

Liquid Impingement Erosion: Modeling Droplet Impacts onto Elastic Solids

Mohsen N. Marzbali and Ali Dolatabadi,

June 17th, 2013

Outline

- Milestones
- Introduction
- Methodology
- Results
- Progress to date
- Potential for continuation of current work

Key milestones

> Incompressible FSI Model:

 \rightarrow incompressible VOF coupled with elastic solid solver

 \rightarrow 2-way coupling approach

Compressible FSI Model:

- \rightarrow compressible VOF solver with a rigid substrate
- \rightarrow 1-way coupling approach

FSI model validation:

 \rightarrow Comparison with existing analytical data

Governing equations, compressible fluid

Continuity:

Momentum:

 $\frac{\partial \rho_f}{\partial t} + \nabla \cdot \left(\rho_f V_f\right) = 0$ $\frac{\partial \left(\rho_f V_f\right)}{\partial t} + \nabla \cdot \left(\rho_f V_f \otimes V_f\right) = \nabla \cdot \sigma_f + \rho_f g$

Equation of state:

$$\rho_f = \rho_{f_0} + p_f \psi$$

Fluid stress tensor:

$$\sigma_f = -p_f I + \mu_f \left(\nabla V_f + \nabla V_f^T \right)$$

Equation of state

Volume of Fluid method

Liquid volume fraction:

 $\begin{cases} \alpha_{i} = 0 & Gas \ phase \\ 0 < \alpha_{i} < 1 & Interface \\ \alpha_{i} = 1 & Liquid \ phase \end{cases}$

> VOF Advection:

$$\frac{\partial \alpha_l}{\partial t} + \nabla . (V_f \alpha_l) = 0$$

Interface Reconstruction method:
Piecewise Linear Interface Calculation (PLIC) of Youngs (1982)

Numerical scheme

- Solver: compressible VOF
- Segregated solver and fixed system of grids
- 2nd order accuracy in space and time
- Pressure-velocity coupling → Pressure-Implicit with Splitting of Operators (PISO) method
- Adaptive time step based on CFL initially set to 0.1

Domain & boundary conditions

Fluid initial properties	Air	Water
Density (kg/m ³)	1	1000
Kinematic viscosity (m ² /s)	1.48e-05	1e-06
Surface tension (N/m)	-	0.07

Generated pressure upon impact

Test matrix for velocity range

Number of cases = 12

Simulation Type	Droplet size (µm)	Velocity (m/s)
2-D axisymetric	500	100
3-D	500	200
		300
		350
		400
		500

Results, effect of impact velocity

Impact conditions: d=500 µm, V varies Ma=V/C, C is sound speed in liquid

Test matrix for diameter range

discussed during previous meeting

Number of cases = 7

Simulation Type	Droplet size (µm)	Velocity (m/s)
3-D	50	350
	200	
	400	
	500	
	600	
	800	
	1000	

Results, effect of droplet diameter

Impact conditions: V = 350 m/s, d varies

Progress to date

• Incompressible Fluid-Solid Interaction model:

- 1-way and 2-way coupling methods
- ✓ 2-D axisymmetric and 3-D model
- ✓ Impact velocities up to 100 m/s
- ✓ Droplet size of 500 microns

• Compressible Fluid model:

- ✓ 3-D model results compared to theoretical data
- \checkmark Impact velocities up to 500 m/s for drop size of 500 μm
- ✓ Droplet diameter range of 50-1000 µm for impact velocity of 350 m/s

Deliverables by September 2013

• Compressible fluid modeling:

- ✓ 3D simulation using compressible VOF model
- ✓ Impact velocity of 350 m/s
- ✓ Droplet size range of 50-1000 µm
- Elastic solid modeling:
 - ✓ Ti64 substrate (isotropic and pure material)
 - ✓ Response to the impact pressure generated by the droplet impingement
 - ✓ Resolving the stress components in the solid substrate in elastic mode
 - ✓ Compare the peak stress component with critical material threshold

Thank you!

Questions?

www.concordia.ca

