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The dynamics of high-speed impact between a compressible liquid drop and a solid surface are reviewed.
Previous estimates for the maximum impact pressure have been based on one-dimensional approxima-
tions. This paper presents a two-dimensional approximation, adapted from a closely related analysis of
the oblique impact between two solid plates. This is valid only for the ““initial’’ phase of the impact during
which the expanding shock front generated by the impact still remains attached to the target surface,
and no lateral outflow takes place. The derivations assume a linear relationship between shock velocity
and particle velocity change across the shock front. Numerical results are presented for water and sodium,
and can be generalized as follows: The contact pressure remains substantially equal to the one-dimensional
pressure until the contact angle ¢ at the edge has reached about half of its critical value, at which the assumed
model beaks down and lateral outflow must initiate. As this critical condition is further approached, the
contact edge pressure increases progressively, and its critical value P, is taken as the maximum impact
pressure. The ratio P./poCoV g always exceeds about 2.75 exhibiting a minimum in the vicinity of Vo/Cy=0.2,
where po and C, are the density and acoustic velocity of the liquid, and V) is the impact velocity. These
pressures are considerably higher than have been heretofore supposed, but circumstantial experimental

evidence supports the present results.

I. INTRODUCTION

Material damage and erosion, caused by the impact
of liquid drops, has long been a problem for the steam
turbine designer and operator. The same has recently
become of increasing concern in the aerospace industry,
both because of serious rain erosion problems sustained
by supersonic aircraft and missiles, and because of
anticipated blade erosion problems in turbines of space
power plants using liquid metals as the working fluid.

Unfortunately, we still lack any rigorous solution for
the flow patterns and impact pressures developed in the
collision between a liquid drop and a plane solid surface.
The usual assumptions result in only a rough approxi-
mation of the impact pressure. In order to permit a
better understanding of the effect of such collisions on
the target material, it would be most desirable to know
the exact time-dependent pressure distribution at the
impact interface, or at least the exact value of the
maximum instantaneous impact pressures generated.

The purpose of this paper is to put together a
qualitatively accurate picture of the collision process be-
tween a liquid drop and a rigid surface, and to present
new quantitative results for the maximum impact
pressure generated. The latter are based on an analysis
which Walsh ef al.! had developed for a somewhat
analogous phenomenon.

II. BACKGROUND

One-Dimensional Liquid-Solid Impact

The most frequently used approximations to the pres-
sure developed in liquid-solid impact are based on one-
dimensional “waterhammer” or elastic impact theory.

—_—

']. M. Walsh, R. G. Shreffler, and F. J. Willig, J. Appl. Phys.
24,349 (1933). ’

When the solid surface can be assumed rigid, this results
in

P=P0C0Vo, (1)

where pp and C, are the density and acoustic velocity of
the undisturbed liquid and V, is the impact velocity.
This well-known expression can easily be derived from
momentum considerations, if one assumes that upon
impact a plane pressure or shock wave of magnitude
P propagates into the impinging liquid body at a rela-
tive velocity Co, progressively bringing to rest each
liquid “layer” as it passes through.

The events which actually occur, when a liquid drop
impacts at high speed, differ from this simple model in
two important respects:

(1) The velocity of propagation of a shock wave is
not an invariant, as is assumed in Eq. (1), and only at
very low shock pressures can it even be approximated
by the acoustic velocity of the undisturbed liquid.
More rigorously, the shock wave velocity C must be
treated as a function of the pressure itself.

A one-dimensional analysis incorpotating a variable
shock wave velocity, for both rigid and elastic solid
targets, was recently presented.? We shall make use of
some of these results later, but must restrict ourselves
to impacts on a rigid target. For this case, the impact
pressure was shown? to be approximated by

P:POC0V0[1+k(V0/C0)], (2)

where % is a constant for the liquid considered.

(2) Conditions are not one dimensional. Contact is
initially made at one point and the contact area grows
as the impact process continues. The pressure or shock
front generated by the impact is domed, not plane, and

¢ F. J Heymann, J. Basic Eng. 90, 400 (1968).
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Frc. 1. Initial (compressible) stage of impact, according to
Bowden and Field (Ref. 6).

there is a radial component of particle motion. (Eventu-
ally, there is gross lateral spreading flow.)

The effects of the roundness of the drop, and of the
pressure dependence of C, are significant: We shall see
that the simple waterhammer pressure, given by Eq.
(1), underestimates the actual peak impact pressures
by a factor of at least 3.

Liquid-Solid Impact of Curved Surfaces

Let us now review previous work, and construct the
current state of knowledge, relating to the impact of
liquid drops. Savic and Boult? presented a mathematical
analysis of the low-speed impact and spreading of a
spherical liquid drop on a rigid surface, but it neglects
compressibility of the liquid and consequently predicts
infinite pressure at the first instant of impact. The
analysis therefore is not valid while compressibility
effects are predominant in the liquid response.

An approximate analysis, based on a combination of
flow arguments and pressure wave arguments, was pre-
sented by Engel.* This culminated in the equation

P=(a/2)psCoVs (3)

and a later paper® gave the value «=0.41 for the impact
of a round drop on a rigid surface. Strictly speaking,
this equation was 7ot intended to represent the maxi-
mum pressure developed, but it has often been cited as
such, thus giving rise to the impression that the impact
of a round drop results in much lower contact stresses
than predicted by one-dimensional theory, whereas, as
will be shown, the opposite is really true. Moreover, the
arguments presented in Refs. 4 and 5 assume that lateral
outflow from the impact zone begins immediately, an
assumption not shared by most subsequent thinking on
this matter.

It is now widely accepted that a crucial feature of the
impact process, between a curved liquid surface and a

8 P. Savic and G. T. Boult, Proc. Heat Transfer Fluid Mech.
Inst., 1957, 43.

4QOlive G. Engel, J. Res. Natl. Bur. Std. 54, 281 (1955).

5 Olive G. Engel, J. Res. Natl. Bur. Std. 644, 497 (1960).
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plane solid surface, is the existence of an initia] stage
during which the response of the liquid is entirely com.
pressible, and no gross spreading or lateral outflow
occurs. This was first pointed out by Bowden and R !
Field,® and justified by a simple argument which can
be paraphrased as follows: '

Initially, the perimeter of the liquid/solid interface
moves tangentially outward at a speed which exceeds
the velocity of propagation of the shock waves gener.
ated by the impact. The resulting shock front, therefore
remains attached to the solid surface; and the con:lz
pressed liquid, being bounded entirely by the soliq
surface on one side and by the shock front separating it
from undisturbed liquid on the other, cannot flow out,
It is only when shock waves overtake the interface
perimeter, and reach a “free” surface, i.e., when the
shock front becomes detached, that lateral flow is able
to begin.

While this picture can be accepted qualitatively,
Bowden and Field’s quantitative conclusions, which alsg
have been widely cited, are based on an oversimplified
analysis. These conclusions (see Fig. 1) are (1) that
the limiting contact angle for the initial stage, at which
the shock front becomes detached, is given by

sing=V/C, (4)

where C is the velocity of propagation of the shock
wave, and (2) that until this limit is reached, the im-
pact pressure will be uniform and equal to that cor-
responding to a one-dimensional analysis. We shall later
see that these conclusions are not quite correct. ]
A slightly more accurate picture can be inferred from
a contribution by Skalak and Feit.” This deals with the
impact of a blunt solid body onto the surface of a semi=
infinite compressible fluid; but if the radius of curvature
of the solid body surface is large compaved to the
dimensions of the contact area, the results should apply
at least qualitatively to the droplet problem, so long
as the contact radius is still small compared to the drop
radius. Skalak and Feit’s acoustic wave equation ap-
proach is restricted, however, to an invariant propaga-
tion velocity Cy, to low values of the Impact Mach
Number Mo=V,/Co, and to small “penetrations” of
the liquid surface. The significant conclusions are:

(1) No gross flow or splashing occurs until the pres:
sure waves can overtake the contact area perimeter
and during this initial period the average pressure over
the contact area equals the one-dimensional pressuré
poCoVo.

(2) The pressure distribution is nonuniform during
the initial period, with pressures maximum at the
boundary of the contact area, and minimum at the
center. (‘This distribution was also predicted by Engel
With blunt wedge-shaped solid bodies, the sharper
wedge angle, the greater is the pressure nonuniformity

6F. P. Bowden and J. E. Field, Proc. Roy. Soc. (Londen
A282, 331 (1964).
7R. Skalak and D. Feit, J. Eng. Ind. 88, 325 (1966).
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From these findings, it seems reasonable to infer the
following for the impact of a liquid drop: The pressures
are virtually uniform and equal to pyCV, at the first
instant of contact, but become more and more nonuniform,
wilh their magnitude af the perimeler ever increasing, as
the impact progresses and the contact angle ¢ increases.

Once the limit of the initial stage has been reached,
the shock front becomes detached and lateral outflow
from the impact zone begins. The elastic energy in the
compressed liquid is gradually transformed into kinetic
energy of the lateral flow, and the contact pressures
must decrease. The lateral outflow velocities can be
very high: Lateral velocities which exceed the impact
velocity Vo by a factor of 2-5 have been experimentally
observed by Engel* Bowden and Brunton? and Jen-
kins and Booker.?

While no rigorous analysis of the lateral “jetting”
mechanism has been offered, Bowden and Brunton?
Laschimke,'® and Field" have made the significant ob-
servation that the impact and flow phenomena in the
vicinity of the interface perimeter are very similar to
those which occur in the high-speed oblique collapse of
two metal bodies or plates, as in explosive welding and
cladding. In this process also, a high-speed jet is formed
by what can be superficially regarded as a “wedging”
or “extrusion” action between the collapsing bodies.
The similarity extends even to the circumferential
wrinkles often seen around the impact point of a liquid
drop (see Ref. 8 or 10), and the wave-like nature of the
welded joint in explosive cladding.!

The collapse process was first analyzed by Birkhoff
el al® in terms of an incompressible fluid flow model
which predicts a jet formation under all conditions.
Walsh ef al.! have shown, however, that no jet is
formed when the collapse angle ¢ is less than a critical
angle ¢.. They formulated a compressible flow model in

ZONE OF UNDISTURBED
LIQUID MOVING
DOWNWARD AT V, Pre

ZONE OF
COMPRESSED
LiQuID, AT
PRESSURE P.

RIGID SURFACE
(POINT"A" MOVES TORIGHT AT U,= Vg /tang)

F1c. 2. Conditions at perimeter of contact area (point A in Fig. 1)
during initial no-flow stage of impact.
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F. P. Bowden and J. H. Brunton, Proc. Roy. Soc. (London)
A2963, 433 (1961).,
P D. C. Jenkins and J. D. Booker, in A erodynamic Capture of

%tzcles (Pergamon Press, Inc., New York, 1960), p. 97.

1 R. Laschimke, Arch. Eisenhiittenw. 37, 997 (1966).

J. E. Field, in Proc. Second Meersburg Conf. Rain Erosion

@d Allied Phenomena (Royal Aircraft Establishment, Farn-

orough, England, 1968), Vol. 2, p. 751.
265 ?19%5 I)Bahra,ni and B. Crossland, Proc. Inst. Mech. Engrs. 179,
T” G. Birkhoff, D. P. MacDougall, E. M. Pugh, and G. I.
aylor, J. Appl. Phys. 19, 563 (1948).
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Fic. 3. Conditions at contact perimeter, point A, with translated
coordinates.

which the deflection of the impacting plate is assumed to
be caused by an oblique shock wave which is attached
to the instantaneous collision point A (see Fig. 2).
The critical angle is that condition at which this mode}
is no longer tenable when the dynamics in the region 4
are analyzed. Evidently, the “jetless” model is closely
analogous to the “initial stage” of droplet impact which
has been described earlier, and the critical angle ¢.
corresponds to the limit of this initial stage.

Recently, numerical time-incremented network ap-
proaches, such as the ‘“Marker-and-Cell”’ (incompressi-
ble fluid) and ‘“Particle-in-Cell” (compressible fluid)
methods, have been applied to the impact and splash
of fluid drops.** Neither of these, however, appears to
be as yet applicable to the compressible response of a
liquid drop at intermediate values of the Impact Mach
Number Vo/Cy. Hopefully, extensions of these ap-
proaches will eventually be employed to obtain a com-
plete rigorous solution of the phenomenon with which
we are here concerned. Meanwhile, an approximate
solution which at least approaches the three-dimensional
condition should be of interest.

The remainder of this paper will be devoted to adapt-
ing the analysis of Ref. 1 to the droplet impact case,
and to the discussion of the results so obtained.

III. THEORY
Basic Analytical Model

In the previous discussion we have argued that, in
the impact of a liquid drop onto a rigid plane surface,
there is an initial period in which the shock front cre-

“F, P. Harlow and J. P. Shannon, J. Appl. Phys. 38, 3855
(1967).
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ated by the impact remains attached at the instantane-
ous contact perimeter, and no tangential outflow takes
place. Furthermore, we have argued that during this
stage the instantaneous contact pressures have a maxi-
mum at the contact perimeter. We would like to know
how this pressure changes as the contact angle ¢ in-
creases, and at what critical value of ¢, the shock front
can no longer remain attached,; and lateral low begins.
We assume intuitively that the pressure at the perimeter
at that instant is the highest contact pressure experi-
enced by the target as a result of the impact, and is
therefore of primary interest.

The analysis which follows rests upon several simpli-
fying assumptions. First, we assume that a reasonable
approximation is afforded by a two-dimensional
model, representing a thin parallel slice taken vertically
through the impacting drop. (This would exactly repre-
sent the lateral impact of a liquid cylinder against a
solid surface, as occurs many impingement erosion test
devices.) Second, we assume that we may restrict our
attention to a very small region surrounding the contact
perimeter point A, as though the shock front passing
through A were a semi-infinite plane. The model then
reduces to that shown in Fig. 2, which is essentially the
configuration treated by Walsh ef al.;' whose approach
we shall generally follow. Third, we assume that the
fluid is inviscid and can slip along the solid surface, or
that the consequences of a shear layer are negligible.

The next step is to translate to a coordinate system
moving to the right at velocity U, = Vi/tang, so as to
hold the point A stationary, and thus to transform the
model into a quasisteady flow configuration. Since in
our problem ¢ and hence Uy vary with time, we must
make the further assumption that this quasisteady
point of view is justifiable. Reference 1 argues that this
assumption is valid providing the angle ¢ increases with
time, which of course is true in droplet impact.

The final model is shown in Fig. 3. Relative to the
new coordinates, the undisturbed fluid has a velocity
Uy, composed of components Up, and Uy, normal and
tangential to the shock front, respectively. The com-
pressed fluid has a velocity U which must be parallel to
the rigid target surface, and has components U, and
U, normal and tangential to the shock front. As the
fluid passes through the shock front, its tangential
velocity component is assumed unchanged, so that

UOt: Ug. (5)

The velocities normal to the shock front, and the
density and pressure changes across the shock front,
are related by the usual Rankine-Hugoniot equations.
Note that Ug, represents the velocity of propagation of
the shock front relative to the undisturbed liquid, and
(Upw—U,) represents the particle velocity change
across the shock front. Thus, the momentum relation is

P=poUon(Upn—U») (6)
and the continuity relation is
P()U(m:PUn, (7)

HEYMANN B 4

where P is the pressure rise across the shock fron
po and p are the densities of the undisturbed liqui
compressed liquid, respectively.

Equations (6) and (7) can be solved explicit] g
Us. and U, as follows: Vi |

Usi?= P/po(1—po/p)

tand.
dand»l

o

(8) |

Un*= P(po/p)*/ po(1—po/p). (9) l
I

We now nondimensionalize the above by introducing o
the notations p= P/poCy?, tton= Uon/ Co, t4a=U,/Cy, and
g=1—po/p. The compression coefficient ¢ is preferreq
over u= (p/py) —1 as adopted by Ref. 1, because it re.
sults in tidier expressions and also because its maximuym
range lies between zero and unity rather than between
zero and infinity. We thereby obtain

o’ = p/q (10)

and {
w=p(1—q)%/q. (11)

If we can express p in terms of ¢ by means of a suitahle
equation of state, then #o, and #, become functions of ¢
directly. The equation chosen here is that consistent
with the approximate shock-velocity—particle-velocity
relationship proposed in Ref. 2, which states %

and

Appendix I, Eq. (12) implies that
p=q/(1—kg)*

direct expressions:
son=1/(1—kq)
and

u, = (1—¢)/(1—kq).

the nondimensional wvelocities #o=U,/Cy and %= i
Us/Co=U/C,. This results in

=g’ —up,?,
w=ul+u’,
¢=tan (g, /u,) — tan—1(u,/u,),

or
o= tan [ u, (tto.— ta) / (nd+tt0,1) ],

M =1 sing.

Note that these equations do not permit us to choos
My and ¢ as the independent parameters direc tl
rather, ¢ and #, must be assumed, and ¢ and M follé
from Egs. (18) or (19) and (20).
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Calculations for Critical Angle

If ug is held constant and ¢ is gradually increased, the
resulting values of ¢ first increase, pass through a maxi-
mum, and then decrease. (The corresponding changes
in the various velocity components can be graphically
presented by means of a ‘“‘shock polar diagram,” such
as Fig. 3 of Ref. 1.) This points out two significant facts:
Firstly, the maximum value of ¢ so obtained must be
the critical value ¢, corresponding to the assumed .
Any value of ¢ greater than ¢, is not consistent with
the assumed analytic model and therefore corresponds
to a condition in which lateral jetting flow must be
occurring. Secondly, for any value of ¢ less than ¢.,
therg are two values of ¢ which satisfy the assumed
‘C‘Onthions. These represent a ‘“‘weak shock” and a
strong shock,” respectively. Intuitively, we are inter-
tsted in the lower value of ¢, or the “weak shock” solu-
Uon, since, as ¢ physically increases, we expect the
Pressure and hence ¢ to increase.

The value of ¢,, corresponding to the critical angle
%e, can be determined analytically be setting 9 (tan’)/
99=0 and solving for ¢. Using Egs. (19), (14), (15),

T ’,////
'~
2 < 4
| —— ]
[ P./P
] l 2
|
0 i (o}
o] 0.4 0.8 .2 1.6 2.0 2.4

IMPACT MACH NO. M,

and (16) we obtain
tang =gl ue’(1—kq)*—1]%/[us’(1—kq)*—q]. (21)
This leads to a quadratic with the soluion

_ R(QQug 1) [ (8K —4k) + (k*H-4k) ]2
B 2k (kug+1) ’

(22)

c

A numerical example shows that the minus sign in the
above equation leads to the physically meaningful solu-
tion. The values of ¢., p, Mo, and so on, corresponding
to the critical condition, can then be readily calculated
from the equations given earlier.

It must be acknowledged that the foregoing procedure
obtains each critical point by assuming #, to be held
constant while ¢ is increased until ¢ reaches a maximum,
so that M, changes as g and ¢ change. But our real
interest is in the maximum value which ¢ attains as ¢
increases with M, held constant, during which process
1y must decrease. However, if we are justified in assum-
ing that the “quasisteady-state’ analysis is valid, then
it does not matter by which “path” a critical condition
is approached. The result should still be physically
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correct. Thus, critical values can be calculated by the
manner described, and plotted against the calculated
values of M, rather than against the assumed values of
Ug.

Calculations for Noncritical Angles

The pressures and angles at the critical conditions
are perhaps the most important results to be sought.
But we should also like to have plots of p versus ¢ at
given values of Mo, to show how the pressure at the
contact edge varies as the liquid/solid interface grows.
The procedure, following Ref. 1, is to obtain one point
by assuming values of &, %, and ¢, and calculating in
turn p, ton, %, %, ¢, and My from Egs. (13)-(16), (18),
and (20), respectively. After repeating this for different
values of ¢, one can interpolate graphically or analyti-
cally to determine the values of ¢, p, and so on for
arbitrarily chosen values of My Going through the
same procedure with different assumed values of
leads to a second point for each chosen value of My
and so on. Thus, the desired information can be com-
piled for a given fluid, represented by its given value of
k. (More elegant iterative procedures can be envisioned,
but we were not successful in developing a successful
one in the time available to us.)

Iv. DISCUSSION OF RESULTS

The calculation methods described in the previous
section were programmed in FORTRAN 1v, for a CDC-
6400 computer, and results will be given for £=2.0
and 1.242. The value k=2 fits the data for water up to

about My=1.2, as shown in Ref. 2. Values k=1.242
and £=1.188 have been given by Rice'® for sodium and
potassium, respectively. In order to facilitate compari-
son with earlier theories, pressures are normalized with
respect to the one-dimensional low-speed waterhammer
approximation, given by Eq. (1). Thus, the numerical
values represent the ratio P/psCoVy or p/M,. ‘

Results for critical conditions are plotted against
“Impact Mach Number” My=V,/Cy on Figs. 4 and 5.
Besides the plot of the critical angle ¢, itself, four pres-
sure plots are shown. One is the normalized pressure

sional theory of Ref. 2, which, from Eq. (2) can be
written as Py/poCoVy=1+4EM,. The ratio P,/ Py is alst
plotted, since it represents the correction factor attribuf
able to the drop roundness effect. The fourth pressute
line is that given by the equation

Py/psCoVo=2+ (2k—1) M. (23)

Equation (23) was established inductively by inspee
tion of Iigs. 4 and 5, and provides a reasonable approxk
mation to the critical pressure in each case, provi
M>0.2. The writer has not yet succeeded in derivin
this simple approximation analytically.

Two other interesting generalized observations c@
be made: First, P,/psCoV, exhibits a minimum in th
region of M¢=0.1-0.2, and sharply increases as M
diminishes towards zero. This, of course, does not mea

18 M. H. Rice, J. Phys. Chem. Solids 26, 483 (1965).
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that the pressure P, itself increases with decreasin_g
Mo; in fact, Po also decreases towards zero. What it
Joes mean is that the correction due to the drop
roundness effect (P,/Py) is greatest at small values of
M,. On the other hand, the correction due to the pres-
sure dependence of C, given by Pi/peCoVo, increases
with Mo. These opposing trends lead to a minimum in
the combined correction.

The second observation is that the critical angle ¢,
;s smaller than predicted by the simplified model of
Bowden and Fieldf Eq. (4). This equation, with the
substitution of C=Co(1+4%M,) from Eq. (12) becomes

sin¢1= Vo/C:Mo/(1+kMo) . (24)

The values of ¢ and ¢, for 2= 2, have been plotted on
Fig. 6 to show their difference. The reason for this
difference is that Bowden and Field assumed the shock
front to be normal to the drop surface at the critical
condition; that is, its velocity Up along the drop sur-
face was assumed to be the shock propagation velocity
C. But Fig. 3(b) shows that this is physically impossi-
ple: If the angle (8+¢) were 90°, U, and U would
have to be zero; in other words, there would be no flow
out of the stationary shock wave although there is
flow #nto it. The angles 8. and (8+¢). are also plotted
on Fig. 6. The latter is seen to reach a constant value of
about 55° above Mo=1.2. It can be shown analytically
that, for large values of uo, cot(B+¢).=[(k—1)/k]V2

Experimental confirmation of the angle ¢, here pre-
dicted is lacking. Measurements of the spreading flow
from the impact of a falling waterdrop were reported
by Engel,* but the impact velocity was very low (28 ft/
sec) and the exact stage at which flow initiated was
not determined. Hancox and Brunton!® sought to de-
duce the angle ¢, from measurements of the distance
between the center of the impact and the location at
which shear damage, attributable to high-speed tan-
gential flow, is first observed. Surprisingly, the angles
deduced in this manner proved to be essentially inde-
pendent of impact velocity and even of the liquid used
(mercury or water), and much greater than predicted,
even by Eq. (24). The measured values were around
17°. While no complete explanation of Hancox and
Brunton’s findings are offered here, there are good
reasons for not expecting them to agree with our
theoretical predictions. First, the solid target material
Wwas polymethylmethacrylate (“lucite”), whose acoustic
Impedance is on the same order-of-magnitude as that
of water. Thus the dynamic elastic deformations will
be on the same order-of-magnitude in the solid as in
the liquid, and a theory which assumes the target to
be rigid is certainly not applicable. Second, the critical
tondition is that at which the shock front just detaches
frqm the solid surface, and jetting flow just begins. The
thickness of the jet surely must grow to some finite
value before its damaging potential becomes significant,
T

LO“‘N. L. Hancox and J. H. Brunton, Phil. Trans. Roy. Soc.
ndon, Ser. A 260, 121 (1966).
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Fic. 6. Critical angles,"k=2.

by which time the angle ¢ (if it can still be defined)
will have grown beyond the critical value.

Let us now discuss the magnitudes of the critical
pressures, which, as stated earlier, should represent
(or at least approximate) the maximum instantaneous
pressures generated during the primary impact process.
For water (Fig. 4) the minimum value of P./p,CoVy is
about 2.8, and, in fact, the value

Pc=3p0COV0 (25)

can be used as a good approximation for all impacts in
the medium speed range, say from M;=0.03 (150 it/
sec), to My=0.35 (1750 ft/sec). This range encom-
passes most experiments carried out in steam turbine
blade erosion research.

Again, direct experimental comparison is not avail-
able, due to the difficulty of measuring surface stresses
s0 localized and so fleeting as those under consideration.
There have been a number of attempts to deduce
pressures indirectly, but in many instances these repre-
sented average rather than maximum pressures, calcu-
lated from total load measurements.

One approach toward deducing maximum pressures
is afforded by the hypothesis that erosion due to re-
peated liquid impacts is a fatigue-like process. If this
hypothesis is correct (and it is supported by numerous
metallurgical studies of erosion fractures) then an
analogy can be postulated between the “threshold im-
pact velocity” V', below which no erosion occurs, and
the stress endurance limit ¢, below which no fatigue
failures occur. An exact correspondence should not be
expected, since the stress distribution, the stress cycling
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history, and the strain rate in each stress application,
are all quite different under repeated droplet impact
than under conventional fatigue test conditions. Never-
theless, a rough agreement with Eq. (25) would be en-
couraging. A comparison of erosion threshold velocities
and endurance limits, from several sources, has been
presented by Thiruvengadam.’” His findings were
reasonably consistent with Eq. (25): values of ¢./
poCoV, ranged from 1.8 to 2.1. An additional datum is
provided by Thomas,"® whose result for mild steel can
be expressed as o./peCoV,=2.7.

Maximum impact pressures on the order of 2 peCoV,
or higher have also been deduced by Jolliffe,’® from
measurements of “dislocation rosettes” produced by
single droplet impacts on freshly cleaved lithium
fluoride crystals.

17 A. Thiruvengadam, in Erosion by Cavitation or Impingement,
STP 408 (American Society for Testing and Materials, Phila-
delphia, 1967), p. 22.

18 G. P. Thomas, in Proc. Second Meersburg Conf. Rain Erosion
and Allied Phenomena (Royal Aircraft Establishment, Farn-
borough, England, 1968), Vol. 2, p. 785.

19 K) H. Jolliffe, Phil. Trans. Roy. Soc. London, Ser. A 260, 101
(1966).

cumstantial though it may be, therefore supports fu
conclusion that the maximum impact pressure due toa I di
liquid drop on a rigid surface is approximated by co
(25). This pressure is 15 times as high as the value ob pr
tained from Eq. (4), with «=0.41 for a rigid tar o)
which has been widely quoted in the literature as repre- sh
senting the maximum pressure. gr
Finally, let us examine the manner in which the pre P
sures at the contact perimeter vary, from the initial an
moment of contact until the critical condition I |
reached and jetting initiates. Curves of P/pCoVo versus f to
¢, with M, as a parameter, are presented for k=200 4 pr
Fig. 7 and for k=1.242 on Fig. 8. For each value b b
M, the pressure at ¢=0 is equal to the one-dimensioB# = ps
pressure according to Eq. (2). This is just what W& ar
should expect since, at very low values of ¢, the radl
of curvature of the drop is so large compared to B
radius of the contact area that, for practical purp
conditions can be considered one dimensional. on
pressure curves become increasingly steep as @ b
creases, eventually reaching a vertical slope and s ;M
n

bling backwards, with ¢ now diminishing as the presst&



IMPACT BETWEEN A LIQUID DROP AND A SOLID SURFACE

5121

further increases. This is consistent with our earlier
discussions: The maximum value of ¢ reached is, of
course, the critical angle ¢., and the corresponding
pressure is the critical pressure P,. The portion of the
curve for higher pressures corresponds to the ‘“‘strong
shock” solution, which we have rejected on physical
grounds. The locl of critical points, i.e., the values of
Po/mCoV, versus ., from the earlier results of Figs. 4
and 3, are shown as dotted lines on Figs. 7 and 8.

Note that the one-dimensional pressure, according
to Eq. (2), remains a good approximation of the edge
Pressure until the contact angle ¢ has reached about
half of its critical value. During that phase of the im-
Pact process, the pressure distribution over the contact
&ea may be taken to remain substantially uniform.

V. SUMMARY AND CONCLUSIONS

Heretofore there had existed no reliable information
o the maximum pressure developed in the impact be-
teen 2 round liquid drop and a plane solid surface.

0st estimates have been based on one-dimensional
inalyses which are not strictly applicable. In this paper
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a closer approximation to the physical three-dimen-
sional case is presented, in which the conditions existing
at the instantaneous perimeter or edge of the contact
area are treated in a quasisteady two-dimensional
manner. This approach has been adapted from a some-
what related analysis of Walsh et ¢l.* and makes use of
an equation of state consistent with the one-dimensional
analysis of Heymann.?

The analysis is valid only for the initial phase of
impact, during which the expanding shock front gener-
ated by the impact still remains attached to the target
surface, so that no lateral “jetting” or spreading can
occur. A major result of the analysis is the evaluation
of the critical contact angle ¢, between drop surface
and target, at which the above assumption breaks down
and lateral jetting must be assumed to begin. The criti-
cal edge pressure P, corresponding to that angle, is
assumed to constitute the maximum pressure generated
by the impact. Another result of the analysis is the
variation of the edge pressure as ¢ increases from the
initial instant of point contact until the critical condi-
tion is reached.
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Quantitative results have been presented for two
values of the liquid shock velocity coefficient %, namely
k=2.0 (water) and £=1.242 (sodium). These results
may be summarized as follows:

The edge pressure remains substantially equal to the
one-dimensional pressure until the contact angle ¢
has reached about half its critical value ¢.. Then the
pressures rises at an increasing rate, and 9.P/d¢ be-
comes infinite when the critical condition is reached.
The critical pressure for water can be roughly approxi-
mated by P.=3pCoVy in the impact velocity range
0.03<V,/Cy<0.3. For sodium and potassium, the cor-
responding approximation P,=2.8p,CyV, applies in the
range 0.05<Vo/Co<0.5. At high impact velocities, the
critical pressure is approximated by the expression
P./peCoVo=2+(2k—1) (Vo/Cy). These pressures are
far higher than have heretofore been supposed in most
of the relevant literature, although circumstantial ex-
perimental evidence supports the present results. It is
noteworthy that the drop roundness effect, represented
by the ratio of P, to the one-dimensional impact pres-
sure at the same conditions, is greatest at low velocities,
tending toward infinity as Vo/Cp tends toward zero.
At high velocities, this ratio is on the order of 1.5.

The analysis here presented gives no information
about the pressure distribution within the instantaneous
contact area, but previous related work suggests that
this is nonuniform, the pressure in the center of the
contact area being the lowest. There is still a need,
however, for a complete and rigorous analysis of the
three-dimensional liquid-solid impact problem. This
would probably require a time-incremented numerical
approach, such as the “Particle-in-Cell” method,
adapted for a suitable equation of state and a suitable
Mach number domain.
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APPENDIX: EQUATION OF STATE

Reference 2 presented a simple physical argument
for an approximate relationship between shock velocity,
C and particle velocity V, of the form i

C/Co=1+k(V/Cy) (A1)

and showed that this provided a quite accurate fit to the
exact data for water up to about V/Co=1.2, with k=9,
Other confirmation for such a linear formulation hag
been given by Rice,”® Ruoff,?® and Jones ef al.2 It seems
reasonable, therefore, to adopt the equation of state
implied by Eq. (Al).

The continuity equation across a shock can be ex
pressed as

V/C=1—(po/p) =¢. (A2)
From Egs. (A1) and (A2) we obtain
C/Co=1/(1—kg) (A3)
and
V/Co=(V/C)(C/C)=q/(1—kg).  (A4)

The momentum equation across a shock front can
be put into the form

P/psCo*= (C/Co) (V/Cyo) (A5)
which, with (A3) and (A4) substituted, becomes
p="P/pC?=q/(1—kq)*". (A6)

This is our desired equation of state. We may ask
what its limit of validity is for water, since Eq. (A1)
becomes increasingly inaccurate above V/Co=12
Figure 1 of Ref. 2 shows that at V/Co=2, the true value
of C/Cy is about 4.5, versus 5.0 from Eq. (Al). The
corresponding true value of P/poCe? is 9, versus a caleu-
lated value of 10. Thus, the error in Eq. (A6) is only
on the order of 109 even at values of P/poCq® as high

as 10. This error is probably smaller than other errots

introduced by the simplifying assumptions in the physi
cal model here adopted.
A, L. Ruoff, J. Appl. Phys. 38, 4976 (1967).

20 A, H. Jones, W. M. Isbell, and C, J. Maiden, J. Appl. Phys
37, 3493 (1966).




