

Fig. 1. Calculated phase diagram for the system Mg-Zn.

The Mg-Zn system is of interest for the development of high strength aluminium-base alloys. A compilation of experimental data for the Mg-Zn system has been published by [88Cla]. The thermodynamic parameters of the Mg-Zn system have been first derived by [92Aga]. The subsequent update by [98Lia] is recommended since it reproduces various experimental data such as phase diagram, enthalpy of mixing, heat capacity and chemical potential very well and also takes into account the homogeneity range of the C14 Laves phase (MgZn₂). The large positive deviation from Neumann-Kopp's rule derived by [92Aga] from the temperature dependence of the enthalpy of mixing of the liquid has been confirmed through the measurement of heat capacity [98Lia] and, very recently by calculations using a statistical thermodynamic theory [01Jha]. However, the description should not be used at temperatures above 3000 K, where an inverse miscibility gap in the liquid phase starts to develop.

The liquid, hcp, and hex-Zn phases are modelled as simple substitutional solutions, the C14 Laves phase is described by a two-sublattice model whereas $Mg_{51}Zn_{20}$, $Mg_{12}Zn_{13}$, Mg_2Zn_3 , and Mg_2Zn_{11} are treated as stoichiometric phases.

Phase	Struktur- bericht	Prototype	Pearson symbol	Space group	SGTE name	Model
liquid					LIQUID	(Mg,Zn) ₁
hcp	A3	Mg	hP2	$P6_3/mmc$	HCP_A3	$(Mg,Zn)_1$
$Mg_{51}Zn_{20}$	$D7_{\rm b}$	Ta_3B_4	oI14	Immm	D7B_MG7ZN3	$Mg_{51}Zn_{20}$
$Mg_{12}Zn_{13}$			•••		MGZN	$Mg_{12}Zn_{13}$
Mg_2Zn_3			mC110	C2/m	MG2ZN3	Mg_2Zn_3
C14	C14	$MgZn_2$	hP12	$P6_3/mmc$	C14_LAVES	$(Mg,Zn)_2(Mg,Zn)_1$
Mg_2Zn_{11}	$D8_{\rm c}$	Mg_2Zn_{11}	cP39	$Pm\overline{3}$	D8C_MG2ZN11	Mg_2Zn_{11}
hex	A3	Mg	hP2	$P6_3/mmc$	HCP_ZN	$(Mg,Zn)_1$

Table I. Phases, structures and models.

Landolt-Börnstein New Series IV/19B

Table II. Invariant reactions.

Reaction	Туре	T / K	Compositions / $x_{\rm Zn}$		$\Delta_{ m r} H$ / (J/mol)		
liquid \rightleftharpoons C14	congruent	863.1	0.666	0.666		-13448	
liquid + $C14 \rightleftharpoons Mg_2Zn_3$	peritectic	689.0	0.356	0.661	0.600	-1839	
$C14 + \text{liquid} \rightleftharpoons Mg_2Zn_{11}$	peritectic	654.4	0.671	0.913	0.846	-5687	
liquid \rightleftharpoons Mg ₂ Zn ₁₁ + hex	eutectic	640.4	0.930	0.846	0.997	-7396	
liquid + $Mg_2Zn_3 \rightleftharpoons Mg_{12}Zn_{13}$	peritectic	620.2	0.296	0.600	0.520	-1740	
hcp + liquid \rightleftharpoons Mg ₅₁ Zn ₂₀	peritectic	614.2	0.030	0.290	0.282	-5793	
$liquid \rightleftharpoons Mg_{51}Zn_{20} + Mg_{12}Zn_{13}$	eutectic	614.1	0.290	0.282	0.520	-5989	
$Mg_{51}Zn_{20} \rightleftharpoons hcp + Mg_{12}Zn_{13}$	eutectoid	598.2	0.282	0.027	0.520	-204	

Table IIIa. Integral quantities for the liquid phase at 973 K.

x_{Zn}	$\Delta G_{ m m}$ [J/mol]	$\Delta H_{\rm m}$ [J/mol]	$\Delta S_{ m m}$ [J/(mol·K)]	$G_{\mathrm{m}}^{\mathrm{E}}$ [J/mol]	$S_{ m m}^{ m E}$ [J/(mol·K)]	ΔC_P [J/(mol·K)]	
0.000	0	0	0.000	0	0.000	0.000	
0.100	-3650	-1912	1.786	-1020	-0.916	1.544	
0.200	-5926	-3445	2.550	-1877	-1.611	2.746	
0.300	-7517	-4609	2.989	-2575	-2.090	3.604	
0.400	-8545	-5398	3.234	-3100	-2.362	4.118	
0.500	-9033	-5791	3.332	-3425	-2.432	4.290	
0.600	-8951	-5751	3.289	-3506	-2.307	4.118	
0.700	-8228	-5226	3.085	-3286	-1.995	3.604	
0.800	-6738	-4150	2.659	-2690	-1.501	2.746	
0.900	-4259	-2441	1.869	-1629	-0.834	1.544	
1.000	0	0	0.000	0	0.000	0.000	

Reference states: Mg(liquid), Zn(liquid)

Table IIIb. Partial quantities for Mg in the liquid phase at 973 K.

x_{Mg}	$\Delta G_{ m Mg}$ [J/mol]	$\Delta H_{ m Mg}$ [J/mol]	$\Delta S_{ m Mg}$ [J/(mol·K)]	$G_{ m Mg}^{ m E}$ [J/mol]	$S_{ m Mg}^{ m E}$ [J/(mol·K)]	$a_{\rm Mg}$	$\gamma_{ m Mg}$	
1.000	0	0	0.000	0	0.000	1.000	1.000	
0.900	-935	-192	0.764	-83	-0.112	0.891	0.990	
0.800	-2126	-748	1.416	-321	-0.439	0.769	0.961	
0.700	-3616	-1672	1.998	-731	-0.968	0.640	0.914	
0.600	-5509	-3015	2.563	-1376	-1.684	0.506	0.844	
0.500	-7975	-4872	3.189	-2367	-2.574	0.373	0.746	
0.400	-11271	-7385	3.994	-3858	-3.625	0.248	0.621	
0.300	-15790	-10741	5.189	-6049	-4.822	0.142	0.473	
0.200	-22208	-15173	7.230	-9187	-6.152	0.064	0.321	
0.100	-32193	-20960	11.544	-13565	-7.601	0.019	0.187	
0.000	$-\infty$	-28426	∞	-19519	-9.155	0.000	0.090	

Reference state: Mg(liquid)

	1		r				
ΔG_{Zn} [J/mol]	$\Delta H_{ m Zn}$ [J/mol]	ΔS_{Zn} [J/(mol·K)]	$G_{ m Zn}^{ m E}$ [J/mol]	$S_{\mathrm{Zn}}^{\mathrm{E}}$ [J/(mol·K)]	$a_{\rm Zn}$	$\gamma_{ m Zn}$	
$-\infty$	-21077	∞	-11057	-10.298	0.000	0.255	
-28080	-17388	10.989	-9452	-8.156	0.031	0.311	
-21125	-14232	7.084	-8104	-6.298	0.073	0.367	
-16619	-11461	5.301	-6879	-4.710	0.128	0.427	
-13099	-8972	4.241	-5686	-3.378	0.198	0.495	
-10090	-6710	3.474	-4483	-2.289	0.287	0.575	
-7404	-4661	2.819	-3272	-1.428	0.400	0.667	
-4987	-2863	2.183	-2101	-0.783	0.540	0.771	
-2870	-1395	1.517	-1065	-0.339	0.701	0.877	
-1155	-383	0.794	-303	-0.082	0.867	0.963	
0	0	0.000	0	0.000	1.000	1.000	
	$\begin{array}{c} \Delta G_{\rm Zn} \\ [\rm J/mol] \\ \hline -\infty \\ -28080 \\ -21125 \\ -16619 \\ -13099 \\ -10090 \\ -7404 \\ -4987 \\ -2870 \\ -1155 \\ 0 \end{array}$	$\begin{array}{c cccc} \Delta G_{\rm Zn} & \Delta H_{\rm Zn} \\ [J/mol] & [J/mol] \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Table IIIc. Partial quantities for Zn in the liquid phase at 973 K

Reference state: Zn(liquid)

Fig. 2. Integral quantities of the liquid phase at T=973 K.

Fig. 3. Activities in the liquid phase at T=973 K.

Table IV. Standard reaction quantities at 298.15 K for the compounds per mole of atoms.

Compound	$x_{\rm Zn}$	$\Delta_{\mathrm{f}} G^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} H^{\circ}$ / (J/mol)	$\Delta_{\mathrm{f}} S^{\circ}$ / (J/(mol·K))	$\Delta_{\mathrm{f}} C_P^{\circ}$ / (J/(mol·K))
$Mg_{51}Zn_{20}$	0.282	-4580	-4729	-0.500	0.000
$Mg_{12}Zn_{13}$	0.520	-8773	-9479	-2.370	0.000
Mg_2Zn_3	0.600	-10070	-10881	-2.720	0.000
C14	0.667	-10906	-11784	-2.944	0.036
Mg_2Zn_{11}	0.846	-5255	-5678	-1.420	0.000

References

[88Cla]	J.B. Clark, L. Zabdyr, Z. Moser, in: "Phase Diagrams of Binary Magnesium Alloys", ASM
	Int., Metals Park, OH, 1988, pp. 353-364.

- [92Aga] R. Agarwal, S.G. Fries, H.L. Lukas, G. Petzow, F. Sommer, T.G. Chart, G. Effenberg: Z. Metallkd. 83 (1992) 216–223.
- [98Lia] P. Liang, T. Tarfa, J.A. Robinson, S. Wagner, P. Ochin, M.G. Harmelin, H.J. Seifert, H.L. Lukas, F. Aldinger: Thermochim. Acta **314** (1998) 87–110.
- [01Jha] N. Jha, A.K. Mishra: J. Alloys Comp. **329** (2001) 224–229.