

Liquid Impingement Erosion: Modeling Droplet Impacts onto Elastic Solids

Numerical Modeling Team:

Dr. Ali Dolatabadi, Mohsen N. Marzbali

Outline

- Milestones
- Deliverables
- Introduction
- Methodology
- Results
- Conclusions

Key milestones

> Incompressible FSI Model:

 \rightarrow Incompressible VOF coupled with elastic solid solver

 \rightarrow 2-way coupling approach

Compressible FSI Model:

- \rightarrow Compressible VOF solver with a rigid substrate
- \rightarrow 1-way coupling approach

Elastic Solid Model:

→ Isotropic Ti64 substrate

Deliverables

• Compressible fluid modeling:

- ✓ 3D simulation using compressible VOF model
- ✓ Impact velocity up to 500 m/s
- ✓ Droplet size range of 50-1000 µm

• Elastic solid modeling:

- ✓ Ti64 substrate (isotropic material)
- ✓ Response to the impact pressure generated by the droplet impingement
- ✓ Resolving the stress components in the solid substrate in elastic mode
- ✓ Compare the peak stress component with critical material threshold

Governing equations, compressible fluid

Continuity:

Momentum:

 $\frac{\partial \rho_f}{\partial t} + \nabla \cdot \left(\rho_f V_f\right) = 0$ $\frac{\partial \left(\rho_f V_f\right)}{\partial t} + \nabla \cdot \left(\rho_f V_f \otimes V_f\right) = \nabla \cdot \sigma_f + \rho_f g$

Equation of state:

$$\rho_f = \rho_{f_0} + p_f \psi$$

Fluid stress tensor:

$$\boldsymbol{\sigma}_{f} = -p_{f}I + \mu_{f} \left(\nabla V_{f} + \nabla V_{f}^{T} \right)$$

Equation of state

Volume of Fluid method

Liquid volume fraction:

 $\begin{cases} \alpha_{i} = 0 & Gas \ phase \\ 0 < \alpha_{i} < 1 & Interface \\ \alpha_{i} = 1 & Liquid \ phase \end{cases}$

> VOF Advection:

$$\frac{\partial \alpha_l}{\partial t} + \nabla . (V_f \alpha_l) = 0$$

Interface Reconstruction method:
Piecewise Linear Interface Calculation (PLIC) of Youngs (1982)

Numerical scheme

- Solver: compressible VOF
- Segregated solver and fixed system of grids
- 2nd order accuracy in space and time
- Pressure-velocity coupling → Pressure-Implicit with Splitting of Operators (PISO) method
- Adaptive time step based on CFL initially set to 0.1

Governing equations, elastic solid

Elastic deformation: $\rho_s \frac{\partial V_s}{\partial t} + \rho_s \nabla \cdot (V_s \otimes V_s) = \nabla \cdot \sigma_s + \rho_s g$ Solid stress tensor: $\sigma_s = \frac{1}{J} F(\lambda_s(trS)I + 2\mu_s S)F^T$ Deform. grad. tensor: $F = I + \nabla U_s$ St. Venant-Kirchhoff: $S = \frac{1}{2} (F^T F - I)$ $\lambda_s = \frac{\nu_s E}{(1+\nu_s)(1-2\nu_s)}$ $\mu_s = \frac{E}{2(1+\nu_s)}$ Lamé coefficients:

Fluid-solid coupling at interface

Domain & boundary conditions (fluid)

Fluid initial properties	Air	Water
Density (kg/m ³)	1	1000
Kinematic viscosity (m ² /s)	1.48e-05	1e-06
Surface tension (N/m)	-	0.07

Generated pressure upon impact

Results, effect of impact velocity

Impact conditions: d=500 µm, V varies Ma=V/C, C is sound speed in liquid

Results, effect of droplet diameter

Impact conditions: V = 350 m/s, d varies

Imposed pressure history

FEM model

Substrate material: isotropic Ti64			
Young's Modulus	Poisson's Ratio	Bulk Modulus	
1.138e+011 Pa	0.342	1.2004e+011 Pa	
Tensile Yield Strength	Tensile Ultimate Strength	Shear Modulus	
8.8e+008 Pa	9.5e+008 Pa	4.2399e+010 Pa	

Equivalent Stress

Normal Stress

Shear Stress

Axial displacement

Conclusions

- Typical compressible droplet impact:
 - Diameter=0.5 mm, velocity=350 m/s
 - Generated peak pressure: 1.2 Gpa
- Elastic Ti64 response to the impact:
 - Max. equivalent stress: 0.8 GPa
 - Max. normal stress: 1.4 GPa
 - Max. shear stress: 0.3 Gpa
 - > Max. deformation @ center point : 30 microns

Tensile Yield Strength	Tensile Ultimate Strength
0.88 Gpa	0.95 GPa

Thank you!

Questions?

www.concordia.ca

