the tri-linear interpolating functions. Macroscopic properties of a given 

model were obtained by using volume weighted averages of element quantities.  

The Young’s modulus obtained from the model was found to decrease with the 

average window size. Using extrapolation on the data at hand reveled a modulus value of 

103 GPa and 98 GPa in the extrusion direction and perpendicular to extrusion direction 

respectively. It was also seen that higher flow stress was induced in the direction of 

extrusion due to the alignment of the reinforcing particles, which have an aspect ratio of 

4:3:2. The errors involved in the prediction of the plastic and elastic properties were 

estimated to be 4% and 10% respectively.  

 

Though VCFEM and holotomography provide accurate representations of the 

microstructure, the process involved is either tedious or requires special hardware for 

implementation. One alternative to overcome these shortcomings is to artificially 

generate microstructures which incorporate most of the important characteristics of real 

microstructures. These methods often make use of computer generated microstructures 

which use statistical measures to correlate the generated microstructures to real 

microstructures.  

A multi-inclusion unit cell model in three dimensions was proposed by Bohm et 

al[7] as a means for predicting the thermo-mechanical properties of composites reinforced 

by nonaligned short-fibers. They used the sequential adsorption approach to generate 

microstructures containing cylindrical, spheroidal and spherical inclusions, as shown in 

Figure 2.3. This approach involves generating random inclusion positions and these 

positions are retained if they do not overlap any previously defined inclusions and are 

rejected otherwise. The technique was modified to accept a user-defined minimum 

distance between neighboring particles, which is helpful in maintaining uniform 

distribution of fiber orientations. Inclusions intersecting with one or more faces of the 

unit cell were split into appropriate number of parts in accordance with the periodicity.  
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(a) Spheroidal fibers                          (b) Cylindrical fibers                                     (c) Spheres 

Figure 2.3 - Equivalent microstructures for inclusions [7] 

 

The fibers were assumed to be made of silicon carbide and an elasto-plastic 

matrix of aluminum. A modified Ludwik strain-hardening law was applied on the matrix, 

according to which, 

 
n

peqvyy h )( ,0, εσσ +=  

 where σy is the actual flow stress 

 σy,0 is the yield stress 

 εeqv,p is the accumulated elastic strain 

 h,n are the hardening coefficient and the hardening exponent respectively. 

The Young’s modulus and Poisson’s ratio predicted from all the models fell 

between the H-S bounds, though short fibers experienced more stresses than particle 

reinforcements. The model having spherical reinforcements displayed weaker strain-

hardening than the models with fiber reinforcements. The distribution of Weibull fracture 

probabilities showed that fiber direction plays a dominant role in failure characteristics of 

the composite. It was concluded that materials having inclusions in the form of short 

fibers have a higher tendency for reinforcement failure than particulate reinforced 

materials. 

 

Cottet [21] has attempted to represent the complex microstructure of ceramic 

matrix composites using fractal spatial particle distribution. Fractal geometry was made 

use of to describe the randomness and disorder inherent in inclusion distribution. An 
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iterative algorithm was developed using the Iterated Functions Systems (IFS) theorem 
[42]. The goal was to generate different microstructures having the same volume fraction 

and surface area, but different fractal dimensions, with the intention of associating 

material properties to the fractal dimension of the microstructure.  

2D Finite element analysis of the obtained microstructures showed that particle 

clustering played an important part in the overall properties of the material. Toughness 

depended on the local distribution of particles and their sizes. It was also shown that the 

microstructures having the highest fractal dimensions give the best results. Along with 

fractal dimensions, other characteristics of the microstructure such as lacunarity was 

required to effective characterize the microstructure. 

The problem of damage evolution and failure in fiber reinforced MMCs was 

addressed by Xia et al [22]. A multi-scale approach was used to study the distribution of 

stresses in a yielding titanium matrix around failed silicon carbide fibers. The FE model 

was built from a hexagonal array of fibers with the central fiber as the broken fiber. The 

fiber-matrix interface was defined with various coefficients of friction and the 

distribution of shear stresses around the broken fiber showed a greater variation for 

higher coefficients of friction. As the friction coefficient increases, the neighboring fibers 

bear a higher percentage of load from the broken fiber. This level of modeling determines 

the amount of load transfer between the fiber and matrix.  

The Green’s function method was used to predict the stress distribution due to 

multiple fibers and it uses two factors – the radial stress concentration due to the broken 

fiber and stress concentration along the fiber. These two factors are obtained from the FE 

simulations performed in the previous step. To test the accuracy of this analytical 

method, a separate FE model having 7 broken fibers was built and the predictions agreed 

very well with each other. Finally, a comparison between strength values obtained from 

experimental testing and numerical model for various values of frictional coefficients 

showed that they are in excellent agreement.  
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2.1.4 Summary of Micromechanical Models 

As can be seen from the above review, though significant amount of work has 

been done on predicting the behavior of continuously reinforced MMCs, there is an 

absence of 3D microstructure models for PRMMCs which reasonably mimic real 

microstructures and are computationally efficient at the same time. The current study 

attempts to fill this gap by analyzing a computer generated artificial microstructure 

having most of the characteristics of a real PRMMC microstructure.  

 

2.2 FE modeling and testing of bolted joints 
In a multi-scale modeling approach, the properties obtained from micro/meso 

scale models are inculcated in macroscale models to determine the response of a real life 

structure made of that material. In the current study, bolted joints made of Al/SiC MMC 

material were chosen as the structure of choice as the ability to use bolted joint 

connections is viewed as one of the major advantage with PRMMC material.  

 

For many years now, bolted joints made of different materials have been analyzed 

all over the world and standards have been developed which govern the design of such 

joints. Ramadan et al [23] investigated fin plate connections (bolted joints used to transfer 

loads between simply supported beams and supporting members) using both experiments 

and FE models. For experiments, a test rig was designed which could measure the effects 

of various factors like number of bolts, plate thickness and the angle of load application. 

One, two and three-bolt connections were tested under load angles between 0° and 90°, 

both under tension and compression. 

The finite element model constructed in ANSYS 5.1 contained the web, flange of 

the beam and shank of the bolt, which were made of eight-node isoparametric solid 

elements. The interface between the bolt and the plate was modeled using 5-node 

pyramid contact elements. Though bolt heads and nuts were not modeled, their effects 

were accounted for by including equivalent axial forces and coupling the degrees of 

freedom of concerned nodes. A multi-linear material model for the beam members and 

tri-linear approximation for the bolt material was used.  
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From the experiments, it was clear that specimen yield at the contact between the 

bolt and the plate and that the stiffness of the joint after yielding was dependent on the 

loading angle. The post-yield stiffness increased with increase in loading angle and the 

difference in stiffness before and after yielding increased with increase in bolt diameter. 

The maximum load carrying capacity decreased with increase in loading angle. The 

results from the finite element program correlated well with the experimental values.  

 

The effect of bolt clearance in a single shear composite joint having a [45/0/-

45/90]S layup was investigated by Lowlor et al [31]. The clearance in the joint was altered 

by having a constant bolt diameter and varying the hole radius. The load-displacement 

curves for finger-tight condition showed that the stiffness of the joint decreased with 

increase in clearance, but the maximum load of the joint remained nearly constant. A 

similar trend was also seen in joints torqued to a higher degree. The bearing stress and 

strain was calculated from the load-displacement data obtained above and it was seen that 

for joints having protruding head bolts, the effect of clearance on the ultimate strength 

was negligible. But increasing the clearance between the bolt and plate did increase the 

ultimate strain to a large extent.  

 

Laviolette et al [24] also used the approach of experimental and FE modeling to 

study bolted joints in pipe flange connections under combined bending and internal 

pressure. The FE model consisted of radial loads represented as a superimposition of 7 

different loads around the circumference of the pipe and bending loads. The model was 

constructed using axisymmetric shell elements. A test rig which used transducers to 

record the contact stresses in the gasket was setup measure the leakage behavior of the 

gasket with increase in bending load.  

The results showed that the bolt load decreased with increase in the load cycle and 

this agreed very well with the FE simulations. The stress distribution across the width of 

the gasket as predicted by the FE model varied with the experimental values due to the 

change in the Young’s modulus in the gasket material at high compression. It was 

concluded that though the American Society of Mechanical Engineers (ASME) 
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specification is adequate from a structural point of view, it may not be conservative for 

joint leakage behavior.  

 

Another study regarding bolted flange connections was carried out by Lin et al [25] 

by using only finite element analysis. Their model consisted of two flanges connected 

together by a set of 14 bolts. Utilizing the symmetry of the problem, a pie-shaped piece of 

flange containing one bolt-hole, shown in Figure 2.4, was modeled. The bolt head was 

accounted for in the form of a thick washer, which was assigned a Young’s modulus 

1000 times that of the flange material. Various models were generated, having different 

bolt diameter-to-length ratios.  

 
Figure 2.4 - The part of the bolted flange modeled using finite elements. [25]

 

The two radially extending planes were constrained, along with the bottom 

surface. The rest of the surfaces were free to deform and load was applied in the form of 

a pressure to the top surface of the washer. The stiffness of the joint was calculated as the 

load per unit displacement of the washer. It was seen that the variation of the stiffness of 

the joint with the aspect ratio of the bolt can be approximated using a bi-linear fit. Also, 

this stiffness is dependent on the Poisson’s ratio of the material. The 3D model generated 

in Lin’s study predicted a higher stiffness as compared to the previous 2D models.  

 

One of the few studies that dealt with bolted connections of MMC plates was 

conducted by Soni et al [26]. A combined numerical, analytical and experimental approach 

was taken in this study. The material used in the joint had a silicon matrix reinforced with 

titanium fibers in a quasi-isotropic layup of [0/+45/-45/90]S
 having a volume fraction of 

33%. The experimental plan included testing the specimen at room temperature and at 
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650 °C. Four strain gauges were used on each specimen tested at room temperature and 

an extensometer was used to measure the strains in the high temperature specimen. Also, 

specimens coated with a polyester film were tested to measure its effect on the response 

of the joint.  

Though the polyester film did not affect the failure load of the joint to a great 

extent, it changed the failure mode of the joint by redistributing the stresses after first ply 

failure. It also increased the strain capacity of the joint to a great extent. The strengths of 

the joints tested at 650° C were only 50% of the joints at room temperature, though the 

mode of failure remains the same – net tension.  

Soni used mechanical properties obtained from an analytical model as inputs to 

the FE model. An in-house software tool, based on the concentric cylinders model was 

used to determine the constitutive properties of the composite. The model represents the 

composite as a set of 6 concentric cylinders with the matrix and fiber representing the 

innermost and outermost cylinders and 4 more cylinders of equal thickness used to 

denote the interfacial region. The finite element model consisted of one half of the joint 

modeled with 3D solid elements. The pin through the hole in the joint is treated as rigid 

and the interface is represented through contact elements.  

Both the composite and the polyester film were approximated using bilinear 

material models. The results from the FE model agreed very well with the experimental 

values at room temperature, though they over-predicted the stiffness and strength by a 

small amount. The FE model did not take into consideration the effects of first ply failure 

and so could not predict the overall strength of the composite. Similarly, the low-strain 

predictions of the model at 650° C were close to the expected value.  

 

Pratt and Pardoen [27] conducted a study on joints having countersunk bolt-heads 

and showed that the MIL-HDBK-5 underestimates the strength of a single lap joint by up 

to 17%. The military standard consists of compiling single bolt joint data by halving the 

results from dual-bolt joint data. This was shown to be a conservative estimate by 

conducting tests on single and double bolted joints combined with FE analysis.  
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Figure 2 5 - Experimental setup with extensometer for testing single-shear bolted joints [27] 

 

 
Extensometers, as shown in Figure 2.5, were attached to the tested specimens to 

obtain the load-elongation curves. The FE analysis was conducted using the NIKE3D 

code, along with the INGRID pre-processor and TAURUS post-processor. For efficiency, 

only the gage length of the joint was modeled and the interface between the fastener and 

panels was represented through tied-nodes. The nut and bolt of the joint were treated as 

elastic-plastic materials with bi-linear approximation, while the panels were treated as 

elastic-plastic material which followed the power-law hardening. The model was meshed 

using 8-noded isoparametric brick elements. The frictional coefficient for bolt-to-panel 

interface was set at 0.07 which was arrived at by trial and error through analyzing various 

joints with different configurations. A clamp load of 2500-4000 N was applied on the 

joint using a pre-strain of 2%.  

On comparing the experimental and numerical results, a high correlation between 

the two was seen. In thick panels, halving the double fastener joint strength values (which 

is the procedure followed by the Military handbook) resulted in a 10% underestimation of 

values. The difference between the two for thin panels was negligible. Similarly, an 

underestimation of strength by 17% was predicted by numerical models for thick panels, 

which correlates well with the experimental results.  

 

An investigation into the structural behavior and failure modes of high strength, 

low ductility cold formed steel – which are somewhat comparable to Al/SiC MMCs – 

bolted joints was conducted by Chung and Ip [28]. The Fe model built in ANSYS used 8-

 25



noded brick elements for the joint and incorporated such features as clamping force, 

frictional resistance between plates, washer effects etc. The stress-strain curve obtained 

from coupon tests was input to the model for material properties. Strength degradation 

was adopted at higher strain levels to account fracture of steel at contact points having 

high localized stresses.  

It was seen that the FE model predict the behavior of the connection accurately 

not only at low but also at high strain levels. It was also shown that the strength 

coefficient of high-strength but low ductility steel joints was lower than those of low 

strength, high ductility joints due to formation of highly localized yield zones in the 

former. Further, a parametric study with the FE model was conducted and the results 

were compared with the design codes recommended by various standards.  The values 

from the design rules and FE model varied over a large range of values which was 

explained as being due to the variation in the frictional resistances in the joints, 

dependence on deformation limits by design rules and variations in steel strengths. 

Finally, the study proposed a semi-empirical design rule obtained from the calibrated FE 

model.  

 

Another study on the behavior of bolted connections was conducted by Ju et al [29] 

to study the plastic strain fields near the bolt and the crack behavior of steel plate along 

with the nominal applied force of the bolted connection. The joint configuration studied 

contained three rectangular plates with 1-3 bolted joints. The analysis accounted for the 

bolt clearance, washer, bolt head, gripping force, friction, and deformation of the bolt. A 

specially developed node-to-Hermite surface contact elements were used to model the 

contact between the bolt and the plates.  

One half three plate connection was modeled with the bottom surface of the 

middle plate being constrained. The bottom surface of the bolt is also constrained to 

eliminate rotation of the bolt. Bilinear approximation was used for the material model of 

the steel plate along with the Von-Mises criterion to determine yielding. The results from 

the analysis showed that though the strain patterns were complicated, the capacity of the 

joint was within the prescribed AISC specification. Joints having bolt pre-tension and 

large plate thicknesses tended to fail by bolt failure rather than plate failure and three-bolt 
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connections with thin plate thicknesses failed by net-section failure. It was observed that 

for a bolted joint having a crack in the plate, the stress intensity factor varies linearly with 

the applied load on the joint.  

Bursi and Jaspart [30] used a different kind of FE model combined with 

experimental testing to study beam-to-column joints. To acquire experimental 

information, a special test-rig combining a load cell, screw jack for load application and 

measurement and an LVDT to measure deflection was setup. The values from the 

experiments were compared with those obtained from EUROCODE 3 specifications and 

it was found that the code underestimates the stiffness and strength of the connection. 

Finite element models from the general purpose package ABAQUS was calibrated by 

using test data and an elementary tee-stub connection (proposed as a benchmark 

connection) is simulated. A new bolt model termed spin, which is a simplified 

representation of the bolt and the shank through beam elements, was validated. Lastly, 

simulations of end-plate connected joints were performed to assess the accuracy of finite 

element models.  

 

2.3 Summary 
 Though several researchers have studied bolted joints in detail, there is little 

information available on bolted joints constructed from PRMMCs. Since MMCs are 

expected to be joined in this manner frequently, it is necessary that a parametric study be 

done on the effects of various parameters on the joint response. 
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Chapter Three 

3 Finite Element Modeling of Microstructures 
 

3.1 Introduction 
It is clear from the literature reviewed in the previous chapter that most past 

attempts at predicting the behavior of PRMMCs were based on generating different kinds 

of unit cell models having idealized particle shapes and distributions. Alternatives to 

UCMs, which aim to capture the complex distribution of particles in PRMMCs are either 

too time-consuming to generate or demand special hardware/software requirements. A 

second alternative, which has been explored to a lesser degree by past researchers, 

involves computer-generated microstructures to be analyzed using finite elements. This is 

the method of choice in this study.  

Unlike UCMs, it is possible to generate artificial microstructures that do not place 

unrealistic restrictions on the distribution and shape of particles. Routines can be written 

to generate microstructures which resemble the actual microstructure is most respects and 

their correlation can be quantified by using statistical metrics such as average particle 

size, particle aspect ratio and its distribution, particle size distribution, nearest neighbor 

distance and its distribution etc.  

One of the main criticisms against computer generated models is that high volume 

fractions cannot be generated by this method. Though this is true for very high volume-

fraction materials (excess of 40%), most MMCs used in the industry today have a 

reinforcement volume fractions between 15%-30%. It will be shown in this study that 

even with relatively simple algorithms; it is possible to write efficient subroutines which 

easily achieve this level of volume-fractions. In the current study, artificial microstructure 

is created by locating the inclusions at randomly generated points. It has been suggested 

before that the location of inclusions is not completely random and neither is the 

orientation of inclusions. But this is highly dependent on the processing method used to 

produce the MMC. Processes such as powder extrusion [43], powder rolling [44] etc may 

result in orientation of inclusion particles in a few favorable directions, but the MMC 
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used in the current study was produced using liquid-state stir casting [45], which is devoid 

of such effects. Thus it is estimated that uniformly distributed inclusions can be used to 

represent the microstructure of the material at hand.  

 

Three types of FE models were developed in the current study: 

1. A body- centered cubic unit cell model. 

2. A unit cell containing sphere-shaped inclusions at random locations. 

3. A unit cell containing ellipsoid-shaped inclusions at random locations. 

 

3.2 Body centered cubic UCM 
The body-centered cubic UCM was developed for the sake of comparison with 

the newly developed random inclusion models. The BCC UCM is cube shaped with 1/8th 

of a spherical inclusion embedded at each corner. A complete sphere is placed at the 

center of the cube and all the particles in the model have the same radii. The BCC unit 

cell is known to be the most isotropic configuration of all unit cell structures. Another 

advantage of BCC over simple cubic structure is that it takes into effect, to a limited 

extent, the effect of neighboring particles on the stress and strain distribution around the 

central inclusion.  

In Figure 3.1, the edge length of the cube is fixed at 30 μm and the radii of the 

inclusions are altered to achieve different volume fractions. Though the BCC UCM tries 

to accommodate multiple particles, it not only idealizes the shape of the particles, but also 

fixes the inter-particle distance, which is a serious drawback of the model. Two BCC 

models having 15% and 20% reinforcement fraction were produced and the radii of the 

particles in these models are given in Table 3-1 below.  

 
Table 3.1 - Radii of inclusions for different volume fractions of BCC-UCM 

 
Volume Fraction Radius 

20% 8.63 μm 

15% 7.84 μm 
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Figure 3.1 - Body centered cubic UCM having a volume fraction of 15% 

 

The model shown in Figure 3.1 is meshed using TrueGrid [46] and the mesh 

exported to ANSYS [47] for analysis. While meshing, the cube is divided roughly into 27 

equal regions, 9 of which are occupied by the particles and the rest by the matrix. An 

example mesh for a cube having 15% volume fraction is depicted in Figure 3.2. Due to 

this methodology of meshing, achieving a volume fraction more than 22% is not possible. 

Because of the geometry of the configuration, at high volume fractions, the inner region 

containing the central inclusion would grow exceedingly big and consequently, the outer 

regions would be unable to accommodate the particles. Due to this limitation, the unit cell 

models which were analyzed have a maximum volume fraction of 20%.  

The UCM is meshed with eight-noded hexagonal solid elements. The mesh 

density in the model is higher in the region of the particles which is required to capture 

the rapidly changing stress-strain field in this region. One of the advantages of using a 

unit cell model is that it is computationally inexpensive. The above 3D model is meshed 

with 13,000 elements, compared to the 65,000 elements used for the meshing of the 

random inclusion model having the same volume fraction.  
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Figure 3.2 - A FE mesh for a UCM with 15% volume fraction 

 

The model generated in this manner is defined with boundary and loading 

conditions as explained later, prior to analysis. 

 

3.3 RVE with randomly distributed spheres 
To solve the issue of fixed inter-particle sizes and inter-particle distances, which 

is prevalent in the BCC-UCM, an RVE is considered in which the particles are 

distributed in the matrix in a random manner. Over the years, several strategies have been 

used to produce these random distribution models (RDMs). Monte-Carlo method [48] and 

simulated annealing procedures [49] are commonly used, which start with an initial 

particle arrangement that is continually modified until all the microstructure metrics are 

fulfilled. In the current study a random sequential adsorption scheme [50] is used, which 

works by adding one particle after another into the matrix until the required volume 

fraction is reached. Such a sequential scheme is easy to implement using a prototyping 

language such as Matlab [51] unlike the other two mentioned methods. 

The inclusions were not allowed to impinge on each other and they are not 

allowed to touch the walls of the cubical RVE either. The radii of inclusions are not 

constant and varied over a range provided by the user. To estimate the average size of the 
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particles and other parameters such as distribution of particles sizes in the material, a 

scanning electron microscope image of the material, shown in Figure 3.3 was analyzed.  

 

 
Figure 3.3 - An SEM image of the microstructure of the Al/SiC MMC being studied. 
 

Unlike the BCC-UCM, in which for a given cell size the radius of the particles is 

dictated by the volume fraction, an RDM of a particular volume fraction can be made of 

any particle size. The image in Figure 3.3 was digitized and fed to a MATLAB program 

which estimates the amount of SiC in the microstructure and by counting the number of 

particles in a unit area; the average particle size can be estimated.  

Another issue to be addressed was the detection of collision of one particle on 

another and conforming the model to the minimum inter-particle distance. For 

intersecting inclusions, the difficulty in calculating the intersection volumes between two 

and multi-particle intersections and consequently, estimating the overall volume fraction 

would be extremely resource intensive. Thus intersecting inclusions are disallowed in the 

current model. For the case of spherical inclusions, detecting intersections is relatively 

simple. If (x0,y0,z0) and (x1,y1,z1) are the centers of the two spheres and r0 and r1 are their 

radii, the spheres are not intersecting if: 
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To ensure a minimum inter-particle distance, the minimum value as input by the user is 

included in the right hand side of the above inequality. It is advisable to include a 

minimum inter-particle distance in the routine to obtain an efficient mesh of the RVE. If 

the distance between two adjacent spheres is very low, the meshing program refines the 

mesh to a very high degree in that region, resulting in a very high node and element 

count.  

To generate the artificial microstructure, a routine was written in MATLAB, 

whose algorithm is summarized in the flowchart below. The routine take the size of the 

cube, average radius of the inclusion, range of inclusion radii, volume fraction to be 

achieved and minimum inter-particle distance as inputs. The output is in the form of an 

ASCII file which contains the ANSYS commands to generate the desired RVE.  

The number of inclusions required to fulfill a given volume fraction is dependent 

on the mean radius of the inclusion. Thus, smaller the specified inclusion radius, more 

difficult is it to obtain the required microstructure. Random number generators are used 

to locate potential positions for the inclusions. A sphere generated at a candidate point is 

retained only if it does not intersect with any existing spheres or the walls of the cube. If 

it does, the point is discarded and another point chosen. This is repeated until the 

combined volumes of the spheres satisfy the specified volume fraction condition. Clearly, 

this is an iterative process which needs to run for extended periods when microstructures 

of high volume fraction need to be generated, as indicated by the algorithm shown in 

Figure 3.4. 
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minimum inter-particle distance 
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Generate random center to locate 
the inclusion; i=0 

Generate radius value within the 
prescribed limits 

Adjust the inclusion radius 

i=i+1

Update inclusion_list, 
current volume fraction 

Current vf ≥ 
required vf ? 

Write Ansys commands to 
ASCII file 

End 

i < length( 
inclusion_list) ? 

Current inclusion 
intersecting 

inclusion list(i)?

Incl_volume > 
reqd_vf – curr_vf  

Figure 3.4 - The algorithm for generation of RDM having spherical inclusions 
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A microstructure having a volume fraction of 20%, produced from the algorithm 

shown in Figure 3.4, with inclusions of average radius 9 μm is shown in Figure 3.5. It can 

be seen that the radii of the inclusions are not constant and that no sphere intersects with 

any other sphere or the side walls of the cube. 

 

 
Figure 3.5 - RDM of 20% volume fraction having spheres of average radius 9 μm as inclusions 

 

The ASCII file generated as the output of the Matlab routine contains the 

commands required to recreate the microstructure in ANSYS. The ASCII file can be read 

directly by ANSYS as an input macro. Boolean overlap operation [47] which is essential to 

separate the inclusion surrounding matrix volumes into separate entities, is performed on 

the microstructure before meshing it with 10 noded tetrahedrons. An example Matlab 

routine along with the generated ANSYS input macro is given in Appendix C.  

Due to the random nature of the geometry, obtaining a mapped mesh is extremely 

difficult, which rules out hexahedral elements in ANSYS. Meshing the entire geometry 

with 4 noded tetrahedral elements might result in a higher overall stiffness value and so, a 

higher order tetrahedral element was chosen. The number of nodes and elements in the 

mesh varied based on the volume fraction of the microstructure, with a higher number of 
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elements generated for higher volume fractions. This was due to smaller elements 

produced inside the inclusions than in the matrix. Two stages of progressively finer 

meshes were used on the models to check variations in the solutions. For a volume 

fraction of 20%, an average of 65,000 elements were used to mesh the microstructure. 

Due to the limitation on the number of elements and nodes that could be used in ANSYS, 

further mesh refinement could not be carried out. The RDM shown in Figure 3.5 is 

shown after meshing in Figure 3.6. After meshing, the model is defined with the required 

boundary conditions, loading conditions and processed.  

 

 
Figure 3.6 - Meshed spehrical inclusions of a 20% volume fraction microstructure.  

 

3.4 RVE with randomly distributed ellipsoids 
 

Though RVEs having randomly embedded spheres are a better representation than 

traditional UCMs, they still suffer from the drawback of over-simplifying the shape of the 

inclusion particles. Representing the true shapes of inclusions is a very difficult task 

because of their completely arbitrary shape and size. It has been noted in previous studies 
[14-17] that the closest approximation to arbitrarily shaped particles is in the form of 

ellipsoids and so it makes it worthwhile to have a model with randomly embedded 

ellipsoids instead of spheres. But using ellipsoids instead of spheres increases the 
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complexity of the microstructure generation by several orders. Unlike spheres, ellipsoids 

not only have three radii, but also three orientations with respect to three coordinate axes. 

To obtain an isotropic microstructure, the orientations of the ellipsoids had to be 

completely random. In the present study, the ellipsoids generated are limited to prolate 

spheroids. If a, b, and c are the diameters in the x, y and z directions respectively, as 

shown in Figure 3.7, the class of ellipsoids in which b=c<a are defined as prolate 

spheroids. They are solids obtained from revolving ellipses about the major axis. Thus, 

prolate ellipsoids need only two radii to define them, unlike scalene ellipsoids which 

require three.  

 

c=b 

b 

z

y 

x 

a

Figure 3.7 - A prolate ellipsoid which has the two minor radii equal to each other 
 

To obtain ellipsoids of different aspect ratios, the radius specified by the user was 

multiplied by a factor greater than one to obtain the major radius and a factor lesser than 

one to obtain the minor radius. That is, 

 

        
)(0

)1(min
)1(

userthebyspecifiedfandbetweennumberrandomxwhere
xradiusspecifiedbradiusor
xradiusspecifiedaradiusmajor

=
−×=
+×=

                (3.2) 

 

 In the current study, the factor f has a fixed value of 0.25 and x can assume a 

value of zero. i.e a few spheres may also be generated among the ellipsoids.  
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One of the issues with implement models having ellipsoids as inclusions is the 

detection of intersection between ellipsoid shaped inclusions. While a simple closed-form 

solution can be worked out for spheres, no such solution exists for quadric surfaces. 

Recent methods to determine the distance between two ellipsoids involve use of theorems 

in line geometry as demonstrated by Sohn et al [32]. However, for this method to be 

efficient, a parametric representation of the ellipsoids is required, which is not easy to 

obtain. Choi et al [33] used an algebraic condition to determine if ellipsoids moving in a 

predetermined path collide with each other at any instant of time. This algebraic principle 

was best summarized by Wang et al [34] and in slightly different terms by Alfano and 

Greer [35].  

An ellipsoid which has its center at the origin and diameters a, b and c is 

represented in matrix form using generalized coordinates as: 
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A translation is applied to this ellipsoid to move the center from the origin to any point 

(x0,y0,z0). The translation is represented as:  

 

                                             (3.4) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−

==

1
0100
0010
0001

0

000 zyx

TwhereATXTX TT

 

For the problem of ellipsoidal intersection detection, consider two ellipsoids, 

                                                                                                                  (3.5) 
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the characteristic equation of these two ellipsoids is defined as: 
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It is known that any affine transformation or coordinate rotation applied to the 

matrices A and B, while changing the characteristic equation itself, does not change the 

roots of the characteristic equation. These roots of the characteristic equation are made 

use of to detect collision between the ellipsoids. It is shown in [33] that there always 

exists a set of at least two distinct negative roots for the above characteristic equation 

when the ellipsoids are not intersecting each other. It is to be noted that the task of 

finding the roots of the characteristic equation is equivalent to determining the 

generalized eigenvalues for A and B. Thus, if there at least two distinct negative 

generalized eigenvalues for matrices A and B, the two ellipsoids are not touching each 

other.  

The above algebraic principle is used in the algorithm to generate microstructures 

having ellipsoidal inclusions. The ellipsoidal algorithm is similar to the spherical 

algorithm but for a few additional steps. Along with the affine transformation explained 

above, additional coordinate rotation transformations at random angles are applied to the 

ellipsoids. Nested coordinate rotations, first about the x-axis and then the y-axis are 

applied to obtain randomly oriented spheroids. Intersection of spheroids is checked only 

after application of rotation and affine transformations. The other change is in the 

calculation of volume of ellipsoids, which is given by: 
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A flowchart summarizing the algorithm is shown Figure 3.8. 

Inclusion_list = 0 

Input required volume fraction, 
cube size, particle size and 

aspect ratio factor 
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Figure 3.8 - The above flowchart summarizes the subroutine used to generate microstructure 

containing ellipsoid shaped inclusions. 
 

For the determination of Eigen values of the characteristic matrix, the QZ 

algorithm [51] was used; ignoring the symmetry of matrices A and B. This was necessary 

as the range of coefficients in the matrices were very large. An example microstructure 

generated by the above algorithm is shown in Figure 3.9.  

 

 
Figure 3.9 - An example microstructure containing ellipsoidal inclusions and having volume fraction 

of 15%. 
 

Write Ansys commands to 
ASCII file 

B 

End 
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Similar to the spherical RDM, the output of the subroutine is an ASCII file 

containing the commands to the regenerate the microstructure in ANSYS. After 

performing Boolean operations on the microstructure, it is meshed with 10-node 

tetrahedral elements. The inclusions and matrix is defined with appropriate material 

models and boundary, loading conditions are defined prior to solving.  

 
Figure 3.10 - Meshed ellipsoidal inclusions of a 15% volume fraction microstructure. Note that the 

matrix surrounding the inclusions is not shown in the figure. 
 

For microstructures meshed in this manner, an average of 65,000 – 70,000 

elements were required.  

 

3.5 Material Models 
To obtain the elastic and plastic response of the overall MMC, it is important to 

incorporate realistic material models in the FE representation. In the current study for all 

three types of models explained above, the aluminum matrix is assumed to be an elastic-

plastic material and the inclusions are approximated as being made of linear-elastic 

silicon carbide. The interface between the matrix and the inclusions  assumed to be 

defined in the FE models are listed in Table 3-2. 

 

 is

ideal and particle cracking is not considered. The properties of aluminum and SiC as 
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Table 3.2 - Properties of matrix and inclusion materials used in the FE model 
 

Material Young’s Modulus (GPa) Poisson’s Ratio 

Silicon Carbide 410 0.14 

Aluminum Al 6061-T6 72 0.33 
 

 

Further, the elastic nature of aluminum is approximated by using Multilinear 

kinematic hardening rule using von-Mises plasticity. This is achieved by providing 

various points on the stress-strain curve of aluminum as input to the material model, 

along with the Young’s modulus and Poisson’s ratio.  

 

3.6 Boundary conditions and loading 
One aspect of micromechanical models which affects their performance along 

with their response is the boundary conditions imposed on them. Traditionally, three 

faces of the cube are constrained with symmetric boundary conditions and the other three 

with uniform displacement conditions. The uniform displacement condition is often 

imposed so as to ondition leads to 

unrealistic stresses being induced inside the model.  

 
11 - Schematic of loading and boundary conditions imposed on the models 

make the calculation of overall strains easy, but this c
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Though a model having no boundary conditions and loading on two opposite 

faces woul r represe e mate al test, 

such a lty converging to lution. Additionally, it will not represent 

the f the RVE wi  the whole composite. T n this study, 

the faces, x=0; y=0; z=0, were constrained with symmetric boundary conditions.  

or all the three models explained above, loading was applied in the form of a 

tensile 

 and at each sub-step, the overall 

ress and strain experienced by the model was calculated using the method described 

 

ties of the composite from the FE 

solution. There are several homogenization techniques available to determine the stress 

and strain in the overall composite. One of the methods is to calculate the strains from the 

displacement of the faces of the cube and the stress from the applied load. But a more 

accurate estimate of the overall stresses and strains can be obtained from considering a 

weighted volume average of elemental stresses and strains. i.e., 

 

d be a bette ntation of the condition in th rial during uniaxi

model has difficu  a so

confinement condition o thin hus, i

F

pressure load to the y=a face of the cube, where a is the length of the cube as 

depicted in Figure 3.11. A pressure of magnitude of 320 MPa was applied incrementally 

in the form of several load sub-steps. To obtain the overall stress-strain response of the 

composite, the loading was spread over 10 sub-steps

st

below.  

3.7 Post-Processing 
Post-processing is one of the most resource intensive and time consuming 

activities in the analysis. After solving, the solution of the analysis is stored in .RST files 

which have to be queried for obtaining the required information. The primary focus of 

post-processing is to determine the overall proper
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where,  V(m) is the volume of element m 
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 σ(m) is the stress in element m 

 

age of analysis. 

n 

 

3.8.1 Machining the specimen 

It is widely known that metal matrix composites are some of the most difficult 

materials in terms of machinability. Silicon carbide, which is itsel  as a coating for 

cutting tools, is a highly abrasive material capable of wearing out even the toughest 

materials. Due to its presence in the MMC, conventional machine tools could not be used 

red shape. One option was to use specialized 

ε(m) is the strain in element m. 

N is the total number of elements in the model 

and V is the total volume of the cube.  

 

Thus, the stresses and strains at each element has to be used to obtain the overall 

stress and strain. This volume weighted averaging has to be performed at each sub-step 

so as to trace an overall stress-strain curve from the points obtained at each sub-step. The 

ANSYS APDL is made use of in generating a script which performs the necessary post-

processing activities. At the end of post-processing, the required information is written 

into an ASCII file. The information in these ASCII files is input to the mesoscale model 

during the second st

 

3.8 Model Validatio
Traditionally, mechanical characterization of materials has been carried out solely 

by conducting various types of static tests on specimen of the material in question. 

Similarly, in the current study, experimental evaluation was used not only to determine 

the properties of the material, but also serve as a validation mechanism for the FE 

models. Since the MMC contains SiC in particulate form, the over material behaves 

isotropically, which enables the use of testing standards as specified by ASTM for 

isotropic materials. The Duralcan brand of Al/SiC MMC, manufactured by the Alcan 

Corporation was used in the study. The material was supplied in the form of cast bricks 

of aluminum with 20% SiC reinforcement by volume.  

f used

to reduce the MMC brick to the requi
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d d tipped tools such as diamondiamon  tipped mill cutters, grinding wheels, a drilling bit 

for ma ber of tools required for primary and secondary 

operati  not explored.  

achine (EDM) was used for machining the 

aterial. The EDM works on the principle that an electric arc formed between the 

ateria

rogram.  

 

 

chining. Due to the large num

ons and the associated high cost, this option was

Instead, an Electrical Discharge M

m

m l and electrode tool erodes the material and provides a cutting action. The EDM 

system consists of the part, which is connected to a power supply and a wire electrode. A 

potential difference is created between the electrode and the part by using a step-up 

transformer. The eroded material is removed by a coolant fluid which flows along the 

cutting wire. Figure 3.12 shows the EDM that was used to machine the specimen in the 

current study. The cutting pattern of the EDM is CNC controlled, with the shape to be 

machined input through a modeling p

 
Figure 3.12 - The EDM machine used to reduce the MMC bricks to the required specimen shapes. 

 

ick into thin slices of the required 

thickne

The EDM is first used to cut the MMC br

ss and the dog-bone and rectangular patterns were cut into these slices to produce 

the final specimen shapes. Due to the large size of the brick, the cutting rate was kept low 

and it took up to 6 hours to machine one completed dog-bone specimen. 
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3.8.2 Experimental Plan 

Since particulate reinforced metal matrix composites are isotropic in nature, the 

ASTM standard method for tensile testing of metals was chosen (ASTM E8). The dog-

bone sp

 to determine the bending modulus of the 

materia  

ecimen dimensions as specified by the standard are shown in Figure 3.13. Three 

specimens were tested for the 20% volume fraction material and two for the 15% volume 

fraction material.  

The aim of tensile testing was to determine the Young’s modulus and the ultimate 

strength of the material and compare them with the values predicted by the different finite 

element models. During testing of the tensile specimen, it was seen that the fracture 

occurred in the reduced section, but close to the gripping area. Since the results from 

these specimens could not be completely trusted due to the brittleness of MMC, three 

point bending tests were used as an alternative

l.

 

Figure 3.13 - Dimensions of dog-bone specimen as specified by the ASTM E8 standard. 

 

Further, determination of the bending modulus using the 3-point bending test is 

s  

curve, eliminating the use of strain gauges. The 3-point bending tests were carried out 

accordi

impler because it makes use of the load-displacement curve rather than the stress-strain

ng to the ASTM D790 standard specifications. The dimensions of the specimen 

used are shown in Figure 3.14.  
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Figure 3.14 - Dimensions of the specimen used for three point bending tests. All dimensions are in 

inches.  
 

3.8.3 

achine is also connected to the data-acquisition system so as to 

record the load and the displacement of the crosshead.  

The specimen was gripped using wedge-grips and special care was taken to see 

that the specimens were aligned with the grips, so as to eliminate bending and twisting 

effects while loading. The loading of the specimen was displacement controlled and it 

was at a rate of 0.005 in/min. Strain, displacement and applied load were measured every 

1/10th of a second and recorded by the data-acquisition system. STRAIN SMART 

software package [53] was used to record the data acquired from the system. The recorded 

data was exported as an ASCII file, from which further data analysis was carried out.  

Test Procedure 

Prior to conducting the tension test, 120 Ω strain gauges were bonded onto the 

dog-bone shaped specimen to measure longitudinal strains. Leads were soldered on to the 

strain gauge and connected to the Micro-measurement SYSTEM 5000 data-acquisition 

system. The loading was done through an MTS testing machine, with a programmable 

controller. The MTS m

 

 
Figure 3.15 - Three point bending testing of MMC specimen using an INSTRON machine. 
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 For the three-point bending tests, the INSTRON machine, as shown in Figure 

3.15, was used due to the reduced load required to attain failure. Since only the load and 

transverse displacement were required, no external data acquisition system was used. The 

sa  

loading arm. A load cell connected to the arm rd the applied load.  

corded in this manner was exported to an ASCII file, 

er and the slope of the linear part of the curve was 

used in

me loading rate as the tension test was maintained through a computer controlled

 was used to reco

 The load and displacement re

which was plotted against each oth

 the estimation of the Young’s modulus using the ASTM standard relation, 
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One important aspect about the material being tested, which should be noted is 

that the specimen generated from the EDM were not subjected to any heat-treatment. So, 

the amount of residual stresses present in the material after cutting is not high. This ha
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s a 

large effect on the strength values as recorded by tensile tests. The results of the 

experimental evaluation along with a comparison with the values predicted by the FE 

models are presented in the next chapter. 
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Chapter Four 

4 Results and Discussion 
 

The distribution of stresses and strains across the microstructure is discussed 

under the microscopic response subheading, while a comparison of overall material 

r 20% 

volume fractions as these are the materials with maximum application. 

 

4.1 Microscopic Response 
Analyzing the distribution of stresses and strain in the microstructure of the MMC 

gives an insight into the overall behavior of the composite and enables designing better 

performing materials. However each FE model developed predicts a different 

microscopic behavior. In most of the cases, we consider the distribution of von-Mises 

equival

onditions greatly affect the results of the UCMs 

and that even a slight change like imposing uniform displacement condition across any 

face greatly changes the overall response of the composite.  

The distribution of von Mises equivalent stress in a section of 20% volume 

fraction UCM, which is loaded just beyond yielding, is shown in Figure 4.1. Maximum 

principal stress in the material is shown in Figure 4.2. Vertical bands of equal stress are 

formed due to the symmetry of the model. This type of distribution is not seen in the 

other two types of models analyzed. 

properties as predicted by the two RDMs, UCM and random array model are summarized 

in the macroscopic response model. Though models having various volume fractions 

were analyzed in this study, most of the discussion is about models having 15% o

ent stress or distribution of maximum principal stress as they provide a good 

indication of points of failure initiation.  

4.1.1 Unit Cell Model 

The distribution of stresses and strains in the unit cell models is mostly symmetric 

due to the inherent symmetry present in the model and the kind of boundary conditions 

imposed. It is well-known that boundary c
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Figure 4.1- Distribution of von-Mises stress (MPa) in a 20% volume fraction UCM 

 

 

Figure 4.2 - Distribution of maximum principal stress (MPa) in a 20% volume fraction UCM 
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The distribution of von-Mises equivalent stress in the unit cell model with 15% 

volume fraction is similar to that of the 20% unit cell, as can be seen in Figure 4.3. 

 

 
Figure 4.3 - Distribution of von-Mises equivalent stress in 15% volume fraction UCM. 
 

The distribution of stress shown in Figures 4.3 is captured after the 3rd sub-step of 

loading, similar to Figures 4.1 and 4.2. The lower amount of stress shown in the 15% 

model indicates the lower stiffness of this 15% MMC. This is evident from Figures 4.4 

and 4.5, which compare the von-Mises equivalent strains in UCMs of 15% and 20% 

volume fractions and shows clearly that the 20% material exhibits less effective strain 

than the 15% one.   

It is seen that though there are larger regions of high strain in the 20% UCM, the 

value of maximum strain is higher in 15% volume fraction model than the 20% model. 

This high strain region occurs in the matrix region of the composite, indicating that the 

material is likely to fail by matrix yielding. This is the common mode of failure in 

PRMMCs which have good interface between fiber and matrix, which has been assumed 

in the current analysis.  
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Figure 4. 4 - Distribution of von-Mises equivalent strains in 20% volume fraction UCM. 

 

 

 
Figure 4.5- Distribution of von-Mises equivalent strains in 15% volume fraction UCM. 
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Due to the boundary conditions imposed on the model and the inherent symmetry 

of the model itself, the distribution of stresses and strains in completely symmetric. But 

this type of symmetric distribution is not found in any of the RDM models.  

 

4.1.2 Spherical RDM 

The distribution patterns in random distribution models vary considerably from 

UCMs. The von-Mises effective stress in a 15% spherical inclusion RDM is shown in 

Figure 4.6. The stress snapshot is taken at a time when the overall stress of the composite 

is just beyond its yield strength (the average stress in this model is higher than the 

average stress in the UCM when its snapshot was taken).  

 

 
Figure 4.6 - A section of 15% volume fraction RDM with spherical inclusions, showing the 

distribution of von-Mises equivalent stress.  Note – reinforcing particles are not shown in figure 
 

Figure 5.6 shows the matrix behind the inclusions and the stress distribution in 

them. It is clear from Figure 5.6 that the maximum stress occurring in the matrix is lesser 

than those of 15% UCM, though high stress is more uniformly distributed in the m

instead stress 

atrix 

 of being localized as in the UCMs. Another feature to be noted is the low-
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band fo

he Poisson’s 

ffect gives rise to a low equivalent stress in that area.  

 

rmed behind every particle in a direction perpendicular to the loading direction. 

The distribution of maximum principal stress, (shown in Figure 4.7) gives a reason for 

these low-stress bands. The compressive stress around the particle due to t

e

 
Figure 4.7 - A section of 15% volume fraction RDM with spherical inclusions, showing the 

distribution of maximum principal stress.  
 

It is seen that around every particle each low-stress band is accompanied by a 

high-stress concentration area. These stress concentration areas are especially visible 

when two particles lie close to each other and it is in these areas that plastic deformation 

is initiated.  So, unlike UCMs where plastic deformation takes place away from particles, 

RDM his 

pa f 

RDMs having volum

s predict that plastic deformation is initiated near the particle-matrix interface. T

ttern can be seen clearly in Figures 4.8 and 4.9, which show the strain distribution o

e fractions of 15% and 20% respectively. 

The von-Mises and maximum principal stress distributions for 20% volume 

fraction spherical RDM is shown in Figures 4.10 and 4.11. 
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Figure 4.8 - Distribution of von-Mises equivalent strain in the 15% volume fraction RDM.  

 

 
Figure 4.9 - Distribution of the first principal stress in the 2

 
0% volume fraction RDM 
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Figure 4.10 - Distribution of von-Mises equivalent stress in a 20% volume fraction RDM 

 

As in the 15% reinforcement models, there is a band of low stress in the matrix 

associated with every particle in the 20% model. The change in stress levels is shown in 

Figure 4.11, in which the stresses in the matrix are sampled at various points on the 

vertical circle around the particle. The plot of these stresses clearly shows two troughs 

corresponding to the low-stress band and two peaks at the stress-concentrated points. The 

graph shown is plotted by averaging the stresses around 12 particles. It is also to be noted 

that the peaks in the principal stresses do not coincide with the peak of von-Mises 

effective stress, i.e. they are out of phase by a small factor. 

 

4.1.3 Ellipsoidal RDM 

The distribution of stresses and strains in models having ellipsoidal particles is 

similar to ones having spherical inclusions except for a few peculiarities. Due to the 

elongated shape of prolate spheroids, more stress concentration is seen around the 

inclusions. Another noticeable deviation from the usual distribution pattern is in the 

orientation low stress bands around the ellipsoids. There are many cases in which the 
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low-stress bands are oriented along the major axis of the ellipsoid and not perpendicular 

to the direction of loading, as can be seen in Figures 4.12-4.13 
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Figure 4.11 - Variation of the von Mises and principal stresses in the matrix around the 

reinforcement.  
 

One of the effects of the greater stress concentration around the ellipsoids is that 

yielding is initiated earlier in these sites when compared to models with spherical 

inclusions. This in turn affects the overall properties of the composite and thus ellipsoidal 

models predict a lower yield strength than spherical models for any given volume 

fraction.  

This concentration of stresses occurs in the matrix just outside the inclusion-

tion of yielding at these locations, the progress of failure 

depend

and matrix is assumed.  

matrix interface. After initia

s upon the strength of the inclusion-matrix interface. If there is a strong bond 

between the two phases, the material shows high yield strength and the failure occurs 

after enough particles have cracked under loading. On the other hand, a weak interface 

might fail without the reinforcements being fractured, which results in the composite 

showing low strength.  In the present study, a perfect bond between the reinforcement 

Sampled 
Points 

Low – stress 
band 

 58



 
Figure 4.12 - A section through the ellipsoidal RDM model (20% volume fraction) showing the 

distribution of von-Mises effective stress. 
 
 

 
 

Figure 4.13 - A section through the ellipsoidal RDM model (15% volume fraction) showing the 
distribution of von-Mises effective stress. 
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Figure 4.14 illustrates the distribution of von-Mises stresses in a typical spherical 

and ellipsoidal particle embedded in the matrix. Both the particles shown in Figure 4.14 

are located at in the middle of the domain analyzed, away from the edges of the cube. Not 

only is the maximum stress induced in the ellipsoidal particle higher than that in the 

spherical particle, but also the minimum stress in the ellipsoidal particle is much lower. 

The ratio of maximum stress to minimum stress is 1.66 for the spherical particle, while it 

is 2.64 for the ellipsoidal particle.  

 

 

 
F  

 

igure 4.14 - Von-Mises effective stress in a typical spherical and ellipsoidal particle, showing the
higher stress concentration induced in the ellipsoidal particle.  
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4.2 M

                                          

acroscopic Response 
The aim of this study is to determine the overall properties of the MMC. To 

estimate properties like Young’s modulus, tensile strength, tangent modulus, Poisson’s 

ratio etc, the distribution of stresses and strains in microstructure have to re-interpreted 

with the aim of obtaining average macroscopic properties. Here, a volume weighted 

average has been used to determine the overall material properties. i.e  

 

( ) ( )

1

1 1 N
m m

ij ij ij
mV

dV V
V V

ε ε ε
=

= = ∑∫                                     (5.1) 

                                         ( ) ( )

1

1 1 N
m m

ij ij ij
mV

dV V
V V

σ σ σ
=

= = ∑∫                                    (5.2) 

where,  V(m) is the volume of element m 

 σ(m) is the stress in element m 

ε(m) is the strain in element m. 

N is the total number of elements in the model 

σij, εij are the overall stress and strain in the composite 

and V is the total volume of the cube.  

 

Equations 5.1 and 5.2 are used to estimate the overall stress and strain in the 

composite at each load sub-step. These stresses and strains are plotted against each other 

to obtain the overall stress-strain curve of the MMC. The post-processing procedure used 

to achieve this has been described in chapter three.  

The primary aim of all the models was to predict the Young’s modulus of the 

material with good accuracy and in that direction all the models have been successful. By 

measuring the overall lateral and longitudinal strain in the composite, the Poisson’s ratio 

was computed, which was in turn used to determine the bulk and shear modulii from each 

model.  

Various degrees of anisotropy have been observed in the random

models due to the

varying Poisson’s ratio values in different directions. The predicted stiffness values from 

 distribution 

 random nature of particle distribution. This anisotropy is evident in the 
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various models have been summarized in Table 4.1, along with a comparison with the 

Hashin

an 
bounds 

Reuss 
bounds 

-Shtrikman [4] and Voigt-Reuss [4] bounds. .  

 
Table 4.1 - Material properties as predicted by the three microstructure models. 

 

 Volume 
fraction 

Ellipsoidal 
RDM 

Spherical 
RDM BCC UCM 

Hashin-
Shtrikm

Voigt-

15 % 89.2 90.5 83.2 89.8-106.1 82.15-122.7 
20 % 95.2 96.67-118 86.21-12697.8 91  E 

(G
119.2 - 

Pa) 
30 % - 112.2-144 95.65-173.4 
15% 0.313-0.32 0.329-0.331 0.322 0.30-0.32 0.274-0.301 
20% 0.30-0.3 0.29-0.31 0.259-0.291 0.304-0.312 0.318 2 ν 
30% - 0.287-0.293 - 0.27-0.30 0.234-0.273 
15% 33.79 34.02 31.47 33.93-40.71 32.2-47.16 
20% 36.48 37.39 34.52 36.64-45.66 34.24-48.76 

G 

(GPa) 
.20 - 42.94-56.65 38.76-68.11 30% - 46

15% 80.36 88.73 77.90 84.5-89.36 60.58-102.8 
20% 81.37 84.90 83.33 88.31-94.46 59.62-101.0 K 

(GPa) 
96.44-104.97 59.93-127.3 30% - 94.60 - 

 
 

The prediction of the Young’s modulus and Poisson’s ratio from the UCM 

deviate

S and V-R bounds, serving as further 

validat

 the post-processing phase, the overall stress and strain at each sub-step of the 

applied

s slightly from the experimentally determined value and the H-S bounds. This is 

due to the stress distribution caused form the unrealistic boundary conditions applied on 

the model to achieve periodicity of the microstructure. It is seen that the values predicted 

from the RDM models are within or close to the H-

ion for the models. The variation of stiffness of the material with volume fraction 

along with the H-S and V-R bounds is plotted in Figure 4.15. While the BCC unit cell 

model’s predictions fall outside the H-S bounds, the spherical and ellipsoidal RDM’s 

prediction of Young’s modulus is very close to the H-S lower bound.  

In

 load was calculated and written to an ASCII file. These values for a composite 

having 20% volume fraction are plotted in Figure 4.16. The reported values for the 20% 

composite are obtained from [32] and [33].  
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Figure 4.16 - The predicted and reported stress-strain curves for a 20% volume fraction MMC.  

 

The above response is obtained from a BCC model having a cube length of 30 μm 

and 8.63 μm inclusion radius. Both, the spherical and ellipsoidal RDM models have a 

 63



cube length of 70 μm and average particle size of 10 μm. It is seen that the RDM 

containing ellipsoids has lower yield strength than the model containing spherical 

inclusions. This early onset of yielding in the ellipsoidal model is due to the higher stress 

concentration at the tip of the ellipsoidal particles. And it is due to the same reason that 

the Young’s modulus prediction of the ellipsoidal model is slightly lower than that of the 

spherical inclusion model. It is to be noted that the periodic array model predicts a much 

lower yield point than the reported value.  
 

The original intention of validating the FE models using experimental test data 

was not possible because of the differences in material tested and the assumptions made 

in the FE model. The specimens for testing were prepared from cutting a brick of MMC 

on the EDM. Further, the specimens were not subjected to any heat-treatment. Heat 

treating the specimen induces tensile stresses in the matrix and highly compressive 

stresses in and around the particles, due to the difference in the co-efficient of thermal 

expa n of 

lower residual stress in the composite, which is equivalent to having an imperfect bond 

between the matrix and the reinforcement. This condition contradicts the assumption of 

an ideal interface between the matrix and reinforcement made in the FE models. Due to 

the weak interface and lack of residual stresses in the tested specimen, they displayed a 

low value of tensile strength. Though results from testing have been used to validate the 

Young’s modulus predicted by the FE model, for strength validation, values from the 

literature had to be made use of. Figure 4.17 shows the stress-strain curve of 20% MMC 

obtained from testing, as compared to the value from other numerical models.  

For the material having 15% SiC reinforcement, the trend of predictions is the 

same as what is seen in the 20% material, though the values vary, as can been from 

Figure 4.18. Unfortunately, no reported values for 15% SiC volume fraction material 

were found in the literature to make a comparison with the FE values.  

 

nsion between the two phases [54]. A lack of heat treatment results in the formatio

 64



0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

ss
 (M

P
a)

tre

Microstrains

S

Spherical RDM
Ellipsoidal RDM
Unit Cell model
Experimental

 
Figure 4.17 - Stress-strain curves for a 15% volume fraction MMC as predicted by various FE 

models, compared with the experimental values.  
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Figure 4.18 - Comparison of values obtained for 20% SiC material from ellipsoidal RDM model and 

experiments. 
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As the values from experimental testing could not be used to validate the accuracy 

of models, various material systems which have been investigated by other researchers 

were used to test the accuracy of the modeling technique. Table 4.2 gives a comparison 

of the 0.2% yield strength of various material systems and their experimentally obtained 

values.  

 
Table 4.2 – 0.2% yield strength as predicted by the two models and their experimentally determined 

values 
 

Material Ellipsoidal RDM 
(GPa) 

Spehrical RDM 
(GPa) Reported (GPa) 

A356/SiCp-20 290 370 331[53]

Al 6061 /SiCp-25 385 437 407[54]

Al 6061/SiCp-15 338 345 397[55]

[56]Al 6061/SiCp-20 295 366 345

Al 2014/Al2O3-1 470[57]5 427 492 

 
It is seen from the table above that the values predicted by the two modeling 

techniques are in reasonable agreement with the experimentally determined values. The 

high degree of accuracy is maintained even when different reinforcement system like 

alumina particles are used.  
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Chapter Five 

5 Mesoscale modeling of MMC material 
 

5.1 Mesoscale Modeling 

 

the microstructure, which assum le an identical manner. 

In reality, l ions in the volu  area fractions are observe n 

to other. These variations are observed in scales higher than the size of the inclusion and 

their effect on the overall response of the composite should not be neglected. In this 

regard, el was devel to address the effect of particle stering in 

the mic  MMC. Arra  finite elemen  used to sim e article 

clusters by assigning random material properties to each of the element in the array. An 

important aspect of this model is the degree of particle clustering, which has to be 

determined from analyzing the micrograph of the material to determine the average 

volume

strain curves for various volume fractions. These curves are 

used as input to the mesoscale model. The variation in the volume fraction at various 

regions of the material is assumed to follow normal distribution, with the mean located at 

the overall volume fraction of the material. Figure 5.1 shows the probability density 

function for a normal distribution with the mean located at zero and standard deviation of 

1. Similarly, based on a probability distribution function generated from user defined 

standard deviation and mean, different elements in the mesoscale model are randomly 

assigned to be of different volume fractions while keeping the overall volume fraction of 

the entire model at the specified mean.  

 

Modeling the MMC as a periodic array of unit cells is an over-simplification of

es that every sing

me and

 cell behaves in 

ocal variat d from one regio

 a mesoscale mod oped  clu

rostructure of the ys of ts are ulat p

 fraction and the standard deviation in volume fraction in various regions.  

The microstructure models described previously were generated for volume 

fractions varying from 5% to 35% at intervals of 5%. The output of these models 

provides a family of stress-
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Figure 5.1 - Probability density function for normal distribution having μ= 0 

 

Nine materials are defined as having volume fractions from 0% to 40% at 5% 

intervals. A cube of MMC material having a length of 0.5mm is considered and meshed 

with 8000 8-noded solid elements. A Matlab routine which uses normally distributed 

random numbers and takes the overall volume fraction and standard deviation as input is 

used to assign each element with one of the above defined 9 materials in such a way that 

the overall volume fraction of the model is maintained at the specified level. When the 

generated random volume fractions fall outside the available materials, the following 

rules are used: 

405.37
355.375.32
305.325.27
255.275.22
205.225.17
155.175.12
105.125.7
55.75.2
05.20

=<
=≤<
=≤<
=≤<
=≤<
=≤<
=≤<
=≤<
=≤<

vfvf
vfvf
vfvf
vfvf
vfvf
vfvf
vfvf
vfvf
vfvf

 

where vf is the randomly generated volume fraction. 

By increasing the standard deviation of the particle cluster volume fraction in the 

mesoscale model, a clustered microstructure having regions of all volume fractions is 
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generated. Figure 5.2 shows the number of elements assigned with various volume 

fractions in an 8000 element, 20% overall volume fraction mesoscale model. Figure 

5.2(a) is a model with 5% Std.D in volume fraction and it can be seen that most of the 

elements are assigned as having 20% volume fraction, depicting a mostly uniform 

microstructure. Figure 5.2(b) is a material with 10% SD in volume fraction, and so, the 

number of 15% and 25% elements is comparable to the number of 20% elements, with a 

few 0% and 40% elements also being present. When the standard deviation is increased 

to a high value like 20% as shown in Figure 5.2(c), the microstructure is assignment 

almost only 0% or 40% materials, depicting a highly clustered material having only 

particle rich and particle poor regions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The number of elements having various volume fractions in an 8000 element mesoscale 
model 
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Though no models were generated having 40% volume fraction, their stress-strain 

curves were approximated by extrapolating the data obtained from other, lower volume 

fraction models. An example model having an overall volume fraction of 20% and a 

standard deviation of 10% is shown in Figure 5.3. 

 

 
wFigure 5.3 - Mesoscale random array ith 20% volume fraction and 0.1 SD. 

 

Similar to the model in Figure 5.3, models were generated with volume fractions 

of 15% and 20% and varying degrees of clustering. Models generated in this manner are 

constrained in the sam  that meet at the 

origin are de plied in the form 

of displacem th of the cube. The overall 

DM models, by 

using a volum ine the overall 

stresses.  

 

5.2 Results 
e close to the 

reported stress-strain % Al-/SiC. The mesoscale model, by incorporating the 

particle clustering effect comes closer th er of the RDMs to the real stress-strain 

e manner as the RDM RVEs – the three faces

fined with symmetry boundary condition. The loading is ap

ent of 0.01a at x=a face, where a is the leng

properties of the cube are calculated using the same rule as for the R

e weighted average of the stresses in each element to determ

Neither the ellipsoidal nor the spherical models by themselves com

 curve of 20

an eith
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curve. The response of a random array model, with its materials defined from the family 

of ellipsoidal particles and having a volume fraction of 20% and standard deviation of 

10% in volume fraction is shown in Figure 5.4. 
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Figure 5.4 - Stress-strain curve from the random array mesoscale model and the r ted curve in epor

the literature for 20% volume fraction material.  
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Figure 5.5 - Stress-strain curve from experiments and numerical models for 15% volume fraction 

material. 
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Figure 5.5 gives a summary of predictions by various models and the 

experimental results for 15% volume fraction material. The only change in the trend is by 

the ellipsoidal model, which shows a higher tensile strength than the mesoscale model. 

This is due to the smaller number of particles present in the model, resulting in a lower 

concentration of stresses than in the 20% model. This lower stress concentration pushes 

up the overall tensile strength of the material. Also, due to the lower volume fraction, the 

experimental specimens tested showed a higher strain to failure than the 20% specimens.  

 

5.2.1 Effect of Particle Clustering 

One of the important characteristics of MMC microstructures in particle 

clustering, which is heavily dependent on the fabrication method and conditions during 

processing. Particle clustering also affects the overall material properties to a great extent 

through a combination of effects such as void nucleation, stress concentration, dislocation 

d  

model the clustering of rostructure. Using this 

technique, the effect of highly clustered and lightly clustered microstructures can be 

modeled.  

To measure the effect of particle clusters on material behavior, four mesoscale 

models all having an overall volume fraction of 20%, but with varying standard 

deviations in local volume fraction (5%, 10%, 15% and 20%) were analyzed. Figure 5.6 

shows the stress-strain curves of the material as predicted by these models.  

ensity etc. The aim of the mesoscale model developed in this study was to effectively

 particles using statistical features of the mic
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.6 - Stress-strain curves from mesoscale models having different standard deviations of local 

volume fractions.  
 

 

The increase in standard deviation increases the number of elements having high 

volume fractions, which initially increases the stiffness of the material. Though the yield 

point of all the models nearly coincides, the tangent modulus of clustered microstructures 

is high. This behavior has been observed by previous researchers including Bruzzi et al

Figure 5

ental investigations have shown that highly clustered microstructures show 

lower 

 

It is seen from the preceding discussion that the results from the FE models agree 

reasonably with the reported values in literature. Thus, these values can be used in real 

life applications where MMCs are intended for use. One such example is provided in the 

next chapter, which deals with designing bolted joints made of MMC material and uses 

results from microstructure modeling as input to the FE models of bolted joints.  

 

[1]. 

But experim

yield strength than uniform ones, due to void nucleation and lower matrix 

reinforcement bonding in the clustered regions. Since this study does not take into 

consideration the bond strength between the reinforcement and matrix, this effect could 

not be captured in the results of the finite element model.  
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Chapter Six 

6 Experimental testing and FE modeling of MMC 
bolted joints 

 

 

6.1 Introduction 
One of the advantages of PRMMC material for their use in mainstream industry is 

their ability to be connected using bolted joints. For fiber-reinforced MMCs bolted-joint 

connections are not suitable due to the difficulty in drilling holes, which causes fiber 

misalignment and loss of strength at the joint. Welding is ruled out for any composite 

other. But in case of particulate reinforced metal matrix composites, bolted joint 

connec

ed in this chapter are made of 

0% SiC volume fraction MMC.  

e study, 

having aluminum as the matrix and silicon carbide (SiC) as reinforcing particles was used 

to prepare the bolted joint test specimen. The values obtained from the test results are 

member as the high temperatures make the two phases to chemically react with each 

tions are a viable option. Bolted joints offer many advantages over conventional 

adhesion techniques: surface treatment is not a requirement, rapid assembly and 

disassembly is possible, and thick members can be joined efficiently.  

Though considerable research has gone into the field of bolted joints, little has 

been reported on MMC bolted joints. This study presents theoretical and experimental 

approach to investigate the stress distributions around the hole in a bolted joint made of 

particulate metal matrix composite. A three-dimensional finite element parametric model 

has been developed to study the effects of various design parameters on the structural 

performance of such joints. All the bolted joints consider

2

 

6.2 Experimental evaluation 
The experimental plan was the test various double lap joints made of MMC 

material with varying joint parameters like edge distance, joint size etc to investigate their 

effect on the strength of the joint. The MMC material investigated earlier in th
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compared with EUROCODE standards and with results from finite element modeling of 

joints.  

 

pl

joint. Three values 

of edge

For standard bolted joint connections, it is long known that the e/d and w/d ratios

ay a major part in determining the strength of the joint.  

 

d 

 
Figure 6.1 - A standard bolted joint shown with the parameters which are used to describe the joint. 

 
 

In the current investigation, 5 kinds of specimens having varying e/d and w/d 

ratios are tested to determine their effect on the strength of the bolted 

 distance are used (0.6”, 1.5”, 2.5”) and two values of w (1.5”, 2”) are used.  

e

s 

 
Figure 6.2 - Dimensions of specimen used in the bolted joint testing 

 
 

Cutting the specimens containing reinforcing SiC particles using conventional 

carbide blades or EDM was hindered because of the abrasive properties of the SiC. The 

0.5 

e

2.0 1.5

e 

5.0 0.5 5.0
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20% SiC reinforced DURALCAN specimens were machined using the electrical 

discharge machine (EDM).  The EDM was used to first cut slices from the MMC ingot 

and the

MC material, using even the 

EDM was difficult as the EDM requires the cut specimen to be a good conductor to make 

an efficient cut. The cutting speed was reduced to avoid breakage of cutting wire, which 

made the process very slow. To overcome this issue, polycrystalline diamond tipped tools 

have to be used to obtain an efficient and accurate cut with finishing operation performed 

on a diamond tipped grinding wheel. 

Testing was conducted on double lap joint specimens loaded in the axial direction 

as depicted in Figure 6.3. A double-lap bolted joint testing fixture was designed as 

schematically represented in Figure 6-3 to facilitate the testing process. Such a fixture 

allows the analysis of various failures expected during tensile loading of double lap joint. 

 
Figure 6.3 - Schematic of the test fixture used in the bolted joint testing of MMC specimen 

 

The specimen was clamped between two steel plates as shown in Figure 6-3, and 

a tension force was applied gradually at the free end, until the middle plate failed.  The 

thickness of the steel plates was chosen to be as twice as that of the MMC specimen to 

ensure that failure occurs in the MMC specimens.  The pre-loading in a bolt has a 

significant effect on the strength of the bolted joint and thus is an important consideration 

in the design o ondition) was 

applied on the joint.  

se slices were further machined into the required shape.  Then, holes were drilled 

using cup-shaped diamond-tipped bits. Machining the M

 

f such joints. A clamping le el of 0.22 kN (finger tight cv

0.5” Hex nut

0.5” washer

1” spherical washer 
0.5 

0.6

0.125 

Loadcell 

Fixed End 
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The clamping force was measured through a miniature load cell, connected to a 

digital monitor, DPM3, which had been calibrated to the characteristics needs of the load 

cell.  To ensure that the loaded cell is loaded axially, two spherical washers were used as 

illustrated in Figure 6-3. Additionally, the washers also prevented bending, which could 

occur during the bolt tightening. The main purpose of the flat washers was to decrease the 

stress concentration around the hole. 

The two ends of the bolted joint were mounted in an Instron machine and held 

between its wedge grips, following which, the bolted joint was loaded. The failure mode 

of each kind of joint was identified. 

 

6.3 Finite element modeling 
Since a full analytical treatment of the bolted joints problem requires considering 

geometrical nonlinearities, contact stresses, and frictional effects, the finite element 

technique represents the most reliable tool available to carry out such an investigation. 

Finite element models of double-lap bolted joints were developed to simulate the tests 

with pin-loaded joint specimens presented earlier. A parametric mesh that allows 

changing the model dimensions as well as material properties was created so as to easily 

generate multiple models having different e/d and w/d ratios.  

 Five FE models of various e/d and w/d ratios were generated for each material 

type.  The MMC plate was modeled using shell elements while solid brick element were 

used to model the bolt as shown in Figure 10.  Extremely fine mesh was used in the 

vicin s in 

this reg

ity of the hole in order to capture that stress of stress concentration that develop 

ion as the joint is loaded.  The selection of shell element for modeling the MMC 

plate allows the use of features as adaptive meshing and displaying failure modes that are 

available in LS-DYNA. A sliding interface is defined between the bolt and the plate that 

accounts for the frictional effects of the joint.  Node to surface contact elements are used 

to define the contact surface. 
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Figure 6.4 - A m

 

X

YZ

e 

d w 

eshed joint with e=0.6 and w=2.0 

l loading of the joint. This load magnitude is started 

from zero and increased gradually till the failure of the joint.   

joint was defined as an isotropic elastic-plastic 

materia

 

ade of 20% SiC reinforcement were tested for the sake 

of comparison. Figure 6-5 illustrates the measured load displacement curves of the 

double-lap joints made of 20% Sic reinforcement MMC. These curves were generated 

under displacement controlled loading for a clamping force value of 50 N (finger tight 

conditions).  The results show that the load rises steadily to an ultimate value, where the 

The bolt was constrained in all its degrees of freedom and this was the only 

boundary condition in the model. A uniformly distrusted load was applied at the free 

edge of the plate to simulate the axia

The MMC plate of the bolted 

l, while a linear-elastic material model was used for the bolt.  The material 

parameters used in the 3DFE model for LANXIDE composites were determined by 

modeling the microstructure of the material as explained in the previous chapters.  

 

 

 

 

Property Value 

 

 

 

 

6.4 Results and Discussion 
A number of specimens m

Density, kg/m3 2950 

Young’s Modulus, GPa 98.6 

Yield Strength, MPa 174 

Ultimate Strength, MPa 186 

Failure Strain 0.005 

Poisson’s Ratio 0.28 

Table 6.1 - Properties used in the FE model for 20% volume fraction MMC 

 78



joint fails without any yielding. One may notice that for higher values of the e/d ratio, the 

ultimate failure load increases with the specimen still failing in the net-section mode, but 

without any yielding.  

The load carried by a bolted joint can be divided into three stages. Initially the 

applied load is transferred by the frictional force until the bolts develop direct bearing 

contact with the plates  the applied tension is 

carried out by bearing loads pl

ted under finger tight 

conditions. This is b

r for 

specimens having low e/d ratios as can be seen in Figure 6-6. 

 inside the clearance of the holes .Eventually

us friction along the contact surface between the jointed 

plates. Slipping between the bolted plates is seen in joints having high clamping force, 

Most of the slip occurred between 40 and 80 percent of the ultimate strength of the 

material. However no slip occurs when the bolted joint is tes

ecause, under finger tight conditions there is no frictional support for 

the bolted joint and the slip is negligible. 

As a general trend, it is seen that the clamping force increases with the increase in 

the axial tensile load. However, the rate of the clamping force increase is highe
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Figure 6.5 - Load –displacement curves for various joints. 
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Figure 6.6 - Variation of gripping force with axial load 

 
 

The two predominant failure mechanisms seen in MMC bolted joints is net-

section failure and shear pull-out. The kind of failure experienced by the joint is 

dependent upon the e, d and w values in the joint. In net-section failure, there is 

transverse tearing of material along the width of the joint due to either a low value of w 

or very tight bolt spacing. This type of failure is mostly seen in joints made of brittle 

materials. Shear pull-out occurs when the bolt tears the joint in a longitudinal direction 

along two parallel lines. Shear pull-out is seen in joints with low e values.  

It is seen that the ultimate failure loads increase with the e/d ratios up to 5.0, and 

reduces with decrease in w/d ratio. This is due to the reduced ductility of the MMC 

material, which induces net-section failure rather than bearing failure. The failure 

mechanism along with failure load for each type of joint is summarized in table 6-2.  

Two methods were used to predict the theoretical failure loads: 3D finite element 

analysis, and Euro Code standards (equations 1 and 2).  Table 3 demonstrates excellent 

agreem nt between pecimens of 20% 

SiC reinforcement specimens.  The difference in the 3DFE-predicted load values and the 

measured ones is less than 12%. This is a reasonable result taking into account that the 

e  the 3DFE and experimental results for Duralcan s
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experimental errors in material characterization as well as the load measurement via the 

loading cell. 

The accuracy of the 3DFE model developed for MMC bolted jointed was not only 

validated by the agreement between the 3DFE-calculated failure load and the 

experimentally measured one, but also by predicting the same mode as illustrated in 

Figure 6-7.  

 

Table 6.2 - Failure loads for joints made of 20% SiC reinforcement 
 

 

Experimental Finite element Euro Standards 3 e 
(mm) 

w 
(mm) 

Failure Load 
(N) 

Failure Mode Failure Load 
(N) 

Difference Failure Load 
(N) 

Difference 

15 38 6,016 Shear Pullout 5623 -6.5% 7258 21% 

15 51 5,756 Shear Pullout 5996 4.2% 7258 26% 

38 51 11,192 Net section 12568 11.3% 18114 62% 

63 38 9,514 Net section 10498 10.3% 14516 53% 

63 51 15,838 Net section 16796 6.0% 18114 14% 

 

 
Figure 6.7 - Failure Modes of MMC Joints. 

 

Net Section Shear Pullout 

 
 

The distribution of shear stresses, τxz, in a bolted joint (e=0.6, w=1.5) made of 

20% volume fraction MMC is shown in Figure 6.8(a).  As the load is applied, two zones 

of high shear stresses form on both sides on the hole as shown.  These two zones of shear 

stresses together with the compressive stresses at contact point with the bolt are 
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responsible for the fracture of the edge of the hole.  As the load is increasing applied, the 

failure progresses in the longitudinal direction towards the nearest joint edge as illustrated 

in Figu

e 6.9(a) shows the Von-Mises effective stress distribution just as the load is 

applied at the plate edge for specimen with e=1.5 and w=2.5. Unlike the previous case, 

there is no stress-conc he area of contact of the bolt and plate. Instead, high 

t e s s  ott l c f

in tion e to h va  fail  this c oceeds e transv

direction, as net section failure, as shown in Figure 6.9(b). The distribution of

longitudi stress or th llows a similar p while their va

vary. 

re 6.8(b).  The FE model is successful in predicting the same mode of failure as 

seen in experimental testing.  

 

Figur

entration in t

ensil tresse are found at the top and b om of the ho e, which a t as centers o  failure 

itia . Du the hig lue of e, the ure in ase pr  in th erse 

 the 

nal es σ  fx is joint fo attern,  only lues 
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Figure 6.8 - Distribution of τxy in the joint prior, at and post failure. 
 (e =15 mm and w =38 mm)  
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The finite element model uses the output of the microstructure model and is 

successful in predicting the mode of failure of the bolted joint along with the joint 

strength.  

Figure 6.9 - Distribution of von-Mises effective stress for a specimen having e=2.5 and w 
=1.5 and 20% SiC as reinforcement. 
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Chapter Seven 

7 Conclusion and Recommendations 
 

New representative volume elements (RVE) called Random Distribution Model, 

incorporating spheres and ellipsoids, have been developed to investigate the properties 

particulate reinforced metal matrix composites. The new RVE is intended to overcome 

the short-comings of traditional periodic array models which idealize the microstructure 

of PRMMCs. The main feature of the new RVE is that it makes very few simplifying 

assumptions about the distribution of inclusions in the matrix. Metrics measured from 

micrographs of the material are used in the generation of RDMs. A mesoscale model is 

developed in order to account for the particle clustering effect in MMC materials.  

The responses of the new models have been compared with a traditional unit cell 

model and values reported in the literature. It is seen that the results of the new mo els 

show better agreement with the expected value than the traditional unit cell models. these 

results 

nable accuracy, but is also successful in identifying the model of failure. 

  

7.1 Conclusions 
 

- Traditional unit cell models are not suitable for representing particulate reinforced 

MMCs due to the highly 3 dimensional nature of the material. The newer 

techniques used for exact replication of microstructure are often tedious and 

expensive.  

 

- Computer generated microstructures offer middle-path, which is ideal for efficient 

generation of artificial microstructures, which can be quantified as being close to 

the real microstructure. 

 

d

are further applied in modeling an everyday application of MMCs, namely bolted 

joints. It is seen that the bolted joint FE model not only predicts the strength of the joint 

with reaso
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- Simple algorithms can be used to for microstructure generation, but the problem of 

particle intersection or inte tion is of importance. 

 

- M del n  which are 

not seen in traditiona

 

using the mesoscale model, which shows that an increase in clustering results in an 

initial increase in the modulus of the material, while the yield strength remains 

n expected reduction is yield strength was not seen due to the 

non-inclusion of damage initiation at clustered regions of the material.  

- 

 

 The results from the microstructure model can be used as input into other model 

 

rsecting volume determina

o s ge erated in this manner on analysis reveal stress distributions

l unit cell model, such as non-symmetric stress distributions. 

 

- The RDMs predict failure to initiate just outside the matrix-reinforcement interface, 

while the UCMs indicate yielding in the matrix, away from the inclusion. 

 

- Low stress bands around the particle and oriented in direction of the major axis of 

the ellipsoid is seen in RDMs. These low stress bands are accompanied by points of 

high stress concentration, which cause failure.  

- Though all models, including UCMs are successful in accurately predicting the 

modulus of the material, the mesoscale model comes closest to the reported value of 

strength.  

 

- The effect of amount of clustering on the materials properties was investigated 

nearly the same. A

 

A decrease in particle size showed an increase in the strength of the composite due 

to better transfer of load from the matrix to the reinforcement.  

-

which use MMC materials, as was done in the bolted joints model to obtain a 

reasonably accurate estimate of joint strength. 
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7. Future Work 
 

2 

The three models studied here can be improved in various ways to better represent 

- e 

incorporated in the algorithm to better the model. Particle size distributions, 

 A numerical technique which can measure the volume of intersection between two 

- g particles can be used to achieve 

higher volume fractions (>45%) 

 

eling technique used to represent the microstructure of PRMMCs has 

reat potential for application in various micromechanics problems. One such application 

predi

reinfo

resea

the composite.  

More metrics obtained from analyzing micrographs of the material can b

variation in nearest neighbor distances are some of the measurements that can in 

included.  

-

particles can be implemented to generated models which allow intersecting 

particles. 

Improved algorithms which include intersectin

- Inclusion of residual stresses and imperfect particle-matrix interface in the RDMs.  

The mod

g

is to include equation of continuous damage mechanics with the model, in order to 

ct the durability of the composite. With a slight change in the algorithm, whisker 

rced MMCs can be modeled. These and other improvements are left for future 

rchers to investigate. 
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9 Appendix 
 

9.1 Matlab routine to generate microstructures with sphere-shaped 
inclusions 

 
function m_sphere(len,permrad,vf,factor) 
tot_vol = len^3; 
req_vol = vf*tot_vol; 
curr_vol=0; 
count=0; 
tot_count = 0; 
set_p=5000; 
 
while curr_vol < req_vol 
    tot_count = tot_count+1; 
    l_fact = 1-factor; u_fact=1+factor; 
    rad = (l_fact + ((u_fact-l_fact)*rand(1)))*permrad; 
    curr_point = rad + ((len-(2*rad))) * rand(1,3); 
    touch=0; 
     
    if count ~= 0 
        [m,n] = size(ele_list); 
        for i=1:m 
            if sqrt((curr_point(1)-ele_list(i,1))^2 + (curr_point(2)- 
     ele_list(i,2))^2+(curr_point(3)-ele_list(i,3))^2) 
<=(rad+ele_list(i,4)) 
                touch = 1; 
                break; 
            end 
        end 
    end 
    
    if touch == 0 
        count = count+1; 
        temp_vol = (4/3)*pi*rad^3; 
 
        if temp_vol > (req_vol-curr_vol) 
            rad = (((req_vol-curr_vol)*3)/(4*pi))^(1/3); 
            temp_vol = (4/3)*pi*rad^3; 
            curr_vol = curr_vol+temp_vol; 
            ele_list(count,1:3) = curr_point(1:3); 
            ele_list(count,4) = rad; 
            break; 
        end             
        ele_list(count,1:3) = curr_point(1:3); 
        ele_list(count,4) = rad; 
        curr_vol = curr_vol+temp_vol; 
    end 
    if tot_count >set_p 
        count 
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        pause 
        set_p=set_p+25000; 
    end 
end 
count 
tot_count 

files\database\matlab\ansin_',num2str(vf), 
'_',num2str(permrad),'.txt']; 
 

 

',num2str(ele_list(i,1)),',',num2str(ele_list(i,2)),','

tr(ele_list(i,4))]; 

ine2,line3); 

-

) 

vol; 

* rand(1,3)); 

c^2) 0 0; 0 0 (a^2)*(b^2) 0; 0 0 0 

 1 0 0; sin(angles(2)) 0 

es(3)) 0 0; -sin(angles(3)) 
0 1]; 

'; 

 
filename=['D:\Work\my thesis\input 

fid=fopen(filename,'w'); 
n','/prep7'); fprintf(fid,'%s \

[m,n] = size(ele_list);
 

 for i=1:m
    

ne,,line1=['wpla
um2str        (ele_list(i,3))]; ,n

    line2=['sphere,',num2s
    line3 =['CSYS,0']; 
    fprintf(fid, '%s\n%s\n%s\n\n',line1,l
end 
 
fclose('all'); 
 
 

9.2 Matlab routine to generate microstructures with ellipsoid
shaped inclusions 

 
ad,vffunction m_struct(len,r

 tot_vol = len^3;
*tot_req_vol = vf

=0; curr_vol
t=0; coun

tot_count = 0; 
set_p=10000; 
while curr_vol < req_vol 
  tot_count = tot_count+1;   

    curr_point = (1*rad) + ((len-(2*rad)) 
    radii1 = (0.75 + ((1-0.75)*rand(1)))*rad; 

;     radii2 = (1+((1.25-1)*rand(1)))*rad
    a = radii2;b=radii1; 
    radii(1) = a; radii(2)=b; radii(3)=b;c=b; 

;     angles = (-1*pi/2)+(pi*rand(1,3))
) 0 0 0; 0 (a^2)*(    S = [(b^2)*(c^2

-1*(a^2)*(b^2)*(c^2)]; 
    ry = [cos(angles(2)) 0 -sin(angles(2)) 0; 0

 0 1];   cos(angles(2)) 0; 0 0
    rz = [cos(angles(3)) sin(angl

es(3)) 0 0; 0      0 1 0; 0 0 cos(angl
    r_final = rz*ry; 

l*S*r_final    r = r_fina
    rshap=r; 
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    t = [1 0 0 0; 0 1 0 0; 0 0 1 0; -1*curr_point(1) -1*curr_point(2) -
 

*r*t'; 
r./abs(r(4,4)); 

= [cos(angles(3)) sin(angles(3)) 0; -sin(angles(3)) 
s(angles(3)) 0; 0 0   1]; 

  if count == 0 
nt = count+1; 

es(:); 

*pi*a*b*c; 

   continue; 
  end        

 = size(ele_list); 
   for i=1:m 
      temp(:,:) = ele_list(i,:,:); 
      [dum,vec] = eig(r,temp,'qz'); 

     
    

0 

i*a*b*c; 

c); 

(:); 

urr_vol+temp_vol; 

) = curr_point(:); 
 = radii(:); 

list(count,3,:) = angles(:); 

1*curr_point    (3) 1];
    r = t

 =     r
     
    rotz 
co
    roty = [cos(angles(2)) 0 -sin(angles(2)); 0 1 0; sin(angles(2)) 0  
        cos(angles(2))]; 
    vect = [a 0 0]; 
    vect= vect*rotz; 
    vect= vect*roty; 
    touch=0; 
 
  
        cou
        point_list(count,1,:) = curr_point(:); 
        point_list(count,2,:) = radii(:); 
        point_list(count,3,:) = angl
        ele_list(count,:,:) = r(:,:); 
        curr_vol = (4/3)
        vectors(count,:)=vect; 
     
  
    [m,n,o]
 
  
  
        vec = diag(vec,0); 
        answer = test_it(vec); 

   if answer >= 2 
       continue  

        else 
            touch=1; 
            break 
        end 
    end 
     
    if touch == 
        count = count+1; 
        temp_vol = (4/3)*p
        testing = req_vol-curr_vol; 
        if temp_vol > (req_vol-curr_vol) 
            a = ((req_vol-curr_vol)*3)/(4*pi*b*
            radii = [a b c]; 
            point_list(count,1,:) = curr_point
            point_list(count,2,:) = radii(:); 
            point_list(count,3,:) = angles(:); 
            temp_vol = (4/3)*pi*a*b*c; 
            curr_vol = c
            ele_list(count,:,:) = r(:,:); 
            vectors(count,:)=vect; 
            break; 
        end             
        point_list(count,1,:
        point_list(count,2,:)
        point_
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        ele_list(count,:,:) = r(:,:); 
        curr_v  curr_vol+teol
        vectors(c

 = mp_vol; 
ount,:)=vect; 

0000; 

thesis\input 
),'_',num2str(rad),'.tx

 \n','/prep7'); 

r']; 

(c_ind),',0,',num2str(x0),',',num2str(y0),',',nu
num2str(point_list(i,3,3)*180/pi),',0,',         

,2)*180/pi)]; 

,',num2str(k_ind),',',num2str(point_list(i,2,1)),',0,0']; 
0.5*point_list(i,2,1); 
=(sqrt(3)/2)*point_list(i,2,2); 

+1),',',num2str(xmid),',',num2str(ymid),',0']

(point_list(i,2,2)),',0']; 

num2str(ymid),',0']

(k_ind+1),',',num2str(k_ind+

ind+3),',',num2str(k_in

    end 
    if tot_count >set_p 
        disp(count) 
        disp(req_vol-curr_vol) 
        disp(temp_vol) 
        disp(' ') 
        set_p=set_p+1
    end 
end 
count 
tot_count 
 
filename2=['D:\Work\my 
files\database\ellipsoids\10%\ansin_',num2str(vf
t']; 
fid2=fopen(filename2,'w'); 
[m,n,o] = size(point_list); 
c_ind=12; 
k_ind=1; 
 
fprintf(fid2,'%s
for i=1:m 
    x0=point_list(i,1,1);  
    y0=point_list(i,1,2);  
    z0=point_list(i,1,3); 

str(i),' e    line_enter = ['sd ',num2
         
    

rline1=['local,',num2st
m2str(z0),',',
num2str(point_list(i,3
 
    line2=['k
    xmid=

id    ym
    
line2b=['k,',num2str(k_ind
; 
    
line3=['k,',num2str(k_ind+2),',0,',num2str
    xmid=-0.5*point_list(i,2,1); 
    
line3b=['k,',num2str(k_ind+3),',',num2str(xmid),',',
; 
    line4=['k,',num2str(k_ind+4),',-
',num2str(point_list(i,2,1)),',0,0']; 
    
line5=['bsplin,',num2str(k_ind),',',num2str
2),',,,,   0,-1,0,-1,0,0']; 
 
    
line6=['bsplin,',num2str(k_ind+2),',',num2str(k_
d+4),',,  ,,1,0,0,0,-1,0']; 
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    line7=['l,',num2str(k_ind+4),',',num2str(k_ind)]; 

 %s\n %s\n %s\n %s\n %s\n      
line3b,line4,line5,line6,line7); 

 

 

'al,',num2str(l_ind),',',num2str(l_ind+1),',',num2str(l_ind+2)]; 
(fid2,'%s\n ',line8); 

  l_ind=l_ind+3; 

1; 

,,,,,,',num2str(k_ind),',',num2str(k_i

e7); 

e('all'); 

l 
ditions and post processing 

7 

. 4e-3
DEFI,8.132e-3,283.02e-6 

    k_ind=k_ind+5; 
    fprintf(fid2,'%s\n %s\n %s\n

e1,line2,line2b,line3,%s\n',lin
end 
 
k_ind=1; 
l_ind=1; 
fprintf(fid2,'\n');
 
for i=1:m
    
line8=[
    fprintf
  
end 
 
k_ind=
a_ind=1; 
fprintf(fid2,'\n'); 
 
for i=1:m 
    
line7=['vrotat,',num2str(a_ind),'
nd+4)]; 
    fprintf(fid2,'%s\n ',lin
    a_ind=a_ind+1; 
    k_ind=k_ind+5; 
end 
 
fclos
 

 

 

9.3 Example ANSYS macro file used to specify materia
properties, loading, boundary con

 
/prep
len=70 
 

x,1,70e-3 mp,e
mp,nuxy,1,0.33 
TB,MISO,1,1,13 
tbpt,DEFI,3.619e-3,250e-6 
tbpt,DEFI,3.965e-3,264.13e-6 

,DEFI,4.582e-3,272.75e-6 tbpt
tbpt,DEFI,5.333e-3,277.30e-6 
tbpt,DEFI,6.176e-3,279.65e-6 
pt,DEFI,7 24 ,281.92e-6 tb

tbpt,
tbpt,DEFI,9.094e-3,284.2e-6 
 
,ex,2,410e-3 mp
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mp,nuxy,2,0.14 
 
alls 
vsel,s,volu,,124 
eslv,s 
odif,all,mat,1 

lv,s 
mat,2 

symm,x 
,y,0 
y 
z,0 

ls 

 
ls 

NSUBST,subst 
bc,0 
utres,all,all 

 

fini 
 
/post1

trans_data4.txt 
subst 

tab,epy 
tab,sigy 

em
alls 
 
vsel,s,volu,,1,123 
es
emodif,all,
 
alls 
 
nsel,,loc,x,0 
dsym,
nsel,,loc
dsym,symm,
nsel,,loc,
dsym,symm,z 
al
eplo 
 
/solu 
subst=10 
antype,0 
nsel,,loc,y,70 
esln,s 

l,pres,-320e-6sf,al
al
time,1 
tots,off au

k
o
alls
solve 

 
*cfopen,
*do,j,1,
t,1,j se

sigs=0 
sige=0 
overs=0 
overe=0 
ovv=0 
etable,sigy,s,eqv 
etable,epy,epto,eqv 
 
*get,tot_e,elem,0,count 
*get,next_e,elem,0,num,min 
*do,k,1,tot_e 
et,v1,ELEM,k,VOLU *g

*get,v2,ELEM,k,e
*get,v3,ELEM,k,e
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sigs=sigs+(v1*v3) 
sige+(v1*v2) 
v+v1 

sigs/ovv 

ovv 
x,E10.3,2x,E10.3) 

s 

sige=
ovv=ov
*enddo 
 
 
overs=
overe=sige/ovv 
*vwrite,overs,overe,
(E10.3,2
*enddo 
 
*cfclo
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