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ABSTRACT 
 

Thermodynamic Modeling of the (Mg, Al)-Ca-Zn Systems 

Sk. Wasiur Rahman 

  

Critical assessment of the experimental data and re-optimization of the binary 

Mg-Zn, Ca-Zn, Al-Zn, Al-Ca systems and the Laves phase in the Mg-Ca system have 

been performed. A Comprehensive thermodynamic database of the Mg-Ca-Zn and Al-

Ca-Zn ternary systems is presented from the constituent binary systems using suitable 

extrapolation methods. All available as well as reliable experimental data both for the 

thermodynamic properties and phase boundaries are reproduced within experimental 

error limits.  

In the present assessment, the Modified Quasichemical Model in the pair 

approximation is used for the liquid phase to account for the presence of the short-range 

ordering properly. The intermediate solid solutions are modeled using the compound 

energy formalism. Since the literature included contradicting information regarding the 

ternary compounds in both ternary systems, thermodynamic modeling of phase equilibria 

is used to determine the most likely description of the two ternary systems and to exclude 

the self-contradicting experimental observations. 

The constructed database is used to calculate both the integral and partial 

thermodynamic properties of the constituent binary systems. Moreover, the liquidus 

projections, isothermal sections and vertical sections of the ternary systems are also 

calculated and the invariant reaction points are predicted using the constructed database.  
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CHAPTER 1 
 

Introduction  
 
 

1.1 Thermodynamics of Phase Diagrams 

For doing basic materials research in such fields as solidification, crystal growth, 

joining, solid-state reaction, phase transformation and oxidation, phase diagrams act as a 

foundation. It is a one type of visual representation of the state of materials as a function 

of temperature, pressure and composition of the constituent components [1]. In addition, 

a phase diagram also serves as a blueprint for material design and processing variables to 

achieve the desired microstructure [2].  

The properties of cast or wrought materials derived from a specific alloy system 

depend first and foremost on the phases and microstructural constituents (eutectics, 

precipitates, solid solutions etc.) that are present. The alloy systems containing several 

alloy elements have complex phase relations [3]. A Phase diagram is essential for better 

understanding and investigating these complex phase relationships. However, 

experimental determination of phase diagrams is a time-consuming and expensive task 

and becomes more pronounced as the number of components increases. 

To overcome these difficulties, the calculation of phase diagrams can be very 

handy. A thermodynamic database containing model parameters, giving the 

thermodynamic properties of all the phases as functions of temperature and composition, 

will serve to construct the required phase diagrams. The CALPHAD method [4], is 
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regarded as the most scientific way of calculating the phase diagram. It is based on 

minimization of the Gibbs free energy of the system and is, thus, not only completely 

general and extensible, but also theoretically meaningful.  

Thermodynamic descriptions of the constituent lower order systems, usually 

binaries and ternaries, are obtained based on the experimental phase equilibrium data. 

Once the descriptions for the lower order systems are known, then it is possible to obtain 

thermodynamic descriptions of the higher order systems using a suitable extrapolation 

method [2]. Calculation of phase equilibrium provides information not only about the 

phases present and their compositions, but also provides numerical values for different 

thermodynamic properties i.e. enthalpy, entropy, activity etc. This is very important for 

multi component systems especially for systems having more than three constituent 

elements, where the graphical representation of the phase diagram becomes complicated. 

The lack of sufficient experimental information makes the situation worse. Thus, the 

calculation of phase diagrams along the thermodynamic properties is significant for alloy 

development. Also, the development of computer programs has made the calculation 

much easier, sound and faster which ultimately helped the rapid progress in this field [2]. 

 
1.2 Motivation 

Mg-Al based alloys are one of the most important alloys among all the Mg based 

alloys where the AM series, Mg-(2-6) % Al-(0.35-0.65) %Mn and AZ91, Mg-9%Al-

1%Zn alloy can perform very well at room temperature.  However, the existence of 

creep-induced precipitation of γ-Al12Mg17 phase is responsible to the poor creep property 

of the Mg-Al based alloys. Hence, a large of amount of effort have been made to increase 

the service temperature of these alloys. It was found that, the addition of Ca in Mg-Al-Zn 
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based alloys, forming Mg-Ca-Al-Zn quaternary system, can be beneficial not only to 

keep the costs low but also to improve the mechanical properties especially the creep 

resistance at elevated temperatures. 

The quaternary Mg-Ca-Al-Zn system has complex phase relation containing 

many binary and ternary systems. The conventional empirical investigation on this 

system would be costly and time consuming in searching for optimal combinations of 

chemistry and processing procedure. Thereby, a self-consistent thermodynamic database 

on this quaternary system can act as a roadmap for such searching.  

Four constituent ternary systems: Mg-Al-Zn, Mg-Al-Ca, Mg-Ca-Zn and Al-Ca-Zn 

are needed to construct the quaternary Mg-Ca-Al-Zn system. Figure 1.1 demonstrates 

how all these ternaries contribute in this regard. It is worth mentioning that among these 

ternaries, the Mg-Al-Zn system has been extensively studied by various researchers [5-8] 

both experimentally and by thermodynamic modeling and recently the Mg-Al-Ca system 

was modeled by Aljarrah [9].  

                           Mg 

 

                                                              
                                 

                                                    Al           Ca 
 
                                               
                                              
 
 
                                    
                                    
                                    Mg                              Zn             Mg 
Figure 1.1: Mg-Ca-Al-Zn quaternary system with the combination of the corresponding 

ternary systems 
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Therefore, it is necessary to thermodynamically model the other two ternary 

systems: Mg-Ca-Zn and Al-Ca-Zn, in order to fully describe the Mg-Al-Ca-Zn 

quaternary system. In addition, both the Mg-Ca-Zn and Al-Ca-Zn ternary systems have 

some individual properties which can be very promising as well and will be described in 

the following chapters. 

1.2.1 Importance of the Mg-Ca-Zn Ternary System 

The main objective of adding alloying elements to pure magnesium is to increase 

the strength, to improve its corrosion resistance and to enhance the creep resistance which 

is important for commercial applications including automotive and aerospace sectors. It 

was found that alloying Mg with Ca increases the strength, castability and corrosion 

resistance and at the same time the presence of Zn in the binary Mg-Ca alloys enhances 

the precipitation hardening response [10]. Meanwhile, calcium also improves the 

oxidation resistance of magnesium at temperatures above 750 K [11]. Researchers also 

found that addition of Ca increases the ignition temperature of Mg. This will be helpful 

not only in the melting process, but also for potential automobile and aerospace 

application regarding the safety issues [12]. Calcium bearing Mg alloys show no sign of 

extensive combustion compared to non-Ca bearing Mg alloys as illustrated in Figure 1.2. 

On the other hand, the second major alloying element Zn has significant amount of solid 

solubility in Mg. This results in improving solid solution strengthening in Mg alloys. Zn 

also increases fracture toughness of wrought magnesium alloys [13].  
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Figure 1.2: Non-combustible Ca bearing magnesium alloy [14] 
 

Somekawa and Mukai [15] have recently shown that hot extrusion of Mg-0.3 at.% 

Ca-1.8 at.% Zn resulted in good balance of yield strength and fracture toughness which 

can be seen in Figure 1.3, where Mg-Ca-Zn alloys show improved mechanical properties 

than those of the conventional wrought magnesium alloys.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3: The relationship between fracture toughness and yield strength of 

magnesium alloys [15] 
 
1.2.2 Importance of the Al-Ca-Zn Ternary System 

In order to form complex shaped structures, superplasticity is regarded as a viable 

technique. The technique has the advantages of delivering exceptional formability and 

potentially giving good dimensional tolerance [16]. Al-based alloys have long standings 
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as the work metal for superplastic application due to their lightness and superior creep 

properties compared with those of the standard zinc-based alloys [17]. The Al-Zn 

eutectoid alloy and the Al-CaAl4 eutectic alloy are known to be superplastic. However, 

sheets made of these alloys are brittle and cannot be cold rolled industrially, whereas, Al 

alloys containing Ca and Zn are more ductile and can be cold rolled to superplastic sheet 

using conventional rolling systems [18].  

Another useful and important application of Al-based materials is as sacrificial 

anodes. In recent years, aluminum alloys are characterized by high current efficiency and 

long service life. Hence they are used for the protection of underground and underwater 

pipelines, reservoirs, oil storages, drilling rigs, municipal communications and 

continental shelf structures. But for the conventional aluminum protectors working in 

soils, it is necessary to use special activators (solutions of salts) to prevent the formation 

of passivating films on the surfaces of protectors in the process of operation [17]. 

Whereas, aluminum based protective materials including calcium and zinc do not require 

activating solutions and can withstand that difficulty. 

1.3 Objectives of the present work 

The exceptional properties of Mg alloys such as light weight, good castability and 

recyclability entice the automobile and aerospace manufacturers. Hence a complete and 

reliable thermodynamic database for these alloys is very necessary. The objective of this 

project is to thermodynamically model the Mg-Ca-Zn and Al-Ca-Zn ternary systems. The 

present work includes: 

• Critical evaluation of all the available experimental data on Mg-Zn, Ca-Zn and 

Al-Zn binary systems and Mg-Ca-Zn and Al-Ca-Zn ternary systems.  
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• Thermodynamic modeling of all the phases present in the aforementioned 

systems. Remodeling of the Laves phase in the Mg-Ca system and improvement 

in the Al-Ca binary system are also carried out.   

• Calculation of the phase diagrams and thermodynamic properties of the Mg-Zn, 

Ca-Zn and Al-Zn binary systems and comparing the results with the available 

experimental results reported in the literature. 

•  Construction of database for Mg-Ca-Zn and Al-Ca-Zn systems by combining the 

thermodynamic descriptions of the constituent binaries using a suitable 

extrapolation method. 

• Calculation of ternary phase diagrams of the Mg-Ca-Zn and Al-Ca-Zn systems 

using the constructed databases. 

• Thermodynamic modeling of the different ternary phases in the Mg-Ca-Zn and 

Al-Ca-Zn systems.   

• Identification of the invariant points and the primary solidification regions of each 

field in the Mg-Ca-Zn and Al-Ca-Zn systems and comparing the results with the 

experimental data. 

• Calculation of isoplethal sections as well as the isothermal sections from the 

constructed database and comparison with the corresponding experimental results. 
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CHAPTER 2 
 

Literature Review 
 

     

A brief description of different works found in the literature on the Mg-Ca-Zn and 

Al-Ca-Zn ternary systems and their constituent binary systems: Mg-Zn, Ca-Zn, Mg-Ca, 

Al-Zn and Al-Ca will be discussed in the current chapter. Emphasis is given on the 

critical evaluation of the phase equilibria, thermodynamic properties and crystallographic 

information of these systems.  

2.1    Mg-Zn Binary System  

2.1.1  Equilibrium Phase Diagram  

The first work on the Mg-Zn system was carried out at the beginning of twentieth 

century by Boudouard [19] who determined the liquidus curve for the whole composition 

range using thermal analysis. But perhaps he had a contamination problem indicated by 

the low Mg melting point reported in his work [20]. Hence his reported experimental data 

will not be used in this work.  

Grube [21] investigated the Mg-Zn system using thermal analysis for the whole 

composition. He determined the liquidus line with ± 1 K experimental error, one 

congruently melting compound MgZn2 which melts at 868 K whilst the temperature of 

the two eutectics were given as 641 K on the Zn rich side and 617 K on the Mg rich side . 

His phase diagram did not show any solid solution area.  
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Later, Bruni et al. [22] studied the system from 66.7 to 100 at.% Zn and 

afterward, Bruni and Sandonnini [23] investigated it from 0 to 66.7 at.% Zn through 

thermal analysis. Both Bruni et al. [22] and Bruni and Sandonnini [23] reported only one 

intermediate compound, MgZn2, which melts congruently at 862 K and two eutectics: 

one of them occurs at 28.7 at.% Zn  and 613 K [23] and the other one at 92.5 at.% Zn and 

636 K [22]. Similar to Grube [21], no solid solution was reported by Bruni et al. [22].   

Chadwick [24] determined the liquidus across the whole composition using 

thermal and metallographic analysis with Mg containing 0.1% Si and no defectable 

amount of Fe or Al. He also confirmed the existence of MgZn2, which was first detected 

by Grube [21], but reported a lower melting point than [21] by 10 K. A new compound 

MgZn5 was discovered by Chadwick [24] and confirmed by Hume-Rothery and 

Rounsefell [25], but later was replaced by a more accurate composition of Mg2Zn11 by 

Samson [26]. The eutectic temperature on the Zn rich side of Chadwick [24] was 641 K, 

same as Grube’s [21] value which was higher of 4 K than those of later investigations 

[25, 32]. 

In the following year, Hume-Rothery and Rounsefell [25] used thermal analysis 

and microscopic examination of quenched specimens to investigate the system from 30 to 

100 at.% Zn where their liquidus line agree well with those of Chadwick [24] and Grube 

[21]. They also reported a new compound MgZn formed by a peritectic reaction and later 

on, confirmed by Zaharov and Mladzeevskiy [27], Laves [28], Urazov et al.  [29] and 

Savitskii and Baron [30]. The peritectic temperature for MgZn formation was 627 K 

measured by Hume-Rothery and Rounsefell [25], which was higher than those of 

Anderko et al. [31] and Park and Wyman [32] where the values were 622± 2 K and 
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620± 1 K respectively. Afterward, Clark and Rhines [33] placed the MgZn compound at 

52.1 at.% Zn (74.5 wt.% Zn) rather than 50 at.% Zn(72.9 wt.% Zn) with a compound 

having 12:13 stoichiometric ratio  and it was supported by Park and Wyman [32].   

Takei [34] was the first who found the intermetallic compound Mg2Zn3 which 

occurs by a peritectic reaction between MgZn2 and liquid at 683± 10 K and later on, 

established by Laves [28] who did micrographic and X-ray studies at the same peritectic 

temperature. The values reported by Anderko et al. [31] and Park and Wyman [32] for 

this transformation were 683± 5 K and 689± 1 K, respectively. Both Takei [34] and 

Laves [28] assumed that the Mg2Zn3 phase to be in equilibrium with the Mg terminal 

solid solution at room temperature which was later proved to be wrong by Clark and 

Rhines [33] who investigated the system in the composition range of 0 to 66.81 at.% Zn 

applying thermal, microscopic and powder X-ray diffraction analyses. They found that, 

MgZn, instead of Mg2Zn3, is in equilibrium with Mg terminal solid solution below 598 K 

and their result was confirmed by Anderko et al. [31] and Park and Wyman [32]. Clark 

and Rhines [33] also confirmed that the eutectoid decomposition of Mg7Zn3, which was 

first reported by Takei [34] and Ishida [35], was about 598 K. The peritectic formation of 

the compound Mg7Zn3 is somewhat obscure because of its close proximity to the Mg rich 

eutectic point as reported by different authors in the literature. Urazov et al. [29] located 

the formation of Mg7Zn3 on the Zn side of the eutectic (on the hyper-eutectic side) and 

later Koster and Muller [36] showed the compound to be on the high Mg side of the 

eutectic (on the hypo-eutectic side).  

Anderko et al. [31] also tried to resolve this issue using thermal analysis, 

microscopic examination and X-ray diffraction on alloys made with Mg of 99.995 wt.% 



 11

purity and Zn of 99.9 wt.% purity in the composition range of 25 to 66.7 at.% Zn. They 

[31] found that Mg7Zn3 is formed at 30 at.% Zn in the peritectic temperature range of 

617-621 K  but they were not certain on which side of the eutectic it is located. Almost at 

the same time, Park and Wyman [32] also were working on this system using thermal, X-

ray and metallographic methods and ended up by placing Mg7Zn3 on the right side of the 

eutectic with a peritectic temperature of 615± 1 K. After more than two decades, the 

intermetallic compound Mg7Zn3 was described with a stoichiometric ratio 51:20 

suggested by Higashi et al. [37] after a careful crystal structure determination by single 

crystal X-ray diffraction. They suggested that, the crystal structure to be orthorhombic 

with lattice parameter a = 1.4083 nm, b = 1.4486 nm, c = 1.4025 nm. The new 

composition of Mg51Zn20 (28.169 at.%Zn ) differs a little from that of Mg7Zn3 (30 

at.%Zn) suggested by the previous authors [31, 32, 34, 35]. Higashi et al. [37] placed this 

compound on the hypo-eutectic side. Their results will be adopted in this work. 

Chadwick [24] for the first time showed the solubility of Zn in Mg using 

microscopic examination of the quenched samples. However his results seem to show too 

high zinc content due to the presence of silicon as impurity, which was pointed out by 

Hansen [38]. Therefore his reported data was neglected in this work. Afterward, the Mg 

solvus curve was reported by several investigators such as Schmidt and Hansen [39] 

using metallography, Grube and Burkhardt [40] using electrical resistance measurements, 

Schmid and Seliger [41] using X-ray diffraction and Park and Wyman [32] using X-ray 

diffraction and microscopic examination and their values agree well with each other. 

Hence the results of [32, 39-41] will be used for the thermodynamic optimization of this 

system. Besides, Adenstedt and Burns [42] and Park and Wyman [32], studied the Mg 
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solidus curve where the solubility values of [42] are higher than the data of [32] who 

pointed out the experimental error in the dilatometric measurements of [42]. Park and 

Wyman [32] mentioned the maximum solubility of Zn in Mg is 2.5 at.% Zn at 613± 1 K 

and more emphasis is given on their work which appears to be more reliable considering 

the metal purity, sensitivity of the X-ray diffraction and microscopic examination used 

and the approach to equilibrium. The limited solubility of Mg in Zn was determined by 

Hume-Rothery and Rounsefell [25] applying metallographic analysis and reported that 

the maximum solubility of Mg in Zn is 0.3 at.% Mg at the eutectic temperature of 637 K, 

whereas no experimental points on the Zn solidus could be found in the literature. 

Narrow homogeneity ranges have been reported for all the intermetallic 

compounds but detail quantitative investigations could not be found in the literature. 

Therefore all the intermetallic phases except MgZn2 Laves phase were considered as 

stoichiometric phases. According to Chadwick [24], MgZn2 forms a wide range of solid 

solution extending from 57 to 68 at.% Zn which he termed as γ solid solution though he 

was not sure about its stability at lower temperature. This discrepancy was due to the use 

of acid ferric chloride etching reagent as pointed out by Hume-Rothery and Rounsefell 

[25], according to whom MgZn2 to be of fixed composition. However, later investigations 

[27, 34] indicated that this wide solubility encompassed other intermetallic phases such 

as Mg2Zn3. A much narrower solubility range for MgZn2 was determined by Park and 

Wyman [32] who for the first time reported the homogeneity range to be from 66.0 at.% 

Zn at 689 K to 67.1 at.%Zn at 645 K and discarded any confusion about its instability at 

room temperature. Therefore, the data of [32] will be compared with the current findings. 

The crystal structure of this compound was first found by Friauf [43] and confirmed by 
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Komua and Tokunga [44] to be a C14 type Laves phase with hexagonal structure having   

a = 0.518 nm, c = 0.852 nm lattice parameters [45].  

Clark et al. [46] assessed the Mg-Zn phase diagram based on the experimental 

work of Chadwick [24], Hume-Rothery and Rounsefell [25] and Park and Wyman [32]. 

They accomplished an excellent work by compiling all the experimental data that had 

been conducted prior to their work. However, they did not mention the details of the 

thermodynamic models used for different phases in their work. In fact, their work is more 

a review work rather than an optimization. 

Agarwal et al. [20] also summarized the experimental work of Mg-Zn system and 

carried out a thermodynamic optimization for the Mg-Zn system based on the 

experimental data from the literature and their measured partial enthalpy of mixing data. 

Their calculated phase diagram is shown in Figure 2.1. Random mixing in the liquid 

phase was used in their [20] work and the Redlich-Kistler polynomial [47] to describe the 

liquid phase and the terminal solid solution. All the intermediate phases were regarded as 

stoichiometric phases in their work. 

 

 

 

 

             

 

 
 

Figure 2.1: Calculated Mg-Zn phase diagram [20] 
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Later, Liang et al. [5] modeled this system based on the experimental data from 

literature but they did not show the calculated phase diagram. They also considered the 

liquid phase as random solution and used Redlich-Kistler polynomial to describe it and 

treated the intermediate Laves phase MgZn2 as an ordered phase with narrow solubility 

range and modeled it by considering two sublattices using the compound energy 

formalism(sublattice model) [48]. They used the same number of Redlich-Kistler terms 

as [20] for both liquid and terminal solid solution phases. 

2.1.2 Thermodynamic properties 

The enthalpy of mixing of the Mg-Zn liquid was first measured by Kawakami 

[49] at 1073K using direct reaction calorimetry, but his experimental values were not 

very reliable in terms of experimental method and also very scattered and more 

exothermic in comparison with other experimental values [51, 52]. Hultgren et al. [50] 

also rejected the values of [49] because his values have been found to be wrong in other 

systems (Sn-Mg, Bi-Mg and Pb-Mg ). Pyka [51] measured the enthalpy of mixing of the 

liquid Mg-Zn system at 862, 893 and 981 K using calorimetry where it shows a very 

slight temperature dependence for the enthalpy of mixing which was not pointed out by 

the author [51]. Later on, Agarwal and Sommer [52] performed calorimetric 

investigations to find out the enthalpy of mixing for the liquid phase at 773, 873, 933 and 

940 K where alloys were prepared form Mg with 99.98 at.% purity and Zn with 99.995 

at.% purity. Their measured values at 933 K show some deviation from other values at 

different temperatures especially in the Mg rich side but less in the Zn rich side and 

according to them this is due to the lower value of excess heat capacity at constant 

pressure (Δcp
excess) in the Zn rich liquid alloys and predicted that this behavior occurs 
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because of the stabilization of one or more Mg rich intermediate phases and suggested 

that, it is an indication of short range ordering in the liquid phase.  

Figure 2.2 shows the calculated enthalpy of mixing by Kim et al. [6] who used the 

association model to describe the thermodynamic properties of liquid in the Mg-Zn 

system at 981 K. It shows good agreement with the experimental values.    

 

 

 

 

    

 

 

 Figure 2.2: Calculated enthalpy of mixing for liquid phase in Mg-Zn system at 981K      
with the experimental data [6] 

 
Terpilowski [53] and Chiotti and Stevens [54] measured electromotive force 

(EMF) of Mg in the liquid Mg-Zn alloy in order to determine different partial properties 

of the system in the liquid state. The partial enthalpy of Mg in the liquid phase was 

measured by Terpilowaski [53] at 923K in the composition range of 0.1 to 0.965 at.%Zn. 

He also reported the activity values of Mg using GΔ Mg = MgaRT ln.  equation as shown 

in Figure 2.3. The activity values of Zn were calculated using Gibbs-Duhem equation at 

the same temperature. Agarwal et al. [20] also measured the partial enthalpy of Mg at 

873 K using calorimetric method and their results will be compared with the values of 

[53] and those from the present work. 
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 Later on the activity of Mg was measured by Moser [55] at 880 K and Pogodaev 

and Lukashenko [56] at 933 K and that of Zn by Pogodaev and Lukashenko [56] at 1073 

K using electromotive force measurement. Moser [55] reported an error range of 1 to 6 

percentage at the corresponding temperature. Kozuka et al. [57] used vapor pressure 

measurement to find out the activity of Zn in the liquid phase at 943 K. 

 

  

 

  

 

 

 

 

Figure 2.3: Activity of Mg and Zn for liquid phase in Mg-Zn system at 923K [53] 

Schneider et al. [58] estimated the heat of formation at room temperature for three 

different compounds in the solid state namely: Mg12Zn13, MgZn2 and Mg2Zn11 using 

reaction calorimetry. Afterward, similar properties for Mg12Zn13 and MgZn2 were 

determined by King and Kleppa [59] using tin solution calorimetry. More recent 

experimental values have been measured by Pedokand et al. [60] who determined the 

heat of formation for all the intermediate phases namely: Mg51Zn20, Mg12Zn13 , Mg2Zn3, 

MgZn2 and Mg2Zn11 using EMF. Due to the different experimental techniques these 

values are not consistent.  
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2.2    Ca-Zn Binary System  
2.2.1  Equilibrium Phase Diagram 

Very limited amounts of experimental data have been found in the literature for 

the Ca-Zn system. The first experimental analysis of the Ca-Zn system was executed by 

Donski [61] using thermal analysis. In his experiment, the alloys were prepared in open 

glass tubes using materials that were impure by modern standards. The liquidus curve and 

three congruently melting compounds: CaZn10, CaZn4 and Ca2Zn3 which melted at 990, 

953 and 961 K were reported. The incongruent melting of Ca4Zn and a compound 

designated CaZn were also reported by the same author. Because of the use of highly 

contaminated alloys, his reported values were not considered in this work. Moreover, 

most of the intermediate phases reported by [61] were later replaced by new 

compositions based on the more accurate crystallographic investigations of [62-67].  

Paris [68] also investigated the system by thermal and microscopic analysis where 

he studied the liquidus curve and mentioned a new compound Ca5Zn2 which was formed 

by a peritectic reaction at 684 K. However Ca4Zn and CaZn were not detected by [68]. 

His experimental data were also abandoned in the present calculation because of the 

contradiction with the later experimental work of Messing et al. [69]. 

A through re-investigation on this system was done by Messing et al.  [69], thirty 

years after Paris’ [68] work, using differential thermal analysis (DTA) supplemented by 

X-ray diffraction analysis (XRD). Because of the high vapor pressure of the Ca-Zn alloys 

above 50 at.% Zn, Messing et al. [69] also used vapor effusion measurement for 

compound identification. The samples were prepared in tantalum crucible under helium 

atmosphere from refined 99.99 % Zn and twice sublimed Ca (with impurities of less than 

0.1 wt% total Ba and Sr, 80 ppm other metals, 24ppm N2 and 200 ppm H2). According to 
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Messing et al.[69] the allotropic transformation α (Fcc_A1) ↔β (Bcc_A2) of Ca took 

place at 718 K which is close to 716 K adopted by Itkin and Alcock [70]. They [69] 

reported eight intermetallic compounds: Ca3Zn, Ca7Zn4, CaZn, CaZn2, Ca7Zn20, CaZn5, 

CaZn11 and CaZn13 all of which exist as stoichiometric compounds. Apart from CaZn2, 

CaZn5 and CaZn11, all compounds undergo peritectic decomposition (incongruent 

melting). Their thermal analysis also showed three minima that belongs to eutectic 

reaction: at 27.4 at.%Zn and 667K, at 76.4 at.% Zn and 911K, and at 86.4 at.% Zn and 

963K. The liquidus was determined with the accuracy of ±5 K which is very much 

reasonable for the used method and samples. Most of their reported experimental data, 

especially for the liquidus curve were taken into consideration in the current work. 

Itkin and Alcock [70] assessed the Ca-Zn system where they made some changes 

by replacing Ca7Zn4 and Ca7Zn20 designated by [69] with Ca5Zn3 and CaZn3, 

respectively, based on the more accurate crystallographic investigation of Bruzzone et al. 

[62] and Fornasini and Merlo [63]. Their [70] calculated phase diagram was based mainly 

on the work of Messing et al. [69]. But they did not mention what kind of thermodynamic 

modeling they used during their calculation.  

In 2002, Brubaker and Liu [71] calculated the system mainly based on the work 

of [69]. They assumed the liquid phase as substitutional solution phase and modeled it 

using sublattice model with all the intermetallic compounds. They proposed a new 

interpretation by reporting the CaZn3 to undergo congruent melting which was reported to 

be incongruent melting by previous investigators. They based their decision on Messing 

et al’s. [69] liquidus data and crystallographic data of [63]. The calculated phase diagram 

of [71] is shown in Figure 2.4. 
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Figure 2.4: Calculated Ca-Zn phase diagram [71] 

 
Most recently Spencer et al. [72] evaluated the experimental work of the Ca-Zn 

system and carried out a thermodynamic calculation of this system. They used the 

modified quasichemical model for the liquid phase and considered the CaZn3 phase to be 

incongruently melted. The calculated phase diagram of [72] is shown in Figure 2.5 with 

experimental data of Messing et al. [69]. 

 

 

 

 

 

 

 

 

 

Figure 2.5: Calculated Ca-Zn phase diagram [72] 
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2.2.2 Thermodynamic properties 

The amount of experimental data on the Ca-Zn system both for the solid and 

liquid states is very limited in the literature. The Zn vapor pressure was measured by 

Chiotti and Hecht [73] using the dewpoint method for samples greater than 50 at.%Zn 

and the Knudsen effusion method for lower Zn concentration. Later, Itkin and Alcock 

[70] evaluated the activity of Zn at 1073 K from the vapor pressure measurement data of 

[73]. Delcet and Egan [74] determined the activity of Ca at 1073 K using EMF 

measurements on CaF2 solid electrolyte cells. The calculated value of Spencer et al. [72] 

showed reasonable consistency with the experimental data of [73] and [74] and calculated 

results of [71] as shown in Figure 2.6.  

 

 

 

            

 

 

 

  

Figure2.6: Activity of Ca and Zn in the liquid phase at 1073K [72] 

 

No experimental data for the enthalpy of mixing of the liquid phase could be 

found in the literature. The enthalpy of formation for all the intermediate phases was 
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calculated by Chiotti and Hecht [73] from the temperature dependence of the 

experimental Zn vapor pressure data and phase equilibrium condition.  

2.3    Mg-Ca Binary System  

2.3.1  Equilibrium Phase Diagram 

The Mg-Ca is an important binary system in constructing a full description of the 

Mg-based alloy systems. Addition of Ca to Mg effectively increases the hardness and 

also these alloys have high specific strength [75].  In addition, it is an important part of 

the thermodynamic research of the Mg-Ca-Zn ternary system. As a result, a detailed 

thermodynamic description of this system is important. 

The Mg-Ca binary system was studied by many researchers [76, 77] in the past. 

The most recent and complete thermodynamic description on this system was done by 

Aljarrah and Medraj [78] using CALPHAD approach [4]. They used the Modified 

Quasichemical Model [79-81] to account for the presence of short range ordering in the 

liquid phase. In their work, the Mg2Ca phase was treated as stoichiometric compound, i.e. 

(Mg)2(Ca)1, for simplicity. However, for a multi component system containing Mg, Ca 

and Zn, the Mg2Ca Laves C14 phase must be modeled using more complex sublattice 

model, (Mg,Ca)2 (Mg,Ca)1 so that both the MgZn2 and Mg2Ca phases having the same 

crystal structure, can be represented with one Gibbs energy function and this was 

accomplished in the present work. 

Figure 2.7 shows the calculated phase diagram of Aljarrah and Medraj [78] where 

good consistency was achieved with the experimental data from literature.  
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2.3.2 Thermodynamic properties 

The calculated thermodynamic properties such as enthalpy of mixing, entropy of 

mixing and activities of both Mg and Ca in the liquid phase carried out by Aljarrah and 

Medraj [78] show reasonable agreement with the experimental results from the literature. 

All these properties with experimental data are shown in Figures 2.8 to 2.10. They [78]  

also made a comparison in the calculated results for enthalpy of mixing and entropy of 

mixing using the Modified Quasichemical Model and the Random Solution Model where 

the Modified Quasichemical Model shows better agreement with the experimental results 

of Sommer et al. [89] regarding enthalpy of mixing.  Therefore their model parameters 

will be used in the present work. 
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Figure 2.7: Calculated Mg-Ca binary phase diagram [78] 
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Figure 2.9: Comparison between the calculated entropy of mixing of Mg-Ca liquid at  
807ºC using the modified quasichemical model and random solution model 
[78] 
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2.4    Mg-Ca-Zn Ternary System 

Despite the high potential of the Mg-Ca-Zn system as a source for structural 

alloys, a very limited amount of experimental work has been done on this system 

regarding the phase equilibrium diagram and thermodynamic properties. Paris [68] for 

the first time took the initiative to investigate the system in 1934. He studied the system 

by measuring the cooling curves of 189 different alloys. Paris chose the alloy 

composition in such a way so that the liquidus points could be plotted as sixteen isopleths 

which is shown in Figure 2.11. Although Paris’ [68] samples might have had 

contamination problems, they were used during the optimization of the ternary Mg-Ca-Zn 

system because not many other experimental work on the liquidus curve could be found 

in the literature. Based on his thermal analysis and metallography, Paris reported one 

ternary compound with a composition of Ca2Mg5Zn5 but did not provide any 
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Figure 2.10: Calculated activity of (a) Ca and (b) Mg in Mg-Ca liquid at 
827ºC (Reference state: Ca-liquid and Mg-liquid) [78] 
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crystallographic information for it. Figure 2.12 illustrates the liquidus projection reported 

by Paris [68]. 

 

 

 

 

 

 

 

Figure 2.11: The liquidus projection of the Mg-Ca-Zn ternary system with the location of 
the sixteen isopleths superimposed [68] 

 

 

 

 

 

 

 

  
               A=Ca                D=Mg5Ca3               G=w=CaZn4        L=MgZn5 
   B=Mg  E=Ca5Zn2  H=CaZn10             M=Ca5Zn5C2 
 C= Zn  F=Ca2Zn3  K=MgZn2 
 
Figure 2.12: The liquidus projection of the Mg-Ca-Zn ternary system with the 

solidification regions for different phases [68] 
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Later, the isothermal section in the Mg-Zn side of the Mg-Ca-Zn system at 608 K 

was studied by Clark [92] using metallography and powder X-ray diffraction on seventy-

six alloys searching for other ternary phases which is shown in Figure 2.13. This was 

performed using the diffusion couple method and two ternary compounds were reported, 

namely β and ω which were stable at room temperature under equilibrium conditions and 

disputed the composition of Ca2Mg5Zn5 reported by Paris [68]. Later the compositions of 

the two ternary compounds were mentioned by Clark in the Joint Committee on Powder 

Diffraction Standards (JCPDS) [93, 94] as Ca2Mg6Zn3 for β and Ca2Mg5Zn13 for ω.  

 

 

  

 

 

 

     
 
 

    
ε = Mg_Hcp     ψ = Mg2Zn3 

    ρ= Mg7Zn3        φ = Mg2Ca  
τ =MgZn      β and ω = ternary phase 

 
Figure 2.13: Isothermal section of the Mg-Ca-Zn system at 608 K [92] 

   
Afterward, the potential advantage of the Mg-Ca-Zn alloys motivated researchers 

like Miyazaki et al. [75], Nie and Muddle [95], Horie et al. [96] to study this system but 

these studies were not conclusive regarding phase identification. Then recently, Larinova 

et al. [97] studied this system using XRD and Jardim et al. [98,99] used XRD, 
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transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) 

coupled with scanning transmission electron microscopy (STEM) and scanning electron 

microscopy (SEM). Both of them reported a ternary compound and determined with 

Ca2Mg6Zn3 composition which is similar to the first compound given in the JCPDS card 

reported by Clark [92]. Larinova et al. [97] and Jardim et al. [98,99] prepared their 

samples in the form of ribbons using a melt spinning technique and heat treated those 

samples for almost one hour at 673 K and 473 K, respectively. Jardim et al. [99] also 

reported the crystallographic information of the compound Ca2Mg6Zn3 which is 

presented in Table 2.1.    

Table 2.1: Crystallographic data for the Ca2Mg6Zn3 phase 
 

Phase Crystal 
structure 

Pearson 
symbol 

Space 
group 

Lattice 
parameters(nm) Ref. 

a c 
Ca2Mg6Zn3 Trigonal hP22 P3 1c 0.97 1.0 [99] 

 
A computational thermodynamic model on this system was reported by Brubaker 

and Liu [100] where they considered only the first ternary compound reported by Clark 

[92]. Their proposed model was based on the random mixing of atoms in the liquid 

phase, which cannot properly handle the presence of short range ordering. For these 

reasons, this system is being remodeled using the quasichemical model in this work.  

Figures 2.14 and 2.15 illustrate the calculated liquidus projection and isothermal section 

at 608 K of Brubaker and Liu [100] with the experimental data of Paris [68] and Clark 

[92].  
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Figure 2.14: The calculated liquidus projection of the Mg-Ca-Zn ternary system with 

experimental result form literature [100] 
 

 

 

 

 

 

 

 
 
 
Figure 2.15: The calculated isothermal section at 608 K of the Mg-Ca-Zn ternary system 

with experimental result form literature [100] 
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2.5    Al-Zn Binary System  

2.5.1  Equilibrium Phase Diagram 

The Al-Zn system has been studied extensively in the literature and large amounts 

of experimental information were reported for the liquidus, solidus and solvus curves of 

the phase diagram. Heycock and Neville [101] first investigated the system using thermal 

analysis through cooling the samples. They determined the liquidus curve with the 

eutectic temperature 653.5K at 89 at.% Zn where the values of  Tanabe [102] and Isihara 

[103] were 658 K at 88.7 at.% Zn and 653 K at 88.7 at.% Zn, respectively.  

Tanabe [102] studied the system by means of thermal analysis, microstructure and 

the electric-resistance methods to determine the liquidus and Al-solidus curve. The Al-

solidus curve of [102] was not considered in the present work due to the fact that he did 

the experiment by keeping the samples in the melt tube, so the phase change 

determination can not be accurate enough and this was pointed out by Isihara [103], who 

also used the same methods as [102] supplemented by the dilatometric method and X-ray 

diffraction analysis. From [103], the averages of the heating and cooling curves were 

chosen in the present calculation because of the greater discrepancy between heating and 

cooling and this discrepancy was also acknowledged by the author himself. Several data 

points of Isihara [103] were discarded during optimization because discrepancies between 

heating and cooling were too high (10 K).  

The liquidus and the Al-solidus curve of the Al-Zn system were also determined 

by Gayler et al. [104] from 20 to 100 at.% Zn using thermal and microscopic analysis. 

They reported both the heating and cooling curves for the liquidus where the heating 

curve lies consistently higher than other measurements from the literature and that is why 
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only the cooling curve was considered in the present calculation. The eutectic 

temperature was reported as 654 K by [104]. Later, Pelzel and Schneider [105] studied 

the system from 30 to 100 at. % Zn using specific volume method and their data agreed 

fairly with the data of [104]. The eutectic point was determined by [105] to be at 88.7 

at.%  Zn and 653 K.  

In 1945, Butchers and Hume-Rothery [106] investigated the liquidus and Al-

solidus line of the Al-Zn system using the general cooling curve method for the liquidus 

and metallographic analysis for the solidus curve. Their reported data also agreed 

reasonably well with others. Afterward, almost at the same time, Pelzel [107] and Solet 

and Clair [108] worked separately on this system where their outcomes agree remarkably 

with each other. Pelzel [107] used thermal analysis to measure the liquidus and 

metallography for the solidus curve, whereas Solet and Claire [108] used thermal analysis 

to determine only the liquidus curve. They [108] took particular care in the chemical 

analysis of alloys, temperature measurements and choice of an optimal cooling rate.  

The liquidus and solidus lines of this system were also studied by Peng et al. 

[109] using the acoustic emission method. In their experiment, they found different 

acoustic emission signals during solidification. They [109] reported higher liquidus 

temperatures than other researchers and concluded that the eutectic reaction occurs at 

88.7 at.% Zn and 655 K. They also argued that their method is more precise than the 

conventional thermal analysis because of absence of the heat hysteresis phenomena.  

The Al-solidus curve was also investigated by several researchers. Among them 

Morinaga [110] and Gebhardt [111] used microscopic analysis, Ellwood [112] used high 

temperature X-ray diffraction and recently Araki et al. [113] used electron-probe 
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microanalysis (EPMA) in order to determine the solidus line. Early works [102,103] 

showed lower values for solidus temperatures. Tanabe [102] and Isihara [103] found a 

series of thermal arrests between 713 K and 720 K,  which they [102,103] attributed to a 

peritectic reaction, L + (Al)↔  solid solution (β). Later, Gayler et al. [104] and Morinaga 

[110] demonstrated that the thermal effect is the result of segregation. They [104, 110] 

found no evidence of any kind of phase change and this was supported by later 

investigators [112, 114]. Both Tanabe [102] and Ishihara [103] were unable to predict the 

miscibility gap rather they reported a solid solution which undergoes a peritectic reaction 

as discussed before. 

The Fcc miscibility gap has also been studied by numerous groups of 

investigators [112, 114-119]. Fink and Willey [114] used electrical resistivity at elevated 

temperature and found two aluminum solid solutions in equilibrium at a temperature 

above 548 K. According to [114] the critical temperature is 626 K at 38.5 at.% Zn. 

Borelius and Larsson [115] and Muenster and Sagel [116] also used the electrical 

resistivity measurement to determine the miscibility gap. Borelius and Larsson [115] 

reported the eutectoid decomposition at 550 K with an uncertainty of about ± 0.5 K. On 

the other hand, Muenster and Sagel [116] used 29 alloys in their experiment and reported 

the composition of the critical temperature to be 614.5± 0.4 K at 39.5± 0.002 at.% Zn. 

The miscibility gap also studied by Ellwood [112], who used high temperature X-ray 

diffraction. 

Later, Larsson [117] determined the boundary of the miscibility gap using 

electrical resistivity measurement on 28 different Al-Zn alloys in the composition range 1 

to 65 at.% Zn.  The results of Larsson [117] show slightly higher values in temperature in 
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comparison with the values of [112, 114, 116] above 50.0 at.% Zn. In order to determine 

the miscibility curve more accurately, X-ray diffraction and transmission electron 

microscopy was used by Simerska and Bartuska [118] who measured the Al solvus line 

and boundary of the miscibility gap upto 30.0 at.% Zn and were consistent with the other 

experimental works. Moreover, Terauchi et al. [119] reported the critical temperature to 

be 624 K at 39.16 at.% Zn  and eutectoid temperature as 548 K using the small angle X-

ray scattering method and cooling curve technique. The reported eutectoid temperate of 

[119] is close enough to the later investigation of Holender and Soltys [120], who used an 

electrical resistivity method and reported this value as 549 K. Peng et al. [109] also 

studied the miscibility gap during their investigation on this system using acoustic 

emission method and their results agree well with the earlier experimental works.   

Early determinations of Ishihara [103] significantly overestimated the solubility 

of Zn in Al and will not be considered in the present work. The experimental results of 

Tanabe [102], Fink and Willey [114], Borelius and Larsson [115], Ellwood [112] and 

Araki et al. [113] are more or less consistent with each other except in the composition 

range 10 to 16.5 at.% Zn. The data of [102], [114] and [115] for the phase boundary 

Al_Fcc2/ (Al_Fcc+Zn_Hcp) are consistent in the range 59 to 67 at.% Zn whereas the data 

of Larsson [117] show more scatter than the values of [102,114,115]. 

The experimental works of most of the researchers regarding the solubility of Al 

in Zn are in good agreement with each other. At first, Peirce and Palmerton [121] 

measured the solubility of Al in Zn using electrical resistivity measurements 

supplemented by microscopic analysis. Then Auer and Mann [122] used magnetic 

susceptibility to measure the same phenomena. Lattice parameters were measured by 
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Fuller and Wilcox [123], Burkhardt [124], Lohberg [125] and Hofmann and Fahrenhost 

[126], to detect the Zn solvus line. However, the data of Fuller and Wilcox [123] will not 

be considered in the present assessment due to impurity in the samples and inaccuracy in 

the experiment. Afterward, Pasternak [127] measured the same using electrical resistivity 

and they confirmed the earlier works of [121, 122, 124-126]. 

The thermodynamic and phase equilibrium data were critically assessed by 

Murray [128] in the early eighties where she attempted to develop a thermodynamic 

description for this binary system. Two sets of model parameters for the three phases 

were proposed. However, the calculated phase diagram was not in good accord with the 

experimental data available in the literature and she did not mention which types of 

model were used for the different phases. Mey and Effenberg [129] subsequently re-

evaluated this system thermodynamically, but their calculated phase boundaries of 

Al_Fcc2/(Al_Fcc+Zn_Hcp), as well as those for the miscibility gap of the Fcc phase, 

differ markedly from the experimental values. 

Later, at the same time both Mey [130] and Chen and Chang [131] carried out the 

optimization on this system independently using newly available SGTE (Scientific Group 

Thermodata Europe) database for the lattice stabilities of the elements. Both of them 

achieved reasonable consistency with the experimental data. However, none of the 

aforementioned authors considered the short range ordering neither for the liquid nor for 

the Al-Fcc solid solution phase in their calculations. The calculated phase diagrams of 

[130] and [131] are shown in Figures 2.16 and Figure 2.17 respectively. The recent 

evaluation of this system was done by Mathon et al. [132] where they used Redlich-
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Kistler polynomial [47] to describe the liquid phase along with the terminal solid solution 

phases and did not account for the presence of short range ordering either.               

  

  

  

 

 

 

 

 

 

Figure 2.16: Calculated Al-Zn phase diagram [130] 

 

 

 

 

 

 

 

 

 

Figure 2.17: Calculated Al-Zn phase diagram [131] 
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2.5.2 Thermodynamic properties 

Similar to phase equilibrium studies, a good amount of experimental works 

investigating the thermodynamic properties both for the liquid phase as well as for the 

extended solid solution of the Al_Fcc phase have been found in the literature. Enthalpy of 

mixing over the liquid Al-Zn alloy was performed by Wittig and Keil [133] 

calorimetrically at 953 K. The same property for the Al_Fcc phase was measured by 

Hilliard et al. [134], Corsepius and Munster [135], Wittig and Schoffl [136] and Connell 

and Downie [137] where the former two investigators used EMF measuremnts at 653 K 

and the later two authors [136, 137] used solution calorimeter at 643 K and 637 K, 

respectively. Poor agreement has been found between the calorimetric data and those 

from EMF studies, particularly in the composition range 0 to 40 at.% Zn. Although the 

agreement is better over 40 at.% Zn but the trends in composition of the two sets of data 

are quite different. Figure 2.18 illustrates the calculated enthalpy of mixing of Mey [130] 

both for the liquid and solid phase at 953 K and 643 K, respectively. The curve fits well 

with the experimental values of [133] in the liquid phase but deviates a lot both in terms 

of magnitude and trend from the experimental results of [136] and [137] for the Al_Fcc 

solid solution phase.     
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Figure 2.18: Calculated enthalpy of mixing of liquid at 953K and Fcc phase at 643K   

[130] 
 

The activity of Al in the Al-Zn liquid alloys was measured by Batalin and 

Beloborodova [138] at 960 K, Predel and Schallner [139] at 1000 K and 1100 K and 

Sebkova and Beranek [140] at 973 K and 1073 K. All of them followed EMF method and 

their results agree fairly well with each other. The activity of Zn in the liquid phase was 

determined by Lutz and Voigt [141] at 1000 K, Bolsaitis and Sullivan [142] at 1076 K 

and later, by Yazawa and Lee [143] at 1073 K. Both Lutz and Voigt [141] and Yazawa 

and Lee [143] measured the vapor pressure over a number of liquid alloys using the dew 

point method. Whereas, the activity of Zn was determined by Bolsaitis and Sullivan [142] 

using the isopiestic technique. The activities both for the Al and Zn were calculated by 

Nayak [144] afterward, using iso-peribol calorimeter but did not provide any numerical 

values and hence will not be considered in the present calculation. Chen and Chang [131] 

calculated the partial Gibbs energy in the liquid phase at 1000 K and agree well with the 

experimental values as shown in Figure 2.19. 
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Figure 2.19: Calculated partial Gibbs energy of liquid at 1000K with the experimental 
data of [131] 

 
The activity of Al in the solid Al_Fcc phase was measured by Ptak and Zabdyr 

[145] and Miller et al. [146] using EMF method at 653 K and 703 K, respectively, while 

that of Zn was determined by Piacente et al. [147] by measuring the partial pressure of 

Zn using a multiple rotating Knudsen source coupled with a mass spectrometer at 660 K, 

and by atomic absorption by Takahashi and Asano [148] at 653 K.  

Earlier, both Hilliard et al. [134] and Corsepius and Munster [135] measured the 

partial Gibbs energy of Al in the Fcc solid solution phase at 653 K using the EMF 

method where their results show reasonable agreement with each other and will be used 

in the present work. In addition, Hilliard et al. [134] determined the partial enthalpy of Al 

in the solid phase at 653 K. Chen and Chang [131] calculated the partial Gibbs energy of 

the Al_Fcc solid solution phase at 653 K as shown in Figure 2.20. It can be seen form the 

same figure that their calculated results show good consistency with the experimental 

values for Al but show large deviation from those of [147] and [148] for Zn.    
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Figure 2.20: Calculated partial Gibbs energy of Al_Fcc solid phase at 653K with the 

experimental data of [131] 
 
2.6    Al-Ca Binary System  

The Al-Ca binary system is an important subsystem in the family of creep 

resistant Mg-based alloys. Several research groups [149, 150] worked on this system in 

the past performing both experimental and modeling studies. The most recent work has 

been done by Aljarrah and Medraj [151] by critically evaluating all the available 

experimental work. They used the modified quasichemical model for the liquid phase in 

order to account the presence of short range ordering. Some of their calculated invariant 

points deviate a bit from the experimental points and will be improved in the course of 

the present work by modifying the excess Gibbs energy parameters. 
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2.7    Al-Ca-Zn Ternary System       

Limited amount of experimental data could be found in the literature for the Al-

Ca-Zn ternary system. Kono et al. [152] studied the system using micrography, inverse 

rate thermal analysis, X-ray diffraction and EPMA analysis. They [152] reported two 

quasibinary sections between: Al-CaAlZn and Al-CaZn13. But they indicated congruent 

melting of the compound CaZn13 in the Al-CaZn13 section. Their reported melting point 

for the CaZn13 compound was higher by almost 60 K than the value found in the 

literature [69, 70] where it was reported as an incongruently melted compound. They also 

reported two ternary compounds: CaAlZn and CaZnAl3 where the first one melted 

congruently and the latter formed by peritectic reaction from the liquid and the CaAlZn 

phase at 1129 K. Figures 2.21 and 2.22 show their quasibinary sections.    

 

 

 

 

 

 

 

 

Figure 2.21: The quasibinary section between Al and CaAlZn [152] 
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Figure 2.22: The quasibinary section between Al and CaZn13 [152] 

 

Almost at the same time, Cordier et al. [153] determined the crystal structure of a 

new ternary compound CaAl2Zn2 which is different from CaZnAl3 reported by [152]. The 

crystal structure of this new ternary compound is given in Table 2.2. 

Table 2.2: Crystallographic data for the CaAl2Zn2  phase 

 
Later, Prince [154] assessed the system based on the work of Kono et al. [152] 

but he did not mention the details about the thermodynamic model in his work. He 

mainly focused on the Al-Zn side of the phase diagram. The tentative representation of 

liquidus surface reported by Prince [154] can be seen in Figure 2.23. 

 

Phase Crystal 
structure 

Pearson 
symbol 

Space 
group 

Lattice 
parameters(nm) Ref. 

a c 
CaAl2Zn2 Tetragonal tI10 I4/mmm 0.4127 1.167 [153] 
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Figure 2.23: A tentative Al-Ca-Zn liquidus projection [154] 

After that, Ganiev et al. [155] used differential thermal analysis (DTA), XRD and 

metallographic analysis to study the Al-Ca-Zn system and reported two compounds: 

CaAlZn and CaAl2Zn2 which undergo congruent melting.  

The most recent work on this system has been conducted by Gantsev et al. [156] 

using the metallographic analysis. They mentioned several pseudo-binary sections mainly 

located adjacent to the Al-Zn side. Like Ganiev et al. [155], they [156] reported two 

ternary compounds: CaAlZn and CaAl2Zn2 in their work.  

Since it is found that the existence of the ternary compound CaAlZn has been 

confirmed by all the prior researchers, it will be considered in the current optimization. 

On the other hand, Kono et al. [152] reported a second ternary compound CaZnAl3 which 

was different from CaAl2Zn2 reported by Ganiev et al. [155] and Gantsev et al. [156] in 

terms of composition. Moreover, the crystal structure of CaAl2Zn2 was also confirmed by 

Cordier et al.[153]. Hence CaAl2Zn2 compound is included in the Al-Ca-Zn system.  
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The only thermodynamic description of this system was reported by Zhong [157] 

who modeled the system by simply extrapolating the constituent binaries and did not 

consider any ternary compound in his work. Figure 2.24 shows the calculated liquidus 

projection of Zhong [157]    

 

       

 

 

 

 

 

 
 
 
 

Figure 2.24: Liquidus projection of the Al-Ca-Zn system [157] 
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CHAPTER 3 
 

Thermodynamic Modeling 
 
 
3.1     Methodology of Thermodynamic Modeling 
     

Thermodynamic modeling is a process of finding appropriate Gibbs energy 

equations for different phases in terms of temperature and composition of the constituent 

elements. The Gibbs free energy, G, is thus a function of T, P and the number of moles of 

all the species present in the system, i.e., 

           G = G (T, P, ni,nj,nk,………)      ……………………. ………………… (3.1) 

Where T and P are temperature and pressure and ni ,nj, nk…..are the number of moles of 

the species i,j,k,… present in the system. 

The minimization of the total Gibbs energy is imperative to calculate the phase 

equilibria in a multicomponent system [1] and it can be described as the sum of Gibbs 

energy of all phases multiplied by their mole fractions, i.e.,   

     ∑
=

=
p

i
iiGnG

1

φ
= minimum  ……………………………………….. (3.2) 

Where ni is the number of moles, p is the number of phases and φ
iG  is the Gibbs energy 

of phase i. φ
iG  for the multicomponent system can be defined as: 

     exidealo
i GGGG ++=φ  …………………………………………….. (3.3) 

Where 0G corresponds to the mechanical mixing of pure components, idealG is the 

contribution of ideal mixing and exG is the excess Gibbs energy contribution due to the 
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interactions between the components. To expand the individual terms in equation 3.3, let 

us consider a binary system with components A and B. Thus the mechanical and ideal 

mixing contribution of this system can be expressed as follows:  

       000
BBAA GxGxG +=        ………………………………………  (3.4) 

     THG ideal
mix

ideal −= ideal
mixS      ………………………………………. (3.5) 

Where Ax and Bx are the molar compositions of the components A and B, 0
AG  and 0

BG are 

the Gibbs free energy of pure components A and B at standard state (298.15K and 1 bar).  

For ideal mixing, the contribution of ideal enthalpy of mixing, ideal
mixH , is zero since 

there is no change in bond energy or volume upon mixing. Hence equation 3.5 becomes, 

            TGideal −= ideal
mixS  

           = )lnln( BBAA xxxxRT +−  ………………………………. (3.6) 

Where R is the universal gas constant. The mathematical expression of the excess Gibbs 

energy, exG is different for different models and will be described later in this chapter. 

3.1.1 The CALPHAD Approach 

    The CALPHAD (CALculation of PHAse Diagram) approach pioneered by 

Kaufman and Bernstien [4], is based on the fact that a phase diagram is a representation 

of the thermodynamic properties of a system. Hence, if the thermodynamic properties are 

known, it would be possible to calculate the multicomponent phase diagrams. The 

CALPHAD method is considered to be not only completely general and extensible but 

also scientifically sound for optimization. The basic flowchart of this method is 

illustrated in Figure 3.1. 



 45

 

Figure 3.1: Flowchart of the CALPHAD method [158] 

The initial step of thermodynamic modeling and optimization according to 

CALPHAD method is to collect and classify experimental data relevant to Gibbs energy 

as input. Literally, constitutional and thermochemical results are the data collected from 

the literature and used in this work. Crystallographic information is also useful for 

modeling the Gibbs energy especially for the order phases [158]. The second step is to 

critically evaluate the already collected experimental data to remove inconsistency and 
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contradiction. Also, unreliable experimental data should be identified and eliminated in 

this stage as discussed in the previous chapter. The following step is the selection of a 

suitable thermodynamic model for each phase in such a way that the selected model 

should be physically sound and it should be able to represent the P-T-x domain in which 

the phase is stable. In addition, the model should have reasonable extrapolation 

characteristics in the higher order systems.  During optimization, it is important to select 

the initial input data set appropriately and it is better to assign a weighting factor based on 

the accuracy of the measurement technique and equilibrium condition.  

The next step is to determine the model parameters using the experimental data 

through reproducing the phase diagram and thermodynamic properties and to verify the 

consistency between the calculations and the experimental data. Continuous iteration is 

needed until a reasonable agreement with the experimental points is achieved. After 

successful optimization of the binaries, the excess Gibbs energy parameters will be then 

used to calculate the higher order systems by extrapolation. If experimental data for 

higher order systems are available, then higher order model parameters with small 

magnitude may also be used to ensure consistency with the experimental data. It is 

important to select a suitable geometrical model for reliable extrapolation. Nowadays, 

several software packages are available to perform this thermodynamic calculation more 

easily and accurately. FactSage 5.5 program [159] has been used in the present work.   
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3.2 Analytical Description of the Thermodynamic Models    
Employed 
 
Different models are used for different phases based on the characteristics of each 

individual phase. The mathematical expression of these models is described here. 

3.2.1 Unary Phases 

For pure element i, the Gibbs energy function in a certain phase φ  is described as 

a function of temperature by the following equations [160]:  

=− SER
ii HTG )(φ 97132ln −− +++++++ hTgTfTeTdTTcTbTa  ………… (3.7) 

Where the left hand side of the equation is defined as the Gibbs energy relative to a 

standard element reference state (SER), where SER
iH  is the enthalpy of the element in its 

stable state at 298.15 K. The values of the coefficients a to h are taken from the SGTE 

(Scientific Group Thermodata Europe) compilation of Dinsdale [160] 

3.2.2 Stoichiometric Phases 

Due to strong chemical bonding between atoms, most of the intermettalic phases 

appear in the phase diagram with highly ordered atomic orientation. The Gibbs energy 

function of the binary stoichiometric phase can be given by 

fjjii GGxGxG Δ++= 21 00 φφφ        ……………………………………………….. (3.8)  

Where xi, xj are the mole fractions of components i and j and are given by the 

stoichiometry of the compound, 10 φ
iG and 20 φ

jG  represent the Gibbs energy in their 

standard state and  bTaG f +=Δ  is the Gibbs energy of formation per mole of atoms of 

the stoichiometric compound where the parameters a and b are obtained by optimization 

using experimental results of phase equilibria and thermodynamic data. 
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3.2.3 Disordered Solution Phases 

To describe the disordered solution phases present in all the sub-binaries of the 

Mg-Ca-Zn and Al-Ca-Zn ternary systems, two different types of solution model were 

used. For all the terminal solid solution phases except the Al_Fcc of Al-Zn system, the 

random solution model with Redlich-Kister polynomial [47] was used and the Modified 

Quasichemical Model (MQM) [79-81] was used to describe the liquid phase and Al_Fcc 

solid solution phase to account the presence of short range ordering. 

3.2.3.1 Random Solution Model. Random solution model was used to describe the 

disorder terminal solid solution phases which can be expressed as: 

             φφφφ GxxxxRTGxGx ex
jjiijiii ++++= ]lnln[ G 00  ……………… (3.9)        

Where φ denotes the phase in question and xi, xj denote the mole fraction of component i 

and j, respectively. The first two terms on the right hand side of equation 3.9 represent 

the Gibbs energy of the mechanical mixture of the components, the third term is the ideal 

Gibbs energy of mixing, and the fourth term is the excess Gibbs energy, which is 

described by the Redlich-Kister polynomial model in this work and can be represented 

as: 

     n
ji

mn

n
ji

n
ji

ex xxLxxG )(.
0

, −= ∑
=

=

φφ   ……………………………………….. .(3.10) 

    with φ
ji

nL , = Tba nn ×+       (n =0,1…..m)                          

 

Where  φ
ji

nL ,  is the interaction parameters, n is the number of terms, an and bn are the 

parameters of the model that need to be optimized considering the experimental phase 

diagram and thermodynamic data. 
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3.2.3.2 Modified Quasichemical Model. In order to provide a good prediction for the 

thermodynamic properties of any system, it is necessary to choose the suitable model that 

describes the excess Gibbs energy. The random solution model is not able to properly 

represent the binary solutions with short range ordering (SRO) exhibit enthalpy and 

entropy of mixing functions. Moreover, in this model, the enthalpy and entropy are 

expressed using independent sets of model parameters without being coupled [161]. 

Alloy systems which show a strong compound forming tendency (i.e. Ca-Zn, Al-Ca and 

Mg-Zn system) in the solid state also display a pronounced minimum in the enthalpy of 

mixing of the liquid phase and this is caused due to the existence of short range ordering 

[72]. The “associate” or “molecular” model [162] was also proposed to deal with the 

short range ordering where the model assumes that the some molecules occupy specific 

atomic positions. But one of the important weaknesses of the “associate” model is its 

inability to predict the correct thermodynamic properties of ternary solutions when the 

binary sub-systems exhibit short range ordering [161].  

The presence of short-range ordering can be taken into account with bond energy 

models by considering the interactions between atoms that extend beyond the nearest 

neighbors approximation. This problem has been treated using modified quasichemical 

model (MQM) [79-81]. The model is so-called because it has a mass-action equation that 

is typical in chemical reaction theory. 

Some distinct characteristics of the modified quasichemical model are as follows 

[79-81]: 

i. It permits the composition of maximum short range ordering in a binary 

system to be freely chosen. 
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ii. It expresses the energy of pair formation as a function of composition 

which can be expanded as a polynomial in the pair fraction. Also, the 

coordination numbers are permitted to vary with the composition 

iii. The model can be extended to multicomponent systems. 

Let us consider the following pair exchange reaction for further elaboration of the 

modified quasichemical model 

(A-A) pair  + (B-B) pair = 2 (A-B) pair ; ABgΔ     …………………….. (3.11)  

Where (A-B) represents a first-nearest neighbor pair and ABgΔ  is the nonconfigurational 

Gibbs energy change for the formation of two moles of (A-B) pairs. 

According to Pelton et al. [79-81] the molar Gibbs energy of a binary A-B 

solution is given by: 

 

                  AB
ABconfig

BBAA gnSTgngnG Δ+Δ−+= )
2

()( 00   ……………………..  (3.12) 

 
Here nA and nB are number of moles of component A and B, nAB is the number of moles of 

(A-B) pairs and o
Ag  and o

Bg  are the molar Gibbs energies of the pure components. The 

configurational entropy of mixing, ΔSconfig, can be given by random distribution of the (A-

A), (B-B) and (A-B) pairs and expressed as equation 3.13  
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                                ……………………..  (3.13) 
Where,   

XA and XB are the mole fractions of A and B and can be presented as: 

                  B
BA

A
A X

nn
nX −=
+

= 1                                       ……………………..  (3.14) 
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And, XAA, XBB and XAB are the pair fractions and can be expressed as in equation 3.15 

  
ABBBAA

ij
ij nnn

n
X

++
=            …..…………................ (3.15) 

YA and YB in equation 3.13 are the coordination equivalent fraction and can be expressed 

as in equation 3.16. 

      
BBAA

AA
A nZnZ

nZY
+

=  
BBAA

AA

XZXZ
XZ
+

=  

             
BY−=1                                               ……………………….. (3.16) 

Where ZA and ZB are the coordination numbers of A and B respectively. 

 Pelton et al. [79] suggested a modification of equation 3.12 by expanding the term 

ABgΔ as a polynomial in terms of the pair fractions XAA and XBB which can be represented 

as equation 3.17                 

         ∑∑ ++Δ=Δ
≥≥ 1
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1

0

j

j
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j
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i

i
AA

i
AB

o
ABAB XgXggg         ……………………….. ..(3.17) 

 
Where o

ABgΔ , 0i
ABg and j

ABg 0  are the model parameters to be optimized and can be 

expressed as functions of temperature ( bTag o
AB +=Δ ). 

The further modification suggested by [79] is the composition-dependent 

coordination numbers in order to overcome the drawbacks of the constant coordination 

numbers. This modification can be expressed as follows: 
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Here A
AAZ  and A

ABZ  are the values of ZA when all nearest neighbors of an A atom are A’s, 

and when all nearest neighbors of A atom are B’s, respectively. Similarly for  B
BBZ  

and B
BAZ . 

 The composition of maximum short range ordering is determined by the 

ratio A
AB

B
BA

Z
Z

. Values of A
ABZ  and B

BAZ  are unique to the A-B binary system and should be 

carefully determined to fit the thermodynamic experimental data (enthalpy of mixing, 

activity etc.). In the case of solid solution, it is required that  A
AAZ  = B

BBZ  = A
ABZ  = B

BAZ  due 

to their rigid lattice structure. The values of A
AAZ  and B

BBZ  are common for all systems 

containing A and B as components. The coordination number of the pure elements in the 

metallic solution, Al
AlAl

Zn
ZnZn

Ca
CaCa

Mg
MgMg ZZZZ === , were set to be 6. This gave the best 

possible fit for many binary systems and was also recommended by Pelton et al. [79].  

 For salt or oxide systems where a strong degree of short range ordering usually 

occurs, this model can be further extended. In these cases the solution can be treated with 

two sublattices, I and II. One of which is considered to have the species A, B, C……and 

the other have X, Y, Z…... In a salt system like NaCl-CaCl2 all the cations (Na and Ca) 

are assumed to reside on sublattice I and the anion (Cl) on sublattice II. For metallic 

systems like this work only vacancies are considered to reside on the second sublattice 

and thus the model actually reduces to a single sublattice modified quasichemical model.  
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3.2.4 Ordered Solid Solution Phases 

The Gibbs energy of an ordered solution phase is described by the compound 

energy formalism [48] which can be expressed as:  

 

                   G = Gref + Gideal + Gexcess               …………………… (3.20) 

   ):...::(
0.... kji

q
k

m
j

l
i

ref GyyyG ∑=     ……………………. (3.21) 

   l
i

i

l
i

l
l

ideal yyfRTG ln∑∑=                …………………....(3.22) 

              γ

γ

γ )(
0

:),(
l
j

l
ikji

m
k

l
j

l
i

excess yyLyyyG −×= ∑∑
=

…………………(3.23) 

Where i, j, …k represent components or vacancy, l, m and q represent sublattices. l
iy  is 

the site fraction of component i on sublattice l. fl is the fraction of sublattice l relative to 

the total lattice sites. )..::(
0

kjiG  represents the energy of a real or hypothetical compound 

(end member). γL(i,j):k represent the interaction parameters between components i and j on 

one sublattice when the other sublattice is occupied only by k. 

3.3 Extrapolation Method for the Ternary System 

The thermodynamic phase equilibria of the ternary system can be calculated from 

the optimized parameters of its corresponding binaries using an extrapolation method. 

Different “geometric” extrapolation models have been proposed to obtain a constructive 

ternary system. Among them, the most widely used models are Kohler [163], Muggianu 

[164] and Toop [165] models where the first two are symmetric models and the last one 

is an asymmetric model. Where one component is singled out and treated differently. If 

the binary thermodynamic properties deviate significantly from the regular behavior then 
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different model will give completely different results. Hence, it is important to choose the 

right extrapolation model for the right system and it is a matter of experience. In 

particular, asymmetric models will give better results for some systems, while symmetric 

models are better for other systems. Figure 3.2 illustrates some of the aforementioned 

geometric models. 

 

 

   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

The mathematical expression of the Kohler Model [163], shown in Figure 3.2 (a) 

can be expressed as follows: 

 
(a)  

 

 
(b)  

       
                                               
 

 
 
 
 
 
 
 
 
                                                       (c) 

Figure 3.2: Different “geometric” models for ternary extrapolation: (a) Kohler  
(b) Muggianu and (c) Toop [166] 
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Figure 3.2 (b) shows the Muggianu Model [164], which can be expressed by 

equation 3.24 
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 While Toop Model [165] illustrated in Figure 3.2 (c) uses the following 

expression: 

 

);()(

)1;(
1

)1;(
1

32

3

32

2
23

2
32

1113
1

3
1112

1

2

xx
x

xx
xGxx

xxG
x

xxxG
x

xG

E

EEE

++
Δ++

−Δ
−

+−Δ
−

=Δ  

         …………………(3.26) 

In equations 3.23 to 3.25, EGΔ  and E
ijGΔ  correspond to the integral molar excess 

Gibbs energy for ternary and binary systems, respectively, and 
321 ,, xxx  are the mole 

fraction of components 1, 2 and 3, respectively. 

3.3.1 Ternary Interaction Terms 

Ternary model parameters can be included in the calculation if the ternary 

experimental data are available and identically these parameters do not influence the 

constituent binary systems. However, without ternary terms the extrapolation should 
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provide a reasonable first estimation of the ternary molar excess Gibbs energy. Chartland 

and Pelton [166] proposed the following equations to represent ternary terms for different 

geometrical models. 

 For the symmetric Kohler Model: 
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For the symmetric Muggianu Model: 
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And for the asymmetric Toop Model: 
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Where 0,0 ≥≥ ji  and 1≥k . ijkq )3(12  represents the effect of a third component, 3, on the 

energy due to the pair exchange reaction (equation 3.11) between component 1 and 2. In 

the same way in any ternary system 1-2-3 another two terms may be included: terms 

giving the effect of component 1 upon 23gΔ and terms giving the effect of component 2 

upon 13gΔ . Here gΔ  represents the energy for pair exchange reaction between two 

components.  
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CHAPTER 4 
 

Results and Discussions 
 

     

In order to describe the two ternary systems Mg-Ca-Zn and Al-Ca-Zn, in total five 

constituent binary systems, namely: Mg-Zn, Mg-Ca, Ca-Zn, Al-Zn and Al-Ca are 

required where the first three binaries contribute to model the ternary Mg-Ca-Zn system 

and the last three are needed for the Al-Ca-Zn ternary system. The thermodynamic 

models were kept as simple as possible during optimization by reducing the number of 

model parameters which eventually reduces the uncertainty during extrapolation to a 

higher order system. Also the magnitude of the parameters was kept within reasonable 

limits, not too high or low.  

In this chapter, the obtained results regarding the phase diagram and the 

thermodynamic properties of the aforementioned systems which were optimized 

simultaneously using FactSage 5.5 software [159], have been described briefly.   

 

4.1    Mg-Zn Binary System  

4.1.1  Equilibrium Phase Diagram  

Both Agarwal et al. [20] and Liang et al. [5] who calculated the system so far, did 

not consider the presence of short range ordering (SRO) during their calculations. 

According to Terpilowski [53], the maximum short range order in the liquid phase occurs 

near the composition of Laves phase MgZn2 at around 60 at.% Zn where Hafner [167] 
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reported the tendency of glass formation in the Mg-Zn system in the composition range 

of Mg51Zn20 and MgZn2  which also indicates the tendency for short range ordering in the 

liquid phase [168]. Hence it is imperative to re-optimize the system using the appropriate 

model which can take the presence of short range ordering into consideration. 

The liquid phase was modeled using the modified version of the quasichemical 

model according to equation 3.12 to account the presence of the short range ordering.  

Therefore according to equation 3.17 the optimized Gibbs energy as a polynomial in 

terms of pair fraction can be expressed as: 

=Δ liq
MgZn

exG -8100.84 + 2.26 T + (-146.3 – 3.55 T) XMgMg + (-79.42-4.24 T) XZnZn   J.mol-1   

...................................... (4.1) 

 

The tendency of the maximum short range ordering around the composition 60 

at.% Zn was achieved by setting the coordination numbers of the pairs 6=Mg
MgZnZ  and 

4=Zn
MgZnZ . 

Since both Mg-hcp and Zn-hcp terminal phases have the same crystal structure 

which is hexagonal close-packed, both phases were modeled using one set of Gibbs 

energy description and The Redlich-Kister polynomial [47] was used in this regard.  

Stoichiometric model was used for all the intermediate phases except Laves phase MgZn2 

which was modeled using the compound energy formalism. All the optimized parameters 

for different phases are shown in Table 4.1. The Gibbs energies of the pure Mg and Zn 

were taken from Dinsdale’s compilation [160] as mentioned earlier.  
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Table 4.1: Optimized model parameters for different phases of the Mg-Zn binary system 
  

Phase Terms a  (J/mol-atom) b (J/mol-atom.K )

Liquid 

0
ABgΔ  -8100.84 2.26 
0i

ABg  -146.3 -3.55 
j

ABg 0  -79.42 -4.24 
Hcp-phase hcpZnhcpMgL −− ,0 -2090.19 5.21 
Mg51Zn20 fGΔ  -5276.06 -0.54 
Mg12Zn13 fGΔ  -10440.03 -2.35 
Mg2Zn3 fGΔ  -10877.24 -0.92 
Mg2Zn11 fGΔ  -9882.95 -6.85 

MgZn2 
  

MgMgG :
0  3884.6 0 

ZnMgG :
0  -11432.4 0.57 

MgZnG :
0  18991.13 0 

ZnZnG :
0  7507.28 0 

2
:,

0 MgZn
MgZnMgL  11288.85 0 

2
:,

0 MgZn
ZnZnMgL  11288.85 0 

2
,:

0 MgZn
ZnMgMgL  1.4 0 

2
,:

0 MgZn
ZnMgZnL  1.4 0 

 

The calculated Mg-Zn binary system is shown in Figure 4.1, which shows 

reasonable agreement with the experimental data from the literature. From the same 

figure, it can be seen that there are two eutectic points, four peritetic points and all the 

intermediate compounds melt incongruently except MgZn2. A magnified view of Zn rich 

side of the phase diagram is shown in Figure 4.2 for better illustration with the same 

experimental data points as in Figure 4.1. 
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Figure 4.1: Calculated Mg-Zn phase diagram in comparison with the experimental 

results from the literature 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Calculated Zn-rich side of the Mg-Zn phase diagram with experimental 

results from literature  
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The maximum solubility of Zn in Mg was found to be 2.82 at.% Zn which is close 

to the experimental value of 2.9 at.% Zn reported by Grube and Burkhardt [40].. 

However, Park and Wyman [32] and Schmidt and Hansen [39] reported this as 2.5 at.% 

Zn and 2.4 at.% Zn, respectively. Hence, the value from the present calculation lies 

between the experimental values of [32, 39 and 40]. On the other hand, a very limited 

solubility of Mg in Zn (0.1 at.% Mg) was observed. This is in the same order of 

magnitude of the experimental value of Hume-Rothery and Rousefell [25] (0.3 at.% Mg). 

Moreover, it is worth noting that, both Agarwal et al. [20] and Liang et al. [5] used two 

Redlich-Kister terms to describe the terminal solid solution whereas in the present work, 

one Redlich-Kister term was used.    

  A comparison between the invariant compositions and temperatures resulted 

from this work and the experimental data from the literature is shown in Table 4.2. The 

congruent melting temperature of the intermediate compound MgZn2 was found to be 

862 K which is in good agreement with most of the experimental data except those of 

Grube [21], according to whom the value was 868 K which is the highest among all the 

available experimental data.   

 

 

 

 

 

 

 



 62

Table 4.2: Comparison between calculated and experimental values of the invariant 
reactions in the Mg-Zn system 

 

4.1.2 Thermodynamic Modeling of the MgZn2 (Laves_C14) phase 

At first approximation, the Laves phase was modeled as a linear compound using 

the stoichiometric model. Once a satisfactory thermodynamic description was obtained 

for the whole system, especially the liquid phase, the Laves phase was again remodeled 

as a solid solution using sublattice model.   

Reaction 
type 

Reaction Composition 
(at.% Zn) 

Temperature 
(K) 

Reference 

Eutectic 

 

13122051 ZnMgZnMgL +↔  

28.9 614.0 This work 
- 617.0 [21] 

28.7 613.0 [23] 
30.2 615.5 [24] 
28.1 613.0± 1.0 [32] 
30.0 616.0± 1.0 [31] 

 
HcpZnZnMgL _112 +↔  

 
 

92.9 640.0 This work 
- 641.0 [21] 

92.5 636.0 [22] 
- 641.0 [24] 

92.2 637.0 [25] 
92.2 637.0 [32] 

Peritectic 

 

2051_ ZnMgHcpMgL ↔+  
 

28.9 614.0 This work 
28.3 615.0± 1.0 [32] 

- 617.0 to 621.0  [31] 

 

131232 ZnMgZnMgL ↔+  
 

29.7 620.0 This work 
- 627.0 [25] 

29.0 620.0± 1.0 [32] 
- 622.0± 2.0 [31] 

 

322 ZnMgMgZnL ↔+  

37.1 689.0 This work 
- 683.0± 10.0 [34] 
- 689.0± 1.0 [32] 
- 683.0± 1.0 [31] 

1122 ZnMgMgZnL ↔+  
90.0 654.0 This work 

- 654.0 [32] 
- 653.5 [25] 

Congruent 

 
 
         2MgZnL ↔  
 

66.7 862.0 This work 
66.7 868.0 [21] 
66.7 862.0 [23] 
66.7 858.0 [24] 
66.7 863.0 [25] 
66.7 861.0 [32] 

Eutectoid 13122051 _ ZnMgHcpMgZnMg +↔  28.1 599.0 This work 
- 598.0 [33] 
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According to Hari Kumar and Wollants [158], attention should be given to the 

crystallographic information and the solubility range of the phase during modeling of a 

solid solution using the sublattice model. Only Park and Wyman [32] mentioned the 

homogeneity range for the phase. The crystallographic data of this phase is taken from 

[45] and summarized in Table 4.3. 

 

Table 4.3: Crystallographic data for the Laves_C14 phase [45] 
 

Phase Crystal data Atoms WP1 CN2 PS3 
Atomic position 

X Y Z 

Laves_C14 

(MgZn2) 

Structure type MgZn2 Mg 4f 16 3m 0.333 0.666 0.063 

Pearson symbol hP12 Zn1 2a 12 3  0 0 0 

Space group P63/mmc Zn2 6h 12 mm2 0.830 0.660 0.250 

Space group no. 194 

       Lattice parameter (nm) 
a=0.518 

c=0.852 

Angles: α=90, β=90, γ=120 
1WP = Wyckoff Position, 2CN = Coordination Number, 3PS = Point Symmetry 

  

The coordination numbers shown in Table 4.3 are obtained in this work. It is 

defined as the number of nearest similar and dissimilar atoms around the atom of interest 

[169]. PowderCell software [170] along with the available crystallographic information 

from Table 4.3, are used to determine the substructure of the MgZn2 phase as shown in 

Figure 4.3, in order to model this phase using sublattice model. The unit cell of the 

MgZn2 phase is also shown in the same figure.   
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            (b)                                                     (c)                                                  (d) 

          = Mg                     = Zn1                 = Zn2               = Atom of interest 

 

Figure 4.3: (a) Unit cell of MgZn2, Substructure of    (b) Mg atom with CN=16, (c) Zn1 atom 
with CN=12 and (d) Zn2 atom with CN=12 

 

In the unit cell of MgZn2 phase, as shown in Figure 4.3, atoms are distributed 

among the three crystallographically distinct lattice sites with 16, 12, 12 coordination 

numbers, respectively. Here the larger Mg atom prefer sites with higher coordination 

number (16) whereas smaller Zn atom prefer lattice sites with smaller coordination 

number (12). 
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An intermediate phase usually has ideal stoichiometry where each sublattice is 

occupied with only one constituent species. Hence, at first the sublattice model for the 

MgZn2 phase can be represented by three sublattices:   

(Mg) 4 :( Zn1)2 :( Zn2)6 

According to Hari Kumar and Wollants [158] the number of sublattices can be 

reduced by grouping the sublattices together with similar crystallographic characteristics 

such as same point symmetry criteria and/or same coordination number. As the simplified 

version is more practical from modeling point of view the sublattice Zn1 and Zn2 are 

combined as they have the same coordination number. 

(Mg) 4 :( Zn) 8 

(Mg) 1 :( Zn) 2 

 In reality, in order to model the homogeneity range some atoms in the sublattices 

should be allowed to mix. For an intermediate phase having a narrow homogeneity range 

like MgZn2 phase, the mixing is performed by “defects” which may be vacancies or anti- 

structure atoms (i.e. atoms in the lattice sites belonging to the other kinds of atoms in the 

ideal structure). Because of the close packed structure of the MgZn2 phase antistructure 

atoms are more appropriate as defects than vacancies [169]. Based on that the mixing of 

Zn atom in the Mg sublattice and Mg atom in the Zn sublattice has been allowed and the 

resulting model is: 

(Mg%,Zn).3333:(Mg,Zn%).6667 

 Here ‘%’ denotes the major constituents of the sublattice. This intermediate 

phase having narrow solubility range can be modeled as Wagner-Schottky phase [171]. 

This model of two sublattices covers the whole composition range and therefore the 
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homogeneity range of 671.066.0 ≤≤ Znx  which was reported by Park and Wyman [32] 

could be obtained from this model for MgZn2 phase. Hence the Gibbs energy per mole of 

formula unit can be written as: 

)(
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Where, the last two terms on the right hand side of equation 4.2 represents the 

excess Gibbs energy term, i is the lattice species and I
Mgy , I

Zny , II
Mgy and II

Zny are the species 

concentrations of Mg and Zn on sublattices I and II  and    2
:

0 MgZn
MgMgG ,  2

:
0 MgZn

ZnMgG , 2
:

0 MgZn
MgZnG  and 

2
:

0 MgZn
ZnZnG  can be visualized as the Gibbs energies of the end member phases. The end 

member phases are formed when each sublattices is occupied only by one kind of species 

and can be either real or hypothetical [1]. 

The interaction parameters within the sublattice can be expressed as:  
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MgMg LandLLLGGGG  are 

the parameters which were optimized using the sublattice model with the experimental 

data from the literature. The optimized values of the parameters are mentioned in Table 

4.1. 
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4.1.3 Thermodynamic Properties 

 The calculated enthalpy of mixing of the Mg-Zn liquid at 981K, shown in Figure 

4.4, is in good agreement with the experimental data from the literature except for the 

small deviation from the data of Agarwal and Sommer [52] at 933 K near the 

composition range 20 to 55 at.% Zn. However the current results agree well with those of 

Pyka [51]. It is also worth noting from the same figure that, the minimum value of 

enthalpy of mixing occurs near 60 at.% Zn which is very close to the value suggested by 

Terpilowski [53], where maximum short range ordering takes place.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4: Calculated enthalpy of mixing of Mg-Zn liquid at 981 K 

 
The calculated activities of Mg and Zn components over the liquid phase at 923 K 

and 1073 K are shown in Figure 4.5 where the activity of Mg shows good consistency 

with the experimental data. Some deviation can be seen between the calculated value and 

the experimental data of Pogodaev and Lukashenko [56] and Kozuka et al. [57] for the 

activity of Zn near 40 to 80 at.% Zn. This discrepancy is perhaps due to the less accurate 
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vapor pressure method used by [56] and [57]. However, the calculated activity curve of 

Zn shows reasonable agreement with the calculated results of Terpilowski [53] where he 

extracted the values from the activity of Mg using the Gibbs-Duhem equation.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
Figure 4.5: Calculated activity of Mg and Zn (relative to pure liquid Mg and Zn) in 

Mg-Zn alloys at 923 K and 1073 K, respectively 
 

Figure 4.6 shows the partial enthalpy of mixing of Mg ( HΔ Mg) in the Mg-Zn 

liquid at 923 K in comparison with the experimental results from the literature where 

good consistency was accomplished. 

A comparison between the enthalpy of formation for the intermediate phases and 

the experimental results from the literature is shown in Figure 4.7; in addition, Table 4.4 

demonstrates the numerical values of enthalpy of formation compared with the 

experimental values. Reasonable consistency was achieved with the experimental values 

within the error limits. But the enthalpy of formation for Mg2Zn11 phase measured by 

Pedokand et al. [60] is not consistent with the experimental value of Schneider et al. [58] 
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as well as the calculated value in this work. However, the data of Schneider et al. [58] is 

considered more reliable because of the use of reaction calorimetry.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Calculated partial enthalpy of mixing of Mg in the Mg-Zn liquid at 923 K 
 
  

 

 

 

 

 

 

 

 

 
Figure 4.7: Calculated enthalpy of formation for the intermediate phases of the Mg-Zn 

system at 298.15 K 
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Table 4.4: Enthalpy of formation for different intermediate phases in comparison with the 
experimental results  

 

Composition 
(at. % Zn) 

Intermediate 
phases 

 

Calculated 
enthalpy  

(KJ/mole-atom) 
 

Experimental enthalpy 
(KJ/mole-atom) 

 

28.1 Mg51Zn20 -5.27         -5.85          [60] 

52.0 
 

Mg12Zn13 
 

-10.44 
 

-10.45 ± 3.135   [58] 
  -8.36 ± 0.418   [59] 
         -8.76          [60] 

60.0 Mg2Zn3 -10.88        -12.67          [60] 

66.67 
 

MgZn2 
 

-11.43 
 

-15.04 ± 1.045    [58] 
  -10.91 ± 0.418     [59] 
          -15.63           [60] 

84.6 
 

Mg2Zn11 
 

-9.88 
 

    -10.03 ± 2.508    [58] 
            -5.643         [60] 

 
 

4.2    Ca-Zn Binary System  

4.2.1  Equilibrium Phase Diagram 
 

Brubaker and Liu [71] modeled the Ca-Zn system based on the experimental 

results of Messing et al. [69], which is regarded as the only reliable source of 

experimental data considering the experimental accuracy. They modeled all the phases 

using a sublattice model without accounting for the presence of short range ordering. 

They considered the intermediate phase CaZn3 to be melted congruently by taking an 

assessment of the liquidus data of Messing et al. [69] but in that case, the liquidus of 

CaZn3 on the Ca rich side becomes too flat and according to Okamoto and Massalski 

[172], this is thermodynamically improbable. In addition, according to Hafner [167], the 

Ca-Zn system belongs to the class of glass-forming binary metallic systems which 

indicates the tendency for short range ordering in the liquid phase [168].  
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Most recently, Spencer et al. [72] remodeled the system using modified 

quasichemical model for the liquid phase. However, their work has just appeared after 

this system has been modeled in this work. In addition, to build a self-consistent Mg alloy 

database, an independent re-optimization and thorough assessment on this system has 

been performed in the present work.  

The Modified Quasichemical model was used to describe the liquid phase which 

accounts for the presence of short range ordering. The peritectic formation of the 

compound CaZn3 was considered in the present work due to lack of adequate 

experimental work and also to avoid the unlikely thermodynamic behavior which is also 

supported by the recent work of Spencer et al. [72]. According to equation 3.17 the 

optimized Gibbs energy for the liquid phase can be written as: 

=Δ liq
CaZn

exG -17765 + 0.084 T -10282.8 XCaC a- 7942.0 XZnZn    J/mol    ……………. (4.5) 

   The coordination number for the first nearest neighbors of Ca and Zn atoms 

( Zn
ZnZn

Ca
CaCa ZZ , ) were set equal to 6. The tendency of maximum short range ordering near 

the composition of most stable intermediate phase (in this case CaZn2) was obtained by 

setting  6=Ca
CaZnZ  and 3=Zn

CaZnZ . These were determined by iterative process to get the 

optimum result. 

A stoichiometric model was used for all the intermediate phases. For the liquid 

phase the reference state of the components are Ca-liquid and Zn-liquid and for the 

stoichiometric phases the reference states are Ca_Bcc and Zn_Hcp, respectively. Neither 

Ca nor Zn displays any solubility in one another and hence terminal solid solubility was 

not included in the present work. Table 4.5 shows all the optimized parameters for 

different phases.  
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Table 4.5: Optimized model parameters for different phases of the Ca-Zn binary system 
  

Phase Terms a  (J/mol-atom)  b (J/mol-atom.K )

Liquid 

0
ABgΔ  -17765.0 0.084 
0i

ABg  -10282.8 0 
j

ABg 0  - 7942.0 0 
Ca3Zn fGΔ  -11906.31 -3.82 
Ca5Zn3 fGΔ  -14486.92 -0.88 
CaZn fGΔ  -17842.54 -0.53 
CaZn2 fGΔ  -22728.35 -1.48 

CaZn3 fGΔ  -21418.76 -2.66 
CaZn5 fGΔ  -19997.51 -3.84 
CaZn11 fGΔ  -14798.75 -3.62 
CaZn13 fGΔ  -14149.64 -4.23 

 

Figure 4.8 shows the optimized phase diagram of the Ca-Zn system along with the 

experimental results. The whole system has been split into two parts and is shown 

separately, for better understanding, in Figures 4.9 and 4.10 respectively. The calculated 

phase diagram shows reasonable agreement with the experimental data from the 

literature. The allotropic transformation α (Fcc_A1) ↔  β (Bcc_A2) of Ca takes place at 

716 K which is the same as the value adopted by Itkin and Alcock [70] during their 

assessment of this system. The temperatures and phase composition of invariant reactions 

are presented in Table 4.6. It can be seen from the same table that the maximum 

difference of temperature between the experimental and calculated results is 6 K which is 

acceptable within the error limits.   
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Figure 4.8: Calculated Ca-Zn phase diagram in comparison with experimental results 

from the literature 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.9: Enlarged portion of the Ca-Zn phase diagram (Ca-rich side) 
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Figure 4.10: Enlarged portion of the Ca-Zn phase diagram (Zn-rich side) 
 

Table 4.6: Comparison between calculated and experimental values of the invariant 
reactions in the Mg-Zn system 

Reaction 
type 

Reaction Composition 
(at.% Zn) 

Temperature 
(K) 

Reference 

Eutectic 

L↔  Ca3Zn + Ca5Zn3 
28.4 664 This work 
27.4 664 [69] 

L↔CaZn3 + CaZn5 
76.0 913 This work 
76.4 911 [69] 

L↔CaZn5 + CaZn11 
85.4 960 This work 
86.4 963 [69] 

Peritectic 

L+Ca_Bcc↔Ca3Zn 27.9 666 This work 
- 667 [69] 

L+CaZn↔Ca5Zn3 
36.4 687 This work 

- 687 [69] 

L+CaZn2↔CaZn 39.7 712 This work 
- 712 [69] 

L+CaZn2↔CaZn3 
75.3 915 This work 

- 915 [69] 

L+CaZn11↔CaZn13 
98.3 942 This work 

- 942 [69]] 

Congruent 

L↔CaZn2 
66.7 971 This work 
66.7 977 [69] 

L↔CaZn5 
83.3 964 This work 
83.3 968 [69] 

L↔CaZn11 
91.7 995 This work 
91.7 997 [69] 

Allotropic Ca_Fcc↔Ca_Bcc 
0.0 716 This work 
0.0 718  [69] 
0.0 716 [70] 
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4.2.2 Thermodynamic properties 
 

The calculated activities of Ca and Zn over the Ca-Zn liquid at 1073 K are shown 

in Figure 4.11 where a reasonable agreement was accomplished between the calculated 

curves and the experimental points. Comparison is also made with the assessment of 

Spencer et al. [72] in the same figure. Better agreement was not possible without 

deteriorating the liquidus curve. 

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  Figure 4.11: Calculated activities of Ca and Zn in the Ca-Zn liquid at1073 K 

 
 

Figure 4.12 shows a comparison between the calculated enthalpy of formation of 

all the intermediate phases and the experimental data. The consistencies for all the phases 

are reasonable except some mismatch exists for Ca3Zn where the experimental value is 

more negative than the calculation. However, the calculations of [71] and [72] showed 

very similar results to the present calculation. 

  



 76

Chiotti and Hecht [73], Vapor pressure
This work

C
a 

3Z
n

C
a 

5Z
n 

3

C
aZ

n

C
aZ

n 
2

C
aZ

n 
3

C
aZ

n 
5

C
aZ

n 
11

C
aZ

n 
13

Mole fraction, Zn

E
nt

ha
lp

y 
of

 fo
rm

at
io

n 
(K

J/
 m

ol
.a

to
m

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-25

-20

-15

-10

-5

0

Calculation of Spencer et al. [72]
Present calculation

Mole fraction, Zn

En
th

al
py

 o
f m

ix
in

g 
(J

/m
ol

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-20000

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12: Calculated heat of formation for the intermediate phases at 298.15 K with 

the experimental data  
 

The calculated enthalpy of mixing in comparison to the calculated curve of [72] 

over the Ca-Zn liquid phase at 1173 K is shown in Figure 4.13. The trend of these two 

curves is similar however, the results of [72] are more exothermic than the present 

calculation for the whole composition range. 

 

 

 

 

 

 

 

 

Figure 4.13: Calculated enthalpy of mixing in the Ca-Zn liquid at 1173 K 
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4.3    Mg-Ca Binary System  

4.3.1  Equilibrium Phase Diagram 
 

All the phases except Mg2Ca compound of the Mg-Ca binary system were 

reproduced using the same model parameters reported by Aljarrah and Medraj [78]. The 

intermediate phase Mg2Ca has the Laves C14 crystal structure which is similar to MgZn2 

phase in the Mg-Zn binary system. Hence it is decided to remodel Mg2Ca phase using the 

sublattice model in order to represent both MgZn2 and Mg2Ca Laves C14 phase by one 

set of Gibbs energy parameters. This eventually makes both the phases as a single phase 

in the ternary Mg-Ca-Zn system with only one Gibbs energy description which is valid in 

all regions. The parameters for the remodeled Mg2Ca phase are shown in Table 4.7.   

Table 4.7: Optimized model parameters for the Mg2Ca phase of the Mg-Ca binary system 
 

Phase Terms a  (J/mol-atom) b (J/mol-atom.K )  

Liquid 

0
ABgΔ  -13187.9 7.98 
0i

ABg  6908.55 -23.0 
j

ABg 0  8899.22 -15.93 
Hcp-phase hcpMgL −0 1710.06 -12.32 

Mg2Ca 
  

MgMgG :
0  3884.6 0 

CaMgG :
0  -11146.67 6.27 

MgCaG :
0  5573.33 0 

CaCaG :
0  42078.67 0 

CaMg
MgCaMgL 2

:,
0  14006.43 0 

CaMg
CaCaMgL 2

:,
0  14006.43 0 

CaMg
CaMgMgL 2

,:
0  14006.43 0 

CaMg
CaMgCaL 2

,:
0  14006.43 0 
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The remodeled Mg2Ca phase using the parameters of Table 4.7, along with all 

other existing phases are in the complete Mg-Ca binary phase diagram shown in Figure 

4.14. 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.14: Calculated Mg-Ca phase diagram in comparison with experimental results 

from literature 
 
4.3.2  Thermodynamic Modeling of the Mg2Ca (Laves_C14) Phase 

In order to model the Mg2Ca (Laves_C14) phase, sublattice model was used in 

this work. This was accomplished by following the same approach used to model MgZn2 

as described earlier in detail. The crystallographic information and the substructure of the 

Mg2Ca phase are shown in Table 4.8 and Figure 4.15, respectively. 
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Table 4.8: Crystallographic data for the Laves_C14 phase [45] 
 

Phase Crystal data Atoms WP1 CN2 PS3 
Atomic position 

X Y Z 

 

 

 

Laves_C14 

(Mg2Ca) 

Structure type Mg2Ca Mg1 2a 12 3 m 0.0 0.0 0.0 

Pearson symbol hP12 Ca 4f 16 3m 0.333 0.666 0.062 

Space group P63/mmc Mg2 6h 12 mm2 0.830 0.660 0.250 

Space group no. 194 

       Lattice parameter (nm) 
a=0.6225 

c=1.018 

Angles:α=90, β=90, γ=120 
1WP = Wyckoff Position, 2CN = Coordination Number, 3PS = Point Symmetry 

 

 

 

 

 

                                           
(a) 

 

 

 

 

 

 

       (b)    (c)        (d)                  

                       = Ca                   = Mg1                = Mg2             = Atom of interest 
 
Figure 4.15: (a) Unit cell of Mg2Ca, Substructure of    (b) Ca atom with CN=16, (c) Mg1 atom 

with CN=12 and (d) Mg2 atom with CN=12 
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4.4 Mg-Ca-Zn Ternary System 
 

A self-consistent thermodynamic database for the Mg-Ca-Zn system has been 

constructed by extrapolating the three constituting binaries Mg-Zn, Ca-Zn and Mg-Ca. 

Ternary interaction parameters were used in order to achieve consistency with the 

available experimental data from the literature. These ternary terms were kept as small 

numerically as possible which was also suggested by Chartland and Pelton [166]. The 

symmetric Kohler geometric model [163] was used for extrapolation since none of the 

constituent binaries show extreme dissimilarity in their thermodynamic properties. The 

different ternary compounds reported in the literature were considered during the present 

optimization. 

4.4.1 Ternary Phase Diagram 

The main features of the Mg-Ca-Zn ternary system will be discussed in this 

section by means of polythermal projections, isoplethal analysis and isothermal section. 

The optimized ternary parameters both for the liquid phase and ternary compounds are 

represented in Table 4.9.  

Table 4.9: Optimized model parameters for different phases of the Mg-Ca-Zn ternary 
system 

  
Phase Terms a  (J/mol-atom) b (J.mol-atom.K )   

Liquid 
LMgCa(Zn) -12540.0 0 
LMgZn(Ca) -12540.0 0 
LCaZn(Mg) 4180.0 0 

Ca2Mg6Zn3 fGΔ  -14801.83 -0.17 
Ca2Mg5Zn13 fGΔ  -16740.51 -0.10 
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4.4.1.1 Polythermal Projection. The polythermal or liquidus projection is a two 

dimensional representation of the ternary liquidus surface on the Gibbs triangle which is 

mainly composed of several constant temperature lines called liquidus isotherms. The 

liquidus projection of the Mg-Ca-Zn system is shown in Figure 4.16 where the heavier 

solid lines represent the univariant valleys and the arrows on these lines indicate the 

directions of decreasing temperature. There are six ternary eutectic (E1 to E6) points, 

eleven quasi-peritectic (U1 to U11) points, one ternary peritectic and eight maximum (m1 

to m8) points present in this system. The ternary invariant reactions are summarized in 

Table 4.10. The calculated liquidus projection shows reasonable consistency with the 

experimental results for most of the primary solidification regions except some deviation 

in the Zn-rich side. This is perhaps due to the fact that, Paris [68] reported two different 

compounds namely CaZn10 and CaZn4 in that region. But later investigation proved four 

other compounds: CaZn3, CaZn5, CaZn11 and CaZn13. It is not clear from Paris’ results 

which data points correspond to CaZn3 and which ones would correspond to CaZn5. The 

same applies to the CaZn11 and CaZn13 compounds. Hence in Figure 4.16, based on 

Paris’ work [68] one common symbol was used to mark CaZn3 and CaZn5 and another 

one for CaZn11 and CaZn13. It is also worth noting that, assuming the existence of a 

second ternary compound (Ca2Mg5Zn13) during optimization, resulted in a better 

consistency with the experimental points of Paris [68] and Clark [92]. More details 

about this assumption in comparison with the other possibilities will be discussed in the 

following section. 
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Figure 4.16: Calculated liquidus surface of the Mg-Ca-Zn system in comparison with the 

experimental data of Paris [68]. The shaded area in the Mg-rich region of 
the liquidus surface shows the location of the compositions used in [97] 
and [98] 
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Table 4.10: Calculated invariant reactions and special points in the Mg-Ca-Zn system 

 
 

 

 

Type Reaction 
Composition (wt.%) 

 Temp 
(K) Reference 

Mg Ca Zn 

E1 L↔  Mg_Hcp+Ca2Mg6Zn3+Mg2Ca 55.6 11.5 32.9 701.5 This work 
55.5 16.0 28.5 673.0 [68] 

E2 L↔  Mg_Hcp+Ca2Mg6Zn3+CaZn2 
17.6 24.7 57.7 720.0 This work 
13.5 24.0 62.5 723.0 [68] 

E3 L↔CaZn2+Ca2Mg6Zn3+Ca2Mg5Zn13 17.1 19.2 63.7 720.0 This work 

E4 L↔Mg_Hcp+Ca2Mg6Zn3+Mg12Zn13 44.5 2.1 53.4 610.0 This work 

E5 L↔Mg2Ca+Ca_Fcc+Ca3Zn 
10.5 59.5 30.0 580.0 This work 
8.0 59.0 33.0 592.0 [68] 

E6 L↔Ca2Mg5Zn13+MgZn2+CaZn11 9.1 4.0 86.9 800.0 This work 

P1 L+Mg2Ca+Ca_Bcc↔Ca_Fcc 17.0 78.7 4.3 708.0 This work 

U1 L+Mg51Zn20↔Mg_Hcp+Mg12Zn13 46.4 1.0 52.6 599.0 This work 

U2 L+Mg2Zn3↔  Mg12Zn13+Ca2Mg6Zn3 44.7 1.5 53.8 615.0 This work 

U3 L+Ca2Mg5Zn13↔  Mg2Zn3+Ca2Mg6Zn3 43.7 1.8 54.5 620.0 This work 

U4 L+MgZn2↔  Mg2Zn3+Ca2Mg5Zn13 35.3 2.2 62.5 682.0 This work 

U5 L+CaZn11↔  MgZn2+CaZn13 7.9 0.9 91.2 790.0 This work 

U6 L+CaZn5↔  CaZn11+Ca2Mg5Zn13 7.8 6.7 85.5 810.0 This work 

U7 L+CaZn5↔  CaZn3+Ca2Mg5Zn13 8.0 14.3 77.7 780.0 This work 

U8 L+CaZn3↔  CaZn2+Ca2Mg5Zn13 8.5 14.8 76.7 770.0 This work 

U9 L+CaZn2↔  Mg2Ca+CaZn 10.0 47.4 42.6 598.0 This work 

U10 L+CaZn↔  Mg2Ca+Ca5Zn3 10.0 49.5 40.5 588.0 This work 

U11 L+Ca5Zn3↔  Mg2Ca+Ca3Zn 10.2 55.2 34.6 580.0 This work 

m1 L↔Mg_Hcp+ Ca2Mg6Zn3 54.5 10.8 34.7 711.2 This work 

m2 L↔Mg2Ca+ Ca2Mg6Zn3 34.8 19.3 45.9 776.3 This work 

m3 L↔Mg2Ca+ Ca2Mg6Zn3 15.6 30.0 54.4 723.7 This work 

m4 L↔CaZn2+Ca2Mg6Zn3 17.1 21.0 61.9 722.3 This work 

m5 L↔  Ca2Mg6Zn3+ Ca2Mg5Zn13 23.6 13.7 62.7 740.3 This work 

m6 L↔  CaZn5+ Ca2Mg5Zn13 8.0 8.8 83.2 834.4 This work 

m7 L↔  MgZn2+ Ca2Mg5Zn13 13.4 4.5 82.1 824.7 This work 

m8 L↔  MgZn2+ CaZn11 8.6 2.6 88.8 804.9 This work 
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4.4.1.2 The Approach Followed to Include the Ternary Compounds in the Mg-Ca-
Zn System 

 
As mentioned earlier, the experimental data reported in the literature by Paris [68] 

and Clark [92] regarding the number of ternary compounds in the Mg-Ca-Zn system are 

self-contradicting. Therefore several scenarios combining these two works were tried in 

order to find out the most probable description of this system. In this method, the ternary 

phase diagram was calculated and compared with all the experimental data for the 

following cases:    

•  Considering only the compound (Ca2Mg5Zn5) reported by Paris [68]  

•  Considering only one (Ca2Mg6Zn3) of the two compounds reported by Clark  [92] 

•  Considering only the two ternary compounds (Ca2Mg6Zn3 and Ca2Mg5Zn13)   

reported by Clark  [92]  

• Considering Paris’ compound (Ca2Mg5Zn5) with one of Clark’s compounds 

(Ca2Mg5Zn13)  

Several vertical sections (Sections V, VI, and VII in Figure 2.11) which passed 

through the regions of probable compound formation have been chosen and presented in 

Figures 4.17 to 4.20, for better clarification and comparison. 
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Figure 4.17: Calculated isoplethal analysis of section (a) Mg2Ca-MgZn2, (b) Mg2Ca-Zn 

and (c) Mg2Ca-CaZn11 in comparison with the experimental data of [68] 
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Figure 4.18: Calculated isoplethal analysis of section (a) Mg2Ca-MgZn2, (b) Mg2Ca-Zn 
and (c) Mg2Ca-CaZn11 in comparison with the experimental data of [68] 
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Figure 4.19: Calculated isoplethal analysis of section (a) Mg2Ca-MgZn2, (b) Mg2Ca-Zn 
and (c) Mg2Ca-CaZn11 in comparison with the experimental data of [68] 
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Figure 4.20: Calculated isoplethal analysis of section (a) Mg2Ca-MgZn2, (b) Mg2Ca-Zn 
and (c) Mg2Ca-CaZn11 in comparison with the experimental data of [68] 
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Figure 4.17 illustrates the calculated vertical sections V, VI, and VII by 

considering only the ternary compound reported by Paris [68]. It shows reasonable 

consistency except some deviation in the region belonging to CaZn5 especially in Figures 

4.17 (b) and (c) (sections VI and VII) which might be an indication of the presence of a 

second compound.    

By considering one of the two ternary compounds reported by Clark [92] almost 

similar liquidus curves like the first case have been obtained and demonstrated in Figure 

4.18. Again the presence of a second ternary phase near the primary solidification region 

of CaZn5 especially in Figures 4.18 (b) and (c) (sections VI and VII) becomes markedly 

apparent.  

Based on the aforementioned observations, it is decided to consider the two 

ternary compounds reported by Clark [92]. Figure 4.19 illustrates the outcome of this 

consideration through different vertical sections. It can be seen from this figure that these 

calculated vertical sections are considerably closer to the experimental data points than 

those calculated without considering the second ternary compound. 

Finally, the system was modeled considering two ternary phases where one of 

them was reported by Paris [68] (Ca2Mg5Zn5) and the other one reported by Clark [92] 

(Ca2Mg5Zn13). Figure 4.20 shows the calculated vertical sections in relation to the 

experimental data. Liquidus curves similar to those in the previous case have been 

obtained for all the verticals.   

There are other two possibilities which can be considered regarding the ternary 

compounds in this system. One by including only the second compound (Ca2Mg5Zn13) 

reported by Clark [92]. Second, considering the compound reported by Paris [68] 
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(Ca2Mg5Zn5) with the first compound reported by Clark [92] (Ca2Mg6Zn3). These 

scenarios were not pursued because of the following reasons: (1) The presence of the 

ternary compound Ca2Mg6Zn3 was confirmed by later investigators [97-99], so it should 

be included in the Mg-Ca-Zn ternary system. (2) Paris’ [68] compound and Clark’s [92] 

first compound are similar in composition and Clark’s first compound is thought of as a 

replacement of that of Paris.  

Therefore, among the four feasible cases which were discussed earlier, it can be 

seen that the last two where two ternary compounds were considered provided better 

consistency with the experimental points of the ternary phase equilibria than the first two. 

In the last two feasible scenarios, the second phase (Ca2Mg5Zn13) as reported by Clark 

[92] is common. The only difference between these two cases is the composition of the 

first ternary compound which is Ca2Mg6Zn3 (reported by Clark [92]) for the third case 

and Ca2Mg5Zn5 (reported by Paris [68]) for the last one. Clark [92] heat treated the alloys 

using a diffusion couple for almost three weeks and this method is thought to be more 

reliable for phase identification than that of Paris [68] who used thermal and 

metallographic analysis. In addition, Paris’ liquidus curves suggested the presence of the 

second ternary compound which he was unable to detect. It is also worth mentioning that, 

the works of Larinova et al. [97] and Jardim et al. [98] mainly concentrated on the 

primary solidification region of Mg-rich solid solution and the locations of their alloy 

compositions are shown in Figure 4.16. For this reason perhaps they were unaware about 

the existence of the second ternary phase. Hence more emphasis has been given for the 

result of Clark [92]. All the other isopleths of Paris [68] shown in Figure 2.11 were also 
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reproduced concurrently during optimization considering the two ternary compounds of 

Clark and found to be consistent. Those vertical sections are presented in figure 4.21. 
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Figure 4.21: Calculated isoplethal analysis of sections (a) Mg2Ca-CaZn2, (b) Mg-45.2 
wt.%Ca----Ca-28.0 wt.%Zn, (c) Ca----Mg-70.0 wt.%Zn, (d)Mg-45.2wt.%Ca---Ca-
53.0wt.%Zn,(e)Mg-45.2wt.%Ca---Mg-70.0wt.%Zn,(f)Mg-45.2wt.%Ca---Mg-25.0 
wt.%Zn,(g)Mg---Ca-50wt.%Zn,(h)Mg-40.0wt.%Zn---Ca-76.5wt.%Zn,(i)MgZn2-
CaZn2,(j)MgZn2-CaZn11, (k) At 10.0 at.%Mg, (l)At 50.0 at.%Zn and (m)Mg-CaZn2 in 
comparison with the experimental data of [68] 
 

4.4.1.3 Isothermal Section. One way to show the phase relation between different phases 

of a ternary system is using isothermal sections which is basically a horizontal slice 

constructed through the three dimensional diagram. It represents both solid and liquid 

stable phases for different compositions at constant temperature. Figure 4.22 shows the 

calculated isothermal section of the Mg-Ca-Zn system at 608 K where reasonable 

agreement with the experimental data of Clark [92] was achieved by considering two 

ternary compounds. Some discrepancy can be observed around the ternary phase 

Ca2Mg6Zn3 because it was modeled as stiochiometric phase whereas, Clark [92] 

speculated homogeneity in that phase but he was unable to determine its limits.  It can 

also be seen from the same figure that a small region of liquid phase appears in the Ca-

rich side of the ternary phase diagram at 608 K even though Clark [92] did not report any 
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liquid phase at this temperature. This is perhaps due to the fact that, he did the experiment 

in the Mg-Zn side of the ternary system.  

 

       

 

 

 

 

 

 

 

 

 

Figure 4.22: Calculated isothermal section of the Mg-Ca-Zn system at 608 K with two 
ternary compounds and compared with experimental data [92] where A 
denotes: Ca2Mg6Zn3 and B denotes: Ca2Mg5Zn13 

 

4.5    Al-Zn Binary System  

4.5.1  Equilibrium Phase Diagram 

All the previous works [128-132] regarding thermodynamic modeling did not 

consider the presence of short range ordering neither for the liquid phase nor for the 
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Al_Fcc solid solution in the Al-Zn binary system. In order to model the Al_Fcc terminal 

solid solution the sublattice model will not be an appropriate model because the sublattice 

model has been extensively used to describe the intermediate interstitial solid solution 

with ordered crystal structure where in Al-Zn system the Al_Fcc phase is a terminal 

substitutional solid solution with random orientation of atoms [173] but with short range 

ordering. The random Redlich-Kister polynomial [47] had also been applied to describe 

the solid phase by Mey [130] but failed to be consistent with the experimental points for 

the enthalpy of mixing. 

It is important to note that, Rudman and Averbach [174] found the evidence of the 

short range ordering in the Al_Fcc solid solution during their experiment on this system. 

Hence, the modified quasichemical model will be employed in the Al_Fcc substitutional 

solid solution with evidence of short range ordering and also for the liquid phase in this 

work. For the Zn_Hcp solid solution the Redlich-Kister polynomial [47] is used. 

According to equation 3.17, the optimized Gibbs energy for the liquid phase can be 

written as:      

=Δ liq
AlZn

exG 4057.94 -1.463T    J/mol              ……………. (4.6) 

The coordination number for the first nearest neighbors of Al and Zn atoms 

( Zn
ZnZn

Al
AlAl ZZ , ) were set equal to 6. The values of Al

AlZnZ  and Zn
AlZnZ  were set equals to 5. 

For the Al-fcc solid solution the optimized Gibbs energy can be expressed as:   

=Δ − fccAl
AlZn

exG 3803.8+0.25 T + (313.83-1.34 T) XAlAl + (-3347.34-0.418 T) XZnZn   J/mol                        
……………. (4.7) 

 
For the very rigid lattice structure of solid solutions, all the coordination numbers 

must be equal. Clearly, in this case, 6==== Zn
AlZn

Al
AlZn

Zn
ZnZn

Al
AlAl ZZZZ . Table 4.11 listed all 
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the optimized model parameters for different phases in the Al-Zn binary system. Using 

these parameters the Al-Zn phase diagram is drawn and shown in Figure 4.23.  

 Table 4.11: Optimized model parameters for different phases of the Al-Zn binary system 
  

Phase Terms a  (J/mol)  b (J/mol.K )   
Liquid 0

ABgΔ  4057.94 -1.463 
Zn-hcp hcpZnL −0 13377.88 0.438 

 
Al-fcc 

0
ABgΔ  3803.8 0.25 
0i

ABg  313.83 -1.34 
j

ABg 0  -3347.34 -0.418 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.23: Calculated Mg-Zn phase diagram in comparison with the experimental 

results from the literature 
 

The isobaric phase diagram shows a large Fcc solid solution with a miscibility 

gap and Zn-rich hcp solid solution. Except few discrepancies for the miscibility gap in 

the Fcc phase, the phase diagram shows reasonable agreement with all the experimental 
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points. As shown in Figure 4.23, the model calculated miscibility gap for the Al-rich 

portion is high in temperature however, there are appreciable disagreements between the 

experimental data obtained by different groups of investigators for the Fcc miscibility gap 

as well as for the Al_Fcc2/(Al_Fcc+Zn_Hcp) phase boundary. The solubility of Zn in Al 

increases from 0.33 at.% Zn at room temperature to 16.0 at.% Zn at the eutectoid 

temperature which is 555 K. Above 555 K the solvus curve lies on the Zn rich side of the 

Fcc miscibility gap where the solubility increases from 58.4 at.% Zn at 555 K to 68.0 

at.% Zn at the eutectic temperature of 651 K.  

The maximum solubility of Al in Zn was found to be 2.8 at.% Al at the eutectic 

temperature which lies between 2.6 and 2.9 at.% Al reported by Auer and Mann [122] 

and Lohberg [125], respectfully. Table 4.12 lists all the invariant points calculated in the 

present work in comparison with the experimental results.        

Table 4.12: Comparison between calculated and experimental values of the invariant 
reactions in the Al-Zn system 

 

Reaction 
type 

Reaction Composition 
(at.% Zn) 

Temperature 
(K) 

Reference 

Eutectic 

 
 

HcpZnFccAlL __ +↔  

 
 
 

88.2 651.0 This work 
89.0 653.5 [101] 
88.7 658.0 [102] 
88.7 653.0 [103] 

- 654.0 [104] 
88.7 653 [105] 
88.7 655 [109] 

Eutectoid HcpZnFccAlFccAl ___ 2 +↔  

58.3 555.0 This work 
59.8 553.0 [112] 

- 548.0 [114] 
- 550.0± 0.5 [115] 

59.4 553.0 [117] 
- 548.0 [119] 
- 549.0 [120] 

Critical 
point 

 
 

2___ FccAlFccAlFccAl +↔  
 

38.5 634.0 This work 

38.5 626.0 [114] 

39.16 624.0 [119] 
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4.5.2 Thermodynamic properties 
 

The calculated enthalpy of mixing at 953 K over the liquid phase in the Al-Zn 

system is shown in Figure 4.24. Good agreement has been achieved between the 

calculated results and the calorimetric data of Wittig and Keil [133]. The endothermic 

trend of the enthalpy of mixing is obvious due to the flat nature of the liquidus curve in 

the phase equilibrium diagram. It also reflects the fact that formation of Al-Al and Zn-Zn 

pairs is more favorable than the formation of Al-Zn pairs in the liquid phase.    

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.24: Calculated enthalpies of mixing of Al and Zn in liquid Mg-Zn alloy at 953 K 

in comparison with the experimental results 
 

The calculated activity in the liquid Al-Zn alloys at 1000 K and 1073 K can be 

seen in Figure 4.25. As expected, both activities of Al and Zn show positive deviation 

from the ideal solution behavior. It can be seen from the same figure that the activity of 

Zn at different temperatures shows some deviation from the results of Lutz and Voigt 
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[141] and Yazawa and Lee [143] but agrees well with the values of Bolsaitis and Sullivan 

[142]. This is due to the less accurate vapor pressure method used by [141] and [143].    

 

 

 

 

 

  

 
 

 

 

Figure 4.25: Calculated activity of Al and Zn in the liquid state at 1000 K and 1073K 
 

Figure 4.26 illustrates the calculated enthalpy of mixing in the extended Al_Fcc 

solid solution at 653 K in comparison with the experimental results from the literature. 

Reasonable consistency has been achieved with the EMF results of Hilliard et al. [134] 

and Corsepius and Munster [135] but the current calculation differs markedly from the 

solution calorimetric results of Wittig and Schoffl [136] and Connell and Downie [137]. 

The results of Wittig and Schoffl [136] and Connell and Downie [137] show that in the 

composition region around 50.0 at.% Zn there is a fall in the enthalpy values which 

indicates an ordered phase formation in the solid solution though no confirmatory 

evidence of it could be found.The most reliable experimental works [104,110,112,114] 

on phase equilibrium diagram also could not found the evidence of any kind of phase 
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change and hence more emphasis has given to the results of [134] and [135] in the 

present assessment.    

 

 

 

 

 

 

 

 

    

 
 
Figure 4.26: Calculated enthalpies of mixing in the Al_fcc solid solution at 653 K in 

comparison with the experimental results 
 

The calculated activity of Al and Zn and the partial Gibbs energy of Al in the Fcc 

phase at 653 K is shown in Figures 4.27 and 4.28 respectively. The Al activity curve 

shows good consistency with the experimental points whereas the activity of Zn shows 

large deviation from the experimental points in Figure 4.27. The temperature of 653 K is 

only about 25 K higher than the critical temperature of the miscibility gap. Due to the 

close approximate of this temperature to the miscibility gap, the behavior of the 

thermodynamic properties can be expected to be similar to that of miscibility gap. Hence 

at 653 K, the Gibbs energy curve is expected to be flat enough similar to the miscibility 

gap in the composition range of 25.0 to 45.0 at.% Zn. This means the partial Gibbs 

energy will change slowly with increasing composition as shown in Figure 4.28. 
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However, the values obtained by Piacente et al. [147] and Takahashi and Asano [148] 

change rapidly with composition where both of them used the less accurate vapor 

pressure method. Nevertheless the current assessment is consistent with the experimental 

results for the Al activity, partial Gibbs energy and partial enthalpy of mixing as can be 

seen in Figures 4.27, 4.28 and 4.29. 

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.27: Calculated activity of Al and Zn in the fcc phase at 653 K 
 

The calculated partial Gibbs energy of Al in the fcc phase can be seen in Figure 

4.28 where reasonable agreement with the experimental data of Hilliard et al. [134] and 

Corsepius and Munster [135] was obtained except for some mismatch at higher than 

50.0 at.% Zn. 
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Figure 4.28: Calculated partial Gibbs energy of Al in the fcc phase at 653 K 
 

Figure 4.29 shows the calculated partial enthalpy of mixing of Al at 653 K in 

comparison with the experimental points of Hilliard et al. [134] where good agreement is 

accomplished. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.29: Calculated partial enthalpy of mixing of Al in the fcc phase at 653 K 
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4.6    Al-Ca Binary System  

4.6.1  Equilibrium Phase Diagram 
 

The most recent work on the Al-Ca binary system has done by Aljarrah and 

Medraj [151]. They critically evaluated all the available experimental data in the 

literature and used the modified quasichemical model to describe the liquid phase. In the 

present work, some modifications have made by adjusting the values of the composition 

dependent coordination numbers and the excess Gibbs energy parameters to increase the 

consistency with the experimental results. According to equation 3.17 the optimized 

Gibbs energy for the liquid phase can be written as: 

=Δ liq
AlCa

exG -30572.52 + 10.58 T+ (1.32T) XAlAl + (-4890.6-0.38T) XCaCa    J/mol        

……………. (4.8) 

The coordination number for the first nearest neighbors of Al and Ca atoms 

( Ca
CaCa

Al
AlAl ZZ , ) were set equal to 6. The tendency of maximum short range ordering near 

the composition of most stable intermediate phase (in this case Al2Ca) was obtained by 

setting  3=Al
AlCaZ and 6=Ca

AlCaZ . These were determined by iterative process to get the 

optimum result. 

All the optimized parameters for different phases are shown in Table 4.13. The 

Gibbs energies of the pure Mg and Zn were taken from Dinsdale’s compilation [160]. 

 
 
 
 
 
 
 
 



 104

1358.0 K

973.0 K

888.0 K 906.0 K

830.0 K 849.0 K 834.0 K

Al_Fcc

A
l 4C

a

A
l 2C

a

A
l 14

C
a 1

3

A
l 3C

a 8

Ca_Fcc

Ca_Bcc

Keverkov & Schmid-Fetzer [175]

Matsuyama [176]

Donski [177]

Mole fraction, Ca

T
em

pe
ra

tu
re

 (K
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Table 4.13: Optimized model parameters for different phases of the Al-Ca binary system 
  

Phase Terms a  (J/mol-atom) b (J/mol-atom.K )  

Liquid 

0
ABgΔ  -30572.52 10.58 
0i

ABg  0.0 1.32 
j

ABg 0  -4890.6 -0.38 
Al4Ca fGΔ  -18506.59 -3.31 
Al2Ca fGΔ  -30225.80 -6.29 

Al14Ca13 fGΔ  -25111.14 -5.14 
Al3Ca8 fGΔ  -16254.45 -4.78 

 
The re-optimized Al-Ca binary system is shown in Figure 4.30, which shows 

reasonable agreement with the experimental data from the literature. Neither Al nor Ca 

dissolves into one another and therefore no solid solution appear in the phase diagram. 

Table 4.14 lists all the invariant points in comparison with the experimental data as well 

as the calculation of Aljarrah and Medraj [151].    

 

 

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.30: Re-optimized Al-Ca phase diagram in comparison with the experimental 

results from the literature 
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Table 4.14: Comparison between the present calculation and the calculated and 
experimental values from the literature of the invariant reactions in the Al-
Ca system 

 
 
4.6.2 Thermodynamic properties 

The re-optimized excess Gibbs energy parameters have also been used to 

calculate the different thermodynamic properties in the liquid phase of the Al-Ca system. 

Figure 4.31 and 4.32 depict the calculated enthalpy of mixing and activity of Al and Ca in 

the liquid phase along the experimental values from the literature. Reasonable agreement 

with the experimental results can be seen from those figures except some discrepancy for 

Reaction 
type 

Reaction Composition 
(at.% Ca) 

Temperature 
(K) 

Reference 

Eutectic 

 
CaAlFccAlL 4_ +↔  

5.5 888.0 This work 
4.8 885.2 [151] 
5.1 886.2 [175] 
5.2 889.2 [176] 
5.5 883.2 [177] 

 

831314 CaAlCaAlL +↔  
 
 

67.8 830.0 This work 
66.5 830.2 [151] 
66.3 829.2 [175] 
64.5 818.2 [176] 
66.9 823.2 [177] 

83_ CaAlBccCaL +↔  
79.3 834.0 This work 
79.6 827.2 [151] 
80.0 833.2 [175] 

Peritectic 

 
CaAlCaAlL 42 ↔+  

 

10.5 973.0 This work 
8.0 973.2 [151] 
- 973.2 [175] 
- 973.2 [176] 
- 963.2 [177] 

13142 CaAlCaAlL ↔+  
 

62.2 906.0 This work 
61.0 904.2 [151] 

- 906.2 [175] 

Congruent 

 
 

CaAlL 2↔  
 

33.3 1358.0 This work 
33.3 1356.2 [151] 
33.3 1359.2 [175] 
33.3 1352.2 [176] 

83CaAlL ↔  
72.7 849.0 This work 
72.7 843.2 [151] 
72.7 852.2 [175] 
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the activity of Al. Better agreement was not possible without deteriorating the liquidus 

curve.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.31: Calculated enthalpies of mixing of Al and Ca in liquid Al-Ca alloy at 1100 
K in comparison with the experimental results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.32: Calculated activity of Al and Ca in the liquid state at 1373K 
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4.7 Al-Ca-Zn Ternary System 

 A self-consistent thermodynamic database for the Al-Ca-Zn system has been 

created by extrapolating the three constituting binaries Al-Zn, Ca-Zn and Al-Ca. Ternary 

interaction parameters were used in order to achieve consistency with the available 

experimental data from the literature. The asymmetric Toop geometric model [165] was 

used for extrapolation since Al and Ca are chemically similar while Zn is chemically 

different. Hence Al and Ca were put in the same group while Zn was in a different group. 

Two ternary compounds: CaAlZn and CaAl2Zn2 reported by Ganiev et al. [155] and 

Gantsev et al. [156] in the literature were considered during the present optimization. 

4.7.1 Ternary Phase Diagram 

The main features of the Al-Ca-Zn ternary system will be discussed in this 

section by means of polythermal projections, isoplethal analysis and isothermal sections. 

The optimized ternary parameters both for the liquid phase and ternary compounds are 

presented in Table 4.15.  

Table 4.15: Optimized model parameters for different phases of the Al-Ca-Zn ternary 
system 

 

 
 
 
 

Phase Terms a  (J/mol)  b (J/mol.K )   

Liquid 
LAlCa(Zn) -3854.0 0 
LAlZn(Ca) -4100.0 0 
LCaZn(Al) -35530.0 0 

Phase Terms a  (J/mol-atom)  b (J/mol-atom.K )  

CaAlZn fGΔ  -33000.0 0.748 
CaAl2Zn2 fGΔ  -29700.0 0.449 
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4.7.1.1 Polythermal Projection. The liquidus projection of the Al-Ca-Zn system is 

shown in Figure 4.33 where the heavier solid lines represent the univariant valleys and 

the arrows on these lines indicate the directions of decreasing temperature. There are 

eight ternary eutectic (E1 to E8) points, ten quasi-peritectic (U1 to U10) points and nine 

maximum (m1 to m9) points present in this system. Details of all the ternary invariant 

points are summarized in Table 4.16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.33: Calculated liquidus surface of the Al-Ca-Zn ternary system 
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Table 4.16: Calculated invariant reactions and special points in the Al-Ca-Zn system 
 

 

 

Type Reaction Composition (at.%) 
 

Temp 
(K) 

Reference 

Al Zn Ca 
E1 L↔Al2Ca+CaAlZn+CaAl2Zn2 51.8 22.7 25.8 952.0 This work 
E2 L↔  Al14Ca13+Al3Ca8+CaAlZn 31.5 9.6 58.9 777.2 This work 
E3 L↔  Ca_Bcc+Al3Ca8+CaAlZn 19.6 12.4 68.0 752.2 This work 
E4 L↔  AlCaZn+Ca3Zn+Ca5Zn3 4.8 29.5 65.7 648.0 This work 
E5 L↔  CaZn5+AlCaZn+CaZn3 12.9 61.9 25.2 729.9 This work 
E6 L ↔   AlCaZn+CaZn5+CaAl2Zn2 14.8 62.9 22.3 729.5 This work 
E7 L↔CaZn5+CaZn11+CaAl2Zn2 13.4 69.6 17.0 748.8 This work 

E8 L↔Zn_Hcp+Al_Fcc+CaZn13 
13.6 84.0 2.4 636.4 This work 

11.18 88.46 0.46 653.0 [152] 
U1 L+Al4Ca↔Al_Fcc+CaAl2Zn2 75.3 11.6 13.1 818.0 This work 
U2 L+Al2Ca↔Al4Ca+CaAl2Zn2 69.0 14.0 17.0 848.3 This work 
U3 L+Al2Ca↔Al14Ca13+CaAlZn 35.6 10.6 53.8 823.7 This work 
U4 L+Ca_Bcc↔CaAlZn+Ca_Fcc 8.5 23.2 68.3 716.0 This work 
U5 L+Ca_Fcc↔CaAlZn+Ca3Zn 8.9 29.6 61.5 630.0 This work 
U6 L+CaZn↔CaAlZn+Ca5Zn3 6.2 37.2 56.6 662.2 This work 
U7 L+CaZn2↔CaZn+CaAlZn 7.0 40.2 52.8 678.0 This work 
U8 L+CaZn2↔CaZn3+CaAlZn 12.7 61.5 25.8 732.0 This work 
U9 L+CaZn11↔CaAl2Zn2+CaZn13 13.4 76.5 10.1 767.0 This work 
U10 L+CaAl2Zn2↔Al_Fcc+CaZn13 21.6 73.5 4.9 620.0 This work 

m1 L↔Al2Ca+CaAl2Zn2 
53.0 22.0 25.0 962.0 This work 
48.8 24.8 26.4 983.0 [156] 

m2 L↔Al2Ca+CaAlZn 18.0 50.0 32.0 1080.0 This work 
15.2 51.5 33.3 1123.0 [156] 

m3 L↔Al3Ca8+CaAlZn 29.0 10.6 60.4 779.0 This work 

m4 L↔CaAlZn+Ca_Bcc 15.7 16.0 68.3 760.3 This work 

m5 L↔CaAlZn+CaZn2 
9.9 57.0 33.1 786.0 This work 
7.6 59.1 33.3 648.0 [156] 

m6 L↔CaAlZn+CaZn5 
13.8 62.8 23.4 710.0 This work 

- - - 653.0 [156] 

m7 L↔CaAl2Zn2+CaZn5 13.8 67.9 18.3 748.5 This work 

m8 L↔CaZn11+CaAl2Zn2 13.3 74.1 12.5 775.5 This work 

m9 L↔CaAlZn+CaAl2Zn2 
37.0 37.0 26.0 1013.0 This work 

36.4 36.4 27.2 923.0 [156] 
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4.7.1.2 Isoplethal Analysis. Isoplethal analysis is another way to show different vertical 

sections and pseudo binary sections of a ternary phase diagram. Both Kono et al. [152] 

and Gantsev et al. [156] reported some pseudobinary sections and those will be compared 

with the present calculation. Figure 4.34 compares the current work with all the vertical 

sections reported by the different experimental works of [152] and [156].  

 
       (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
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Figure 4.34: Calculated isoplethal analysis of sections (a)Al-AlCaZn, (b) Al-CaZn13, (c) 
CaAlZn-CaAl2Zn2, (d) CaAlZn-CaZn11, (e) Al2Ca-CaAl2Zn2, (f) Al2Ca-CaAlZn, (g) 
CaAlZn-CaZn2, (h) CaAlZn-CaZn5 
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From Figure 4.34, it can be seen that most of the pseudo binary sections show 

reasonable agreement with the experimental results from the literature. It was impossible 

to make consistency with the two different sets of experiments when both works assumed 

different ternary compounds. Due to this fact, the sub-liquidus phases can be different 

sometime from the experimental result as can be seen in Figure 4.34 (b). 

From Figure 4.34 (c) to Figure 4.34 (h) some discrepancy can be observed with 

the experimental points of Gantsev et al. [156] where they only reported the saddle point 

for each pseudo binary section. In the present work, it was not possible to achieve 

complete consistency with the work of [152] because they considered different number of 

intermetallic compounds: CaAlZn and CaAl3Zn in this system. More experimental work 

on the liquidus curve will be more significant for adequate validation in this regard.  

4.7.1.3 Isothermal section. The calculated isothermal sections at different temperatures 

of the Al-Ca-Zn system are demonstrated in Figures 4.35 to 4.37. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.35: Calculated isothermal section of the Al-Ca-Zn ternary system at 1320 K 
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The solidification starts at around 1355 K. At a temperature higher than this one 

there is no phase boundary and only the homogenous liquid phase exists throughout the 

whole Gibbs triangle. Figure 4.35 shows the isothermal section of the Al-Ca-Zn system at 

1320 K where only the crystallization of the Al2Ca phase initiates and it exists in 

equilibrium with the liquid phase. 

By cooling from 1320 K to 950 K solidification of some more phases appear in 

the ternary system which can be seen in Figure 4.36. But still the liquid phase dominates 

in the diagram. The new phases that appear at this temperature are: Al4Ca, Al2Ca, 

Ca_Bcc, CaZn5, CaZn11 and the two ternary phases: CaAlZn and CaAl2Zn2. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.36: Calculated isothermal section of the Al-Ca-Zn ternary system at 950 K 
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Further crystallization takes place during cooling from 950 K to 650 K and Figure 

4.37 shows the features of the ternary phase diagram at 650 K. It can be seen from the 

same figure that, almost all the phases including the two ternary compounds appear at 

this temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.37: Calculated isothermal section of the Al-Ca-Zn system at 650 K with two 

ternary compounds where A denotes: CaAlZn and B denotes: CaAl2Zn2 
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CHAPTER 5 
 

Concluding Remarks, Contributions and 
Suggestions for Future Work  

 
 

5.1 Concluding Remarks 

An inclusive description of the Mg-Ca-Zn and Al-Ca-Zn ternary systems was 

carried out in the present work and the following summaries can be drawn: 

•  Thermodynamic modeling on the Mg-Ca-Zn and Al-Ca-Zn ternary systems was 

done based on the well established CALPHAD method. 

•  Critical assessment of all the available experimental data and optimization of the 

three binary systems: Mg-Zn, Ca-Zn and Al-Zn as well as of the two ternary 

systems: Mg-Ca-Zn and Al-Ca-Zn was carried out. 

•  The Modified Quasichemical Model was used for the liquid and Al_Fcc solid 

solution phases in order to account for the presence of short-range ordering. 

•   The Mg2Ca Laves phase was remodeled by sublattice model to permit its 

incorporation with the MgZn2 phase in the Mg-Ca-Zn ternary system. 

•   The Al-Ca binary system was re-optimized in order to increase the consistency 

of some of the invariant points from the most recent optimization work. 

•    The calculated phase equilibrium diagrams for all the binary systems and also 

their thermodynamic properties such as enthalpy of mixing, activity, partial 
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enthalpy of mixing and heat of formation showed reasonable agreement with the 

experimental data. 

•    Self-consistent databases for the Mg-Ca-Zn and Al-Ca-Zn ternary systems were 

created by combining the optimized model parameters of the corresponding 

binary systems and by introducing ternary interaction parameters and ternary 

compounds. 

•   Two ternary compounds reported by Clark resulted in the best consistency with 

the experimental results in terms of liquidus projection, isoplethal analysis and 

isothermal sections for the Mg-Ca-Zn ternary system. 

•  The calculated Al-Ca-Zn ternary system considering two ternary compounds 

which were accepted by most researchers, showed reasonable agreement with the 

experimental data. 

5.2 Contributions 

Despite the high potential of the Mg-Ca-Zn and Al-Ca-Zn alloy systems, few 

conclusive works in terms of thermodynamic modeling have been done so far. The 

significant contributions of the present research work include: 

• As part of a broader research project to create a self-consistent database for the 

Mg alloys, thermodynamic descriptions of the Mg-Ca-Zn and Al-Ca-Zn ternary 

systems have been established in the present work. 

• The presence of the short range ordering in the liquid phase was considered 

during optimization process which permits the composition of maximum short-

range ordering in a binary system to be freely chosen. 
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• Two ternary compounds were considered in the Mg-Ca-Zn system for the first 

time which eventually gave better consistency with the experimental results. 

• The Al-Ca-Zn ternary system was modeled for the first time considering two 

ternary compounds and verified with the limited experimental data available in 

the literature. 

• The extended solid solution of the Al-Zn binary system was modeled using the 

modified quasichemical model for the first time which gave better representation 

of the thermodynamic properties.  

5.3 Suggestions for Future Work 

The recommendations for further studies on the Mg-Ca-Zn and Al-Ca-Zn systems 

to refine the thermodynamic modeling are summarized as follows: 

• Additional experimental work is necessary to obtain more information about the 

ternary compounds in the Mg-Ca-Zn and Al-Ca-Zn ternary systems regarding 

their melting points, crystal structure, solubility limits and enthalpies of 

formation. 

• In preparing the ternary compounds, samples have to be heat treated for long time 

(one month at least because of slow kinetics of formation of these compounds). 
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