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Preface to second edition

The requirement of the second law that the internal entropy production must be positive
for all spontaneous changes of a system results in the equilibrium condition that the
entropy production must be zero for all conceivable internal processes. Most thermo-
dynamic textbooks are based on this condition but do not discuss the magnitude of the
entropy production for processes. In the first edition the entropy production was retained
in the equations as far as possible, usually in the form of Ddξ where D is the driving force
for an isothermal process and ξ is its extent. It was thus possible to discuss the magnitude
of the driving force for a change and to illustrate it graphically in molar Gibbs energy
diagrams. In other words, the driving force for irreversible processes was an important
feature of the first edition. Two chapters have now been added in order to include the
theoretical treatment of how the driving force determines the rate of a process and how
simultaneous processes can affect each other. This field is usually defined as irreversible
thermodynamics. The mathematical description of diffusion is an important application
for materials science and is given special attention in those two new chapters. Extremum
principles are also discussed.

A third new chapter is devoted to the thermodynamics of surfaces and interfaces.
The different roles of surface energy and surface stress in solids are explained in detail,
including a treatment of critical nuclei. The thermodynamic effects of different types
of coherency stresses are outlined and the effect of segregated atoms on the migration
of interfaces, so-called solute drag, is discussed using a general treatment applicable to
grain boundaries and phase interfaces.

The three new chapters are the results of long and intensive discussions and collabora-
tion with Professor John Ågren and could not have been written without that input. Thanks
are also due to several researchers in his department who have been extremely open to
discussions and even collaboration. In particular, thanks are due to Dr Malin Selleby who
has again given invaluable input by providing the large number of computer-calculated
diagrams. They are easily recognized by the triangular Thermo-Calc logotype. Those
diagrams demonstrate that thermodynamic equations can be directly applied without
any new programming. The author hopes that the present textbook will inspire scientists
and engineers, professors and students to more frequent use of thermodynamics to solve
problems in materials science.

A large number of solved exercises are also available online from the Cambridge
University Press website (www.cambridge.org/9780521853514). In addition, the website
contains a considerable number of exercises to be solved by the reader using a link to a
limited free-of-charge version of the commercial thermodynamic package Thermo-Calc.
In principle, they could be solved on a similar thermodynamic package.



Preface to first edition

Thermodynamics is an extremely powerful tool applicable to a wide range of science
and technology. However, its full potential has been utilized by relatively few experts
and the practical application of thermodynamics has often been based simply on dilute
solutions and the law of mass action. In materials science the main use of thermodynamics
has taken place indirectly through phase diagrams. These are based on thermodynamic
principles but, traditionally, their determination and construction have not made use of
thermodynamic calculations, nor have they been used fully in solving practical problems.
It is my impression that the role of thermodynamics in the teaching of science and
technology has been declining in many faculties during the last few decades, and for good
reasons. The students experience thermodynamics as an abstract and difficult subject and
very few of them expect to put it to practical use in their future career.

Today we see a drastic change of this situation which should result in a dramatic
increase of the use of thermodynamics in many fields. It may result in thermodynamics
regaining its traditional role in teaching. The new situation is caused by the develop-
ment both of computer-operated programs for sophisticated equilibrium calculations and
extensive databases containing assessed thermodynamic parameter values for individual
phases from which all thermodynamic properties can be calculated. Experts are needed
to develop the mathematical models and to derive the numerical values of all the model
parameters from experimental information. However, once the fundamental equations
are available, it will be possible for engineers with limited experience to make full use
of thermodynamic calculations in solving a variety of complicated technical problems.
In order to do this, it will not be necessary to remember much from a traditional course
in thermodynamics. Nevertheless, in order to use the full potential of the new facilities
and to avoid making mistakes, it is still desirable to have a good understanding of the
basic principles of thermodynamics. The present book has been written with this new
situation in mind. It does not provide the reader with much background in numerical
calculation but should give him/her a solid basis for an understanding of the thermody-
namic principles behind a problem, help him/her to present the problem to the computer
and allow him/her to interpret the computer results.

The principles of thermodynamics were developed in an admirably logical way by
Gibbs but he only considered equilibria. It has since been demonstrated, e.g. by Pri-
gogine and Defay, that classical thermodynamics can also be applied to systems not at
equilibrium whereby the affinity (or driving force) for an internal process is evaluated
as an ordinary thermodynamic quantity. I have followed that approach by introducing a



xiv Preface to first edition

clear distinction between external variables and internal variables referring to entropy-
producing internal processes. The entropy production is retained when the first and
second laws are combined and the driving force for internal processes then plays a cen-
tral role throughout the development of the thermodynamic principles. In this way, the
driving force appears as a natural part of the thermodynamic application ‘tool’.

Computerized calculations of equilibria can easily be directed to yield various types of
diagram, and phase diagrams are among the most useful. The computer provides the user
with considerable freedom of choice of axis variables and in the sectioning and projec-
tion of a multicomponent system, which is necessary for producing a two-dimensional
diagram. In order to make good use of this facility, one should be familiar with the
general principles of phase diagrams. Thus, a considerable part of the present book is
devoted to the inter-relations between thermodynamics and phase diagrams. Phase dia-
grams are also used to illustrate the character of various types of phase transformations.
My ambition has been to demonstrate the important role played by thermodynamics in
the study of phase transformations.

I have tried to develop thermodynamics without involving the special properties of
particular kinds of phases, but have found it necessary sometimes to use the ideal gas or
the regular solution to illustrate principles. However, even though thermodynamic models
and derived model parameters are already stored in databases, and can be used without the
need to inspect them, it is advantageous to have some understanding of thermodynamic
modelling. The last few chapters are thus devoted to this subject. Simple models are
discussed, not because they are the most useful or popular, but rather as illustrations of
how modelling is performed.

Many sections may give the reader little stimulation but may be valuable as reference
material for later parts of the book or for future work involving thermodynamic applica-
tions. The reader is advised to peruse such sections very quickly, but to remember that
this material is available for future consultation.

Practically every section ends with at least one exercise and the accompanying solution.
These exercises often contain material that could have been included in the text, but would
have made the text too massive. The reader is advised not to study such exercises until
a more thorough understanding of the content of a particular section is required.

This book is the result of a long period of research and teaching, centred on thermo-
dynamic applications in materials science. It could not have been written without the
inspiration and help received through contacts with numerous students and colleagues.
Special thanks are due to my former students, Professor Bo Sundman and Docent Bo
Jansson, whose development of the Thermo-Calc data bank system has inspired me to
penetrate the underlying thermodynamic principles and has made me aware of many
important questions. Thanks are also due to Dr Malin Selleby for producing a large
number of diagrams by skilful operation of Thermo-Calc. All her diagrams in this book
can be identified by the use of the Thermo-Calc logotype, .

Mats Hillert
Stockholm



1 Basic concepts of thermodynamics

1.1 External state variables

Thermodynamics is concerned with the state of a system when left alone, and when inter-
acting with the surroundings. By ‘system’ we shall mean any portion of the world that can
be defined for consideration of the changes that may occur under varying conditions. The
system may be separated from the surroundings by a real or imaginary wall. The proper-
ties of the wall determine how the system may interact with the surroundings. The wall
itself will not usually be regarded as part of the system but rather as part of the sur-
roundings. We shall first consider two kinds of interactions, thermal and mechanical,
and we may regard the name ‘thermodynamics’ as an indication that these interactions
are of main interest. Secondly, we shall introduce interactions by exchange of matter
in the form of chemical species. The name ‘thermochemistry’ is sometimes used as an
indication of such applications. The term ‘thermophysical properties’ is sometimes used
for thermodynamic properties which do not primarily involve changes in the content of
various chemical species, e.g. heat capacity, thermal expansivity and compressibility.

One might imagine that the content of matter in the system could be varied in a number
of ways equal to the number of species. However, species may react with each other inside
the system. It is thus convenient instead to define a set of independent components, the
change of which can accomplish all possible variations of the content. By denoting the
number of independent components as c and also considering thermal and mechanical
interactions with the surroundings, we find by definition that the state of the system may
vary in c + 2 independent ways. For metallic systems it is usually most convenient to
regard the elements as the independent components. For systems with covalent bonds it
may sometimes be convenient to regard a very stable molecular species as a component.
For systems with a strongly ionic character it may be convenient to select the independent
components from the neutral compounds rather than from the ions.

By waiting for the system to come to rest after making a variation we may hope to
establish a state of equilibrium. A criterion that a state is actually a state of equilibrium
would be that the same state would spontaneously be established from different starting
points. After a system has reached a state of equilibrium we can, in principle, measure
the values of many quantities which are uniquely defined by the state and independent of
the history of the system. Examples are temperature T, pressure P, volume V and content
of each component Ni . We may call such quantities state variables or state functions,
depending upon the context. It is possible to identify a particular state of equilibrium by
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V

P

Figure 1.1 Property diagram for a constant amount of a solid material at a constant temperature
showing volume as a function of pressure. Notice that P has here been plotted in the negative
direction. The reason will be explained later.

giving the values of a number of state variables under which it is established. As might
be expected, c + 2 variables must be given. The values of all other variables are fixed,
provided that equilibrium has really been established. There are thus c + 2 independent
variables and, after they have been selected and equilibrium has been established, the
rest are dependent variables. As we shall see, there are many ways to select the set of
independent variables. For each application a certain set is usually most convenient.
For any selection of independent variables it is possible to change the value of each one,
independent of the others, but only if the wall containing the system is open for exchange
of c + 2 kinds, i.e. exchanges of mechanical work, heat and c components.

The equilibrium state of a system can be represented by a point in a c + 2 dimensional
diagram. In principle, all points in such a diagram represent possible states of equilibrium
although there may be practical difficulties in establishing the states represented by some
region. One can use the diagram to define a state by specifying a point or a series of
states by specifying a line. Such a diagram may be regarded as a state diagram. It does
not give any information on the properties of the system under consideration unless
such information is added to the diagram. We shall later see that some vital information
on the properties can be included in the state diagram but in order to show the value
of some dependent variable a new axis must be added. For convenience of illustration
we shall now decrease the number of axes in the c + 2 dimensional state diagram by
sectioning at constant values of c + 1 of the independent variables. All the states to be
considered will thus be situated along a single axis, which may now be regarded as the
state diagram. We may then plot a dependent variable by introducing a second axis.
That property is thus represented by a line. We may call such a diagram a property
diagram. An example is shown in Fig. 1.1. Of course, we may arbitrarily choose to
consider any one of the two axes as the independent variable. The shape of the line is
independent of that choice and it is thus the line itself that represents the property of the
system.

In many cases the content of matter in a system is kept constant and the wall is only
open for exchange of mechanical work and heat. Such a system is often called a closed
system and we shall start by discussing the properties of such a system. In other cases
the content of matter may change and, in particular, the composition of the system by
which we mean the relative amounts of the various components independent of the size
of the system. In materials science such an open system is called an ‘alloy system’ and
its behaviour as a function of composition is often shown in so-called phase diagrams,
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which are state diagrams with some additional information on what phases are present in
various regions. We shall later discuss the properties of phase diagrams in considerable
detail.

The state variables are of two kinds, which we shall call intensive and extensive.
Temperature T and pressure P are intensive variables because they can be defined at each
point of the system. As we shall see later, T must have the same value at all points in a
system at equilibrium. An intensive variable with this property will be called potential.
We shall later meet intensive variables, which may have different values at different parts
of the system. They will not be regarded as potentials.

Volume V is an extensive variable because its value for a system is equal to the sum
of its values of all parts of the system. The content of component i, usually denoted by
ni or Ni , is also an extensive variable. Such quantities obey the law of additivity. For a
homogeneous system their values are proportional to the size of the system.

One can imagine variables, which depend upon the size of the system but do not
always obey the law of additivity. The use of such variables is complicated and will not
be much considered. The law of additivity will be further discussed in Section 3.4.

If the system is contained inside a wall that is rigid, thermally insulating and imperme-
able to matter, then all the interactions mentioned are prevented and the system may be
regarded as completely closed to interactions with the surroundings. It is left ‘completely
alone’. It is often called an isolated system. By changing the properties of the wall we
can open the system to exchanges of mechanical work, heat or matter. A system open to
all these exchanges may be regarded as a completely open system. We may thus control
the values of c + 2 variables by interactions with the surroundings and we may regard
them as external variables because their values can be changed by interaction with the
external world through the surroundings.

1.2 Internal state variables

After some or all of the c + 2 independent variables have been changed to new values
and before the system has come to rest at equilibrium, it is also possible to describe
the state of the system, at least in principle. For that description additional variables are
required. We may call them internal variables because they will change due to internal
processes as the system approaches the state of equilibrium under the new values of the
c + 2 external variables.

An internal variable ξ (pronounced ‘xeye’) is illustrated in Fig. 1.2(a)where c + 1 of
the independent variables are again kept constant in order to obtain a two-dimensional
diagram. The equilibrium value of ξ for various values of the remaining independent
variable T is represented by a curve. In that respect, the diagram is a property diagram.
On the other hand, by a rapid change of the independent variable T the system may
be brought to a point away from the curve. Any such point represents a possible non-
equilibrium state and in that sense the diagram is a state diagram. In order to define such
a point one must give the value of the internal variable in addition to T. The quantity ξ

is thus an independent variable for states of non-equilibrium.
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T =T2

Figure 1.2 (a) Property diagram showing the equilibrium value of an internal variable, ξ , as a
function of temperature. Arrow A represents a sudden change of temperature and arrow B the
gradual approach to a new state of equilibrium. (b) Property diagram for non-equilibrium states
at T2, showing the change of Helmholtz energy F as a function of the internal variable, ξ . There
will be a spontaneous change with decreasing F and a stable state will eventually be reached at
the minimum of F.

For such states of non-equilibrium one may plot any other property versus the value
of the internal variable. An example of such a property diagram is given in Fig. 1.2(b). In
this particular case we have chosen to show a property called Helmholtz energy F which
will decrease by all spontaneous changes at constant T and V. Given sufficient time the
system will approach the minimum of F which corresponds to point B on the curve to
the left. That curve is the locus of all points of minimum of F, each one obtained under
its own constant value of T. Any state of equilibrium can thus be defined by giving T and
the proper ξ value or by giving T and the requirement of equilibrium. Under equilibrium
ξ is a dependent variable and does not need to be given.

It is sometimes possible to imagine that a non-equilibrium state can be ‘frozen-in’
(see Section 1.4), i.e. by the temperature being so low that the non-equilibrium state
does not change markedly during the time it takes to measure an internal variable. Under
the given restrictions such a state may be regarded as a state of equilibrium with regard
to some internal variable, but the values of the frozen-in variables must be given in the
definition of the equilibrium. There is a particular type of internal variable, which can
be controlled from outside the system under such restrictions. Such a variable can then
be treated as an external variable. It can for instance be the number of O3 molecules in a
system, the rest of which is O2. At high temperature the chemical reaction between these
species will be rapid and the amount of O3 may be regarded as a dependent variable.
In order to define a state of equilibrium at high temperature it is sufficient to give the
amount of oxygen as O or O2. At a lower temperature the reaction may be frozen-in and
the system has two independent variables, the amounts of O2 and O3 which can both be
controlled from the outside.

Exercise 1.1

Consider a box of fixed volume containing a small amount of a liquid, which fills the
box only partly. Some of the liquid thus evaporates. The equilibrium vapour pressure of
the liquid varies with temperature, P = k exp(−b/T ) and we could use as an internal
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Figure 1.3 Solution to Exercise 1.1.

variable the number of gas molecules which is related to the pressure by the ideal gas law,
N RT = PV . Calculate and show with a property diagram how N varies as a function
of T.

Hint

In order to simplify the calculations, neglect the volume of the liquid in comparison with
the volume of the box.

Solution

At equilibrium N = PV/RT = (kV/RT ) exp(−b/T ).
Let us introduce dimensionless variables, N/(kV/bR) = (b/T ) exp(−b/T ).
This function has a maximum at T/b = 1.
If the low temperature is chosen as T/b = 0.4, then the diagram shows that N will

increase if the higher temperature is below T/b = 3.86 but decrease if it is above.

1.3 The first law of thermodynamics

The development of thermodynamics starts by the definition of Q, the amount of heat
flown into a closed system, and W, the amount of work done on the system. The concept of
work may be regarded as a useful device to avoid having to define what actually happens
to the surroundings as a result of certain changes made in the system. The first law of
thermodynamics is related to the law of conservation of energy, which says that energy
cannot be created, nor destroyed. As a consequence, if a system receives an amount of
heat, Q, and the work W is done on the system, then the energy of the system must have
increased by Q + W. This must hold quite independent of what happened to the energy
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inside the system. In order to avoid such discussions, the concept of internal energy U
has been invented, and the first law of thermodynamics is formulated as

�U = Q + W. (1.1)

In differential form we have

dU = dQ + dW. (1.2)

It is rather evident that the internal energy of the system is uniquely determined by the
state of the system and independent of by what processes it has been established. U is a
state variable. It should be emphasized that Q and W are not properties of the system but
define different ways of interaction with the surroundings. Thus, they could not be state
variables. A system can be brought from one state to another by different combinations of
heat and work. It is possible to bring the system from one state to another by some route
and then let it return to the initial state by a different route. It would thus be possible to get
mechanical work out of the system by supplying heat and without any net change of the
system. An examination of how efficient such a process can be resulted in the formulation
of the second law of thermodynamics. It will be discussed in Sections 1.5 and 1.6.

The internal energy U is a variable, which is not easy to vary experimentally in a
controlled fashion. Thus, we shall often regard U as a state function rather than a state
variable. At equilibrium it may, for instance, be convenient to consider U as a function
of temperature and pressure because those variables may be more easily controlled in
the laboratory

U = U (T, P). (1.3)

However, we shall soon find that there are two more natural variables for U. It is evident
that U is an extensive property and obeys the law of additivity. The total value of U of
a system is equal to the sum of U of the various parts of the system. Its value does not
depend upon how the additional energy, due to added heat and work, is distributed within
the system.

It should be emphasized that the absolute value of U is not defined through the first law,
but only changes of U. Thus, there is no natural zero point for the internal energy. One
can only consider changes in internal energy. For practical purposes one often chooses
a point of reference, an arbitrary zero point.

For compression work on a system under a hydrostatic pressure P we have

dW = P(−dV ) = −PdV (1.4)

dU = dQ − PdV . (1.5)

So far, the discussion is limited to cases where the system is closed and the work done on
the system is hydrostatic. The treatment will always be applicable to gases and liquids
which cannot support shear stresses. It should be emphasized that a complete treatment
of the thermodynamics of solid materials requires a consideration of non-hydrostatic
stresses. We shall neglect such problems when considering solids.
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Mechanical work against a hydrostatic pressure is so important that it is convenient
to define a special state function called enthalpy H in the following way, H = U + PV .
The first law can then be written as

dH = dU + PdV + V dP = dQ + V dP. (1.6)

In addition, the internal energy must depend on the content of matter, N, and for an open
system subjected to compression we should be able to write,

dU = dQ − PdV + K dN . (1.7)

In order to identify the nature of K we shall consider a system that is part of a larger,
homogeneous system for which both T and P are uniform. U may then be evaluated
by starting with an infinitesimal system and extending its boundaries until it encloses
the volume V. Since there are no real changes in the system dQ = 0 and P and K are
constant, we can integrate from the initial value of U = 0 where the system has no volume,
obtaining

U = −PV + K N (1.8)

H = K N . (1.9)

By measuring the content of matter in units of mole, we obtain

K = H/N = Hm. (1.10)

Hm is the molar enthalpy. Molar quantities will be discussed in Section 3.2. The first law
in Eq. (1.2) can thus be written as

dU = dQ + dW + HmdN . (1.11)

It should be mentioned that there is an alternative way of writing the first law for an open
system. It is based on including in the heat the enthalpy carried by the added matter. This
new ‘kind’ of heat would thus be

dQ∗ = dQ + HmdN . (1.12)

The first law for the open system in Eq. (1.11) would then be very similar to Eq. (1.2)
for a closed system,

dU = dQ∗ + dW = dQ∗ − PdV . (1.13)

This definition of heat is less useful in treatments of heat conduction and we shall not
use it.

Exercise 1.2

One mole of a gas at pressure P1 is contained in a cylinder of volume V1 which has a
piston. The volume is changed rapidly to V2, without time for heat conduction to or from
the surroundings.
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(a) Evaluate the change in internal energy of the gas if it behaves as an ideal classical
gas for which PV = RT and U = A + BT .

(b) Then evaluate the amount of heat flow until the temperature has returned to its initial
value, assuming that the piston is locked in the new position, V2.

Hint

The internal energy can change due to mechanical work and heat conduction. The first
step is with mechanical work only; the second step with heat conduction only.

Solution

(a) Without heat conduction dU = −PdV but we also know that dU = BdT . This yields
BdT = −PdV .

Elimination of P using PV = RT gives BdT/RT = −dV/V and by integration
we then find (B/R) ln(T2/T1) = − ln(V2/V1) = ln(V1/V2) and T2 = T1(V1/V2)R/B ,
where T1 is the initial temperature, T1 = P1V1/R.

Thus: �Ua = B(T2 − T1) = (B P1V1/R)[(V1/V2)R/B − 1].
(b) By heat conduction the system returns to the initial temperature and thus to the initial

value of U, since U in this case depends only on T. Since the piston is now locked,
there will be no mechanical work this time, so that dUb = dQb and, by integration,
�Ub = Qb. Considering both steps we find because U depends only upon T:

0 = �Ua + �Ub = �Ua + Qb; Qb = −�Ua = −(B P1V1/R)[(V1/V2)R/B − 1].

Exercise 1.3

Two completely isolated containers are each filled with one mole of gas. They are at
different temperatures but at the same pressure. The containers are then connected and
can exchange heat and molecules freely but do not change their volumes. Evaluate
the final temperature and pressure. Suppose that the gas is classical ideal for which
U = A + BT and PV = RT if one considers one mole.

Hint

Of course, T and P must finally be uniform in the whole system, say T3 and P3. Use
the fact that the containers are still completely isolated from the surroundings. Thus, the
total internal energy has not changed.

Solution

V = V1 + V2 = RT1/P1 + RT2/P1 = R(T1 + T2)/P1; A + BT1 + A + BT2 = U =
2A + 2BT3; T3 = (T1 + T2)/2; P3 = 2RT3/V = R(T1 + T2)/[R(T1 + T2)/P1] = P1.
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1.4 Freezing-in conditions

As a continuation of our discussion on internal variables we may now consider heat
absorption under two different conditions.

We shall first consider an increase in temperature slow enough to allow an internal
process to adjust continuously to the changing conditions. If the heating is made under
conditions where we can keep the volume constant, we may regard T and V as the
independent variables and write

dU =
(

∂U

∂T

)
V

dT +
(

∂U

∂V

)
T

dV . (1.14)

By combination with dU = dQ − PdV we find

dQ =
(

∂U

∂T

)
V

dT +
[(

∂U

∂V

)
T

+ P

]
dV . (1.15)

We thus define a quantity called heat capacity and under constant V it is given by

CV ≡
(

∂ Q

∂T

)
V

=
(

∂U

∂T

)
V

. (1.16)

Secondly, we shall consider an increase in temperature so rapid that an internal pro-
cess is practically inhibited. Then we must count the internal variable as an additional
independent variable which is kept constant. Denoting the internal variable as ξ we obtain

dU =
(

∂U

∂T

)
V,ξ

dT +
(

∂U

∂V

)
T,ξ

dV +
(

∂U

∂ξ

)
T,V

dξ (1.17)

dQ =
(

∂U

∂T

)
V,ξ

dT +
[(

∂U

∂V

)
T,ξ

+ P

]
dV +

(
∂U

∂ξ

)
T,V

. (1.18)

Under constant V and ξ we now obtain the following expression for the heat capacity

CV,ξ ≡
(

∂ Q

∂T

)
V,ξ

=
(

∂U

∂T

)
V,ξ

. (1.19)

Experimental conditions under which an internal variable ξ does not change will be
called freezing-in conditions and an internal variable that does not change due to such
conditions will be regarded as being frozen-in. We can find a relation between the two
heat capacities by comparing the two expressions for dU at constant V,(

∂U

∂T

)
V

=
(

∂U

∂T

)
V,ξ

+
(

∂U

∂ξ

)
T,V

(
∂ξ

∂T

)
V

(1.20)

CV = CV,ξ +
(

∂U

∂ξ

)
T,V

(
∂ξ

∂T

)
V

. (1.21)

The two heat capacities will thus be different unless either (∂U/∂ξ )T,V or (∂ξ/∂T )V is
zero, which may rarely be the case.
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It is instructive to note that Eq. (1.18) allows the heat of the internal process to be
expressed in state variables, (

∂ Q

∂ξ

)
T,V

=
(

∂U

∂ξ

)
T,V

. (1.22)

Exercise 1.4

Suppose there is an internal reaction by which a system can adjust to a new equilibrium
if the conditions change. There is a complete adjustment if the change is very slow and
for a slow increase of T one measures CV ,slow. For a very rapid change there will be
practically no reaction and one measures CV ,rapid. What value of CV would one find if
the change is intermediate and the reaction at each temperature has proceeded to halfway
between the initial value and the equilibrium value.

Hint

CV = (∂ Q/∂T )expt.cond. = (∂U/∂T )V,ξ + (∂U/∂ξ )T,V · (∂ξ/∂T )expt.cond. and

(∂ξ/∂T )expt.cond. = (∂ξ/∂T )eq..

Solution

CV,rapid = (∂U/∂T )V,ξ ; CV,slow = (∂U/∂T )V,ξ + (∂U/∂ξ )T,V̇ (∂ξ/∂T )eq.; CV,interm. =
(∂U/∂T )V,ξ + (∂U/∂ξ )T,V 0.5(∂ξ/∂T )eq. = (CV,rapid + CV,slow)/2. It should be noticed
that the value of (∂U/∂ξ )T,V may depend on ξ as well as T. It may thus change during
heating and in different ways depending on how ξ changes. The last step in the derivation
is thus strictly valid only at the starting point.

1.5 Reversible and irreversible processes

Consider a cylinder filled with a gas and with a frictionless piston which exerts a pressure
P on the gas in the cylinder. By gradually increasing P we can compress the gas and
perform the work W = −∫

PdV on the gas. If the cylinder is thermally insulated from
the surroundings, the temperature will rise because �U = Q + W = −∫

PdV > 0. By
then decreasing P we can make the gas expand again and perform the same work on the
surroundings through the piston. The initial situation has thus been restored without any
net exchange of work or heat with the surroundings and no change of temperature or
pressure of the gas. The whole process and any part of it are regarded as reversible.

The process would be different if the gas were not thermally insulated. Suppose it were
instead in thermal equilibrium with the surroundings during the compression. For an ideal
gas the internal energy only varies with the temperature and would thus stay constant
during the compression if the surroundings could be kept at a constant temperature.
Heat would flow out of the system during that process. By then decreasing P we could
make the gas expand and, as it returns to the initial state, it would give back the work
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Figure 1.4 Schematic diagram of Carnot’s cycle.

to the surroundings and take back the heat. Again there would be no net exchange with
the surroundings. This process is also regarded as reversible and it may be described
as a reversible isothermal process. The previous case may be described as a reversible
adiabatic process.

By combination of the above processes and with the use of two heat reservoirs of
constant temperatures, Ta and Tb, one can make the system go through a cycle which
may be defined as reversible because all the steps are reversible. Figure 1.4 illustrates a
case with four steps where Tb > Ta.

(1) Isothermal compression from V1 to V2 at a constant temperature Ta. The surroundings
perform the work W1 on the system and the system gives away heat, −Q1, to the
surroundings, i.e. to the colder heat reservoir, Ta. The heat received by the system,
Q1, is negative.

(2) Adiabatic compression from V2 to V3 under an increase of the temperature inside
the cylinder from Ta to Tb. The surroundings perform the work W2 on the system
but there is no heat exchange, Q2 = 0.

(3) Isothermal expansion from V3 to V4 after the cylinder has been brought into contact
with a warmer heat reservoir, Tb. The system now gives back some work to the
surroundings; W3 is negative whereas Q3 is positive. The warm heat reservoir, Tb,
thus gives away this heat to the system.

(4) Adiabatic expansion from V4 back to V1 under a decrease of temperature inside the
cylinder from Tb to Ta; W4 is negative and Q4 = 0.

The system has thus received a net heat of Q = Q1 + Q3 but it has returned to the initial
state and for the whole process we obtain Q + W = �U = 0 and −W = Q = Q1 + Q3

where W is the net work done on the system. According to Fig. 1.4 the inscribed area
is positive and mathematically it corresponds to

∫
PdV . The net work, W, is equal to

− ∫
PdV and it is thus negative and the system has performed work on the surroundings.

The net heat, Q, is positive and the system has thus received energy by heating. The
system has performed work on the surroundings, −W , by transforming into mechanical
energy some of the thermal energy, Q3, received from the warm heat reservoir. The
remaining part of Q3 is given off to the cold heat reservoir, −Q1 < Q3. This cycle may
thus be used for the construction of a heat engine that can produce mechanical energy
from thermal energy. It was first discussed by Carnot [1] and is called Carnot’s cycle.
From a practical point of view the important question is how efficient that engine would
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be. The efficiency may be defined as the ratio between the mechanical work produced,
−W , and the heat drawn from the warm heat reservoir, Q3.

η = −W

Q3
= Q1 + Q3

Q3
= 1 + Q1

Q3
. (1.23)

This is less than unity because Q1 is negative and its absolute value is smaller than Q3.
We can let the engine run in the reverse direction. It would then draw heat from the

cold reservoir and deposit it in the warm reservoir by means of some mechanical work.
It would thus operate as a heat pump or refrigerator.

Before continuing the discussion, let us consider the flow of heat through a wall
separating two heat reservoirs. There is no method by which we could reverse this
process. Heat can never flow from a cold reservoir to a warmer one. Heat conduction is
an irreversible process.

Let us then go back to the Carnot cycle and examine it in more detail. It is clear
that in reality it must have some irreversible character. The flow of heat in steps (1)
and (3) cannot occur unless there is a temperature difference between the system and
the heat reservoir. The irreversible character of the heat flow may be decreased by
making the temperature difference smaller but then the process will take more time. A
completely reversible heat transfer could, in principle, be accomplished by decreasing
the temperature difference to zero but then the process would take an infinite time. A
completely reversible process is always an idealization of reality which can never be
attained. However, it is an extremely useful concept because it defines the theoretical
limit. Much of thermodynamics is concerned with reversible processes.

We may expect that the efficiency would increase if the irreversible character of the
engine could be decreased. However, it may also seem conceivable that the efficiency of
a completely reversible engine could depend on the choice of temperatures of the two
heat reservoirs and on the choice of fluid (gas or liquid) in the system. These matters
will be considered in the next section.

Exercise 1.5

Discuss by what physical mechanisms the adiabatic steps of the Carnot cycle can get an
irreversible character.

Solution

There may be heat conduction through the wall of the cylinder also during the adiabatic
step, i.e. it would not be completely adiabatic. That effect would be less if the compression
is very fast. However, for a very fast compression it is possible that there would be violent
motions or oscillations inside the system. The damping of them would be an irreversible
process.
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1.6 Second law of thermodynamics

Let us now compare the efficiency of two heat engines which are so close to the ideal
case that they may be regarded as reversible. Let them operate between the same two
heat reservoirs, Ta and Tb. Suppose one engine has a lower efficiency than the other and
let it operate in the reverse direction, i.e. as a heat pump. Build the heat pump of such
a size that it will give to the warm reservoir the same amount of heat as the heat engine
will take. Thanks to its higher efficiency the heat engine will produce more work than
needed to run the heat pump. The difference can be used for some useful purpose and
the equivalent amount of thermal energy must come from the cold reservoir because the
warm reservoir is not affected and could be disposed of.

The above arrangement would be a kind of perpetuum mobile. It would for ever
produce mechanical work by drawing thermal energy from the surroundings without
using a warmer heat source. This does not seem reasonable and one has thus formulated
the second law of thermodynamics which states that this is not possible. It then follows
that the efficiency of all reversible heat engines must be the same if they operate between
the same two heat reservoirs. From the expression for the efficiency η it follows that the
ratio Q1/Q3 can only be a function of Ta and Tb and the same function for all choices
of fluid in the cylinder.

A heat engine, which is not reversible, will have a lower efficiency but, when used
in the reverse direction, it will have different properties because it is not reversible. Its
efficiency will thus be different in the reverse direction and it could not be used to make
a perpetuum mobile.

It remains to examine how high the efficiency is for a reversible heat engine and how
it depends on the temperatures of the two heat reservoirs. The answer could be obtained
by studying any well-defined engine, for instance an engine built on the Carnot cycle
using an ideal classical gas. The result is

η = −W

Q3
= Tb − Ta

Tb
. (1.24)

We must now accept that this result is quite general and independent of the choice of
fluid. Actually, it would also hold for a solid medium. In line with Carnot’s ideas, we can
give a more general derivation by first considering the production of work when a body
of mass �M is moved from a higher level to a lower one, i.e. from a higher gravitational
potential, gb, to a lower one, ga.

− W = �M · (gb − ga). (1.25)

The minus sign is added because +W should be defined as mechanical energy received
by the system (the body). With this case in mind, let us assume that the work produced
by a reversible heat engine could be obtained by considering some appropriate thermal
quantity which would play a similar role as mass. That quantity is now called entropy and
denoted by S. When a certain amount of that quantity is moved from a higher thermal
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potential (temperature Tb) to a lower one (temperature Ta) the production of work should
be given in analogy to the above equation,

− W = �S · (Tb − Ta). (1.26)

However, we already know that −W is the sum of Q1 and Q3,

�S · Tb − �S · Ta = Q3 + Q1. (1.27)

We can find an appropriate quantity S to satisfy this equation by defining S as a state
function, the change of which in a system is related to the heat received,

�S = Q/T . (1.28)

The amount of S received by the system from the warm heat reservoir would then be

�S = Q3/Tb. (1.29)

The amount of S given by the system to the cold reservoir would be

�S = −Q1/Ta. (1.30)

The equation is satisfied and we also find

Q1

Q3
= −�S · Ta

�S · Tb
= − Ta

Tb
. (1.31)

η = −W

Q3
= 1 + Q1

Q3
= Tb − Ta

Tb
, (1.32)

in agreement with the previous examination of the Carnot cycle.
Let us now look at entropy and temperature in a more general way. By adding a small

amount of heat to a system by a reversible process we would increase its entropy by

dS = dQ/T . (1.33)

For a series of reversible changes that brings the system back to the initial state∫
dQ/T = �S = 0. (1.34)

This can be demonstrated with the Carnot cycle. By comparing Eqs (1.29) and (1.30)
we find

Q1/Ta + Q3/Tb = 0. (1.35)

The quantity T is a measure of temperature but it remains to be discussed exactly how to
define T. It is immediately evident that the zero point must be defined in a unique way
because Ta/Tb would change if the zero point is changed. That is not allowed because it
must be equal to −Q1/Q3. The quantity T is thus measured relative to an absolute zero
point and one can say that T measures the absolute temperature.

It has already been demonstrated that by using an ideal classical gas as the fluid in the
Carnot engine, one can derive the correct expression for the efficiency, η = (Tb−T a)/Tb.
One can thus define the absolute temperature as the temperature scale used in the ideal
gas law and one can measure the absolute temperature with a gas thermometer. When
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this was done it was decided to express the difference between the boiling and freezing
point of water at 1 atm as 100 units, in agreement with the Celsius scale. This unit is
now called kelvin (K).

Let us now return to the irreversible process of heat conduction from a warm reservoir
to a cold one. By transferring an amount dQ one would decrease the entropy of the warm
reservoir by dQ/Tb and increase the entropy of the cold one by dQ/Ta. The net change
of the entropy would thus be

dS = −dQ/Tb + dQ/Ta = dQ · (Tb − Ta)TbTa. (1.36)

This irreversible process thus produces entropy. One talks about internal entropy
production

dipS > 0. (1.37)

The subscript ‘ip’ indicates that this change of the entropy of the system is due to an
internal process. This is the second law of thermodynamics and it should be noted that it
concerns what happens inside a system, whereas the first law concerns interactions with
the surroundings. As we have seen, the transfer of heat to the system, dQ, will increase
the entropy by dQ/T and, by also considering the effect of additional matter, dN, in an
open system we can write the second law as

dS = dQ/T + SmdN + dipS > dQ/T + SmdN . (1.38)

Sm is the molar entropy of the added material and can be derived exactly as Hm in the
first law was derived in Section 1.3. With the alternative definition of heat in Eq. (1.12)
we would obtain

dS = dQ∗/T − (Hm/T − Sm)dN + dipS = dQ∗/T − ((Hm − T Sm)/T )dN

+ dipS > dQ∗/T − ((Hm − T Sm)/T )dN . (1.39)

When a spontaneous process proceeds, it is in a direction that can be predicted from
the above criterion. A spontaneous process is always an irreversible process, other-
wise it would have no preferred direction and it would be reversible. A reversible pro-
cess is a hypothetical construction and can be defined by either one of the following
criteria,

dipS = 0 (1.40)

dS = dQ/T + SmdN . (1.41)

Exercise 1.6

Suppose a simple model for an internal reaction yields the following expression for
the internal production of entropy under conditions of constant T, V and N, �ipS =
−ξ K/T − R[ξ ln ξ − (1 + ξ ) ln(1 + ξ )], where ξ is a measure of the progress of the
reaction going from 0 to 1. Find the equilibrium value of ξ , i.e. the value of ξ for which
the reaction cannot proceed spontaneously.
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Hint

The spontaneous reaction will stop when dipS is no longer positive, i.e. when dipS/dξ = 0.

Solution

dipS /dξ = d(�ipS)/dξ = −K/T − R[1 + ln ξ − 1 − ln(1 + ξ )] = 0; ξ/(1 + ξ ) =
exp(−K/RT ); ξ = 1/[exp(K/RT ) − 1].

Exercise 1.7

Find a state function from which one could evaluate the heat flow out of the system when
a homogeneous material is compressed isothermally.

Hint

Heat is not a state function of a system. In order to solve the problem we must know how
the change was made. Let us first assume that it was reversible.

Solution

For reversible conditions Q = ∫
T dS = T1

∫
dS = T1(S2 − S1) and the heat extraction

−Q = T1(S1 − S2). For irreversible conditions dQ < T dS; Q < T1(S2 − S1) and the
extracted heat is −Q > T1(S1 − S2), i.e. larger than before. However, if the final state
is the same, �U must be the same because it is a state function and the higher value of
−Q must be compensated by a higher value of the work of compression W than during
reversible compression. How much higher −Q and W will be cannot be calculated without
detailed information on the factor making the compression irreversible.

Exercise 1.8

Consider a Carnot cycle with a non-ideal gas and suppose that the process is somewhat
irreversible. Use the second law to derive an expression for the efficiency.

Hint

For each complete cycle we have ��U = 0 and ��S = 0 because U and S are both
state functions.

Solution

��U = W + Q1 + Q3 = 0; ��S = Q1/Ta + Q3/Tb + �ipS = 0 where W and
�ipS are the sums over the cycle. We seek η = −W/Q3 and should thus eliminate
Q1 by combining these equations: −Q1 = Q3Ta/Tb + �ipS · Ta; −W = Q1 + Q3 =
−Q3Ta/Tb − �ipS · Ta + Q3 = Q3(Tb − Ta)/Tb − �ipS · Ta and thus η = −W/Q3 =
(Tb − Ta)/Tb − �ipS · Ta/Q3 < (Tb − Ta)/Tb because �ipS, Ta and Q3 are all positive.
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1.7 Condition of internal equilibrium

The second law states that an internal process may continue spontaneously as long as
dipS is positive. It must stop when for a continued process one would have

dipS ≤ 0. (1.42)

This is the condition for equilibrium in a system. By integrating dipS we may obtain a
measure of the total production of entropy by the process, �ipS. It has its maximum
value at equilibrium. The maximum may be smooth, dipS = 0, or sharp, dipS < 0, but
the possibility of that alternative will usually be neglected.

As an example of the first case, Fig. 1.5 shows a diagram for the formation of vacancies
in a pure metal. The internal variable, generally denoted by ξ , is here the number of
vacancies per mole of the metal.

As an example of the second case, Fig. 1.6 shows a diagram for the solid state reaction
between two phases, graphite and Cr0.7C0.3, by which a new phase Cr0.6C0.4 is formed.
The internal variable here represents the amount of Cr0.6C0.4. The curve only exists up
to a point of maximum where one or both of the reactants have been consumed (in
this case Cr0.7C0.3). From the point of maximum the reaction can only go in the reverse
direction and that would give dipS < 0 which is not permitted for a spontaneous reaction.
The sharp point of maximum thus represents a state of equilibrium. This case is often
neglected and one usually treats equilibrium with the equality sign only, dipS = 0.

If dipS = 0 it is possible that the system is in a state of minimum �ipS instead of
maximum. By a small, finite change the system could then be brought into a state where
dipS > 0 for a continued change. Such a system is thus at an unstable equilibrium. As
a consequence, for a stable equilibrium we require that either dipS < 0, or dipS = 0 but
then its second derivative must be negative.

It should be mentioned that instead of introducing the internal entropy production,
dipS, one has sometimes introduced dQ′/T where dQ′ is called ‘uncompensated heat’.
It represents the extra heat, which must be added to the system if the same change of
the system were accomplished by a reversible process. Under the actual, irreversible
conditions one has dS = dQ/T + dipS. Under the hypothetical, reversible conditions
one has dS = (dQ + dQ′)/T . Thus, dQ′ = T dipS. In the actual process dipS is produced
without the system being compensated by such a heat flow from the surroundings.

If the reversible process could be carried out and the system thus received the extra
heat dQ′, as compared to the actual process, then the system must also have delivered
the corresponding amount of work to the surroundings in view of the first law. Because
of the irreversible nature of the process, this work will not be delivered and that is why
one sometimes talks about the ‘loss of work’ in the actual process which is irreversible
and produces some entropy instead of work, dW = dQ′ = T dipS.

Exercise 1.9

Check the loss of work in a cyclic process working with a high-temperature heat source
of Tb and a low-temperature heat sink of Ta and having some internal entropy production.
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Figure 1.5 The internal entropy production due to the formation of thermal vacancies in 1 mole
of a pure element at a temperature where the energy of formation of a vacancy is 9kT, k being
the Boltzmann constant. The initial state is a pure element without any vacancies. The internal
variable is here the number of vacancies expressed as moles of vacancies per mole of metal, uVa.
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Figure 1.6 The internal entropy production due to the solid state phase transformation
C + Cr0.7C0.3 → Cr0.6C0.4 at 1500 K and 1 bar. The initial state is 0.5 mole each of C(graphite)
and Cr0.7C0.3. The internal variable here represents the amount of Cr0.6C0.4.

Hint

In Exercise 1.8 we found −W = Q3(Tb − Ta)/Tb − �ipS · Ta· From this result we can
calculate the ‘loss of work’, e.g. if the amount of heat extracted from the heat source is
the same in the irreversible case as in the reversible one. Give this loss per heat extracted
from the heat source, and give it per heat given to the colder heat sink, Q1.

Solution

For a reversible cycle one would have −W = Q3(Tb − Ta)/Tb. The ‘loss of work’ per
extracted heat is thus �ipS · Ta/Q3.
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For the second case we should eliminate Q3 from the two equations in the solu-
tion of Exercise 1.8: −Q3 = �ipS · Tb + Q1Tb/Ta; −W = Q1 + Q3 = −Q1(Tb − Ta)/
Ta − �ipS · Tb.

The ‘loss of work’ per received heat is thus �ipS · Tb/(−Q1). The two results are
equal in the reversible limit where Q3/Tb = −Q1/Ta according to Eq. (1.35).

1.8 Driving force

Let the internal variable ξ represent the extent of a certain internal process. The internal
entropy production can then be regarded as a function of this variable and we may define
its derivative dipS/dξ as a new state variable. It may also be regarded as a state function
because it may be expressed as a function of a set of state variables, including ξ , which
define the state. For convenience, we shall multiply by T under isothermal conditions to
obtain a new state variable,

D ≡ T
dipS

dξ
. (1.43)

One may use D = 0 as the condition of equilibrium. This quantity was introduced by
De Donder [2] when considering chemical reactions between molecules and it was thus
called affinity. However, it has a much wider applicability and will here be regarded as
the driving force for any internal process. The symbol D, chosen here, may either be
regarded as an abbreviation of driving force or as an honour to De Donder. It is usually
convenient to define ξ by a variable that is an extensive property, subject to the law of
additivity. The driving force D will then be an intensive variable.

If a system is not in a state of equilibrium, there may be a spontaneous internal process
for which the second law gives dipS > 0 and thus

T dipS = Ddξ > 0. (1.44)

It is evident that dξ and D must have the same sign in order for the process to proceed. By
convention, dξ is given a positive value in the direction one wants to examine and D must
then be positive for a spontaneous process in that direction. In many applications one
even attempts to predict the rate of a process from the magnitude of D. Simple models
often predict proportionality. This will be further discussed in Chapter 5.

If D > 0 for some internal process, then the system is not in a state of equilibrium. The
process may proceed and it will eventually approach a state of equilibrium where D = 0.
The equilibrium value of the variable ξ can, in principle, be evaluated from the condition
D = 0, which is usually more directly applicable than the basic condition dipS = 0.

In the preceding section we connected an internal entropy production with the progress
of an internal process. However, we can now see that it is possible, in principle, to change
an internal variable without any entropy production. This can be done by changing the
external variables in such a way that the driving force D is always zero. Since D is zero at
equilibrium only, it is necessary to change the external variables so slowly that ξ can all
the time adjust itself to the new value required by equilibrium. In practice, this cannot be
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completely achieved because the rate of the process should be zero if its driving force is
zero. An infinitely slow change is thus necessary. Such an idealized change is identical to
the reversible process mentioned in the preceding section and it is sometimes described
as an ‘equilibrium reaction’. It would take the system through a series of equilibrium
states.

It may be convenient to consider a reversible process if one knows a state of equilibrium
for a system and wants to find other states of equilibrium under some different conditions.
This is the reason why one often applies ‘reversible conditions’. As an example we may
consider the heating of a system under constant volume, discussed in Section 1.4. The
heat capacity under such conditions, CV , was found to be different under slow and rapid
changes. Both of these cases may be regarded as reversible because the internal entropy
production is negligible when D is small for a very slow change and also when dξ is
small for a frozen-in internal process. For both cases we may thus use dS = dQ/T and
we obtain two different quantities,

CV ≡
(

∂ Q

∂T

)
V

= T

(
∂S

∂T

)
V

(1.45)

CV,ξ ≡
(

∂ Q

∂T

)
V,ξ

= T

(
∂S

∂T

)
V,ξ

. (1.46)

These expressions are equivalent to those given in Section 1.4 in terms of U. For inter-
mediate cases, which are not reversible, one should consider U and not S, i.e. use the
first law and not the second law.

Exercise 1.10

Consider an internal reaction which gives an entropy production under isothermal condi-
tions, �ipS = −ξ K/T − R[ξ ln ξ − (1 + ξ ) ln(1 + ξ )]. Derive the stability at equilib-
rium, defined as B = −T · d2

ipS/dξ 2 = −T · dD/dξ . (See Section 6.1.)

Hint

In Exercise 1.6 we have already calculated dipS/dξ and ξ at equilibrium.

Solution

dipS/dξ = −K/T − R[ln ξ − ln(1 + ξ )]; d2
ipS/dξ 2 = −R [1/ξ − 1/(1 + ξ )] .

However, at equilibrium 1/ξ = exp(K/RT ) − 1; 1/(1 + ξ ) = [exp(K/RT ) − 1]/
exp(K/RT ).

Thus, B = +RT [1/ξ − 1/(1 + ξ )] = RT [1 − exp(K/RT )]2/ exp(K/RT ).
This is always positive. The state of equilibrium must be stable.
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1.9 Combined first and second law

Combination of the first and second laws, Eqs (1.11) and (1.38) yield by elimination of
dQ,

dS = dQ/T + SmdN + dipS + (dU − dQ − dW − HmdN )/T

= dU/T + (Sm − Hm/T )dN − dW/T + dipS. (1.47)

Denoting Hm − T Sm by Gm, a symbol that will be explained in Section 3.2, and intro-
ducing Ddξ/T for dipS from Eq. (1.43) and only considering compression work, we
obtain

dS = (1/T )dU + (P/T )dV − (Gm/T )dN + Ddξ/T . (1.48)

It should be noted that the alternative definition of heat, Eq. (1.12), would yield the same
result by eliminating dQ∗ between Eqs (1.13) and (1.39). The combination of the two
laws is due to Gibbs [3] and Eq. (1.48), without the last term is often called Gibbs’
equation or relation. We shall simply refer to Eq. (1.48) as the combined law and it
can be written in many different forms, expressing one state variable as a function of
the others. Such a function, based on the combined law, is regarded as a characteristic
state function for the set of variables occurring on the right-hand side. The variables in
that set are regarded as the natural variables for the quantity appearing on the left-hand
side.

It is more common to write the combined law in the following form

dU = T dS − PdV + GmdN − Ddξ. (1.49)

Here, U is the characteristic state function and its natural variables are S, V and N. One
usually regards S as an external variable although its value is also influenced by internal
processes and it is not possible to control its value by actions from the outside without
an intimate knowledge of the properties of the system.

When there are i internal processes, one should replace Ddξ by �Di dξ i . For the sake
of simplicity this will be done only when we actually consider more than one process.
By grouping together the products of the external variables in Eq. (1.49) we write

dU = �Y a dX a − Ddξ, (1.50)

where Y a represents potentials like T. It is evident that the pressure should be expressed
as −P in order to be comparable with other potentials. As a consequence, we shall plot
P in the negative direction in many diagrams (see, for instance, Fig. 1.1). X a represents
extensive quantities like S and V. The pair of one potential and one extensive quantity,
Y a and X a, is called a pair of conjugate variables, for instance T, S or − P, V . Other
pairs of conjugate variables may be included through the first law by considering other
types of work, for instance gravitational work. It is important to notice that the change
in U is given in terms of the changes in variables all of which are extensive like S and V
and all of them are subject to the law of additivity.
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Since U is a state variable which is a function of all the external variables, X a, Xb,
etc., and the internal ξ variables, we have

Y b =
(

∂U

∂ Xb

)
X c,ξ

, (1.51)

where X c represents all the X variables except for Xb. It is interesting to note that all the
Y variables are obtained as partial derivatives of an energy with respect to an extensive
variable. That is why they are regarded as potentials. One may also regard − D and ξ as
a pair of conjugate variables where − D is the potential and is obtained as

− D =
(

∂U

∂ξ

)
X a

, (1.52)

where X a represents all the X variables. It should be emphasized that the Y potentials
have here been defined for a frozen-in state because ξ was treated as an independent
variable that is kept constant. Under conditions of maintained equilibrium one should
treat ξ as a dependent variable and the potentials are defined as

Y b =
(

∂U

∂ Xb

)
X c

. (1.53)

We will soon see that for equilibrium states the two definitions of Y b give the same result.
In the following discussions we do not want to be limited to frozen-in states (dξ = 0),

nor to equilibrium states or reversible changes (D = 0) and we will thus retain the Ddξ

term in the combined law. It should again be emphasized that there are those two different
cases for which the term Ddξ is zero and can be omitted.

The combined law can be expressed in several alternative forms depending upon the
choice of independent external variables. These forms make use of new state functions
which will be discussed soon.

Exercise 1.11

Try to include the effect of electrical work in the combined law.

Hint

There are two cases. First, consider the addition of an extra charge to the system. Second,
consider the case where the system is made part of an electrical circuit.

Solution

In the first case, the first law gives dU = dQ + dW + dWel where we may write dWel =
E · d(charge) = −EFdne, where F is the Faraday constant (the negative of the charge
of one mole of electrons) and ne is the number of extra electrons (in mole). E is the
electrical potential. The combined law becomes dU = T dS − PdV − EFdne − Ddξ .
However, E increases very rapidly with ne and reaches extremely high values before ne

is large enough to have a chemical effect. This form is thus of little practical interest.
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Let us now consider a system that is part of an electrical circuit. It is evident that
the charge entering a system through one lead must be practically equal to the charge
leaving the system from the other lead, i.e. dne1 = −dne2. The first law becomes
dU = dQ + dW + dWe1 = dQ + dW − E1Fdne1 − E2Fdne2 = dQ + dW − (E1 −
E2)Fdne1, and the combined law becomes dU = T dS − PdV − (E1 − E2)
Fdne1 − Ddξ . E1 and E2 are the electrical potentials on the two sides of the
system. At this time we do not need to speculate on what happens inside the system.

1.10 General conditions of equilibrium

A system is in a state of equilibrium if the driving forces for all possible internal processes
are zero. Many kinds of internal processes can be imagined in various types of systems
but there is one class of internal process that should always be considered, the transfer of a
quantity of an extensive variable from one part of the system, i.e. a subsystem, to another
subsystem. In this section we shall examine the equilibrium condition for such a process.

Let us first examine an internal process taking place in a system under constant values
of the external extensive variables S and V, here collectively denoted by X a, and let us
not be concerned about the experimental difficulties encountered in performing such an
experiment. We could then turn to the combined first and second law in terms of dU,
which is reduced as follows

dU = �Y adX a − Ddξ = −Ddξ. (1.54)

The driving force for the internal process will be

D = −(∂U/∂ξ )X a. (1.55)

The process can occur spontaneously and proceed until U has reached a minimum. The
state of minimum in U at constant S and V is thus a state of equilibrium.

The internal process we shall now consider is the transfer of dXb from one subsystem
(′) to the other (′′), keeping the remaining Xs constant at different values in the two
subsystems. It is convenient to measure the extent of this internal process by identifying
dξ with −dXb for the first subsystem and +dXb for the second. We thus obtain, by
applying the law of additivity to D,

− D =
(

∂U

∂ξ

)
X a

=
(

∂U

∂(−Xb)

)′

X c

+
(

∂U

∂ Xb

)′′

X c

= −
(

∂U

∂ Xb

)′

X c

+
(

∂U

∂ Xb

)′′

X c

.

(1.56)

The derivative ∂U/∂ Xb is identical to the conjugate potential Y b and we thus find

D = Y b
′ − Y b′′

. (1.57)

The driving force for this process will be zero and the system will be in equilibrium with
respect to the process if the potential Y b has the same value in the two subsystems. We
have thus proved that each potential must have the same value in the whole system at
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equilibrium. This applies to T, and to P with an exception to be treated in Chapter 16. It
also applies to chemical potentials µi , which have not yet been introduced.

Exercise 1.12

One may derive a term −EFdne for the electrical contribution to dU. Here E is the
electrical potential and −Fdne the electrical charge because dne is the number of moles
of extra electrons and −F is the charge of one mole of electrons. Evaluate the driving
force for the transfer of electrons from one half of the system to the other if their electrical
potentials are E ′ and E ′′ and can be kept constant. Define dξ as dne.

Solution

−D = (∂U/∂ξ ) = −(∂U/∂ne)′ + (∂U/∂ne)′′ = E ′F − E ′′F ; D = (E ′′ − E ′)F . In
practice, the big question is whether the charge transfer will change the potential differ-
ence or whether there is a device for keeping it constant.

1.11 Characteristic state functions

Under experimental conditions of constant S, V and N it is most convenient to use the
combined law in the form given by Eq. (1.49) because then it yields simply

dU = −Ddξ. (1.58)

At equilibrium, D = 0, we obtain

D = −(∂U/∂ξ )S,V,N = 0 (1.59)

for the internal process. If instead D > 0, then the internal process may proceed sponta-
neously and the internal energy will decrease and eventually approach a minimum under
constant S, V and N.

From an experimental point of view it is not very easy to control S but relatively
easy to control T. A change of independent variable may thus be desirable and it can be
performed by subtracting d(T S) which is equal to T dS + SdT . The combined law in
Eq. (1.49) is thus modified to

d(U − T S) = −SdT − PdV + GmdN − Ddξ. (1.60)

We may regard this as the combined law for the variables T, V and N and the combination
U − T S is regarded as the characteristic state function for these variables, whereas U is
regarded as the characteristic state function for the variables S and V. The new function
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(U − T S) has been given its own name and symbol, Helmholtz energy, F,

F = U − T S. (1.61)

Under experimental conditions of constant T, V and N we obtain

dF = −Ddξ. (1.62)

The equilibrium condition can then be written as

D = −(∂ F/∂ξ )T,V,N = 0. (1.63)

In an experiment under constant T, V and N there may be spontaneous changes until F
has approached a minimum.

In the same way we may introduce a state variable H = U + PV obtaining

dH = d(U + PV ) = T dS + V dP + GmdN − Ddξ. (1.64)

This may be regarded as the combined law for the variables S, P and N. The new variable H
is regarded as the characteristic state function for these variables and it is called enthalpy.
In fact, it has already been introduced in connection to the first law in Section 1.3.
The equilibrium condition under constant S, P and N is

D = −(∂ H/∂ξ )S,P,N = 0. (1.65)

In an experiment under constant S and P there may be spontaneous internal changes until
H has approached a minimum.

By applying both modifications we can define U − T S + PV as a new state variable,
G, obtaining

dG = d(U − T S + PV ) = −SdT + V dP + GmdN − Ddξ. (1.66)

This may be regarded as the combined law for the variables T, P and N and the character-
istic state function for these variables is called Gibbs energy, G. This characteristic state
function is of particular interest because T and P are the variables, which are most easily
controlled experimentally and they are both potentials. G may decrease spontaneously
to a minimum under constant T, P and N and the equilibrium condition is

D = −(∂G/∂ξ )P,T,N = 0. (1.67)

It may be mentioned that the mathematical operation, we have used in order to introduce
a potential instead of an extensive variable, is called Legendre transformation. An
important aspect is that no information is lost during such a transformation, as will be
discussed in Section 2.1.

Exercise 1.13

Suppose that it would be practically possible to keep H, P and N constant during an
internal reaction in a system. What state function should then be used in order to predict
the state of equilibrium?
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Hint

Find a form of the combined law which has dH, dP and dN on the right-hand side.

Solution

dH = T dS + V dP + GmdN − Ddξ ; T dS = dH − V dP −GmdN + Ddξ . We thus
obtain D = T (∂S/∂ξ )H,P,N > 0 for spontaneous reactions. Equilibrium is where S(ξ )
has its maximum.

Exercise 1.14

In Exercise 1.6 we considered an internal reaction in a closed system giving the fol-
lowing internal production of entropy under isothermal conditions. �ipS = −ξ K/T −
R[ξ ln ξ − (1 + ξ ) ln(1 + ξ )]. Now, suppose the heat of reaction under constant T, V and
N is Q = ξ K . Derive an expression for Helmholtz energy F and use it to calculate the
equilibrium value of ξ . Compare with the previous result obtained by maximizing the
internal production of entropy.

Hint

Use �F = �U − �(T S), where �U is obtained from the first law and �S from the
second law.

Solution

Under constant T, V and N, the heat of reaction must be compensated by heat flow from
the surroundings, Q = ξ K . Since the volume is constant �U = Q = ξ K .

The total increase of entropy is �S = Q/T + �ipS = ξ K/T + �ipS = −R[ξ ln ξ −
(1 + ξ ) ln(1 + ξ )] and thus �F = �U − �(T S) = ξ K + RT [ξ ln ξ − (1 + ξ ) ln(1 +
ξ )].

This is identical to −T �ipS. For this particular system, we thus get the same result if
we minimize �F or maximize �ipS under constant T, V and N.

1.12 Entropy

Before finishing the present discussion of basic concepts of thermodynamics, a few
words regarding entropy should be added. No attempt will here be made to explain the
nature of entropy. However, it is important to realize that there is a fundamental difference
between entropy and volume in spite of the fact that these two extensive state variables
appear in equivalent places in many thermodynamic equations, for instance in the forms
of the combined law defining dU or dG. For volume there is a natural zero point and
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one can give absolute values of V. As a consequence, the change of G due to a variation
of P, (∂G/∂ P)T,N , is a well defined quantity because it is equal to V. One may thus
compare the values of G of two systems at different pressures.

For internal energy or enthalpy there is no natural zero point but in practical appli-
cations it may be convenient to choose a point of reference for numerical values. The
same is true for entropy although it is quite common to put S = 0 for a well-crystallized
substance at absolute zero. That is only a convention and it does not alter the fact that
the change of the Gibbs energy G due to a variation of T, (∂G/∂T )P,N , cannot be given
an absolute value because it is equal to −S. As a consequence, it makes no sense to
compare the values of G of two systems at the same pressure but different temperatures.
The interaction between such systems must be based upon kinetic considerations, not
upon the difference in G values. The same is true for the Helmholtz energy F because
(∂ F/∂T )V,N is also equal to −S.

The convention to put S = 0 at absolute zero is useful because the entropy difference
between two crystalline states of a system of fixed composition goes to zero there accord-
ing to Nernst’s heat theorem, sometimes called the third law. It should be emphasized
that the third law defined in this way only applies to states, which are not frozen in a
disordered arrangement.

Statistical thermodynamics can provide answers to some questions, which are beyond
classical thermodynamics. It is based upon the Boltzmann relation

S = klnW, (1.68)

where k is the Boltzmann constant (= R/N A, where NA is Avogadro’s number) and W
is the number of different ways in which one can arrange a state of given energy. 1/W is
thus a measure of the probability that a system in this state will actually be arranged in a
particular way. Boltzmann’s relation is a very useful tool in developing thermodynamic
models for various types of phases and it will be used extensively in Chapters 19–22.
It will there be applied to one physical phenomenon at a time. The contribution to the
entropy from such a phenomenon will be denoted by �S or more specifically by �Si

and we can write Boltzmann’s relation as

�Si = k ln Wi , (1.69)

where Wi and �Si are evaluated for this phenomenon alone. Such a separation of the
effects of various phenomena is permitted because W = W1 · W2 · W3 · . . .

S = k ln W = k ln(W1 · W2 · W3 · . . .) = k(ln W1 + ln W2 + ln W3 + · · ·)
= �S1 + �S2 + �S3 + · · · (1.70)

Finally, we should mention here the possibility of writing the combined law in a form
which treats entropy as a characteristic state function, although this will be discussed in
much more detail in Chapters 3 and 6. From Eq. (1.63) we get

− dS = −(1/T )dU − (P/T )dV + (Gm/T )dN − (D/T )dξ. (1.71)
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This formalism is sometimes called the entropy scheme and the formalism based
upon dU is then called the energy scheme. See Section 3.5 for further discussion.
With the entropy scheme we have here introduced new pairs of conjugate variables,
(−1/T, U ), (−P/T, V ) and (Gm/T, N ). We may also introduce H into this formalism
by the use of dU = dH − V dP ,

dS = −(1/T )dH + (V/T )dP + (Gm/T )dN − (D/T )dξ. (1.72)

Two more pairs of conjugate variables appear here, (−1/T, H ) and (−P, V/T ). It is
evident that S is the characteristic state function for H, P and N as well as for U, V and
N. By subtracting dS from d(H/T ) we further obtain

d(H/T − S) = Hd(1/T ) + (V/T )dP + (Gm/T )dN − (D/T )dξ. (1.73)

This is equal to d(G/T ) because G = U − T S + PV = H − T S. This form of the
combined law has the interesting property that it yields directly the following useful
expression for the enthalpy,

H =
(

∂(G/T )

∂(1/T )

)
P,N

. (1.74)

Exercise 1.15

Equation (1.66) shows that S can be calculated from G as −(∂G/∂T )P,N . It may be
tempting to try to derive this relation as follows: G = H − T S; ∂G/∂T = −S. How-
ever, that derivation is not very satisfactory. Show that a correction should be added and
then prove that the correction is zero under some conditions.

Hint

Remember that H and S may depend upon T.

Solution

G = H − T S gives strictly (∂G/∂T )P,N = (∂ H/∂T )P,N − T (∂S/∂T )P,N − S. How-
ever, the sum of the first two terms (the contributions from the T-dependence of
H and S) is zero under reversible conditions and constant P and N because then
dH = T dS + V dP + GmdN − Ddξ = T dS according to Eq. (1.64).

Exercise 1.16

We have discussed the consequences for G and F of the fact that S has no natural zero
point. Actually, nor does U. Find a quantity for which this fact has a similar consequence.
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Hint

Look for a form of the combined law which has U as a coefficient just as S is a coefficient
in dG = −SdT + V dP + GmdN − Ddξ .

Solution

Equation (1.71) gives dS = (1/T )dU + (P/T )dV − (Gm/T )dN + (D/T )dξ ;
d(−F/T ) = d(S − U/T ) = dS − (1/T )dU − Ud(1/T ) = −Ud(1/T ) + (P/T )dV −
(Gm/T )dN + (D/T )dξ ; (∂[F/T ]/∂[1/T ])V,N ,ξ = U .

Thus, one cannot compare the values of F/T at different temperatures.



2 Manipulation of thermodynamic
quantities

2.1 Evaluation of one characteristic state function from another

For the sake of simplicity we shall only consider closed systems in this chapter and thus
omit terms in dN. In the first chapter we have defined some characteristic state functions,
U, F, H and G in addition to S. Each one was introduced through a particular form of the
combined law. The independent variables in each form may be regarded as the natural
variables for the corresponding characteristic state function. In integrated form these
functions can thus be written as

U = U (S, V, ξ ) (2.1)

H = H (S, P, ξ ) (2.2)

F = F(T, V, ξ ) (2.3)

G = G(T, P, ξ ). (2.4)

All these expressions are regarded as fundamental equations because all thermody-
namic properties of a substance can be evaluated from any one of them. This is because
the combined law in its various forms shows how the values of all the dependent variables
can be calculated for any given set of values of the independent variables. As an example,
from the combined law for the variables S, V and ξ , Eq. (1.49), we get

T = (∂U/∂S)V,ξ (2.5)

−P = (∂U/∂V )S,ξ (2.6)

−D = (∂U/∂ξ )S,V . (2.7)

As a consequence, we can now calculate the value for any other of the characteristic state
functions at a given set of values of S, V and ξ , for instance

G = U − T S + PV = U − S(∂U/∂S)V,ξ − V (∂U/∂V )S,ξ . (2.8)

It should be noted that the calculation of the value of G from U is only possible because
one knows an expression for U as a function of its natural variables. As a consequence of
the same principle, even if G can thus be obtained as an analytical expression from U(S,
V, ξ ) by the use of the above relation, the result is not a fundamental equation because
G(S, V, ξ ) does not allow the dependent variables to be calculated. They can only be
calculated from G as G(T, P, ξ ) through S = −(∂G/∂T )P,ξ and V = (∂G/∂ P)T,ξ . It is
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thus necessary first to replace S and V by T and −P as a new set of independent variables,
which is seldom possible to do analytically. If that replacement is not done, then some
information has been lost in the calculation of G from U.

It should again be emphasized that an expression for a characteristic state function
will be a fundamental equation only if expressed as a function of its natural variables.

Exercise 2.1

Show that G = (∂[H/S]/∂[1/S])P .

Hint

Evidently, no internal reaction is considered. The natural variables of H are S and P. It
should thus be possible to express G in terms of H and its derivatives.

Solution

Without any internal reaction we have for a closed system from Eq. (1.64): dH = T dS +
V dP; T = (∂ H/∂S)P .

We get (∂[H/S]/∂[1/S])P = H + (1/S)(∂ H/∂[1/S])P = H − S(∂ H/∂S)P = U +
PV − ST = G.

2.2 Internal variables at equilibrium

We have already emphasized that ξ is a dependent variable if the system is to remain
in internal equilibrium. Since D = 0 in such a state, the equilibrium value of ξ can be
evaluated from a fundamental equation for any one of the characteristic state functions,
for instance U(S, V, ξ ) from Eq. (1.49),

− D = (∂U/∂ξ )S,V = 0. (2.9)

By applying this to the equation for U one obtains a relation for the equilibrium value
of ξ for the prescribed values of S and V,

ξ = ξ (S, V ) , (2.10)

where ξ has thus become a dependent variable since we now consider states of equi-
librium. Equation (2.10) can be used to eliminate ξ from the equation for U(S, V, ξ ) to
yield an equation for states of internal equilibrium. This may be inserted in U(S, V, ξ )
in order to yield

U = U (S, V ). (2.11)

It may be of practical importance to calculate the values of various state variables at
equilibrium. That would be straightforward if a fundamental equation under equilibrium
conditions is available. If only a fundamental equation containing ξ is available, then one
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should first apply the equilibrium condition to find how the equilibrium value of ξ varies
with the other independent variables. We have just seen how one, in principle, can use that
information to eliminate ξ and obtain the wanted fundamental equation. In practice that
may be difficult or even impossible to do analytically. In that case one can evaluate the
corresponding derivative as a function of ξ from the fundamental equation available and
insert the equilibrium value of ξ . We shall now see that this method will give the correct
value.

The proof is based on the equilibrium condition for the relevant characteristic state
function �(v ′, v ′′, . . . , ξ ), where v ′, v ′′ etc. are the natural variables for � and(

∂�

∂ξ

)
va

= 0. (2.12)

The subscript va indicates that all the natural variables v ′, v ′′ etc. are kept constant.
Any derivative of the function for equilibrium states with respect to one of the natural
variables, vb, can be expressed through derivatives of the initial function containing ξ as
an independent variable,(

∂�

∂vb

)
vc

=
(

∂�

∂vb

)
vc,ξ

+
(

∂�

∂ξ

)
va

(
∂ξ

∂vb

)
vc

=
(

∂�

∂vb

)
vc,ξ

(2.13)

when ξ has its equilibrium value. The subscript vc indicates that all natural variables
except vb are kept constant. This proof depends on the use of Eq. (2.12) which is valid
only when the variables va that are kept constant are the natural variables of �. As an
example (

∂U

∂ξ

)
T,V

�= 0, (2.14)

because the natural variables of U are S and V. That is why CV , the heat capacity at
constant volume, is different when ξ is frozen-in and when ξ has time to adjust to
internal equilibrium (see Eq. (1.21)).

Furthermore, it should be emphasized that this method of calculation can only be
applied to the first derivatives of the characteristic state function, and not to higher-order
derivatives, since, in general

∂2U

∂ Xb∂ξ
�= 0. (2.15)

Exercise 2.2

A very simple model for the magnetic disordering of a ferromagnetic element gives
the following expression at a constant pressure, �G = ξ (1 − ξ )K + RT [ξ ln ξ +
(1 − ξ ) ln(1−ξ )] where K is a constant and ξ is the fraction of spins being disordered.
The degree of magnetic disorder varies with T, ξ = ξ (T ). Derive an expression for
the contribution to the enthalpy due to magnetic disordering, �H . Then calculate, at
the temperature where ξ = 1/4, the corresponding contribution to the heat capacity at
constant P which is defined as �CP = (∂�H/∂T )P .
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Hint

A magnetic state cannot be frozen-in. ξ will always have its equilibrium value. It can
be found from (∂�G/∂ξ )T,P = 0, which yields (1 − 2ξ )K + RT ln[ξ/(1 − ξ )] = 0.
Unfortunately, this does not give ξ as an analytical function of T and we cannot replace ξ

by T in �G. Thus, it is convenient to make use of the fact that (∂�G/∂ξ )T,P = 0 at equi-
librium, which gives −�S = (∂�G/∂T )P = (∂�G/∂T )P,ξ according to Eq. (2.13).
We can then evaluate �H from �G + T �S.

Solution

�S = −(∂�G/∂T )P,ξ = −R[ξ ln ξ + (1 − ξ ) ln(1 − ξ )]; �H = �G + T �S =
ξ (1 − ξ )K + RT [ξ ln ξ + (1 − ξ ) ln(1 − ξ )] − RT [ξ ln ξ + (1 − ξ ) ln(1 − ξ )] =
ξ (1 − ξ )K ; (∂�H/∂T )P,ξ = 0. It is evident that �CP cannot be evaluated in this
way. The reason is that (∂�H/∂ξ )T,P �= 0. The natural variables for H are not T and P
but S and P. Thus, we must use the basic form of Eq. (2.13), �CP ≡ (∂�H/∂T )P =
(∂�H/∂T )P,ξ + (∂�H/∂ξ )T,P (∂ξ/∂T )P .

From the relation between ξ and T at equilibrium, given in the hint, we get:
(∂T/∂ξ )P = −(K/R){−2/ ln[ξ/(1 − ξ )] − (1 − 2ξ )[1/ξ + 1/(1 − ξ )]/(ln[ξ/(1 −
ξ )])2}; �CP = 0 + (1 − 2ξ )K R/K {2/ ln[ξ/(1 − ξ )] + (1 − 2ξ )/ξ (1 − ξ )(ln[ξ/

(1 − ξ )])2
} = 1.29R for ξ = 1/4.

2.3 Equations of state

If a characteristic state function for a particular substance is given with a different set of
variables than the natural one, then it describes some of the properties but not all of them.
Such an equation is often regarded as a state equation and not a fundamental equation.
As an example,

U = U (T, P)

is often called the caloric equation of state. Some of the quantities which are usually
regarded as variables may also be represented with an equation between other variables,
for instance.

V = V (T, P).

This is sometimes called the thermal equation of state. The practical importance of
some state equations stems from the fact that they can be evaluated fairly directly
from measurable quantities and can thus be used to rationalize the results of mea-
surements on a particular substance. As an example, the derivatives of V with respect
to T and P can be obtained by measuring the thermal expansivity and the isothermal
compressibility, respectively. It is much more laborious to evaluate the fundamental
equation for a substance.
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A major problem in the evaluation of the fundamental equation or an equation of state
is the choice of mathematical form. The form is not specified by thermodynamics but
must be chosen from a knowledge of the physical character of the particular substance
under consideration. A considerable part of the present text will be concerned with the
modelling of the fundamental equation for various types of substances.

Exercise 2.3

An ideal classical gas is defined by two equations of state. For one mole, they are PV =
RT and U = A + BT where A and B are two constants. Try to derive a fundamental
equation.

Hint

Try to find F(T, V). Use U = F + T S = F − T (∂ F/∂T )V which yields (∂U/∂T )V =
−T (∂2 F/∂T 2)V . Also use P = −(∂ F/∂V )T .

Solution

(∂2 F/∂T 2)V = −(∂U/∂T )V /T = B/T .
Integration yields (∂ F/∂T )V = −B ln T + K1; F = −BT ln T + K1T + K2,

where K1 and K2 are independent of T but may depend upon V. That dependency is
obtained from RT/V = P = −(∂ F/∂V )T = −T (∂K1/∂V )T − (∂K2/∂V )T .

Thus, (∂K2/∂V )T = 0 and (∂K1/∂V )T = −R/V . K2 is independent of V and K1 =
−R ln V + K3.

We get F = −BT ln T − RT ln V + K3T + K2.
To determine K2: A + BT = U = F + T S = F − T (∂ F/∂T )V = BT + K2. We

thus find K2 = A. We cannot determine K3 from the information given. Our result
is F = A + K3T − BT ln T − RT ln V which is a fundamental equation, F(T, V ). We
can also derive the Gibbs energy G = F + PV = F − V (∂ F/∂V )T = F + RT but
in order to have a fundamental equation in G we must obtain G(T, P) by replacing
V with P and T which is possible in the present case where V = RT/P . We thus get
G = A + (K3 + R − R ln R)T − (B + R)T ln T + RT ln P .

2.4 Experimental conditions

By experimental conditions we here mean the way an experiment is controlled from the
outside. It primarily concerns variables which we may regard as external. Let us first
consider the pair of conjugate variables −P and V. Either one of them can be controlled
from the outside without any knowledge of the properties of the system. In the pair
of conjugate variables T and S, one can control the value of T from the outside but the
control of S requires knowledge of the properties of the system or extremely slow changes.
In practice, it may even be difficult to keep S constant when another variable is changed.
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On the other hand, one can control the change in two other state variables, U and H, by
controlling the heat flow

dU = dQ − PdV (2.16)

dH = dU + d(PV ) = dQ + V dP. (2.17)

For some isothermal processes dQ/dξ is independent of the extent of the process, e.g.
melting of a pure substance. It is then convenient to define ξ as the amount of melt formed,
expressed in moles, and the heat of reaction per mole under constant P is obtained as

Q

N
=

1∫
0

(
∂ Q

∂ξ

)
T,P

dξ =
(

∂ Q

∂ξ

)
T,P

. (2.18)

A negative value implies that the process gives off heat to the surroundings under isother-
mal conditions. Such processes are called exothermic. Processes absorbing heat from
the surroundings are called endothermic. Equations (2.16) and (2.17) show that the heat
of reaction may be regarded as the energy or enthalpy of reaction, depending on whether
V or P is kept constant. It should be noted that the definition of heat of reaction, which
is based on treating Q in the first law as positive when the system receives heat from the
surroundings, results in the heat of reaction being negative when heat is ‘generated’ by
the reaction, i.e. given off. That is opposite to common sense but may be accepted for
the sake of consistency.

Of course, Q itself is not a state variable, because it does not concern the system itself
but its interaction with another system, usually the so-called surroundings. An important
experimental technique is to keep the system thermally insulated from the surroundings,
i.e. to make dQ = 0, which is called adiabatic conditions. Experimental conditions
under which various state variables are kept constant are often given special names,

constant P isobaric
constant V isochoric
constant T isothermal
constant P and T isobarothermal
constant H isenthalpic
constant S isentropic
constant U isoenergetic
constant composition isoplethal
constant potential equipotential

From the above equations for dU and dH, it is evident that an isenthalpic reaction
can be accomplished under a combination of isobaric and adiabatic conditions and an
isoenergetic reaction can be realized under a combination of isochoric and adiabatic
conditions.

Let us now turn to the internal variables, which we have represented by the general
symbol ξ . At equilibrium ξ has reached a value where the driving force for its change,
D, is zero. If the conditions are changed very slowly by an action from the outside, ξ

may vary slowly but all the time be very close to its momentary equilibrium value. In
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Section 1.8 we have already concluded that D is then very low and the internal entropy
production,

dipS = Ddξ/T, (2.19)

is very low. In the limit, one talks about a reversible reaction where dipS = 0. In view of
the relation

T dS = dQ + Ddξ, (2.20)

we see that a reversible reaction, D = 0, which is carried out under adiabatic conditions,
dQ = 0, is isentropic. By examining the combined law in the variables T and V we see
that a reversible reaction, which is carried out under isothermal and isochoric conditions,
takes place under constant F. If it is carried out under isothermal and isobaric conditions,
it takes place under constant G. It is usual to consider such conditions and they may be
called isobarothermal conditions.

The heat flow into a system on heating is often studied experimentally under con-
ditions that may not approach reversible ones. The heat capacity is defined as follows,
independent of the reversible or irreversible character of the process.

C = dQ/dT . (2.21)

For isochoric conditions

CV =
(

∂U

∂T

)
V

(2.22)

because dU is always equal to dQ − PdV according to the first law. For isobaric condi-
tions we obtain

CP =
(

∂ H

∂T

)
P

(2.23)

because dH is always equal to dQ + V dP according to the first law.
We have already seen that for heat capacity the result will be different if ξ is kept at a

constant value or is allowed to be adjusted to its equilibrium value which varies with T. In
many experiments with molecular species, their amounts are frozen-in at reasonably low
temperatures and ξ is thus kept constant. At higher temperatures, the amounts may be
adjusted by molecular reactions and ξ may thus be adjusted to its equilibrium value. When
discussing CP and CV it may sometimes be wise to specify the conditions regarding ξ .
Usually it is assumed that the ξ values for all possible internal processes are adjusted to
their equilibrium values but it is not unusual to consider some process as frozen-in.

Exercise 2.4

The isothermal compressibility κT is defined as −(∂V/∂ P)T /V , where the derivative is
evaluated under reversible, isothermal conditions, i.e. a very slow compression, D = 0.
Show a similar way of defining the adiabatic compressibility.
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Hint

Suppose the adiabatic compression is so rapid that there can be no internal process, i.e.
dξ = 0.

Solution

The second law gives T dS = dQ + Ddξ and both terms are now zero. We thus have
dS = 0 and can define the adiabatic compressibility as −(∂V/∂ P)S/V . This is why this
quantity is usually denoted by κS . Note that this is justified only if the compression is
much faster than all internal reactions, including heat conduction.

2.5 Notation for partial derivatives

Since there are many alternative sets of independent variables it is necessary to indicate
which variables are to be kept constant in the evaluation of a particular partial derivative.
In order to simplify the notation for characteristic state functions, we can omit this infor-
mation when we use the natural variables, i.e. the particular set of independent variables
characteristic of the state function under consideration. Since G is the characteristic state
function for T, P we could then write ∂G/∂T instead of (∂G/∂T )P . Furthermore, we may
introduce a shorthand notation for these derivatives, say GT . Second-order derivatives
can be denoted by two subscripts and GTP would thus mean

GTP =
(

∂

∂T

(
∂G

∂ P

)
T

)
P

=
(

∂

∂ P

(
∂G

∂T

)
P

)
T

= GPT . (2.24)

Full information must be given as soon as a set of variables, different from the natural
one, is used.

The shorthand notation can be used for frozen-in conditions, dξ = 0, and for equilib-
rium conditions where ξ is regarded as a dependent variable. When there is any doubt
as to what conditions are considered, such information should be given.

Exercise 2.5

How should HTT be interpreted?

Hint

Study the combined law in the form dH = T dS + V dP − Ddξ .

Solution

The natural variables of H are S and P. Thus HTT is an illegal notation because T is not
one of the natural variables of H. We conclude that HTT should not be used.
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2.6 Use of various derivatives

Of course, CP and CV can both be related to any one of the characteristic state functions
but in each case a certain choice gives a shorter derivation. CP is defined with T and
P as independent variables and we should thus use G, which has T and P as its natural
variables. The fundamental equation G = G(T,P) gives S = −(∂G/∂T )P and thus

H (T,P) = G + T S = G − T (∂G/∂T )P = (∂[G/T ]/∂[1/T ])P (2.25)

CP = (∂ H/∂T )P = −T (∂2G/∂T 2)P = T (∂S/∂T )P . (2.26)

For CV we should use F(T,V ) and, since S = −(∂ F/∂T )V , we find in an analogous way

CV = (∂U/∂T )V = −T (∂2 F/∂T 2)V = T (∂S/∂T )V . (2.27)

However, we may wish to compare the two heat capacities and must then be prepared to
derive both from the same characteristic state function, say G. For CP we already have
an expression − T GTT , and CV will now be derived from U through G as a function of
T and P.

U = G + T S − PV = G − T GT − PGP (2.28)

dU = (GT − GT − T GTT − PGPT )dT + (GP − T GTP − GP − PGPP)dP

= −(T GTT + PGPT )dT − (T GTP + PGPP)dP. (2.29)

However, in order to evaluate CV which is equal to (∂U/∂T )V we must know U as a
function of T and V instead of T and P. We need a relation between dV, dT and dP. Starting
with V = (∂G/∂ P)T = GP we obtain

dV = GPT dT + GPPdP (2.30)

dP = dV/GPP − GPT dT/GPP. (2.31)

This gives dP as a function of dV and dT which can be inserted in the above equation

dU = −(T GTT + PGPT )dT − (T GTP + PGPP)(dV/GPP − GPT dT/GPP). (2.32)

Remembering that GPT is identical to GTP , we thus obtain

CV = (∂U/∂T )V = −T GTT − PGTP + T (GTP )2/GPP + PGTP

= T (GTP )2/GPP − T GTT (2.33)

so that

CV = CP + T (GTP )2/GPP. (2.34)

Using the same method we can derive an expression for any quantity in terms of the
derivatives of G with respect to T and P.
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It should be pointed out that, by tradition, one instead relates various quantities in
terms of the following three quantities which are directly measurable.

Heat capacity at constant pressure CP = (∂ H/∂T )P = −T GTT (2.35)
Thermal expansivity α = (∂V/∂T )P/V = GTP/GP (2.36)
Isothermal compressibility κT = −(∂V/∂ P)T /V = −GPP/GP. (2.37)

These three quantities are thus closely related to the three second-order derivatives GTT ,
GTP and GPP. The two schemes of relating quantities can easily be translated into each
other. It is interesting to note that through experimental information on the three quantities
CP , α, and κT one has information on all the second-order derivatives of G.

Together, they thus form a good basis for an evaluation of the fundamental equation
G(T, P).

Exercise 2.6

Derive an expression for CV for a substance with G = a + bT + cT ln T + dT 2 +
eP2 + f TP + g P2.

Hint

Use either one of the equations given for CV but remember first to make sure that the
proper variables are used.

Solution

Let us use CV = T (∂S/∂T )V but then we must evaluate S(T, V ) from G. First, we get
−S(T, P) = (∂G/∂T )P = b + c + c ln T + 2dT + f P .

In order to replace P by V we need V = (∂G/∂ P)T = e + f T + 2g P , which
gives −S = b + c + c ln T + 2dT + f (V − e − f T )/2g; CV = T (∂S/∂T )V =
−T (c/T + 2d − f 2/2g) = −c − T (2d − f 2/2g).

Exercise 2.7

Show how one can calculate the heat absorption on reversible isothermal compression
from easily measured quantities.

Hint

Since T and P are most easily controlled experimentally, we should use these variables. In
Exercise 1.7 we obtained the result Q = T1(S2 − S1) which could be very convenient but
only if the properties of the substance have already been evaluated from the experimental
information
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Solution

Under reversible, isothermal conditions: dQ = T dS = T (∂S/∂ P)T dP = −T (∂2G/

∂T ∂ P)dP = −T (∂V/∂T )P dP = −T V αdP; Q = −T
∫

V αdP , where α = (∂V/

∂T )P/V .

2.7 Comparison between CV and CP

Let us now examine the relation between CV and CP in more detail. It is usually given in
the following form

CP = CV (1 + γαT ), (2.38)

where γ is a dimensionless quantity called Grüneisen’s constant. By comparison with
the relation between CV and CP given by Eq. (2.35) we can express γ in terms of the
directly measurable quantities

γ = −(GTP )2/αCV GPP = V α/κT CV , (2.39)

where κT and CV are both positive and, with few exceptions, α is also positive and it
is never strongly negative. The γ quantity often has a value of about 2. Note that CP is
always larger than CV , independent of the sign of α, because γα is equal to V α2/κT CV ,
which is always positive.

The quantity γ can be expressed in many ways, some of which are given here without
proof

γ = 1

T
· GPGTP

GTT GPP − G2
TP

= V

T
· FTV

FTT
= V

CV

(
∂S

∂V

)
T

= V

(
∂ P

∂U

)
V

. (2.40)

In all these forms γ is proportional to V, which in turn varies with T if P is kept constant. It
is evident that one cannot discuss how γ for a particular substance varies with T without
specifying if P or V is kept constant. If CV (T ) is evaluated from CP (T ) using values
of γ and α measured at 1 bar, then the resulting values hold for different volumes at
different temperatures. CV may be regarded either as a function of T, V or T, P and it is
evident that the functions CV (T, V0) and CV (T, P0) are different. A comparison of the
two functions, evaluated from CP (T, P0) for tungsten is given in Fig. 2.1. It should be
emphasized that all other quantities, such as α and κT , can also be treated as functions
of either T, V or T, P .

Exercise 2.8

Express FTT and FTV in terms of GTT and GTP. Then show that the second and third
members of Eq. (2.40) actually are equal.

Hint

FT = −S = GT and V = G P .



2.8 Change of independent variables 41

60

50

40

30

20

0 2000 4000

Cv(T,P0)

Cv(T,V0)

Cp(T,P0)

C
 (

J/
m

o
lK

)

T (K)

Figure 2.1 The heat capacity of tungsten evaluated in three different ways. Even though CV is
defined as the heat capacity at constant V, it may be regarded as a function of T, V or T, P.
At each temperature CV(T, P0) is evaluated at the volume given by the actual temperature
and a selected constant pressure P0.

Solution

In order to change from variables T and P to T and V, we calculate from V = G P ;
dV = GPT dT + GPPdP; dP = dV/GPP − GPT dV/GPP.

From the hint: dFT = FTT dT + FTV dV = GTT dT + GTPdP = (GTT − G2
TP/

GPP)dT + GTPdV/GPP.
Compare terms in these expressions: FTT = GTT − G2

TP/GPP; FTV = GTP/GPP.
Third member: (V GTP/GPP)/T (GTT − G2

TP/GPP) = G P GTP/T (GTT GPP − G2
TP),

which is the second member.

2.8 Change of independent variables

One often wants to change the set of independent variables. An example was given in
Section 2.6 where CV was first given as (∂U/∂T )V and was then evaluated as a function
of the derivatives of G with respect to T and P. Such changes can be made by the following
automatic procedure, which is based upon the properties of Jacobians. It is here given
without mathematical proof. We start by a definition of the Jacobian

∂(u, v)

∂(x, y)
≡

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
. (2.41)

It should be emphasized that the derivatives in the determinant are partial derivatives,
either under constant y or x. It obeys the following rule

∂(u, v)

∂(x, y)
= ∂(u, v)

∂(r, s)

/
∂(x, y)

∂(r, s)
. (2.42)

We can thus introduce r and s as new independent variables instead of x and y.
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The derivative of a thermodynamic quantity can be expressed by a Jacobian because

∂(u, y)

∂(x, y)
=

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y
∂y

∂x

∂y

∂y

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂u

∂x

∂u

∂y
0 1

∣∣∣∣∣∣ =
(

∂u

∂x

)
y

, (2.43)

and the new independent variables, r and s, can thus be introduced in the following way

(
∂u

∂x

)
y

= ∂(u, y)

∂(x, y)
= ∂(u, y)

∂(r, s)

/
∂(x, y)

∂(r, s)
=

∣∣∣∣∣∣∣∣
∂u

∂r

∂u

∂s
∂y

∂r

∂y

∂s

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂s
∂y

∂r

∂y

∂s

∣∣∣∣∣∣∣∣
.

(2.44)

It should be realized that ∂u/∂x actually means (∂u/∂x)y and ∂u/∂r means (∂u/∂r )s .
This equation contains the following relations as special cases. They can of course be
proved in a much simpler way: (

∂u

∂x

)
y

= 1

/ (
∂x

∂u

)
y

(2.45)

(
∂u

∂x

)
y

= −
(

∂y

∂x

)
u

/(
∂y

∂u

)
x

. (2.46)

Exercise 2.9

Express (∂G/∂T )V in terms of functions usually measured and tabulated.

Hint

Most measurements are made by controlling T and P. Change to these variables. Remem-
ber that ∂x/∂r and ∂x/∂s in Eq. (2.44) mean (∂x/∂r )s and (∂x/∂s)r .

Solution

(∂G/∂T )V =
∣∣∣∣∣ ∂G/∂T ∂G/∂ P

∂V/∂T ∂V/∂ P

∣∣∣∣∣
/∣∣∣∣∣ ∂T/∂T ∂T/∂ P

∂V/∂T ∂V/∂ P

∣∣∣∣∣
= (∂G/∂T )P − (∂G/∂ P)T (∂V/∂T )P/(∂V/∂ P)T = −S + V ακT .

Exercise 2.10

A condensed phase is compressed adiabatically and reversibly from a pressure 0 to P.
Derive an equation for the temperature change in terms of easily measured quantities.
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Hint

Adiabatic and reversible conditions are also isentropic. We want (∂T/∂ P)S . Change the
variables to T and P.

Solution

(∂T/∂ P)S =
∣∣∣∣∣ ∂T/∂T ∂T/∂ P

∂S/∂T ∂S/∂ P

∣∣∣∣∣
/∣∣∣∣∣ ∂ P/∂T ∂ P/∂ P

∂S/∂T ∂S/∂ P

∣∣∣∣∣
= −(∂S/∂ P)T /(∂S/∂T )P = −GTP/GTT = −V α/(−CP/T ) = T V α/CP.

We thus get dT = (T V α/CP ) dP . The result does not depend on the compressibility
which may seem surprising. How could there be compression caused heating if the
phase is incompressible? The answer is that the thermal expansivity, α, is zero if the
compressibility is zero.

2.9 Maxwell relations

Some partial derivatives can be transformed in a very special way. The requirement is
that the variable to be kept constant is a conjugate variable to one of the numerators in
the derivative. The method may be illustrated by the following example:

dG = −SdT + V dP; −S = (∂G/∂T )P ; V = (∂G/∂ P) T (2.47)(
∂V

∂T

)
P

=
(

∂(∂G/∂ P)T

∂T

)
P

= ∂2G

∂ P∂T
= ∂2G

∂T ∂ P
=

(
∂(∂G/∂T )P

∂ P

)
T

= −
(

∂S

∂ P

)
T

(2.48)

or by the shorthand notation(
∂V

∂T

)
P

= GPT = GTP = −
(

∂S

∂ P

)
T

. (2.49)

The relations obtained in this way are called Maxwell relations. We can use any form of
the combined law and thus obtain a large number of such relations. It should be noticed
that all derivatives related by Maxwell relations are constructed in such a way that the
variable to be kept constant is conjugate to the quantity in the numerator but the relations
may be inverted, of course.

Exercise 2.11

Transform (∂V/∂T )S using a Maxwell relation.
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Hint

Use the inverse quantity, (∂T/∂V )S in order to place the conjugate quantities, T and S, in
the right positions. Use the characteristic state function with V and S as natural variables,
i.e. U.

Solution

(∂V/∂T )S = 1/(∂T/∂V )S = 1/(∂2U/∂V ∂S) = −1/(∂ P/∂S)V = −(∂S/∂ P)V .

Exercise 2.12

Prove the identity T (∂2 P/∂T 2)V = (∂CV /∂V )T .

Hint

Since T and V are the variables, it is convenient to base the solution on F and its derivatives.
dF = −SdT − PdV gives the following Maxwell relation: (∂S/∂V )T = (∂ P/∂T )V .
Also, use CV = T (∂S/∂V )V from Eq. (2.27).

Solution

Using the Maxwell relation we get T (∂2 P/∂T 2)V = T (∂(∂ P/∂T )V /∂T )V = T (∂(∂S/

∂V )T /∂T )V = T ∂2S/∂V ∂T . From CV = T (∂S/∂T )V we get (∂CV /∂V )T = T ∂2S/

∂T ∂V which is the same result.
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3.1 Chemical potential

In Chapter 1 we were concerned mainly with closed systems but have also considered
the addition of more matter through terms with dN . Without explicitly stating it, it was
presumed that the properties of the system were not affected by this addition. That would
hold for a one-component system and also if the added matter has the same composition as
the initial system. We shall now take changes of composition into account by generalizing
GmdN to �µi dNi where the subscript i identifies different components.

dU = T dS − PdV + �µi dNi − Ddξ. (3.1)

The µi quantity is a potential just like T, −P and −D. It was first introduced by Gibbs [3]
and is called chemical potential. Its close relation to Gm will be explained in Section 4.1.
µi and Ni are conjugate variables and the terms µi dNi may thus be included in �Y adX a in
the generalized form of the combined law, introduced in Section 1.9. For any component
j of the system the chemical potential may be defined from Eq. (3.1) as

µ j = (∂U/∂ N j )S,V,Nk ,ξ . (3.2)

The subscript ‘Nk’ indicates that all Ni are kept constant except for N j . At equilibrium
with respect to the internal process, where ξ is a dependent variable, we have

µ j = (∂U/∂ N j )S,V,Nk . (3.3)

The summation �µi dNi is taken over all components in a chosen set of independent
components. In chemical thermodynamics one often takes the summation over all molec-
ular species but then one must also define a set of independent reactions. That procedure
is less general and will be avoided in the present text.

From the new, more general form of the combined law introduced above, it is evident
that the number of external variables which can be varied independently of each other
under equilibrium conditions is c + 2, if there are c independent components. In general,
µ j is a function of S, V, Ni and ξ and we can write

µ j = µ j (S, V, Ni , ξ ), (3.4)

or under conditions of internal equilibrium

µ j = µ j (S, V, Ni ). (3.5)
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This is another equation of state but it is not a fundamental equation and, thus, it does
not contain all the properties.

When considering systems with variable composition it is useful to define many new
quantities. A large part of the present chapter is devoted to discussions of such quantities.

Exercise 3.1

Show how µ j can be evaluated from a derivative of S instead of U.

Hint

Use the entropy scheme.

Solution

−dS = (−1/T )dU + (−P/T )dV + �(µi/T )dNi − (D/T )dξ yields:
(∂S/∂ N j )U,V,Nk ,ξ = −µ j/T .

3.2 Molar and integral quantities

Let us consider a homogeneous system at equilibrium and define a part of it as a subsys-
tem. The size of the subsystem may be expressed by the value of any extensive variable.
The most natural way may be to use the content of matter because from the experimental
point of view it is easier to control the content of matter than the volume or entropy. One
usually uses the total content of matter, N, defined by

N = �Ni . (3.6)

Sometimes we shall use the content of a particular component, N j , instead of the total
content of matter, N.

As a measure of the content of matter Gibbs used the mass, but today it is more
common to use the number of atoms or species. We shall use the latter method but it
should be emphasized that it is often necessary to specify what species are considered,
which Gibbs did not have to do. On the other hand, thermodynamic models of special
kinds of substances are often based upon considerations of atoms and it is then convenient
to interpret N and Ni as the number of atoms (or groups of atoms). The number is usually
expressed in units of moles, i.e. approximately 6 × 1023 pieces (Avogadro’s number, N A).

The volume V is proportional to N in a homogeneous system and we may define a
new quantity, the molar volume

Vm = V/N . (3.7)

This quantity has a defined value at each point of a system. It is thus an intensive
variable like T, −P and µi . However, its properties are quite different, a fact which
becomes evident if we consider a system consisting of more than one phase, i.e. regions
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exhibiting different properties. In each homogeneous phase Vm has a different, constant
value but T, −P and µi must have the same value in the whole system at equilibrium
(with one exception which we shall deal with later). This is the property of a potential as
noted in Section 1.10 and we may conclude that Vm is not a potential. It is very important
to distinguish between two kinds of intensive variables, potentials and molar quantities.
One should try to avoid using the words ‘intensive variable’ and when using them one
should specify what kind one is considering.

In the same way we may define the molar quantity for any extensive property obeying
the law of additivity, e.g. the molar content of component i. Usually, it is denoted by xi

and is called mole fraction

xi = Ni/N . (3.8)

However, it is sometimes essential to stress its close relation to other molar quantities.
‘Molar content’ is thus preferable.

The molar quantities have been defined for a homogeneous system or for a homo-
geneous part of a system. The definition may very well be extended to the whole of a
system with more than one phase but such a molar quantity is not strictly an intensive
quantity and may be regarded as an average of an intensive quantity.

Let us return to a homogeneous system at equilibrium, i.e. with D = 0, and define
a very small subsystem enclosed inside an imaginary wall. We shall let the subsystem
grow in size by expanding the wall but without making any real changes in the system,
i.e. without changing P, T or composition. For this process we have

dS = SmdN (3.9)

dV = VmdN (3.10)

dNi = xi dN . (3.11)

However, dξ = 0 because no internal process is going on. We may thus evaluate the
change in U as follows

dU = T dS − PdV + �µi dNi = (T Sm − PVm + �µi xi )dN . (3.12)

The value of the expression in parentheses is constant. By integrating over the expan-
sion we obtain

U = (T Sm − PVm + �µi xi )N = T S − PV + �µi Ni (3.13)

U/N = Um = T Sm − PVm + �µi xi . (3.14)

Using the definition of Gibbs energy in Section 1.11 we get

G ≡ U − T S + PV = �µi Ni . (3.15)

Gm, which was introduced as a notation for Hm − T Sm in Eq. (1.48), is thus identical to
the molar Gibbs energy,

Gm ≡ Um − T Sm + PVm = Hm − T Sm. (3.16)
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In Section 1.11 we did not recognize changes in composition. For that case Eqs (3.15)
and (3.16) would yield

G = �µi Ni (3.17)

Gm = �µi xi . (3.18)

It may be noted that for a pure substance xi = 1 and Gm will thus be equal to the chemical
potential of the substance.

Extensive quantities like U are sometimes called integral quantities in order to be
distinguished from molar quantities. When defining N as the mass, as Gibbs did, one
usually calls the quantities, obtained by dividing with N, specific instead of molar. Most
of the thermodynamic relations are valid independent of how N is defined.

In many cases it is convenient to consider one mole of formula units or groups of
atoms and the molar quantities are then defined by dividing with the number of formula
units or groups of atoms, expressed as moles, i.e. units of approximately 6 × 1023.

It can be easily shown that all the relations between integral quantities also apply to
molar quantities, e.g.

Sm = 1

N
S = −1

N

(
∂G

∂T

)
P,Ni

= −1

N

(
∂ N Gm

∂T

)
P,Ni

= −
(

∂Gm

∂T

)
P,Ni

= −
(

∂Gm

∂T

)
P,xi

.

(3.19)

because all xi are constant if all Ni are kept constant.

Exercise 3.2

Cuprous oxide has a density of 6000 kg/m3. Give its molar volume in two different ways
and also its specific volume.

Hint

The atomic mass is for Cu 63.546 and for O 15.9994.

Solution

The mass of one mole of the formula unit Cu2O is 143.09 g or 0.14309 kg and the
molar volume is thus 0.14309/6000 = 24 × 10−6 m3 per mole of Cu2O or 8 × 10−6 m3

per mole of atoms, i.e. moles of Cu0.67O0.33. The specific volume is 1/6000 = 167 ×
10−6 m3/kg, whether one considers Cu2O or Cu0.67O0.33.

3.3 More about characteristic state functions

We have seen that

U = T S − PV + �µi Ni (3.20)
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in a multicomponent system. It is evident that we get the following relation for the Gibbs
energy

G = U − T S + PV = �µi Ni . (3.21)

The relations between the characteristic state functions can be summarized as follows

�µi Ni = G = H − T S = U + PV − T S = F + PV (3.22)

�µi xi = Gm = Hm − T Sm = Um + PVm − T Sm = Fm + PVm. (3.23)

In Section 1.11 we discussed various forms of the combined law obtained by changing
from S to T and from V to P in the set of independent variables. We can now generalize
them as follows:

dU = T dS − PdV + �µi dNi − Ddξ (3.24)

d(U − T S) = dF = −SdT − PdV + �µi dNi − Ddξ (3.25)

d(U + PV ) = dH = T dS + V dP + �µi dNi − Ddξ (3.26)

d(U − T S + PV ) = dG = −SdT + V dP + �µi dNi − Ddξ. (3.27)

It is evident that the chemical potentials for a substance can be evaluated from any
one of these characteristic state functions if it is given in terms of its natural variables

µ j = (∂U/∂ N j )S,V,N k ,ξ = (∂ F/∂ N j )T,V,N k ,ξ = (∂ H/∂ N j )S,P,N k ,ξ = (∂G/∂ N j )T,P,N k ,ξ .

(3.28)

We may consider ξ as a dependent variable under equilibrium conditions but, in view
of Section 2.2, that fact does not change the value of a partial derivative. We could thus
omit ξ and write

µ j = (∂U/∂ N j )S,V,N k
= (∂ F/∂ N j )T,V,N k

= (∂ H/∂ N j )S,P,N k
= (∂G/∂ N j )T,P,N k

.

(3.29)

The remaining extensive variables, Ni , can also be replaced by their conjugate potentials,
µi , and we can get four new forms of the combined law

d(U − �µi Ni ) = d(T S − PV ) = T dS − PdV − �Ni dµi − Ddξ (3.30)

d(U − T S − �µi Ni ) = d(−PV ) = −SdT − PdV − �Ni dµi − Ddξ (3.31)

d(U − PV − �µi Ni ) = d(T S) = T dS + V dP − �Ni dµi − Ddξ (3.32)

d(U − T S + PV − �µi Ni ) = 0 = −SdT + V dP − �Ni dµi − Ddξ. (3.33)

The first three forms define new characteristic state functions. The fourth form
is unique because it defines a function which is identically equal to zero since
U − T S − PV = �µi Ni . For reversible conditions, D = 0, or in the absence of internal
processes, dξ = 0, it yields a direct relation between the c + 2 potentials, the so-called
Gibbs–Duhem relation. Consequently, one of the potentials is no longer an independent
variable.

SdT − V dP + �Ni dµi = 0. (3.34)
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This relation is often given in terms of molar quantities

SmdT − VmdP + �xi dµi = 0 (3.35)

For a pure substance xi = 1 and the chemical potential is identical to the molar Gibbs
energy, Gm, as noted after Eq. (3.18). The Gibbs–Duhem relation thus simplifies to

SmdT − VmdP + dGm = 0. (3.36)

Equation (3.31) gives a characteristic state function which is equal to (−PV ) and is
particularly interesting in statistical thermodynamics. This characteristic state function
is sometimes denoted by 
 and is called ‘grand potential’. It can be evaluated from the
so-called grand partition function, �,


 = −kT ln �. (3.37)

The grand partition function is defined for a so-called grand canonical ensemble for which
T, V and µi are the independent variables and 
 = 
(T, V, µi ). It is sometimes useful
in calculations of equilibrium states because it may yield relatively simple relationships.
The fact that it applies under constant values of µi , which may be difficult to control
experimentally, does not limit its usefulness in such calculations.

In this connection it may be mentioned that the ordinary partition function Z is defined
for an ordinary canonical ensemble for which T, V and Ni are the independent variables.
It can be used to evaluate the Helmholtz energy

F = −kT ln Z . (3.38)

Furthermore, for a microcanonical ensemble one keeps U, V and Ni constant and can
evaluate S(U, V, Ni ).

The remaining two new forms of the combined law and their characteristic state
functions have not found much direct use. However, in the next section they will
prove useful in some thermodynamic derivations. It should finally be emphasized that a
large number of additional forms may be derived by selecting some of the Ni and some
of the µi as independent variables. We shall discuss one such example in Section 14.5.

Exercise 3.3

Prove the well-known equality (∂G/∂ NA)T,P,N j = (∂ F/∂ NA)T,V,N j from Eq. (3.29) by
changing variables using Jacobians.

Hint

T and all N j are not to be changed. Simplify the notation by omitting them from the
subscripts. Change from NA, P to NA, V . Then express all derivatives of G in terms of
F using P = −(∂ F/∂V )T,Ni = −FV and G = F + PV = F − V FV .
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Solution

(
∂G

∂ NA

)
P

=
∣∣∣∣∣ ∂G/∂ NA ∂G/∂V

∂ P/∂ NA ∂ P/∂V

∣∣∣∣∣
/∣∣∣∣∣ ∂ NA/∂ NA ∂ NA/∂V

∂ P/∂ NA ∂ P/∂V

∣∣∣∣∣
= (∂G/∂ NA)V − (∂G/∂V )NA (∂ P/∂ NA)V /(∂ P/∂V )NA

But, (∂G/∂ NA)V = FNA − VFV NA ; (∂G/∂V )NA = FV − FV − VFV V = −VFV V ;
(∂ P/∂ NA)V = −FV NA ; (∂ P/∂V )NA = −FV V . Inserting these we get (∂G/∂ NA)P =
(FNA − VFV NA − (−VFV V )(−FV NA )/(−FV V ) = FNA = (∂ F/∂ NA)V .

3.4 Additivity of extensive quantities. Free energy and exergy

The extensive quantities that were primarily defined in Chapter 1 are additive with no
restrictions. The values of V, U, S and N of a composite system are always equal to the
sum of the values for the subsystems. This is also true for the contents of all components
Ni . In Eqs (3.31) and (3.32) we defined quantities that are equal to −PV and TS. They are
also extensive but it is evident that they are additive only if the potentials P and T have the
same values in the subsystems. The same is true for F, H and G because they are defined
by subtracting TS or adding PV . As a consequence, it was mentioned in Section 1.12
that one cannot compare Gibbs energy values for states at different temperatures.

The problem can sometimes be solved by accepting that T and P in the definition
G = U − T S + PV are the values in the surroundings. Then one can add the Gibbs
energy for two subsystems that are kept at different T and P,

G1 + G2 = U1(T1, P1) − T S1(T1, P1) + PV1(T1, P1) + U2(T2, P2)

− T S2(T2, P2) + PV2(T2, P2) = U1(T1, P1) + U2(T2, P2) − T [S1(T1, P1)

+ S2(T2, P2)] + P[V1(T1, P1) + V2(T2, P2)] = U1+2 − T S1+2 + PV1+2 = G1+2.

(3.39)

because U, S and V are all additive. It should thus be realized that one could add Gibbs
energies of two subsystems at different T or P from tabulated values only by first breaking
them down into U, S and V values. Then one must decide on the relevant T and P for the
whole system. It would normally be T and P of the surroundings which appears natural if
only one subsystem has contact with the surroundings and the other one is an inclusion.
If each subsystem has its own surroundings, then there is probably no good reason to try
to compare or add their G values.

A particularly interesting case is found when a homogeneous system has different T or
P than the surroundings. One may then be interested in predicting the maximum amount
of work that can be extracted from the system when it moves towards equilibrium with
the surroundings. Since the surroundings are always regarded as a homogeneous, infinite
reservoir, its T and P are constant and a process under constant T and P should of course
be treated with the Gibbs energy function. Equation (3.27) gives, if there is no exchange
of matter,

dG = −SdT + V dP + �µi dNi − Ddξ = −Ddξ. (3.40)
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For a spontaneous process Ddξ is positive and Ddξ/T is equal to the internal production
of entropy. If there were a mechanism by which one could extract another kind of work
than through a volume change, PdV, then it should have been included in W in the first
definition of the first law, Eqs (1.1) and (1.2), and it would have been considered all
through the derivations and appear in Eq. (3.40). Of course, extracted work should be
given with a minus sign. Equation (3.40) would thus have been modified

dG = −dWextr − Ddξ. (3.41)

For a reversible process one obtains

dWextr = −dG; �Wextr = G(initial) − G(final). (3.42)

This gives the maximum work that can be extracted. It is clear that G(final) is evaluated
for T and P of the surroundings. It is also evident that G(initial) must be given as

G(initial) = U (Tin, Pin) − T S(Tin, Pin) + PV (Tin, Pin), (3.43)

because any two extensive quantities can only be compared if the law of additivity applies.
The quantity �Wextr can be regarded as the part of the energy of the initial system

that is free to be transformed into useful work. That is why Gibbs energy was initially
called Gibbs free energy. If the surroundings are instead a reservoir of constant T and
V then one should repeat the derivation starting from the Helmholtz energy and that is
the reason why it was initially called Helmholtz free energy. Often one extracts work by
allowing the system to react with a chemical compound in the surroundings, usually O2

used for burning a fuel. In that case, the appropriate free energy function would be found
by considering a reservoir with constant T, P and µO,

d� = d(G − NOµO) = − SdT + V dP + �µ j dN j − NOdµO − dWextr − Ddξ.

(3.44)

For a reversible process under constant P, T, N j and µO, we find

�Wextr = G(initial) − G(final) − µO[NO(initial) − NO(final)], (3.45)

where NO(final) is the total content of O after the system has received enough O2 from
the surroundings to burn the fuel.

It is evident that, what has here been called free energy, must be defined in different
ways depending on the surroundings or on how the system reacts with the surroundings.
In mechanical engineering it is often called exergy.

3.5 Various forms of the combined law

In Section 3.3 the discussion was based on the energy scheme, which starts from the
combined law in the form

dU = T dS − PdV + �µi dNi − Ddξ, (3.46)

where all the independent variables are extensive ones. It defines the following set of
conjugate pairs of variables (T, S), (−P, V ) and (µi , Ni ). However, there are many more
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possibilities to express the combined law in terms of only extensive quantities as inde-
pendent variables. Using the new characteristic state functions, obtained in Section 3.3,
we can change variables in the combined law. For example, let us replace S by
(T S − PV )/T + PV/T , obtaining

dS = d[(T S − PV )/T ] + (P/T )dV + V d(P/T ). (3.47)

By inserting this expression we get

dU = T d[(T S − PV )/T ] + PdV + T V d(P/T ) − PdV + �µi dNi − Ddξ

= T d[(T S − PV )/T ] + T V d(P/T ) + �µi dNi − Ddξ. (3.48)

By subtracting (P/T ) · T V (which is equal to PV) from U, we can form a new charac-
teristic state function with only extensive quantities as independent variables

d(U − PV ) = d[U − (P/T ) · T V ]

= T d[(T S − PV )/T ] − (P/T )d(T V ) + �µi dNi − Ddξ. (3.49)

This form of the combined law defines a new set of conjugate pairs, {T, [(T S −
PV )/T ]}, (−P/T, T V ) and (µi , Ni ).

We may instead replace V by [(PV – T S)/P + T S/P] and after some manipulations
we obtain a new characteristic state function with only extensive variables as independent
variables

d(U + T S) = d[U + (T/P) · P S]

= −Pd[(PV − T S)/P] + (T/P)d(P S) + �µi dNi − Ddξ. (3.50)

which yields a new set of conjugate pairs.
We may also rearrange the terms in the combined law before introducing new func-

tions. The entropy scheme uses

− dS = −(1/T )dU − (P/T )dV + �(µi/T )dNi − (D/T )dξ. (3.51)

It immediately defines a new set of conjugate pairs and two more alternatives are obtained
by replacing U or V in the way demonstrated above. One may also rearrange the terms
in the combined law as follows

dV = (T/P)dS − (1/P)dU + �(µi/P)dNi − (D/P)dξ. (3.52)

This may be called the volume scheme and it yields three more alternatives. We have
thus obtained the sets of conjugate pairs of variables given in Table 3.1. In each pair the
potential is given first and between them one can formulate a Gibbs–Duhem relation. In
each case the characteristic state function for the extensive variables is given to the left.

We may also define a number of content schemes by the following arrangement of
terms, but they will probably have very limited use and will not be discussed further.

− dN j = (T/µ j )dS − (1/µ j )dU − (P/µ j )dV +
∑

k

(µk/µ j )dNk − (D/µ j )dξ.

(3.53)
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Table 3.1 Some sets of conjugate pairs of state variables

From the energy scheme
U: T, S −P, V µi , Ni

U − PV: T, (S −PV/T) −P/T, TV µi , Ni

U + TS: T/P, PS −P, (V −TS/P) µi , Ni

From the entropy scheme
−S: −1/T, U −P/T, V (µi/T ), Ni

−S − PV/T: −1/T, H − P, V/T (µi/T ), Ni

−S − U/T: −P/T, H/P −1/P, PU/T (µi/T ), Ni

From the volume scheme
V: T/P, S −1/P, U (µi/P), Ni

V −U/P: −1/T, TU/P −T/P, F/T (µi/P), Ni

V + TS/P: T, S/P −1/P, F (µi/P), Ni

Exercise 3.4

Suppose one would like to consider U as an independent variable. What would be its
conjugate potential?

Solution

From the entropy scheme we find −1/T and from the volume scheme −1/P . Evidently,
the choice depends on what other conjugate pairs one would like to consider at the same
time.

Exercise 3.5

In Sections 9.1 and 10.7 we will find that the two axes in a phase diagram should be
taken from the same set of conjugate pairs. Suppose one would like to use U, F or G as
one of the axes in a unary system. How should the other axis be chosen?

Solution

From the entropy scheme we find that U could be combined with −P/T (which may
not be very practical) or V. From the volume scheme we find that U could be combined
with T/P (which again may not be very practical) or S. We find F in the volume scheme
only, and it can be combined with T or S/P (which is not very practical). We do not find
G in any scheme except in the form of µi for a unary system.

3.6 Calculation of equilibrium

In calculations of equilibrium it is often assumed that the temperature and composition
can be kept constant. Instead of using the basic condition of equilibrium, dipS = 0, it is
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then more convenient to use D = 0, where D is the driving force for the internal process
and is equal to T dipS/dξ . However, D may be evaluated in a large number of ways, e.g.
the following ones, which are based on the energy scheme.

−D = (∂U/∂ξ )S,V,Ni = (∂ F/∂ξ )T,V,Ni = (∂ H/∂ξ )S,P,Ni

= (∂G/∂ξ )T,P,Ni = (∂
/∂ξ )T,V,µi . (3.54)

In fact, any of these methods could be used and they must all give the same answer to
the question whether the system is in equilibrium. The choice simply depends on what
fundamental equation is available. In most cases the Gibbs energy is used because a
fundamental equation of the form G = G(T, P, Ni , ξ ) is available.

Suppose one finds that D �= 0 then the system is not in equilibrium and one may instead
like to know what state of equilibrium the system would eventually approach, i.e. the
equilibrium value of ξ . Then it is essential to know the experimental conditions because
one wants to find a state of equilibrium under the initial values of a particular set of
external variables. Suppose one is going to keep T and V constant during the experiment.
Then one would primarily like to use F = F(T, V, Ni , ξ ), derive an expression for
−D = (∂ F/∂ξ )T,V,Ni = 0 and solve for the equilibrium value of ξ .

However, suppose that one has only G = G(T, P, Ni , ξ ) but the experimental con-
ditions will keep T and V constant. The calculation is then carried out by iteration,
starting with the prescribed T value and evaluating the equilibrium value of ξ from
(∂G/∂ξ )T,P,Ni = 0 for a first choice of value for P. Using the equilibrium value of ξ one
can evaluate V from (∂G/∂ P)T,P,Ni ,ξ and compare with the prescribed V value and then
obtain a better P value by iteration.

Suppose the initial state is known and the experimental conditions are adiabatic,
yielding dU = dQ − PdV = 0 or dH = dQ + V dP = 0, depending on whether one
keeps V or P constant. If P were kept constant then H would also be constant and could be
obtained from any fundamental equation. In order then to calculate the equilibrium value
of ξ one should prefer a function with P and H as independent variables. By rearranging
the terms in dH = T dS + V dP − Ddξ we find

dS = (−1/T )dH + (V/T )dP + �(µi/T )dNi − (D/T )dξ. (3.55)

It is evident that S(H, P, Ni , ξ ) is the characteristic function for which one should like
to have an equation. If instead another fundamental equation is available, one has to use
iteration as just described.

When a thermodynamic model for a certain kind of system is based on basic physical
properties, it may result in an explicit expression for the grand potential 
(T, V, µi , ξ )
and not G(T, P, Ni , ξ ) or F(T, V, Ni , ξ ). The grand potential can then be used to find
the equilibrium under prescribed values of Ni by iteration.

Finally, consider an α + β two-phase system where the relative amounts and composi-
tions of the phases can vary but not the content of the whole system. The internal variable
can be defined as ξ = Nα = N − N ß, where N is the total content, but it is not imme-
diately evident how the equilibrium compositions of α and β can be related to ξ . How-
ever, in a binary system the compositions can be calculated directly from the two-phase
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equilibrium if T and P of the equilibrium state are known, using Gα
m = Gα

m(T, P, Nα
i ) and

Gβ
m = Gβ

m(T, P, Nβ
i ). Finally, ξ can be calculated from a mass balance. In a higher order

system one must use iteration. If instead the equilibrium values of T and V are known,
then the fundamental equation Fα

m = Fα
m (T, V α

m , Nα
i ) and Fβ

m = Fαβ
m (T, V β

m , Nβ
i ) would

be of little use because the molar volumes of the phases are not known until P and the
phase compositions have been calculated. One would have to guess the final P value,
carry out a calculation based on Gα

m and Gβ
m as already described, and finally evaluate the

total volume V and compare with the required value. By iteration one could eventually
find the P value that gives the correct V value. For the calculation of a phase equilibrium
it is evident that Gα

m = Gα
m(T, P, Nα

i ) is the most useful fundamental equation for all
experimental conditions.

Exercise 3.6

Examine what would be the most convenient way of calculating a two-phase equilibrium
under given values of T and V in a pure element.

Hint

We have already seen that it is not practical to use Fα
m = Fα

m (T, V α
m ) and Fβ

m =
Fαβ

m (T, V β
m ) for a two-phase equilibrium at given T and V because V α

m and V β
m are

not defined directly by the experimental conditions.

Solution

Using the molar Gibbs energy for each phase we get for the whole system G(T, P, ξ ) =
ξGα

m(T, P) + (N − ξ )Gβ
m(T,P) where ξ = Nα = N − Nβ. Equilibrium requires that

−D = (∂G/∂ξ )T,P = Gα
m(T,P) − Gβ

m(T,P) = 0. In this particular case we may thus
calculate P for the two-phase equilibrium at a given T without iteration and without
involving ξ , which only describes the amounts of the phases. Then we can calculate
V α

m = (∂Gα
m/∂ P)T and V β

m = (∂Gβ
m/∂ P)T for these T and P values. Finally, we calculate

the ξ value satisfying ξV α
m + (N − ξ )V β

m = V .

3.7 Evaluation of the driving force

In the preceding section we discussed the calculation of the equilibrium value of an
internal variable, ξ , under various conditions. The calculation of the driving force for the
corresponding reaction is simpler because the system does not ‘feel’ which variables are
to be kept constant until the reaction is under way. One could use −D = (∂G/∂ξ )T,P,Ni

as well as any other expression for D. On the other hand, as the reaction gets under way
there will be changes in the variables that are not controlled and the result will depend
upon the experimental conditions. Then one must either use the appropriate fundamental
equation or an iteration technique similar to the one described in the preceding section.
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For example, when using G(T, P, Ni , ξ ) for an experiment under constant T and V, one
can make a series of calculations along the reaction path by selecting a number of ξ values.
For each value one can use iteration to evaluate the P value yielding the experimental
value of V = (∂G/∂ P)T,Ni,ξ . Using that pair of ξ, P values one can calculate −D from
(∂G/∂ξ )T,P,Ni .

There are many cases where one knows the initial and final states for a process but
does not know or is not interested in the ‘reaction path’ in detail. In such cases it may
be interesting to evaluate the total production of entropy due to internal processes

�ipS =
∫

dipS =
∫

(D/T )dξ. (3.56)

For isothermal reactions T is constant and

�ipS = (1/T )
∫

Ddξ. (3.57)

The quantity
∫

Ddξ could be called the integrated driving force but unfortunately it is
often called simply ‘driving force’. It could also be identified with the integrated value
of the ‘loss of work’ discussed in Section 1.7. Anyway, it should only be applied to
isothermal reactions because T initially appears in the integrand.

Under constant T, P and Ni we obtain, using the combined law expressed for G,

Ddξ = −SdT + V dP + �µi dNi − dG = −dG. (3.58)

Under these conditions, the integrated driving force is thus equal to the decrease in Gibbs
energy, ∫

Ddξ = −�G. (3.59)

Since G is a state function it is evident that �G is here independent of the reaction path
and so is the integrated driving force, as long as the final state is the same. The driving
force D defined by the derivative of G in Eq. (3.54) at any value of ξ along the path, i.e.
at any stage of the reaction, depends critically upon the reaction path.

If the reaction occurs under other conditions, the integrated driving force will be
given by the change in the characteristic state function for which the natural variables
are constant during the reaction. For instance, under constant T, V and composition,∫

Ddξ = −�F . However, suppose G(T, P, Ni , ξ ) is the only fundamental equation
available, then one must first find the final equilibrium by iteration, as described in the
preceding section. Then one can use G(T, P, Ni , ξ ) to evaluate∫

Ddξ = −�F = −�[G − P(∂G/∂ P)T,Ni ,ξ ]. (3.60)

Exercise 3.7

Consider a binary system at constant T, V, NB and µA. It is in a metastable state of β.
Show how one can calculate the integrated driving force for the transformation to a

more stable phase α.
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Hint

Ddξ is present in all forms of the combined law. In the present case it is most convenient
to use the form where T, V, NB and µA are the independent variables.

Solution

Choose d(−PV ) = −SdT − PdV − +µBdNB − NAdµB − Ddξ . In our case
d(−PV ) = −Ddξ ;

∫
Ddξ = ∫

d(PV ) = (PV )2 − (PV )1 = V (P2 − P1). It is evident
that P must increase during the spontaneous transformation. It should be noticed that
the content NA is not constant under these experimental conditions.

3.8 Driving force for molecular reactions

Many kinds of system contain aggregates of atoms, e.g. molecules. Even though there
may be reactions between the molecular species (often called ‘chemical reactions’) the
individual molecule often has a long lifetime, not only inside a phase but also with respect
to exchange of matter between phases or between a system and the surroundings.

When studying the rate of a molecular reaction, it may be interesting to evaluate its
driving force. Let the extent of reaction be ξ , expressed per mole of reaction formula.
The driving force will then be

D j = −
(

∂G

∂ξ j

)
T,P,ξ k

= −
∑

i

(
∂G

∂ N j
i

)
T,P,ξ l

· dN j
i

dξ j
= −

∑
i

µi v
j
i . (3.61)

The reaction coefficients are thus defined as

ν
j

i = dN j
i

/
dξ j . (3.62)

The equilibrium condition for a single process is given by

D = −
∑

i

viµi = 0. (3.63)

As an example, for an ideal gas mixture one can write the chemical potential as a function
of the partial pressure

µi = ◦µi + RT ln Pi . (3.64)

By inserting this in the equilibrium condition we get

(Pi )
vi
eq. = exp

( − �
(
v◦

i µi/RT
))

. (3.65)

This is the law of mass action. The value of the right-hand side is regarded as the
equilibrium constant and may be denoted by K. When the left-hand side is not equal to
K, then the system is not in equilibrium and the driving force for the reaction is

D = −
∑

i

viµi = RT ln(K/(Pi )
vi ). (3.66)
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Exercise 3.8

For dilute, condensed solutions one can express the chemical potential with Henry’s law,
µi = oµi + RT ln fi + RT ln xi , where xi is the molar content of component i and fi is
the activity coefficient. Show how one can express the equilibrium with a pure compound
having the stoichiometric coefficients vi . Derive an expression for the driving force for
the dissolution of the compound in the solution.

Hint

Suppose the chemical potential of the compound in the other phase is µc. The reaction
would be: compound → �vi I.

Solution

D = 1 · oµc − �viµi = oµc − �vi
oµi − RT ln(( fi )vi ) − RT ln((xi )vi ) =

RT ln[exp(�o
f Gc/RT )/( fi )vi (xi )vi ] where �o

f Gc denotes Gibbs energy of formation
of the compound from the elements in their reference states. Of course, one may define
(�o

f Gc/RT )( fi )vi as an equilibrium constant K. From equilibrium, where D = 0, one
would then have K = (xi )vi

eq. and in general D = RT ln(K/(xi )vi ).

3.9 Evaluation of integrated driving force as function of T or P

According to Section 3.7, the integrated driving force for an α → β phase transforma-
tion, which takes place under constant T, P and Ni , should be equal to −�G = Gα − Gβ.
One is sometimes interested in evaluating the variation of −�G with T or P. The fol-
lowing procedure can be used close to equilibrium.

For constant P it is convenient to evaluate the effect of a change of T on the relative
stability of the two phases by starting from the following equation, obtained by applying
G = H − T S to both phases under the same T,

�G(T ) = �H − T �S. (3.67)

If the two phases are in equilibrium with each other at To for the P value under consid-
eration, we have

0 = �H − To�S. (3.68)

Suppose the difference T − To is so small that �H and �S have practically the same
values at both temperatures. By eliminating �S or �H we obtain∫

Ddξ = −�G = �H (T − To)/To = �S(T − To). (3.69)

For constant T it is convenient to evaluate the effect of a change of P by starting from
the following equation

�G(P) = �F + P�V . (3.70)



60 Systems with variable composition

By the same procedure we now obtain∫
Ddξ = −�G = �F(P − Po)/Po = �V (Po − P). (3.71)

Again, this equation can only be used so close to Po that the variation of �F and �V
with P is negligible.

Exercise 3.9

Consider two phases of pure A, α and L, which are in equilibrium at To, Po. At T =
To + �T and P = Po there is a driving force for the transformation α → L. How much
should P be changed in order to restore the equilibrium? To get a numerical value, use
the ‘typical’ values �Sm = R and �Vm = 0.2 × 10−6 m3/mol.

Hint

The driving forces due to the two changes must eliminate each other.

Solution

�S(T − To) + �V (Po − P) = 0; (P − Po)/(T − To) = �S/�V = �Sm/�Vm =
R/�Vm = 8.3/(0.2 × 10−6) Pa/K = 400 bar/K.

3.10 Effective driving force

When a phase transformation occurs under diffusion it often happens that the pro-
cesses occurring at the phase interfaces are rapid compared to the rate of diffusion.
The transformation will then be diffusion controlled and the boundary conditions gov-
erning the rate of diffusion can be evaluated by assuming that, whenever two phases
meet at an interface, their compositions right at the interface are very close to those
required by equilibrium. This is called the local equilibrium approximation. That
approximation will be used in the following, except when other conditions are clearly
defined.

So far, we have chosen to regard T · dipS/dξ as the driving force for the process, the
progress of which is measured by ξ , and it thus seemed natural to assume that the rate of
the process is proportional to D = T · dipS/dξ , at least as a first approximation, yielding
dξ/dt = K D where K is a constant of proportionality. However, one should be aware of
the possibility that a process may be accompanied by an entropy production that does
not contribute to the rate of the process. This possibility may be best explained by an
example from a very simple type of transformation.

Let us first consider particles of pure solid A immersed in liquid B. The component
A may dissolve in the liquid to a small but measurable extent, but B does not dissolve in
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the solid. It is well known that smaller particles will dissolve and larger ones will grow,
so-called coarsening or ‘Ostwald ripening’. The driving force comes from the increased
pressure inside the smaller particles due to the surface tension. Next, suppose that B
can dissolve in solid A but the temperature is so low that diffusion can be neglected.
We would still expect that the pressure difference makes the smaller particles go into
solution and the larger ones grow. However, the growing layer of a large particle should
now be a solid solution of B in A and the net process could be written as: solid A(from
small particle) + liquid B(with low A content) → solid A − B alloy(in growing layer).
The chemical driving force for such a reaction can be evaluated from −�Gm, assuming
that all the phases are under the same pressure, and it should be added to the effect of the
pressure difference. It would seem that the chemical driving force should give a drastic
increase of the net driving force for the process and make it possible even without the
pressure effect, at least after the process has started. Such a process has actually been
observed in sintering in the presence of a liquid.

However, in this description of the process we did not consider the local equilib-
rium conditions at the surface of the smaller particle. Even though the rate of diffusion
inside solid A is negligible, the rate of transfer of atoms between solid and liquid at
the interface may be appreciable. Under ordinary conditions the net rate of any reac-
tion is believed to be the difference between opposite fluxes that are much larger. We
should thus recognize that there is a very localized reaction at the interface by which
a monolayer of an A–B solid solution forms. The chemical driving force will drive
that reaction but it will soon slow down if B does not diffuse into the interior of the
smaller particle. Only the pressure difference may remain and cause material from
the monolayer to go into solution and diffuse to the larger, growing particle. B from
the liquid will then again react with the fresh A in the smaller particle and the monolayer
will be healed. It may thus seem that much if not all the chemical driving force will be
lost.

This example has demonstrated that there may be a Gibbs energy dissipation caused
by a process, which does not actually drive the process. One might say that even if a
Gibbs energy dissipation depends on the progress of a process, the process does not
necessarily make use of that Gibbs energy dissipation. The effective driving force, from
which one may estimate the rate of reaction, has to come from another source, in our
example from the pressure difference due to the surface tension.

In the above example, it was fairly easy to identify the various steps in the whole
process and thus to identify what part of the total driving force actually contributes to the
rate. The example gets more complicated if we replace the liquid by a grain boundary
which has contact with a B-rich reservoir outside the A material. Even in that case it
has been observed experimentally that an A − B solid solution can grow at the expense
of pure A, a phenomenon called DIGM (diffusion-induced grain boundary migration).
Cahn et al. [4] argued that the chemical driving force does not contribute at all and they
proposed that the effective driving force comes from the process of diffusion of B down
the grain boundary. Later, it was proposed that a part of the chemical driving force is
not dissipated, as described above, thanks to the action of coherency stresses, and that
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this undissipated part is able to drive the main process. This will be further discussed in
Sections 16.11 and 16.12.

This kind of complication is often neglected and it will not be further considered in
this book. We shall regard chemical driving forces as forces actually contributing to the
rate of processes but the local-equilibrium approximation will be applied in most cases
in order to evaluate it.



4 Practical handling of multicomponent
systems

4.1 Partial quantities

It is common to keep T and P constant but vary the amount of some component, Ni . It
is interesting to examine what happens to various thermodynamic quantities under such
conditions and we shall thus define a new kind of quantity called partial quantity for
any extensive quantity A.

partial quantity of j : A j ≡ (∂ A/∂ N j )T,P,Nk . (4.1)

Such partial quantities appear in the expression for the differential of A(T, P, Ni )

dA = (∂ A/∂T )P,Ni dT + (∂ A/∂ P)T,Ni dP + � Ai dNi . (4.2)

From Eq. (3.29) we saw that the chemical potential µ j can be derived as a partial
derivative of any one of the characteristic state functions U, F, H and G. However, it is
important to notice that only one of these partial derivatives is a partial quantity with the
definition used here, (∂G/∂ N j )T,P,Nk , because it is evaluated under constant T and P.
We can thus write

µ j = (∂G/∂ N j )T,P,Nk = G j . (4.3)

With the shorthand notation introduced for partial derivatives in Section 2.5, this quantity
could also be denoted by G N j .

Since the chemical potential µ j is identical to the partial Gibbs energy G j one may
wonder if both names or symbols are necessary. However, we shall find it useful some-
times to use one and sometimes the other. When we are interested in the variation of
properties of a homogeneous system consisting of a single phase with variable compo-
sition, and employ an analytical function Gm(T, P, xi ), then G j is the most natural term
to use. When we are concerned with a more complex system, where G j of a small part
cannot be defined because the composition of that part cannot vary gradually, then µ j is
the most natural term to use.

In order to distinguish the notation for a partial quantity A j at any composition from
the notation for the same quantity in pure j, the latter one will be identified by a small
superscript circle in front, ◦A j . It should be noticed that ◦A j is actually identical to Am
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of pure j, because for a system with one component we have N j = N and obtain from
Eq. (4.1),

oA j = (∂ A/∂ N j )T,P,Nk = (∂ A/∂ N )T,P = A/N = Am (4.4)

It is evident that A j is also an intensive quantity and this can be demonstrated by the
fact that it is related to the intensive quantity Am and can be calculated from it. Using
the following relations: N = �Ni ; x j = N j/�Ni ; ∂x j/∂ N j = (N − N j )/N 2 =
(1 − x j )/N ; xk = Nk/�Ni ; ∂xk/∂ N j = −Nk/N 2 = −xk/N , we obtain

A j =
(

∂ A

∂ N j

)
Nl

=
(

∂(N Am)

∂ N j

)
Nl

= 1 · Am + N ·
(

∂ Am

∂x j

)
xl

(
∂x j

∂ N j

)
Nl

+ N ·
∑
k �= j

(
∂ Am

∂xk

)
xl

(
∂xk

∂ N j

)
Nl

= Am + (1 − x j )

(
∂ Am

∂x j

)
xl

−
∑
k �= j

xk

(
∂ Am

∂xk

)
xl

. (4.5)

All the partial derivatives of Am are here taken under constant T and P and molar contents
of the other components; x j is excluded from the summation. We can modify the equation
by including x j in the summation

A j = Am +
(

∂ Am

∂x j

)
xl

−
c∑

i=1

xi

(
∂ Am

∂xi

)
xl

. (4.6)

When evaluating each derivative in Eq. (4.6) from an expression of A as a function of all
xi , one will keep all the other xl constant, including x1 although it is really a dependent
variable. Since this is physically incorrect, these derivatives cannot be used alone. On the
other hand, one may transform Eq. (4.6) by replacing xl in the first term of the summation
using �xi = 1, obtaining

A j = Am +
(

∂ Am

∂x j

)
xl

−
(

∂ Am

∂x1

)
xl

−
c∑

i=2

xi

[(
∂ Am

∂xi

)
xl

−
(

∂ Am

∂x1

)
xl

]
. (4.7)

The differences of derivatives appearing here can be interpreted physically. They are
actually identical to the derivative of Am with respect to the particular x j when x1 has been
selected as the dependent variable. Equation (4.7) is thus the mathematically correct way
of evaluating A j but Eq. (4.6) offers a more convenient way. Furthermore, when Eq. (4.6)
is applied to Gibbs energy and the difference is taken between components j and 1, one
obtains

G j − Gk =
(

∂Gm

∂x j

)
xl

−
(

∂Gm

∂xk

)
xl

. (4.8)

This is the driving force for diffusion of component j in exchange for component 1,
sometimes called diffusion potential. The diffusion potential for exchange with the
major component is thus obtained as the derivative of Gm with respect to the component
if the major component has been selected as the dependent one.
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Equation (4.6) is frequently used for calculating chemical potentials as partial Gibbs
energies. For a binary 1–2 system one can regard G(T, P, x1, x2) as G(T, P, x2) because
x1 + x2 = 1. This yields

µ1 = G1 = Gm − x2
dGm

dx2
(4.9)

µ2 = G2 = Gm + (1 − x2)
dGm

dx2
(4.10)

Exercise 4.1

For substitutional solutions one often defines an activity coefficient for a component i as
γi = exp[(Gi − ◦Gi − RT ln xi )/RT ]. Show that for low contents of B and C in A one
has the following approximate relation under constant T and P, if xA is not included in
the set of independent composition variables, ∂ ln γB/∂xC = ∂ ln γC/∂xB.

Hint

Start from a Maxwell relation ∂GB/∂ NC = ∂2G/∂ NC∂ NB = ∂GC/∂ NB. Then go
from derivatives with respect to Ni to derivatives with respect to xi by using xi =
Ni/N ; ∂xi/∂ Ni = (N − Ni )/N 2 = (1 − xi )/N ; ∂xi/∂ N j = −Ni/N 2 = −xi/N .

Solution

Gi = ◦Gi + RT ln xi + RT ln γi ; ∂GB/∂ NC = RT [(1/xB)(−xB/N ) + (∂ ln γB/

∂ NC)] = ∂GC/∂ NB = RT [(1/xC)(−xC/N ) + ∂ ln γC/∂ NB] and thus ∂ ln γB/∂ NC =
∂ ln γC/∂ NB, exactly. However, we should examine derivatives with respect to xi and
not Ni . Notice that we should choose an analytical expression for γB containing xB and
xC as independent variables. For small xB and xC we get approximately

∂ ln γB/∂ NC = (∂ ln γB/∂xB)(−xB)/N + (∂ ln γB/∂xC)(1 − xC)/N

∼= (∂ ln γB/∂xC)/N

∂ ln γC/∂ NB = (∂ ln γC/∂xB)(1 − xB)/N + (∂ ln γC/∂xC)(−xC)/N

∼= (∂ ln γC/∂xB)/N .

Thus, ∂ ln γB/∂xC
∼= ∂ ln γC/∂xB.

4.2 Relations for partial quantities

In Section 3.2 we saw how an expression for the integral internal energy could be derived
by integration over a homogeneous system. It will now be demonstrated that the same
method can be applied to any other extensive quantity, A. Consider a homogeneous
system with constant T, P and xi. Then all the partial quantities Ai are also constant.
We select an infinitely small subsystem and allow it to grow by simply extending its
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imaginary wall. The growth in size may be represented by dN and the increase of the i
content is obtained as

dNi = xi dN . (4.11)

By integrating the differential of A under constant T and P and remembering that all Ai

and xi are constant, we obtain from the definition of Ai , Eq. (4.2),

A =
∫

dA =
∫

� Ai dNi =
∫

� Ai xi dN = � Ai xi

∫
dN

= � Ai xi N = � Ai Ni (4.12)

Am ≡ A/N = � Ai xi . (4.13)

It may again be emphasized that the partial quantities are always defined with T and P as
independent variables. If we were to define a corresponding quantity under constant T and
V, for instance, it would not have the same properties because V is an extensive variable.

By differentiating A = � Ai Ni we obtain

dA = � Ai dNi + �Ni dAi . (4.14)

Comparison with the expression for dA in Eq. (4.2), yields

�Ni dAi − (∂ A/∂T )P,Ni dT − (∂ A/∂ P)T,Ni dP = 0. (4.15)

This expression is most useful when applied to the Gibbs energy, giving

�Ni dGi + SdT − V dP = 0. (4.16)

This is identical to the Gibbs–Duhem relation, Eq. (3.34), since Gi is identical to µi .
For other quantities it may be most useful under conditions of constant T and P. As an
example, for volume we would obtain, under constant T and P,

�Ni dVi = 0 or �xi dVi = 0. (4.17)

Since all the partial quantities are defined as the partial derivatives with respect to some
content under constant T and P, it is evident that the following relations hold between
them

µ j = Gi = Hi − T Si = Ui + PVi − T Si = Fi + PVi . (4.18)

It is also evident that the expressions for other extensive state variables as derivatives
of the characteristic state functions can be applied to partial quantities as well. As an
example, we can start from an expression for S in terms of G and derive a similar
expression for Sj in terms of G j ,

S = −
(

∂G

∂T

)
P,Ni

(4.19)

Sj =
(

∂S

∂ N j

)
T,P,Nl

= −
(

∂

∂ N j

(
∂G

∂T

)
P,Ni

)
T,P,Nl

= −
(

∂

∂T

(
∂G

∂ N j

)
T,P,Ni

)
P,Nl

= −
(

∂G j

∂T

)
P,Ni

= −
(

∂µ j

∂T

)
P,Ni

. (4.20)
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Furthermore, from the Gibbs–Duhem relation, Eq. (3.34), we obtain by taking the deriva-
tive with respect to N j ,

Vj dP − Sj dT = dµ j +
∑

i

Ni
∂µi

∂ N j
= dµ j +

∑
i

Ni
∂2G

∂ Ni∂ N j
. (4.21)

It should be emphasized that the summation of terms cannot be omitted. As a conse-
quence, it is not possible to derive a Gibbs–Duhem relation for the partial quantities.
Finally, by applying Eqs (4.11) and (4.13) to Eqs (1.11) and (1.38) we can write the first
and second laws in the following forms

dU = dQ + dW +
∑

Hi dNi (4.22)

dS = dQ/T +
∑

Si dNi + dipS. (4.23)

Exercise 4.2

Derive the relation Hj = (∂(µ j/T )/∂(1/T ))P,Ni from H = (∂(G/T )/∂(1/T ))P,Ni

in Eq. (2.25).

Solution

Hj = (∂ H/∂ N j )T,P,Nk = (∂(∂(G/T )/∂(1/T ))P,Ni /∂ N j )T,P,Nk

= (∂(∂(G/T )/∂ N j )T,P,Nk /∂(1/T ))P,Ni

= (∂(G j/T )/∂(1/T ))P,Ni = (∂(µ j/T )/∂(1/T ))P,Ni .

4.3 Alternative variables for composition

By composition we mean the relative amounts of various components, preferably the
set of molar contents, xi . We shall now examine different ways of expressing the molar
contents in a ternary system. The same methods may be applied in higher-order systems.
In order to distinguish the methods we shall use a number of different notations.

(i) x j = N j/N = N j/�Ni

(ii) z j = N j/N1 = x j/x1

(iii) u j = N j/(N1 + N2 + · · · + Nk) = N j/(�N − Nk+1 − · · ·) = x j/(1 − xk+1 − · · ·).
The size of the system is thus measured by N , N1 and (N1 + N2 + · · · + Nk), respec-
tively.

The characteristics of the three methods for a ternary system (with k = 2 in the third
method) are compared in Fig. 4.1, where the regular triangle introduced by Gibbs is
shown in Fig. 4.1(a). Isopleths (lines along which some composition variable is held
constant) according to the other schemes are shown in Fig. 4.1(b) and (c). It should be
noticed that the isopleths for u2 are also isopleths for u1, since u1 + u2 = 1. In Fig. 4.1(c)
it should be noticed that z1 = 1 everywhere. The three diagrams are redrawn with linear
scales for each kind of variable in Fig. 4.2. Here, the isopleths with arrows extend to
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Figure 4.1 The Gibbs triangle showing three different methods of representing composition. The
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Figure 4.2 The diagrams from Fig. 4.1 drawn with linear scales for the actual composition
variables. The arrows indicate that the component is situated at infinity and parallel lines with an
arrow pointing to the same pure component at infinity.

infinity. It should be emphasized that any line, which is straight in the Gibbs triangle, is
still a straight line in these modified diagrams.

When these new composition variables are used, the calculation of partial quantities is
changed. Before turning to these calculations, it should be realized that the definition of all
the molar quantities to be used in one context should be modified in the same way. Taking
the Gibbs energy as an example, its molar quantity should be defined as G/N1 when dis-
cussed in connection with zi (case (ii)) and G/(N1 + N2) when discussed in connection
with ui (case(iii)) if k = 2. We shall denote these molar quantities by Gm1 and Gm12.

With the method used in deriving an expression for A j in Section 4.1 we obtain, for
case (ii),

G = N1Gm1(z1, z2, z3) with z1 = 1 (4.24)

µ1 ≡ G1 = Gm1 − z2

(
∂Gm1

∂z2

)
z3

− z3

(
∂Gm1

∂z3

)
z2

(4.25)

µ2 ≡ G2 = z2

(
∂Gm1

∂z2

)
z3

(4.26)

µ3 ≡ G3 = z3

(
∂Gm1

∂z3

)
z2

. (4.27)
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For case (iii) we have

G = (N1 + N2)Gm12(u1, u2, u3) with u1 + u2 = 1 (4.28)

µ1 ≡ G1 = Gm12 +
(

∂Gm12

∂u1

)
ul

−
∑

ui

(
∂Gm12

∂ui

)
ul

(4.29)

µ2 ≡ G2 = Gm12 +
(

∂Gm12

∂u2

)
ul

−
∑

ui

(
∂Gm12

∂ui

)
ul

(4.30)

µ3 ≡ G3 =
(

∂Gm12

∂u3

)
ul

. (4.31)

On the other hand, it should be emphasized that many equations derived with the ordinary
way of expressing the size of the system, will hold without further modification, if one
simply replaces all molar contents x by the corresponding z or u and all other molar
quantities by the corresponding molar quantities which may be denoted by Am1 or Am12.
The following relations are useful

u j = N j/(N1 + N2) = x j/(x1 + x2) (4.32)

Am12 = A/(N1 + N2) = A/N (x1 + x2) = Am/(x1 + x2) (4.33)

Am12 = A/(N1 + N2) = �Ni Ai/(N1 + N2) = �ui Ai (4.34)

z j = N j/N1 = x j/x1 (4.35)

Am1 = A/N1 = A/N x1 = Am/x1 (4.36)

Am1 = A/N1 = �Ni Ai/N1 = �zi Ai = A1 + z2 A2 + z3 A3. (4.37)

It should be observed that Ai is the usual partial quantity (∂ A/∂ Ni )T,P.N j .
Sometimes it may be convenient to use the notations Am and xi for all these quantities.

It is then necessary always to specify how one mole is defined, i.e. whether one considers
one mole of 1, one mole of 1 + 2 or one mole total. In higher-order systems one may
measure the size of the system in several ways. It may be convenient to use the notations
ui(1...k) and Am(1... k) where 1 . . . k are the components used to measure the size.

Exercise 4.3

Show that µ2 = Gm + (1 − x2)(∂Gm/∂x2)x3/x1 in a ternary system.

Hint

Replace variables N , N2 and N3 using x2(= N2/N ), x3/x1(= N3/N1) and N (= N1 +
N2 + N3).

Solution

Let Gm be a function of x2 and x3/x1 : G = N Gm(x2, x3/x1); µ2 = (∂G/∂ N2)N1,N3 =
Gm + N (∂Gm/∂x2)x3/x1 (∂x2/∂ N2)N1,N3 + N (∂Gm/∂(x3/x1))x2 (∂(x3/x1)/∂ N2)N1,N3 =
Gm + N (∂Gm/∂x2)x3/x1 (N − N2)/N 2 + N (∂Gm/∂(x3/x1))x2 ·0 = Gm + (1 − x2)(∂Gm/

∂x2)x3/x1 .
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Figure 4.3 Two ways of applying the lever rule.

4.4 The lever rule

Let us consider some molar quantity Am in two homogeneous subsystems (phases), α

and β, with different properties, and then evaluate the average of the molar quantity, Aav
m ,

in the total system. By definition we have

Aα
m = Aα/Nα (4.38)

Aβ
m = Aβ/Nβ. (4.39)

Using the law of additivity we obtain

Aav
m ≡ (Aα + Aβ)/(Nα + Nβ) = Aα

m · Nα

Nα + Nβ
+ Aβ

m · Nβ

Nα + Nβ
= f α Aα

n + f β Aβ
n .

(4.40)

The fractions of atoms present in each subsystem, i.e. the relative sizes of the two sub-
systems, are denoted by f α and f β. The terms can be rearranged because f α + f β = 1.

f α
(

Aav
m − Aα

m

) = f β
(

Aβ
m − Aav

m

)
. (4.41)

This is often called the lever rule and is often used when Am is a molar content xi . That
case is illustrated in Fig. 4.3(a).

The terms can be rearranged in another way(
Aav

m − Aα
m

) = f β
(

Aβ
m − Aα

m

)
. (4.42)

This equation can be illustrated by two balancing forces, each of which tries to turn the
lever around the point representing the α subsystem (see Fig. 4.3(b)).

The lever rule can be extended to more subsystems. It is easy to see that

Aav
m = f α Aα

n + f β Aβ
n + f γ Aγ

n + · · · . (4.43)

For three subsystems in a diagram with two molar quantities one obtains a triangle and
the total system will be represented by a point placed at its centre of gravity. This case
is illustrated in Fig. 4.4.

When the positions of the three subsystems and the total system are known, then one
can evaluate the fractions by several graphical methods, as illustrated in Fig. 4.5.
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Figure 4.4 The lever rule applied to a system with three subsystems α, β and γ. The triangle is
regarded as capable of rotating around the point representing the whole system.
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Figure 4.5 (a)–(d) Four methods of evaluating the fractions of a subsystem, f β, or the ratio of
fractions of two subsystems, f α/ f γ.

4.5 The tie-line rule

It is evident from Fig. 4.4 that a mixture of only two subsystems will fall on the straight
line between them, which is called tie-line or conode. This we shall call the tie-line
rule. It must be realized that it holds only if the same measure of size is used for both
quantities. In most applications we shall use the total number of moles or moles of a
specific element. An example is shown in Fig. 4.6. Both Vm and xB were defined by
dividing V or NB by N. The value of Vm for the composition x ′

B is an average between
the end-points of the tangent. They represent the partial molar volumes, VA and VB, for
the same composition.

Vm(x ′
B) = x ′

AVA(x ′
B) + x ′

BVB(x ′
B). (4.44)
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Figure 4.6 Property diagram for a binary system showing the molar volume as a function of
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of composition at constant T and P, using the total content of atoms, N, as a measure of size (a)
or NA(b).

The fact that the end-points of the tangent give the partial quantities can be shown with
Eq. (4.6). If xB is regarded as the only variable by treating xA as 1 − xB, we obtain

VB = Vm + dVm

dxB
− xB

dVm

dxB
= Vm + (1 − xB)

dVm

dxB
. (4.45)

Two methods of measuring the size are compared in Figs. 4.7(a)and 4.7(b). The tie-
line rule applies to both. The rule does not apply to Fig. 4.8 because different measures
of size have there been used for the Cr and C contents. The straight lines in (a) have no
physical meaning but the curved lines in (b) are the true tie-lines. Other examples of
inconvenient choices will be given in Section 10.7.

The tie-line rule also holds in three dimensions. As an example, Fig. 4.9 shows a
molar Gibbs energy diagram for a ternary system and the intercepts of the tangent plane
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Figure 4.9 Molar Gibbs energy diagram for a ternary solution.

on the component axes represent the partial Gibbs energies. According to the tie-line
rule, the molar Gibbs energy of the alloy falls on the plane through these points. This
is also in accordance with Eq. (3.18), Gm = �xiµi , where µi is identical to Gi (see
Equation (4.13)).

Exercise 4.4

Suppose one has measured the lattice parameter a of face-centred cubic (fcc)-Fe as a
function of the carbon content. What composition variable should be most convenient
in a diagram showing the volume of the unit cell, a3?
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Hint

It would be most convenient if the tie-line rule could be applied. Then one could, for
instance, see immediately if the volume of a system would be different when carbon is
distributed uniformly or non-uniformly. Use the fact that carbon dissolves interstitially
in fcc-Fe.

Solution

The unit cell contains a fixed number of Fe atoms and a variable number of C atoms.
The volume of the unit cell is thus proportional to V/NFe, i.e. Vm/xFe. The composition
should thus be expressed as NC/NFe, i.e. xC/xFe.

4.6 Different sets of components

When considering a system open to exchange of matter with the surroundings in
Section 3.1, we introduced the terms �µi dNi in the expression for dU. These terms
were subsequently carried over into the expression for dG and a chemical potential for
any component j can thus be defined as

µ j =
(

∂G

∂ N j

)
T,P,Nl ,ξ

. (4.46)

The quantity N j represents the amount of component j. The quantities Ni and N are
often measured as the number of atoms or groups of atoms, whether the corresponding
molecule exists or not. However, the set of independent components can be chosen in
different ways and it is self-evident that whatever choice is made it cannot be allowed to
affect the total value of dG = �µi dNi . As a consequence, there is a relation between the
chemical potentials defined for different sets of components. Let us compare two sets.
As the first set we shall take the elements i, j, k, etc., and as the second set we shall take
formula units denoted by d, e, f, etc. Let ad

i be the number of i atoms in a formula unit
of d. It is interesting to note that the set of ad

i values for a new component d defines its
position in the i, j, k compositional space. If the formula unit of d is defined for one mole
of atoms then ad

i is equal to the molar contents of the elements in the new component,
xd

i . Further, let Nd be the total number of formula units of the new component d. The
total number of i atoms in the system is then obtained by a summation over all the new
components.

Ni =
∑

d

ad
i Nd . (4.47)

We thus obtain

∑
µi dNi =

∑
i

µi

(∑
d

ad
i dNd

)
=

∑
d

(∑
i

ad
i µi

)
dNd . (4.48)
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This result can be inserted into the expression for dG instead of �µi dNi and we thus
find for the chemical potential of component d,

µd =
(

∂G

∂ Nd

)
T,P,Ne

=
∑

i

ad
i µi . (4.49)

It is interesting to note that the final expression for µd is independent of how the other
components in the new set were selected. The expression can thus be used to calculate
the chemical potential of any compound or species or combination of atoms, whether it is
used in a set of independent variables or not. Actually, one can define a component with
the same composition as the whole system. The chemical potential of such a component
is equal to Gm and was used in the combined law in Section 1.9.

Exercise 4.5

Consider a solution phase with two sublattices and the same number of sites on each. If
A and B can occupy the first one and C and D the second one, then we can use the chem-
ical formula (Ax B1−x )1(CyD1−y)1. It may seem reasonable to use the following expres-
sions for the properties in a simple case where all the ternary solutions behave as ideal
solutions between two compounds each, e.g. (Ax B1−x )1C1 as xA1C1 and (1 − x)B1C1

yielding µAC = ◦GAC + RT ln(xy) and µAD = ◦GAD + RT ln[x(1 − y)], etc. How-
ever, this would be reasonable only under an additional condition. Accept the expressions
given here and find the condition.

Hint

The four µs are related.

Solution

By definition µAC = µA + µC, etc.
Thus, µAC + µBD − µAD − µBC = 0 and ◦GAC + RT ln(xy) + ◦GBD + RT ln

[(1 − x)(1 − y)] − ◦GAD − RT ln[x(1 − y)] − ◦GBC − RT ln[(1 − x)y] = 0 and thus
◦GAC + ◦GBD = ◦GAD + ◦GBC. This requires that the pair AC + DB has the same sta-
bility as AD + BC, which must be an unusual case.

4.7 Constitution and constituents

The composition of a system together with the condition of equilibrium defines the
state of the system but it gives no direct information on how the atoms are arranged. In
order to understand the properties and to make a realistic model of the thermodynamic
properties as a function of composition, it is necessary to have some idea about the
arrangement of the atoms. The modelling should be based on the constitution of the
system, i.e. the detailed description of the distribution of the atoms. The occurrence
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of regions of different structures and compositions, so-called phases, is of primary
importance. The distribution of atoms within each phase may also be important, for
instance their distribution on different sublattices or in groups like molecules, ions or
complexes. Groups of atoms, including ions and single atoms, are often called species.
They may be so stable that they can be transferred from one phase to another and even
from the system to the surroundings.

Another useful concept is constituent by which one understands a certain kind of
species on a certain sublattice in a certain phase. In the following discussion of con-
stituents we shall only consider single atoms. However, the results can be generalized
easily to molecular or ionic species.

Let us consider a phase with several sublattices in a higher-order system. The sublat-
tices may be identified by superscripts, s, t, u, etc., their numbers of sites may be denoted
by as, at , au , etc., the number of j atoms in the t sublattice by N t

j and the corresponding
site fraction by yt

j . By definition

yt
j = N t

j

/ ∑
i

N t
i . (4.50)

The site fraction is thus a kind of molar content (mole fraction), evaluated for each
sublattice separately. The molar contents in the whole phase can be evaluated from the
site fractions

x j = at yt
j

/ ∑
s

as, (4.51)

where t represents the sublattice in which j resides. In simple cases the relation can be
inverted and the site fractions can be evaluated from the composition of the phase

yt
j = x j

∑
s

at yt
j

/ ∑
s

as . (4.52)

However, in the general case an element may enter into more than one sublattice. One
can still evaluate the composition from the site fractions

x j =
∑

t

at yt
j

/ ∑
s

as, (4.53)

but it is not certain that this relation can be inverted, i.e. that the site fractions can
be evaluated from the composition. Instead there may now be one or more internal
variables, describing the distribution of the elements on the various sublattices. Such
internal variables will be discussed further in Chapter 20. Together with the external x j

parameters they define the state of the phase. An alternative way of defining the state
is by only giving the site fractions. A site fraction may thus have a mixed character of
internal and external variable.

The total number of formula units can be obtained by considering any sublattice or
the whole phase,

N =
∑

i

N t
i

/
at =

∑
i

N u
i

/
au = . . . =

∑
s

∑
i

N s
i

/ ∑
s

as . (4.54)
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Exercise 4.6

For (A, B)a(C, D)c, prove that Gm = yCµBaCc + yAµAaDc + (yD − yA)µBaDc .

Hint

Use µBaCc = aµB + cµC etc., xA = ayA/(a + c), etc., and yA + yB = 1 = yC + yD.

Solution

yCµBaCc + yAµAaDc + (yD − yA)µBaDc = yCaµB + yCcµC + (yD − yA)aµB + (yD −
yA)cµD = yCcµC + yAaµA + yDcµD + (yC + yD − yA)aµB = yCcµC + yAaµA +
yDcµD + yBaµB = (a + c)(xCµC + xAµA + xDµD + xBµB) = Gm for one mole of
formula units.

4.8 Chemical potentials in a phase with sublattices

When trying to evaluate a chemical potential of a component in a phase with two or more
sublattices, we run into difficulties because we cannot vary the content of one component
alone unless it is present in all sublattices. The reason is the fixed total amount of atoms
in each sublattice relative to the total amounts in the other sublattices. This kind of
restriction on the contents of a phase may be called stoichiometric constraint and this
kind of phase is called a stoichiometric compound. The word stoichiometric actually
means that the coefficients in the chemical formula are small integers but the word is
often used to mean ‘fixed composition’. Usually, one follows from the other.

If we were to neglect the difficulty with the stoichiometric constraint and calculate the
chemical potential of a constituent j in sublattice s with the method used in Section 4.1,
we should get the following formal result

µs
j = Gm + 1

as
·

(

∂Gm

∂ys
j

)
ys

l

−
∑

i

ys
i

(
∂Gm

∂ys
i

)
ys

l
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where Gm is defined for 1 mole of atoms and �as = 1. The factor 1/as comes from
the fact that �N s

i = as N . It must be emphasized that the expression for µs
j cannot be

used alone. It can only be used in combinations obeying the stoichiometric constraint.
Two methods of obeying the constraint should be considered. In the first method one
considers the addition of balanced amounts of atoms to all sublattices, corresponding to
the addition of a compound jat kau lav . For the chemical potential of that compound we
obtain

µ jat kau lav = atµt
j + auµu

k + avµv
l

= Gm +
(

∂Gm

∂yt
j

)
ys

l

+
(

∂Gm

∂yu
j

)
ys

l

+
(

∂Gm

∂yv
j

)
ys

l

−
∑

s

∑
i

ys
i

(
∂Gm

∂ys
i

)
ys

l

.

(4.56)
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It is evident that we can here drop the restriction �as = 1 and redefine Gm to hold for
1 mole of formula units.

If an element A appears in all sublattices, then one could consider a compound which
is a form of the pure element A and with �as = 1 its chemical potential would be

µA = atµt
A + auµu

A + avµv
A

= Gm +
(

∂Gm

∂yt
A

)
ys

l

+
(

∂Gm

∂yu
A

)
ys

l

+
(

∂Gm

∂yv
A

)
ys

l

−
∑

s

∑
i

ys
i

(
∂Gm

∂ys
i

)
ys

l

.
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This calculation can be performed only if the element is present in all sublattices. Oth-
erwise, µA by itself has no unique physical meaning for such a phase.

The other method of obeying the stoichiometric constraint is to substitute an element
for another one in a certain sublattice. The result will be

µ j − µk = µt
j − µt

k = 1

at


(

∂Gm

∂yt
j

)
ys

l

−
(

∂Gm

∂yt
k

)
ys

l


. (4.58)

The difference µ j − µk is the diffusion potential derived in Section 4.1 where it was
denoted G j − Gk .

For a system in internal equilibrium the calculation of µ j − µk must give the same
result independent of what sublattice is used in the calculation. Otherwise there would
be a driving force for an exchange of atoms between the sublattices. Thus,

µt
j − µt

k = µu
j − µu

k . (4.59)

If there are vacancies in one of the sublattices, then one can evaluate the chemical potential
of any element present in that sublattice at equilibrium because the vacancies may be
treated as an additional element with a chemical potential µVa, which can be defined as
zero at equilibrium. It would also be possible to calculate the chemical potential of an
element not present in that sublattice but present in all the other ones.

It should again be emphasized that the quantities µt
j etc., which refer to a specified

sublattice, in general have no unique meaning by themselves and they do not have
the same value in different sublattices, not even at equilibrium. There may be several
methods of calculating the µt

j quantities and they may give different results. But in the
combinations obeying the stoichiometric constraint the results must be the same. This
question is connected with the fact that one cannot add just one element to a phase with a
stoichiometric constraint. It follows that the set of independent components contains less
components than there are elements. In such a case one may define the set of components
by using compounds and talk about component compounds. On the other hand, there
may also be too many possible component compounds and for the set of independent
components one must make a selection.
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Exercise 4.7

We have seen that the chemical potential of an element A in a system with more than
one sublattice can be evaluated under two different conditions. In one case the element
is present in all sublattices and in the other case it is present in a sublattice t, which
has vacancies. In the latter case, consider another element B which is only present in a
second sublattice, u, that has no vacancies. Can its chemical potential also be evaluated?

Hint

Use the fact that the chemical potential of the first element, A, can be evaluated.

Solution

Using the second sublattice we can evaluate µA − µB = µu
A − µu

B but only under internal
equilibrium conditions. But µA is known from the first sublattice µA = µt

A − µt
Va = µt

A

and thus µB = µt
A − (µu

A − µu
B).



5 Thermodynamics of processes

5.1 Thermodynamic treatment of kinetics of internal processes

In Chapter 1 we considered spontaneous processes inside a system when discussing the
second law but later in that chapter we only considered equilibria. We shall now discuss
the thermodynamic treatment of the kinetics of such processes. This field of thermody-
namics is often called irreversible thermodynamics but the full term should rather be
thermodynamics of irreversible processes. The word irreversible is often replaced by
the word spontaneous. A process occurring inside a system may be caused by a change
imposed upon the system by some external action, but it will here be regarded as a spon-
taneous result of the new conditions inside the system. All processes inside a system
that actually occur will thus be regarded as spontaneous. It would really be unnecessary
to use either of the terms irreversible and spontaneous processes if it were not for the
need to distinguish them from the limiting case of a cyclic process, e.g. the Carnot cycle,
when it is carried out in such a way that the internal processes it gives rise to produce
a negligible amount of entropy. Since a cyclic process is controlled by actions from the
outside and they could be performed in the reverse direction, it is possible to run the
cycle in the reverse direction. All the internal processes it gives rise to will also reverse
and if their entropy production is again negligible the two cases will be identical in the
limit, except for the sign. In the limit, such processes are regarded as reversible.

An internal process at any given moment could not spontaneously proceed in either
direction except for cases of so-called unstable equilibrium. That would require that
the driving force is the same in both directions and must thus be zero and the process
must be infinitely slow. A reversible process is thus a hypothetical construction but of
considerable theoretical interest as a limiting case.

As a first approximate treatment of the kinetics of processes one assumes that the
rate of a process, often called flux and denoted by J, is proportional to a thermodynamic
force, X. A positive value of the force implies that it drives the process in a predetermined
direction. Counting the flux as positive in the same direction one writes

J = L X. (5.1)

The kinetic coefficient L is thus positive by definition. If ξ denotes the extent of the
process, then the flux is defined as

J = dξ

dt
. (5.2)
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The rate of entropy production can be written as

σ ≡ dipS

dt
= dipS

dξ

dξ

dt
. (5.3)

The definition of the thermodynamic force is given as

X = dipS

dξ
. (5.4)

Combination with Eq. (5.1) yields for the rate of entropy production

σ = J X = L X2 > 0. (5.5)

Since L is positive by definition, this is in agreement with the second law requiring that
a spontaneous process produces entropy.

If there are simultaneous processes, they may all contribute to the entropy production

dipS =
∑ (

∂ipS

∂ξi

)
dξi =

∑
Xi dξi (5.6)

σ ≡ dipS

dt
=

∑ (
∂ipS

∂ξi

)
dξi

dt
=

∑
Xi Ji . (5.7)

One should then generalize the linear kinetic equation, Eq. (5.1) by taking into account
the possibility that simultaneous processes may interact.

Jj =
∑

k

L jk Xk = L j j X j +
∑
k �= j

L jk Xk . (5.8)

This is usually called phenomenological equation because it is not based on any physical
model.

The flux and force for an individual process j are defined by Eqs (5.2) and (5.4), using
the extent of the process, ξ j . They are thus related to each other and are regarded as a pair
of conjugated quantities. Their product gives the entropy production for that process,
σ j , but it should be realized that the second law is derived only for the whole system,

σ =
∑

σi =
∑

i

(
Lii Xi +

∑
k �=i

Lik Xk

)
· Xi > 0. (5.9)

On the other hand, the entropy production for an individual process could be negative
if there are simultaneous processes. When this happens, it is caused by the cross coeffi-
cients, L jk , in Eq. (5.8). That possibility can be demonstrated by starting with a situation
where X j = 0 and the other forces have such values that �L jk Xk > 0 for the actual set
of L jk values. Then

σ j = Jj X j =
(

L j j X j +
∑
k �= j

L jk Xk

)
X j = 0, (5.10)

even when Jj , as calculated from Eq. (5.8), is not zero. By changing to a slightly negative
value of X j one obtains

σ j = Jj X j = L j j X2
j +

∑
k �= j

L jk Xk X j
∼=

(∑
k �= j

L jk Xk

)
· X j < 0. (5.11)
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We have here neglected the first term that contains the small quantity X j squared. The
negative value of Eq. (5.11) is caused by the cross coefficients L jk . According to the
second law, the negative value must be compensated by the other processes yielding
positive values. That puts a special requirement on the relation between the L coefficients.
The L matrix must be positive definite and for a system with two processes that means that

4L11L22 > (L12 + L21)2, (5.12)

in addition to the requirement that all Lii must be positive, which has already been
discussed. Those coefficients may be described as diagonal coefficients.

It is an interesting question whether the change of X j , which made σ j negative, as
a compensation increased the entropy production from another process. For the simple
case of two processes Eq. (5.11) yields,

σ j = L j j X2
j + L jk Xk X j (5.13)

σk = Lkj X j Xk + Lkk X2
k (5.14)

and σ j can turn negative only by the action of the cross term L jk Xk X j in Eq. (5.13)
and it is thus necessary that it is negative. Provided that L jk and Lkj have the same
sign, Lkj X j Xk in Eq. (5.14) will also be negative and both σ j and σk will decrease by
the coupling between the two processes. In fact, Onsager [5] has demonstrated that L jk

and Lkj do not only have the same sign but even the same value. This is called the
reciprocal relation and can only be applied to a pair of kinetic equations containing
conjugate pairs of flux and force. Onsager’s derivation was based on the assumption of
microscopic reversibility and the assumption that macroscopic processes obey the same
kinetic law as the decay of the corresponding microscopic fluctuations. Objections have
been raised regarding assumptions not stated explicitly by Onsager, e.g. by Truesdell [6]
but the validity of the reciprocal relationship is widely accepted.

Exercise 5.1

Can a process occur, i.e. J1 �= 0, without producing entropy?

Solution

Yes! The entropy production is equal to J1 X1 and will vanish if X1 = 0 even if J1 =
L11 X1 + L12 X2 = L12 X2 �= 0.

Exercise 5.2

The material in a living organism can get more ordered, implying that the entropy
decreases. Does the second law not hold for living organisms?

Solution

The living organism cannot do this by itself, i.e., if it is completely isolated. It can do it by
receiving light energy from the sun, a case, which should be treated with an appropriate
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form of the combined law. It can also do it by being a subsystem in a bigger system and
its internal processes can then be coupled to processes in the other subsystem.

5.2 Transformation of the set of processes

It is possible to change the formal description of what happens in a system with simulta-
neous processes without affecting what actually happens. There may be different reasons
for such a change to a new set of processes. One reason could be an advantage in the
physical interpretation of the processes. Another reason could be that one is looking for
a set of phenomenological equations with negligible cross terms in order to simplify
numerical calculations.

Of course, one requirement for such a transformation is that the entropy produc-
tion is the same in both descriptions. For simplicity, we shall limit the present dis-
cussion to two simultaneous processes. Let the primary phenomenological equations
be

J1 = L11 X1 + L12 X2 (5.15a)

J2 = L21 X1 + L22 X2. (5.15b)

Introduce a new set of fluxes by linear combinations

J ∗
1 = α11 J1 + α12 J2 (5.16a)

J ∗
2 = α21 J1 + α22 J2. (5.16b)

The entropy requirement gives

σ = J1 X1 + J2 X2 = J ∗
1 X∗

1 + J ∗
2 X∗

2 = α11 J1 X∗
1 + α12 J2 X∗

1 + α21 J1 X∗
2 + α22 J2 X∗

2 .

(5.17)

Comparing terms in first J1 and then J2 we find that it is necessary to choose

X1 = α11 X∗
1 + α21 X∗

2 (5.18a)

X2 = α12 X∗
1 + α22 X∗

2 . (5.18b)

The fluxes and forces for the primary set of processes can be eliminated by first inserting
Eqs. (5.15) and then Eqs (5.18) into Eqs (5.16),

J ∗
1 = α11L11 X1 + α11L12 X2 + α12L21 X1 + α12L22 X2

= (α11L11 + α12L21)(α11 X∗
1 + α21 X∗

2)

+ (α11L12 + α12L22)(α12 X∗
1 + α22 X∗

2) = L∗
11 X∗

1 + L∗
12 X∗

2 (5.19a)

J ∗
2 = α21L11 X1 + α21L12 X2 + α22L21 X1 + α22L22 X2

= (α21L11 + α22L21)(α11 X∗
1 + α21 X∗

2)

+ (α21L12 + α22L22)(α12 X∗
1 + α22 X∗

2) = L∗
21 X∗

1 + L∗
22 X ∗

2 . (5.19b)
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where

L∗
11 = α2

11L11 + α11α12L21 + α11α12L12 + α2
12L22 (5.20a)

L∗
12 = α11α21L11 + α12α21L21 + α11α22L12 + α12α22L22 (5.20b)

L∗
21 = α21α11L11 + α22α11L21 + α21α12L12 + α22α12L22 (5.20c)

L∗
22 = α2

21L11 + α22α21L21 + α21α22L12 + α2
22L22. (5.20d)

This derivation of the new coefficients can easily be generalized, resulting in

L∗
sr =

∑
i

∑
k

αsiαrk Lik . (5.21)

The description has thus been changed to a new set of processes and it is immediately
evident that for the new cross coefficients one finds L∗

12 = L∗
21 if L12 = L21. Onsager’s

reciprocal relation is still valid. It should further be emphasized that the new processes
appear to be coupled even if the initial processes were not. According to Eqs (5.20b and
c), the following cross coefficients appear if one starts with processes without coupling,

L12 = L21 = 0

L∗
12 = α11α21L11 + α12α22L22 = L∗

21.
(5.22)

It is interesting to note that for this case the reciprocal relation is a mathematical conse-
quence and there is no need to use a derivation based on physical arguments in order to
explain that the reciprocal relation is preserved.

Of course, it is also possible to apply a transformation in order to eliminate the cross
coefficients. Starting with L12 = L21 �= 0 one can change to two new processes for which
L∗

12 = L∗
21 = 0. According to Eqs (5.20b and c), the requirement is that one has chosen

the αi j coefficients to satisfy

α11α21L11 + (α12α21 + α11α22)L12 + α12α22L22 = 0. (5.23)

However, there are an infinite number of ways to accomplish this even though one can
immediately eliminate many of them as trivial variations because σ j in Eq. (5.7) would
not be affected if one of the conjugate pairs of flux and force is redefined by multiplying
the flux with a factor and dividing the force with the same factor. One can eliminate this
kind of freedom by choosing α11 = 1 = α22 but the requirement is still satisfied as soon
as the following relation between α12 and α21 is obeyed.

α21L11 + (1 + α12α21)L12 + α12L22 = 0 (5.24)

α12 = − L12 + α21L11

L22 + α21L12
. (5.25)

On the other hand, with the present understanding of principles there is no guarantee
that the set of processes that actually occur on a microscale, when Eq. (5.25) is satisfied,
should not be coupled in any way. However, there are several cases where two processes
could be expected not to be coupled by a physical mechanism. Examples are processes
that occur in different subsystems or reactions between molecules in a gas, which occur
in contact with one catalyst each. Prigogine [7] has mentioned the case of heat flowing
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through a system where a homogeneous molecular reaction takes place, suggesting that
the two processes could not be coupled. It is an interesting question whether one would
always find that there is no coupling if one could really identify the actual processes
on the microscale. If that is the case, then the reciprocal relation should always be a
mathematical consequence of a different choice of processes.

Exercise 5.3

Show how Eq. (5.21) can be derived.

Hint

Start with Eq. (5.16a) and insert in turn Eqs (5.15a) and (5.18).

Solution

J ∗
s =

∑
i

αsi Ji =
∑

i

αsi

∑
k

Lik Xk =
∑

i

αsi

∑
k

Lik

∑
r

αrk X∗
r ;

L∗
sr =

∑
i

αsi

∑
k

Likαrk =
∑

i

∑
k

αsiαrk Lik .

5.3 Alternative methods of transformation

So far, we have introduced a new set of processes by expressing the new fluxes as linear
combinations of the initial ones. One could just as well express the new forces as linear
combinations of the initial forces

X∗
1 = β11 X1 + β12 X2 (5.26a)

X∗
2 = β21 X1 + β22 X2. (5.26b)

The initial processes are still defined by Eqs (5.15) but we shall invert them to make
them consistent with the new way of defining the new processes

X1 = R11 J1 + R12 J2 (5.27a)

X2 = R21 J1 + R22 J2. (5.27b)

The R coefficients can be obtained from the L coefficients in Eqs (5.15) by standard
methods. With a similar procedure as before, one now obtains

X∗
s =

∑
r

R∗
sr J ∗

r (5.28)

R∗
sr =

∑
i

∑
k

βsiβrk Rik . (5.29)

The L∗ coefficients can be evaluated by inverting Eq. (5.28).
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One may also like to prescribe both flux and force for one process and not make any
prescription for the other process

J ∗
1 = α11 J1 + α12 J2 (5.30)

X∗
1 = β11 X1 + β12 X2. (5.31)

One should then express J ∗
2 and X∗

2 using the four coefficients defined by these equations.
In general, a complete set of β coefficients can be expressed in terms of the α coefficients
by inverting Eqs (5.18)

α11/β22 = −α12/β21 = −α21/β12 = α22/β11 = α11α22 − α12α21. (5.32)

For the second process one could thus write

J ∗
2 = α21 J1 + α22 J2 = α22

(
α21

α22
J1 + J2

)
= α22

(
−β12

β11
J1 + J2

)
(5.33)

X∗
2 = β21 X1 + β22 X2 = β22

(
−α12

α11
X1 + X2

)
= α11β11

α22

(
−β12

β11
X1 + X2

)
. (5.34)

In these expressions only α22 was not given by Eqs (5.30) and (5.31). However, α22 is
eliminated in the product J ∗

2 X∗
2 and, as in the discussion following Eq. (5.23), it may

thus be regarded as a trivial factor for the second new process. It may thus be concluded
that in order for a new process, defined by its flux and force, to be part of a new set of
conjugate processes it must be combined with a unique partner defined by Eqs (5.33)
and (5.34).

Finally, it may happen that for some particular reason one would like to prescribe the
flux for a new process but the force for the other process.

X∗
1 = β11 X1 + β12 X2 (5.35)

J ∗
2 = α21 J1 + α22 J2. (5.36)

Again, the α and β coefficients are related by Eq. (5.32) but this time only three of the
coefficients given by the initial equations are independent. Let α21 be the dependent one.
Eq. (5.32) yields

α21 = −α22β12/β11. (5.37)

This must be satisfied when the initial equations, Eqs (5.35) and (5.36) are formulated.
As a compensation, there is a degree of freedom when evaluating the remaining four
coefficients. Lets us choose α11 as the arbitrary parameter. Eq. (5.32) would then yield

β22 = α11

α22
β11 (5.38)

α12 = 1

α21

(
α11α22 − α22

β11

)
= α22

α21β11
(α11β11 − 1) (5.39)

β21 = −α12β11

α22
= − α22β11

α21β11α22
(α11β11 − 1) = − 1

α21
(α11β11 − 1) . (5.40)

An application of this kind of transformation will be given in Section 17.5.
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So far, we have always transformed the initial set of processes into the same number
of new processes. However, there are cases where the new set will contain one process
more or one less. When transforming the phenomenological equations for diffusion in
order to change the frame of reference, one often introduces a set with one process less.
That case will be discussed in Section 5.8. A case with an increase of the number of
processes will now be described.

It may happen that one describes the development of a system with a set of processes
that one is convinced are those that actually take place on a microscale. Nevertheless,
experimental measurements have yielded cross coefficients. There is thus a coupling
between the processes but it is possible that it may be caused by an additional process
that was not considered primarily because it was formally possible to represent the exper-
imental information without using it. By introducing the phenomenological equation for
that process into the representation of experimental information, it is possible that the
cross coefficients decrease in value or even become negligible. If several additional pro-
cesses seem possible, one may decide to use the one giving the lowest cross coefficients.
That one would then be regarded as the coupling process.

Suppose one has studied two processes finding that they are coupled as described by
L12 = L21 �= 0 in their phenomenological equations,

J1 = L11 X1 + L12 X2 (5.41a)

J2 = L21 X1 + L22 X2. (5.41b)

With these equations one has thus been able to give an adequate description of how the
system develops. However, one is convinced that the two processes actually occur in
the system and feels that they should be independent of each other if it were not for
the presence of a third process that is responsible for the coupling. Assuming that there
should be no cross terms if the system is represented by all three processes one would
write

J ∗
1 = L∗

1 X∗
1 (5.42a)

J ∗
2 = L∗

2 X∗
2 (5.42b)

J ∗
3 = L∗

3 X∗
3. (5.42c)

It should be noticed that it is necessary to redefine the fluxes of the two initial processes
when the third one is introduced even though those processes are the same as before and
should still have the same forces.

X∗
1 = X1 (5.43a)

X∗
2 = X2. (5.43b)

Of course, there should be some relation between the third process and the initial ones
because an adequate description of the system can be given already by the initial ones.
Suppose the relation is

X∗
3 = k X1 + l X2 = k X∗

1 + l X∗
2 . (5.44)
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The entropy production must be the same in both descriptions. By eliminating X∗
3 one

obtains

σ = J ∗
1 X∗

1 + J ∗
2 X∗

2 + J ∗
3 X∗

3 = (J ∗
1 + k J ∗

3 )X∗
1 + (J ∗

2 + l J ∗
3 )X∗

2

= J1 X1 + J2 X2. (5.45)

By inserting Eqs (5.43) one can identify the relations between the two sets of processes
by comparing terms.

J1 = J ∗
1 + k J ∗

3 (5.46a)

J2 = J ∗
2 + l J ∗

3 . (5.46b)

Introducing the phenomenological equations for the three new processes from Eqs (5.42)
one obtains,

J1 = J ∗
1 + k J ∗

3 = L∗
1 X∗

1 + kL∗
3(k X∗

1 + l X∗
2) = (L∗

1 + k2L∗
3)X1 + kl L∗

3 X2. (5.47a)

J2 = J ∗
2 + l J ∗

3 = L∗
2 X∗

2 + l L∗
3(k X∗

1 + l X∗
2) = kl L∗

3 X1 + (L∗
2 + l2L∗

3)X2. (5.47b)

It is satisfactory to see that the reciprocal relation is obeyed. Comparison with Eqs (5.41)
yields

L11 = L∗
1 + k2L∗

3; L12 = kl L∗
3 = L21; L22 = L∗

2 + l2L∗
3 (5.48)

or inverted,

L∗
3 = L12/kl = L21/kl (5.49a)

L∗
2 = L22 − l2L12/kl = L22 − L12l/k (5.49b)

L∗
1 = L11 − k2L12/kl = L11 − L12k/ l. (5.49c)

The introduction of a third, coupling process is thus another way of describing the
development of the system without any cross terms. The advantage of this method is that
the initial processes will be part of the final description. That may be desirable if they
have a strong physical basis.

The fact that it is always possible to introduce a set of processes without cross terms
may be of theoretical interest even without trying to identify their physical background,
as demonstrated by the following example. It may seem self-evident that there could be
no spontaneous processes in a system without any entropy being produced. σ = 0 for
the whole system should thus be a condition of equilibrium for the whole system and for
all parts of it. However, it has been argued that one process having σ j > 0 and another
one having σk < 0 could together yield σ = 0. On the other hand, the fact that one can
always describe what happens in the system with a set of processes without coupling
proves that there is no basis for that argument. Each one of those processes will only
be driven by its own thermodynamic force because all cross coefficients are zero. All
those processes will have to give positive contributions to the entropy production if they
progress. One could thus apply the second law to the individual processes if they are
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not coupled. One may conclude that there can be no spontaneous changes in a system if
σ = 0 for the whole system.

Exercise 5.4

In an attempt to eliminate the cross terms in two processes one introduces a third process
by requiring that (1) J1 = J ∗

1 + J ∗
3 and (2) J2 = J ∗

2 − J ∗
3 . Evaluate the L* coefficients

if this is possible.

Hint

Start by finding the condition for preserving the rate of entropy production.

Solution

σ = J ∗
1 X∗

1 + J ∗
2 X∗

2 + J ∗
3 X∗

3 = J1 X1 + J2 X2 = (J ∗
1 + J ∗

3 )X1 + (J ∗
2 − J ∗

3 )X2 = J ∗
1 X1 +

J ∗
2 X2 + J ∗

3 (X1 − X2), which yields X∗
1 = X1; X∗

2 = X2; X∗
3 = X1 − X2.

Insert Eqs (5.42) in Eq. (1) or (2): J1 = J ∗
1 + J ∗

3 = L∗
1 X∗

1 + L∗
3 X∗

3 = L∗
1 X1 +

L∗
3(X1 − X2) = (L∗

1 + L∗
3)X1 − L∗

3 X2; J2 = J ∗
2 − J ∗

3 = L∗
2 X∗

2 − L∗
3 X∗

3 = L∗
2 X2 −

L∗
3(X1 − X2) = −L∗

3 X1 + (L∗
2 + L∗

3)X2.
Comparison with Eqs (5.41) yields L11 = L∗

1 + L∗
3; L12 = −L∗

3 = L21;
L22 = L∗

2 + L∗
3 or inverted: L∗

3 = −L12 = −L21; L∗
2 = L22 − L∗

3 = L22 + L12;
L∗

1 = L11 − L∗
3 = L11 + L12.

5.4 Basic thermodynamic considerations for processes

In order to apply thermodynamics to the kinetics of processes, one must be aware of some
fundamental principles and new assumptions must be made. For inhomogeneous systems
the basic extensive quantities, Ni, U, V and S are obtained by integration of the local
value of the corresponding intensive property, usually expressed by the molar quantity.
It is thus necessary to assume that one can define the local value of those quantities. The
molar quantity is not just an average over a larger system. It is an intensive quantity and
depends on the local values of T, P and composition and also on the arrangement of the
atoms. However, it may also depend on the gradient of those quantities. There are no
gradient effects in a homogeneous system and in the present work they will be neglected
for inhomogeneous systems unless specifically stated. An exception is the treatment
of a phenomenon called spinodal decomposition for which important restrictions are
described by including the effect of composition gradients on the Gibbs energy. See
Section 15.4.

Ni, U and V obey the law of additivity and their values in a system are conserved
quantities in the sense that they can only change by interaction with the surroundings.
Their values for the whole system are thus conserved if there is no exchange of heat, work
or volume with the surroundings. The entropy, S, can change by internal processes but
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S − �ipS is a conserved quantity if �ipS is defined as the internally produced entropy.
Other extensive quantities are derived from the primary ones by adding or subtracting
terms containing P, T and µi , e.g. the terms PV and TS. The law of additivity applies to
such quantities only under special precautions as discussed in Section 3.4.

Finally, it should be noted that, when applying thermodynamics to systems with inter-
nal processes, one assumes that thermodynamic properties, evaluated under equilibrium
or frozen-in conditions, apply not only to stable and metastable systems but also to unsta-
ble systems undergoing changes. In the present work that assumption will be applied as an
approximation without further discussion. We shall for instance evaluate thermodynamic
properties by assuming that any momentary situation is frozen-in.

Most of the applications in this chapter are based on the combined law in the form

dS = (1/T )dU + (P/T )dV − �(µi/T )dNi + dipS, (5.50)

where dipS is the entropy production which must be positive for a system undergoing
spontaneous changes. We shall first consider cases where dipS is caused by homogeneous
processes that will not disturb the uniformity of a system which is uniform from the
beginning. Transport processes require a quite different approach. They concern quanti-
ties that can be exchanged with the surroundings and in the limit they could sometimes
establish a stationary state of flow through the system. Even though such processes may
concern quantities already present in the combined law, it should be realized that in the
combined law they represent direct exchanges with the surroundings and not processes
of flow inside the system. The discussion of transport processes will thus be preceded
by considering a discontinuous system composed of two subsystems and with transport
between them.

Starting with processes in homogeneous systems we shall presume that all thermo-
dynamic properties are uniform. Internal processes may tend to change some properties
but the processes must progress uniformly in the whole system in order not to change the
homogeneous character. In a system that is not completely isolated there may be compli-
cations, e.g. due to the heat of reaction leaking out to the surroundings and causing heat
flow from the interior of the system to its surface. In a system open for heat transfer to
a reservoir of constant temperature it is common to assume that the temperature is kept
constant although there must be temperature gradients in order for the heat of reaction
to leave the system. Evidently, one assumes that those gradients and the corresponding
thermodynamic forces for the heat flow are so small that their production of entropy is
negligible. That will now be our assumption.

It may often be more convenient to use the combined law in the form based on Gibbs
energy if T and P are kept constant. By further assuming that there is no exchange of
matter with the surroundings we get for spontaneous changes of the state,

dG = V dP − SdT + �µi dNi − T dipS = −T dipS = −�D j dξ j < 0. (5.51)

D j is the driving force for process j. It is defined as a generalization of the driving force,
D, in Section 1.8.

D j ≡ T
∂ipS

∂ξ j
= − ∂G

∂ξ j
. (5.52)
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Introducing the flux of process j, Jj = dξ j/dt , we get for the time derivative

− Ġ = T
dipS

dt
= T σ = �D j Jj > 0. (5.53)

The rate of entropy production, σ , was defined by Eq. (5.3) and the second law requires
that it is positive. That explains why dG in Eq. (5.51) was stated as negative. It should
be emphasized that the driving force is only defined for constant T and is then related to
the more generally applicable thermodynamic force X j by

D j = T X j . (5.54)

That is shown by comparison with Eq. (5.7). The term driving force for D j is here used
in an attempt to avoid confusion with the thermodynamic force, X j .

The internal production of entropy, σ , is a well defined quantity and T σ is regarded
as the dissipation of Gibbs energy. It is thus connected to the internal processes. On the
other hand, −Ġ in Eq. (5.53) describes the change of the properties of the system with
no regard to how the change occurred. The equality of the two may seem self-evident
but is extremely useful and may be illustrated in diagrams of the molar Gibbs energy
versus molar content. Then it is necessary to express both the dissipation and the change
of Gibbs energy in the same dimensions as the diagram, i.e. J/mol. Equation (5.53) is
expressed in J/s and it would thus be necessary to divide the whole equation by some
flux, Jo, measured as mol/s. One would then obtain the change of Gibbs energy per mole
of the flux,

− �Gm = −Ġ/Jo = � f j D j , (5.55)

where f j ≡ Jj/Jo. For simple case with just one process, Jo will normally be defined as
the flux of that process and −�Gm will be equal to D j . One can then evaluate the driving
force D j from −�Gm and it is even common to regard it as the driving force itself. For
more complicated cases one may even regard it as the total driving force. However, it
should be remembered that −�Gm is the change of the properties of the system and D j

or f j D j represents dissipation.
There are many kinds of homogeneous processes, some of which can be described as

a change of order, e.g., short-range order of the atoms relative to each other and even the
transition to a state of long-range order if it occurs by a so-called second-order transition,
which is homogeneous. An extreme case of order among the atoms is the formation of
molecules by so-called chemical reactions. They will be treated separately in the next
section.

Exercise 5.5

Suppose T and V are kept constant. What form of the combined law should it then be
natural to use? How would the time derivative of that characteristic state function be
related to the rate of entropy production if there is no exchange of matter?
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Solution

Using Helmholtz energy, the combined law is written as dF = −V dP − SdT +
�µi dNi − T dipS = −T dipS = −�D j dξ j < 0. The time derivative of Helmholtz
energy is the same as of Gibbs energy but the conditions are different −Ḟ = T dipS/dt =
T σ = �D j Jj > 0.

5.5 Homogeneous chemical reactions

The combined law for dG contains the terms �µ j dN j where the summation includes
a set of c components. Each one is regarded as independent if it cannot be formed by a
reaction between the other ones. Basically, the set should only contain the c independent
components. For homogeneous chemical reactions one sometimes includes more com-
ponents. One may then choose which ones should be regarded as independent. The other
ones will be regarded as dependent and each one of them can be formed by a reaction
between the independent ones. Those reactions are regarded as independent reactions
but many more reactions could occur between the components. If one considers s com-
ponents altogether, there will be (s − c) dependent components and the same number of
independent reactions. That number will be represented by r = s − c.

A component could be a pure element but could also be a molecule or some hypo-
thetical aggregate of atoms. Let us express the chemical composition of component j by
the letter J and write

J =
c∑

i=1

a j
i I , (5.56)

where a j
i represents the stoichiometric coefficients and I represents a pure element

or the composition of any other basic unit used for representing the composition of
the components. Let these units be the independent components and J be a dependent
component. It is evident that Eq. (5.56) should then be the reaction formula for the
formation of J if it is turned around.

c∑
i=1

a j
i I = J. (5.57)

We could thus regard the a j
i coefficients as the reaction coefficients for the reaction

between J and the c independent components. They have here been normalized by
making the coefficient for J equal to 1. There will be such a reaction for each dependent
component, i.e. r reactions. They may be chosen as the r independent reactions among
the many more possible reactions between the s components.

One reason to include dependent components in �µ j dN j is that it may facilitate
the modelling of the thermodynamic properties, e.g. for a gas containing several kinds
of molecules. A related reason is that one may like to consider frozen-in states where
the rates of internal reactions are negligible. In that case one may add some amount of
any component without having to consider its possible reactions with other components
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inside the system. The dependent components can then be treated as independent and
we may define the chemical potential of any component

µi =
(

∂G

∂ Ni

)
T,P,Nl

. (5.58)

Even though the system is frozen-in, we may evaluate the driving force for the r reactions
by which each one of the r additional components could react with the independent ones.
It may be derived as follows.

Considering the changes of all the s components, both independent and dependent
ones, we may write the combined law as

dG = V dP − SdT +
s∑

i=1

µi dNi (5.59)

We would now like to introduce the extent of the internal reactions, ξ j , in this equation.
One may define the reactions in such a way that each reaction represents the formation
of a single dependent component from the set of independent ones, but without the other
dependent components being involved. In a closed system, the change of an independent
component may be given by the loss caused by several reactions, and may thus be related
to the increase of several dependent components.

dNi = −
r∑

j=1

a j
i dN j . (5.60)

For the dependent components dN j is only caused by their own independent reactions.
The combined law for a closed isobarothermal system will thus be

dG = V dP − SdT +
c∑

i=1

µi

(
−

r∑
j=1

a j
i dN j

)
+

r∑
j=1

µ j dN j

= V dP − SdT −
r∑

j=1

D j dξ j . (5.61)

The driving force for the formation of the dependent component j is here defined as

D j =
c∑

i=1

(
a j

i µi

) − µ j . (5.62)

The combined law for an open system could thus be written

dG = V dP − SdT +
c∑

i=1

µi dNi +
r∑

j=1

µ j dN j −
r∑

j=1

D j dξ j . (5.63)

It should be emphasized that dNi and dN j here represent only the amounts received from
the surroundings. The changes due to all internal reactions are included in dξ j . Under
freezing-in conditions one should omit �D j dξ j . When the internal reactions are very
fast, there is almost internal equilibrium and the driving forces necessary for maintaining
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equilibrium are so small that �D j dξ j can again be omitted. Then

µ j =
c∑

i=1

a j
i µi (5.64)

dG = V dP − SdT +
c∑

i=1

µi

(
dNi +

r∑
j=1

a j
i dN j

)
. (5.65)

Again, dNi and dN j represent only the amounts received from the surroundings. When
treating intermediate cases one should take into account the rate of all reactions, starting
with the r reactions by which the r dependent components can form from the independent
ones and then adding those in which two or more of the dependent ones take part. We
shall now consider the very simplest case where there are one independent component
and two dependent ones. The dependent components will be denoted by 1 and 2 and
their reactions will also be identified by 1 and 2. For consistency with the derivations in
Section 5.4 the superscripts used for D and ξ in the above equations will now be given
as subscripts. Without any coupling between the first two reactions their rates will thus
be given as

J ∗
1 = dξ1

dt
= L∗

1 X∗
1 = K ∗

1 D∗
1 (5.66)

J ∗
2 = dξ2

dt
= L∗

2 X∗
2 = K ∗

2 D∗
2 , (5.67)

where D∗
i = T X∗

i according to Eq. (5.54) and K ∗
i = L∗

i /T . For the additional reaction,
where both dependent components take part, we write

J ∗
3 = dξ3

dt
= L∗

3 X∗
3 = K ∗

3 D∗
3 . (5.68)

Suppose this reaction produces component 1 and consumes component 2. Then we know
that its driving force must be

D∗
3 = D∗

1 − D∗
2 . (5.69)

By direct measurements of the amounts of the two dependent components one would not
get any direct information on the third reaction but one can represent the experimental
information using the phenomenological equations for those reactions.

J1 = K11 D1 + K12 D2 (5.70a)

J2 = K21 D1 + K22 D2. (5.70b)

The goal is to evaluate the kinetic coefficients in the three processes, assumed to have no
cross terms, from the experimentally determined coefficients in Eqs (5.70a and b). This
problem was discussed in more general terms in Section 5.2. By comparing the relations
between the driving forces given by Eqs (5.44) and (5.69) we find that the present case
corresponds to k = 1 and l = −1. From Eq. (5.49) we thus find

K ∗
3 = −K12 = −K21; K ∗

2 = K22 + K12; K ∗
1 = K11 + K12 (5.71)
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We have thus been able to eliminate the cross terms in Eqs (5.70) by introducing an
additional reaction.

Exercise 5.6

Demonstrate that Onsager’s reciprocal relation applies to the reactions between CO, CO2

and O2 in a gas in contact with pure C as solid graphite.

Hint

Among the four components there are four possible reactions obtained by omitting one
component at a time. We should accept that all four actually occur. There will only be
two independent components and we may choose C and O2. First one should decide how
many independent reactions there are. There are four species, CO, CO2, O2 and C, but
only two components. There will thus be two independent reactions. Start by defining
them. Denote their driving forces by D1 and D2. Then define as many dependent reactions
as possible but express their driving forces in terms of D1 and D2.

Solution

We may choose the following reactions as independent, CO2 → C + O2 (1) and 2CO →
2C + O2 (2). Then 2CO − CO2 → C (3) and 2CO2 − 2CO → O2 (4) are dependent
reactions. Reaction (1) can be obtained from (3) + (4) and its driving force will be
D1 = D3 + D4. Reaction (2) can be obtained from 2(3) + (4) with D2 = 2D3 + D4. The
rates of formation of C and O2, respectively, will be J total

C = K1 D1 + 2K2 D2 + K3 D3 =
K1(D3 + D4) + 2K2(2D3 + D4) + K3 D3 = (K1 + 4K2 + K3)D3 + (K1 + 2K2)D4

and J total
O2

= K1 D1 + K2 D2 + K4 D4 = K1(D3 + D4) + K2(2D3 + D4) + K4 D4 =
(K1 + 2K2)D3 + (K1 + K2 + K4)D4. Both cross coefficients are equal to K1 + 2K2.

5.6 Transport processes in discontinuous systems

We shall now consider the simultaneous transportation of heat and matter within a system.
Those quantities are included in the second law, Eq. (1.38), which will now be generalized
to several components,

dS = dQ/T − �SkdNk + dipS. (5.72)

First we shall consider a system completely isolated from the surroundings in which
Eq. (5.72) reduces to dS = dipS and, introducing the contributions from various internal
processes from Eq. (5.6), we write

dS = dipS =
∑

Xi dξi (5.73)

We shall not use the second law expressed through dG because the temperature is not the
same in the whole system. In the second law heat and matter represent exchanges with
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the surroundings. In order to make them take part in an internal transportation process
we shall now consider a system with a sharp discontinuity separating two subsystems.
For each subsystem it is as if there were exchanges with its surroundings when heat and
matter are transported between them. The subsystems will be regarded as homogeneous
and it will be assumed that the equilibration within each subsystem is very efficient. It
only requires a low thermodynamic force and will thus produce a negligible amount of
entropy. We can then evaluate the entropy production due to transportation between the
subsystems by simply comparing the total entropy content before and after the exchanges.
However, we cannot apply the concept of heat to the state of a system and shall instead
apply the combined law in the form of Eq. (1.72), generalized to several components
to the two equilibrium states. Under constant P the difference in entropy of the whole
system will be

dipS = dS′ + dS′′ = (1/T ′)dH ′ − �(µ′
k/T ′)dN ′

k + (1/T ′′)dH ′′ − �(µ′′
k/T ′′)dN ′′

k .

(5.74)

The subsystems are identified by (′) and (′′). The total values of U and Nk will be
maintained in a completely isolated system and that is the choice made by most authors.
However, instead of keeping V constant, as for a completely isolated system, we prefer
to keep P constant because that is a more common experimental condition. Thus, H and
Nk will be conserved in the system,

dH = dH ′ + dH ′′ = 0 (5.75)

dNk = dN ′
k + dN ′′

k = 0 (5.76)

The transport of internal energy and matter between the subsystems will be regarded as
simultaneous internal processes in the system and their extents will be expressed by the
amounts received by the second subsystem (′′). Their production of entropy will be given
by Eq. (5.74),

dipS =
(

1

T ′′ − 1

T ′

)
dH ′′ −

∑ (
µ′′

k

T ′′ − µ′
k

T ′

)
dN ′′

k (5.77)

We may thus introduce two fluxes, JH = dH ′′/dt and Jk = dN ′′
k /dt , and two forces,

X H =
(

1

T ′′ − 1

T ′

)
= �

(
1

T

)
(5.78)

Xk = −
(

µ′′
k

T ′′ − µ′
k

T ′

)
= −�

(µk

T

)
(5.79)

σ ≡ ∂ipS

∂t
=

∑
Xi Ji = �

(
1

T

)
dH ′′

dt
−

∑
�

(µk

T

) dN ′′
k

dt
(5.80)

For small differences in T and composition we can approximate

X H = �

(
1

T

)
= −1

T 2
�T (5.81)

Xk = −�
(µk

T

)
= −1

T
�µk + µk

T 2
�T (5.82)



5.6 Transport processes in discontinuous systems 97

The phenomenological equations would be

JH = L H H�

(
1

T

)
−

∑
L H j�

(µ j

T

)
(5.83)

Jk = Lk H�

(
1

T

)
−

∑
Lkj�

(µ j

T

)
(5.84)

According to the reciprocal relation we know L Hk = Lk H . However, by transforming
−�(µk/T ) according to Eq. (5.82) we find after rearranging terms

JH =
(

1

T 2

) (
−L H H +

∑
L H jµ j

)
�T −

(
1

T

) ∑
L H j�µ j (5.85)

Jk =
(

1

T 2

) (
−Lk H +

∑
µ j Lk j

)
�T −

(
1

T

) ∑
Lkj�µ j . (5.86)

It is interesting to note that the cross coefficients are no longer equal when we regard
�T and �µ j as the forces. This is a demonstration of the fact that the reciprocal relation
holds only when the fluxes and forces have been selected as conjugate pairs, each of
which contributes with Xi Ji to the entropy production.

If the discontinuity separating the subsystems is a wall with a hole, one may
like to regard the pressure difference between the subsystems as the force for trans-
port of matter through the hole. If there is only one component, its chemical poten-
tial is identical to the molar Gibbs energy and it can vary with T and P according
to Eq. (3.35),

�Gm = Vm�P − Sm�T . (5.87)

By also using Gm = Hm − T Sm one can transform Xk in Eq. (5.82) and obtain for a pure
element,

Xk = −�

(
Gm

T

)
= −Gm�

(
1

T

)
− 1

T
�Gm

= Gm

T 2
�T − Vm

T
�P + Sm

T
�T = Hm

T 2
�T − Vm

T
�P. (5.88)

Exercise 5.7

Examine if the reciprocal relation applies to the phenomenological equations for JH and
Jk if expressed with �T and �P as forces.

Hint

The forces can be replaced by the two new forces, �T and �P , only for a pure element
where there are only two forces to start with. For that case, insert �(Gm/T ) from
Eq. (5.88) as �(µ j/T ) into Eqs (5.83) and (5.84).
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Solution

We obtain JH = −((L H H − L Hk Hm)/T 2)�T − (L Hk Vm/T )�P and Jk = −((Lk H −
Lkk Hm)/T 2)�T − (Lkk Vk/T )�P . The reciprocal relation does not apply.

5.7 Transport processes in continuous systems

It is evident that the kinetic coefficients in Eqs (5.83) and (5.84) do not represent prop-
erties of the two subsystems because it was assumed that the equilibration within each
subsystem is very efficient and the corresponding production of entropy should be neg-
ligible. The kinetic coefficients must represent properties of the discontinuity separating
the subsystems and the production of entropy occurs inside the discontinuity. It could be
a membrane or wall separating the two subsystems or a phase interface between crystals
of two different phases or between two liquids. It could even be an impermeable wall with
a small hole through which matter can diffuse as from a Knudsen cell. At the same time,
the wall could conduct heat. That could be a case of negligible coupling, i.e., negligible
cross coefficients.

In the preceding section there was no discussion of what happens inside the disconti-
nuity but in order to give the kinetic coefficients any physical interpretation it is necessary
to give the discontinuity some width and assume a model for its properties. With the very
rough approximation that the discontinuity consists of a wall of homogeneous material
it would make sense to define an average gradient �(1/T )/�z inside the discontinuity
if �z is its width. Equation (5.80) would thus change to

σ = dipS

dt
=

[
�(1/T )

�z
JH −

∑ �(µk/T )

�z
Jk

]
· �z. (5.89)

In order to remove the assumption that the discontinuity consists of a layer of a homo-
geneous material, we shall now consider a thin slice of the material separating the two
subsystems. The rate of entropy production in that slice would be

dσ

dz
= d(1/T )

dz
JH −

∑ d(µk/T )

dz
Jk . (5.90)

The local values of the force in a one-dimensional inhomogeneous system are defined
as

∇ X H ≡ dX H

dz
= d(1/T )

dz
= −1

T 2

dT

dz
(5.91)

∇ Xk ≡ dXk

dz
= −d(µk/T )

dz
= −1

T

dµk

dz
+ µk

T 2

dT

dz
. (5.92)

By integrating over the whole width we obtain

σ =
∫

dσ =
∫ ∑

Ji∇ Xi dz. (5.93)

As an example, for isothermal diffusion of a number of components we get for the
dissipation of Gibbs energy, −�G,

− �G = T

∫
dσ = −

∫ ∑
Jk(dµk/dz)dz. (5.94)
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The phenomenological equations, Eqs (5.83) and (5.84), would change to

JH = L H H∇(1/T ) −
∑

L Hk∇(µk/T ) (5.95)

Jk = Lk H∇(1/T ) −
∑

Lkj∇(µ j/T ). (5.96)

As already emphasized, heat is not a state variable and one cannot define the content of
heat in a system. Instead, it is connected to a particular way of exchanging energy with
the surroundings. The popular concept of heat content is actually the amount of energy
that can be extracted from the system in that way. Heat capacity is the capacity to receive
energy in that way with a given increase of its temperature. By studying how heat has
to be fed into a system at one end and extracted from the other end in order to maintain
a certain temperature difference, one can study heat conduction, usually denoted by λ.
That heat is supposed to flow through the system and it is only in that sense that heat
exists inside the system.

In contrast, enthalpy is a property of the system and there is no mechanism operating
directly on enthalpy by which it can move between the system and the surroundings. For
the same reason, there is no mechanism operating directly on enthalpy that can make it
flow through the system. Nevertheless, we have managed to derive the thermodynamic
force for enthalpy flow, which is valid in a formal sense. It should now be used to derive
the thermodynamic force for the flow of heat, which should be of more fundamental
nature. It can be obtained by realizing that the flow of enthalpy depends not only on heat
flow but also on the flow of matter, which carries enthalpy with it. We may thus evaluate
the flux of heat by subtracting the contribution from the flux of matter from the flux of
enthalpy,

J ∗
Q = JH − �Hk Jk . (5.97)

We may retain the flux of matter in the new set of fluxes,

J ∗
k = Jk . (5.98)

It is easy to see that, in order not to change the entropy production, we must use the
following forces,

∇ X∗
Q = ∇ X H = ∇(1/T ) (5.99)

∇ X∗
k = ∇ Xk + Hk∇ X H = −∇(µk/T ) + Hk∇(1/T ). (5.100)

It is interesting to note that we thus find the same driving force for heat as for enthalpy but
it should be realized that it is to some part the result of how we defined the other process in
the new set of processes. Furthermore, since we have a physical understanding for these
two processes, the flow of heat and matter, it seems reasonable to start by defining the
phenomenological equations for them. By neglecting the possible coupling between them
and considering only one diffusing species, we write

J ∗
Q = L∗

Q Q∇ X∗
Q (5.101)

J ∗
k = L∗

kk∇ X∗
k . (5.102)

In passing, we may note that comparison of Fourier’s law for heat conduction, JQ =
−λdT/dz, and Eq. (5.101) with the force from Eq. (5.99) inserted, gives the relation
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L∗
Q Q = λT 2, which is particularly interesting since it has been found experimentally

that λ is often rather independent of T. It seems that L∗
Q Q depends strongly on T.

Combining Eqs (5.97) to (5.102) we can relate the phenomenological coefficients in
the two formalism,

JH = J ∗
Q + Hk J ∗

k = L∗
Q Q∇ X∗

Q + Hk L∗
kk∇ X∗

k

= L∗
Q Q∇ X H + Hk L∗

kk(∇ Xk + Hk∇ X H ) (5.103)

Jk = J ∗
k = L∗

kk∇ X∗
k = L∗

kk(∇ Xk + Hk∇ X H ). (5.104)

The phenomenological coefficients for the set of processes defined by flow of heat
together with enthalpy and appearing in Eqs (5.95) and (5.96) would thus be

L H H = L∗
Q Q + H 2

k L∗
kk (5.105)

L Hk = Hk L∗
kk = Lk H (5.106)

Lkk = L∗
kk . (5.107)

In this way it is thus possible to get numerical values for the flow of enthalpy although such
flow does not occur physically. It is worth noting that the main information is obtained
already from experimental information on diffusion and heat conduction obtained with-
out both processes being present simultaneously and it results in a prediction of cross
coefficients for the enthalpy formalism.

Another choice of forces can be obtained from Eq. (5.100) using the same transfor-
mation as in Eq. (5.88). It only applies to pure elements or species and yields

∇ X∗
k = − Vm

T

dP

dz
. (5.108)

It is interesting that the thermodynamic force driving the flux of matter due to a pressure
gradient is thus independent of the temperature gradient if one considers heat flux as
the other flux rather than the flux of internal energy. In principle, this simple expression
does not hold in a system with more than one component. However, when a gas or liquid
is subjected to a pressure gradient then it will flow as if it were a pure substance and
Eq. (5.108) can be applied.

Exercise 5.8

Prove that the entropy production is not changed if the new set of processes, defined by
Eqs (5.97) to (5.100), are applied instead of JH and Jk .

Solution

The procedure in Section 5.2 yields JH∇ X H + � Jk∇ Xk = ∇σ = J ∗
Q∇ X∗

Q +
� J ∗

k ∇ X∗
k = (JH − �Hk Jk)∇ X H + � Jk(∇ Xk + Hk∇ X H ) = JH∇ X H − �Hk Jk ·

∇ X H + � Jk∇ Xk + �Hk Jk · ∇ X H = JH∇ X H + � Jk∇ Xk .
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5.8 Substitutional diffusion

The flux of any transport process must be given relative to some frame of reference.
For heat conduction in a solid material it is natural to fix the frame to the material itself
because it will not be much affected by the process. However, there may be some heat
expansion of the material and the formal description may thus be simplified if distances
in the frame are measured as atomic distances. In a crystalline material the frame of
reference will thus be fixed to the crystalline lattice. In metallic solutions diffusion
normally occurs by atoms jumping into neighbouring vacant sites in the lattice. From
a fundamental point of view it may thus seem natural to describe diffusion in a lattice-
fixed frame. For diffusion of atoms dissolved interstitially in a host lattice the situation
would be somewhat similar to the case of heat conduction if one had chosen a frame
fixed to the host lattice. However, there may be a small effect due to the interstitial atoms
expanding the host lattice and it would again be an advantage to measure distances in
atomic distances.

The situation is different in a substitutional solution where the solute atoms occupy
the same kind of lattice sites as the host atoms. A lattice-fixed frame may thus expand
or contract locally if the solute atoms diffuse with a different rate to that of the solvent
atoms. Experimentally, it may be easiest to study substitutional diffusion in a volume-
fixed frame. If the solute atoms diffuse faster and by a vacancy mechanism, there would
be a net flow of atoms in one direction and of vacancies in the other relative to the
lattice. Vacancies would thus have to be generated in some places and condense in
other places, resulting in local creation or disappearance of lattice sites. There could
be a considerable difference between the lattice-fixed and volume-fixed frames. It is of
considerable practical importance to be able to transform diffusion data from one frame
to another and that is done by defining different sets of processes in different frames and
to transform between them. We shall first discuss this for a simple binary system and
transform from the lattice-fixed frame to a number-fixed frame, which is identical to the
volume-fixed frame if the molar volume is constant. A more general treatment will then
be given, which could easily be extended to the volume-fixed frame.

Primarily we shall describe diffusion of individual components relative to the
lattice-fixed frame. The diffusing atoms will transport volume with a rate �Vi Ji , where
Vi is the partial molar volume and that transport can be studied experimentally by
placing small inert markers in the material. They are called Kirkendall markers and can
be assumed to be fixed to the lattice. They will thus move with a velocity υ = −�Vi Ji

relative to the volume-fixed frame. Expressed as mol/s m2 the Kirkendall shift will thus
be represented by the flux

J ∗
K = υ/Vm = −

n∑
i=1

ai Ji , (5.109)

where ai = Vi/Vm and �xi ai = 1. Let the flux of a component j be J ∗
j in the volume-

fixed frame. If the lattice-fixed frame moves with a velocity υ relative to the volume-fixed
frame, e.g. measured by the Kirkendall shift, then the flux in the lattice-fixed frame will be

Jj = J ∗
j − x jυ/Vm. (5.110)
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Combination with Eq. (5.109) yields

J ∗
j = Jj + x jυ/Vm = Jj − x j

n∑
i=1

ai Ji =
n∑

i=1

(δ j i − ai x j )Ji , (5.111)

where δi j is the Kronecker symbol and it is equal to 1 for i = j but 0 otherwise. By
definition of the volume-fixed frame we have a relation between the new fluxes,

n∑
j=1

a j J ∗
j = 0 (5.112)

J ∗
n = − 1

an

n−1∑
j=1

a j J ∗
j . (5.113)

We can thus eliminate J ∗
n and instead include the Kirkendall shift, J ∗

K , from Eq. (5.109)
in the new set of independent processes. Introducing the new set of processes through
a generalized version of Eqs (5.16) we write

J ∗
j =

n∑
i=1

α j i Ji (5.114)

Comparing with Eq. (5.111) we find α j i = δ j i − ai x j for j = 1 to n − 1. For j = n,
comparison with Eq. (5.109) yields αni = −ai . The coefficients in the phenomenological
equations for the new set of processes are now obtained directly from Eq. (5.21).

L∗
sr =

n∑
i=1

n∑
k=1

(δi j − ai xs)(δrk − ak xr )Lik (5.115)

L∗
sK =

n∑
i=1

n∑
k=1

(δsi − ai xs)( − ak)Lik (5.116)

L∗
Kr =

n∑
i=1

n∑
k=1

(−ai )(δrk − ak xr )Lik (5.117)

L∗
K K =

n∑
i=1

n∑
k=1

(−ai )( − ak)Lik . (5.118)

The relations of the new thermodynamic forces to the initial ones are obtained from a
generalization of Eqs (5.18) by inserting the expressions for αi j ,

∇ X j =
n∑

i=1

αi j∇ X∗
i = ∇ X∗

j − a j

n−1∑
i=1

xi∇ X∗
i − a j∇ X∗

K for j = 1 to n − 1 (5.119)

∇ Xn = −an

n−1∑
i=1

xi∇ X∗
i − an∇ X∗

K . (5.120)

Comparing these equations we find

∇ X∗
j = ∇ X j − (a j/an)∇ Xn. (5.121)

For the number-fixed frame all ai = 1 and Eq. (5.121) is simplified to

∇ X∗
j = ∇ X j − ∇ Xn. (5.122)
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This is the gradient of the diffusion potential and it applies to interdiffusion under
exchange of atoms with those of a selected type, n, usually identified as the solvent. Insert-
ing Eq. (5.121) in Eq. (5.120) we obtain the thermodynamic force for the Kirkendall shift

∇ X∗
K = −∇ Xn/an −

n−1∑
i=1

xi (∇ Xi − (ai/an)∇ Xn)

= −∇ Xn/an −
n∑

i=1

xi∇ Xi + xn∇ Xn + (∇ Xn/an)
n∑

i=1

xi ai − xn(an/an)∇ Xn

= −
n∑

i=1

xi∇ Xi . (5.123)

We here made use of �xi ai = 1. The result is equal to 0 because ∇ Xi = −d(µi/T )dz,
where T is the local temperature, and �xi dµi = 0 due to the Gibbs–Duhem relation
under isobarothermal conditions. Consequently, the Kirkendall migration will not
produce any entropy. That is a natural conclusion because the markers are fixed to the
lattice and do not move in a physical sense. It is thus possible to completely neglect the
Kirkendall migration when transforming the diffusion equations from the lattice-fixed
frame to another frame. This is the case where the number of independent processes is
decreased, which was mentioned in the discussion following Eq. (5.40). The description
of diffusion of all the components relative to each other will still be complete but the
Kirkendall migration will be forgotten. It should be emphasized that the Gibbs–Duhem
relation does not apply to diffusion across a phase interface with its discontinuous jumps
in properties and composition. The full treatment given here is thus necessary for diffu-
sional phase transformations with a discontinuous jump in composition at the interface.
That will be further discussed in Sections 17.5 and 17.6. It will also be useful for diffu-
sion inside a phase with appreciable differences in composition between neighbouring
atomic planes, e.g. in ordered alloys or in steep composition spikes close to an interface.

Realizing that the Kirkendall shift should not produce any entropy and its driving
force should thus be zero, we could have transformed the diffusion equations from the
lattice-fixed frame to the number-fixed frame in an easier way, in particular for a binary
system. For diffusion by exchange of A and B atoms the force should be

∇ X∗
1 = ∇ XA − ∇ XB. (5.124)

where the forces in the lattice-fixed frame are ∇ X j = −dµ j/dz. For the Kirkendall shift
we have

J ∗
2 = −JA − JB. (5.125)

This case was defined by Eqs (5.35) and (5.36) and now α21 = −1, α22 = −1, β11 = 1
and β21 = −1. Equations (5.38) to (5.40) show that in order not to change the entropy
production we must have

J ∗
1 = α11 JA + α12 JB = α11 JA − (1 − α11)JB (5.126)

∇ X∗
2 = β21∇ XA + β22∇ XB = −(1 − α11)∇ XA − α11∇ XB. (5.127)
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It can easily be checked that � Jj∇ X j = σ = � J ∗
i ∇ X∗

i . The α11 parameter is arbitrary
but with the choice α11 = xB and 1 − α11 = xA one finds that ∇ X∗

2 = 0 due to the Gibbs–
Duhem relation. That choice will thus give the same result as the previous derivation.
Other alternatives are less useful.

Exercise 5.9

Express the flux of a component in the number-fixed frame in terms of those in the
lattice-fixed frame.

Hint

Use Eq. (5.114) and remember that all ai = 1 for the number-fixed frame.

Solution

J ∗
k =

n∑
i=1

(δki − xk)Ji = Jk −
n∑

i=1

xk Ji = Jk

∑
i �=k

xi − xk

∑
i �=k

Ji .

For a binary system, J ∗
A = xB JA − xA JB and J ∗

B = xA JB − xB JA = −J ∗
A.

5.9 Onsager’s extremum principle

When a system is initially in a state of non-equilibrium, it is of practical interest to be able
to predict how the state will change with time as a result of internal processes. Normally,
this is done by using kinetic equations, e.g. the linear phenomenological equations. An
alternative method will now be described but it should be emphasized that it will result
in the same predictions as the linear phenomenological equations. As a consequence,
it cannot be used outside the linear range. In fact, it may be regarded as a method of
deriving the linear phenomenological equations for the processes involved, a method that
sometimes may be a convenient way of formulating those equations.

The alternative method is based on the ‘dissipation function’ defined by Onsager [5].
His function originates from the rate of entropy production of the system, which was
derived in Section 5.1. According to the second law, spontaneous processes in a system
result in an entropy production and the rate will be

σ ≡
∑

X j J j ≥ 0. (5.128)

With a linear kinetic equation for each process we have

Jj =
∑

k

L jk Xk . (5.129)

The rate of entropy production would then be

σ =
∑

j

∑
k

L jk X j Xk . (5.130)
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One could just as well invert the kinetic equation, Eq. (5.129), obtaining

X j =
∑

k

R jk Jk (5.131)

σ ≡
∑

Jj X j =
∑

j

J j

∑
k

R jk Jk =
∑

j

∑
k

R jk J j Jk . (5.132)

The new kinetic coefficients represent the resistance or friction of the processes whereas
the L coefficients represent their mobilities. The set of R coefficients are directly obtain-
able from the set of L coefficients. If there were no cross coefficients one would simply
get

σ =
∑

(1/L j j )J 2
j . (5.133)

The right-hand side of Eq. (5.132) could have been formulated directly by assuming that
the rate of entropy production is a function of the fluxes and developing that function
in a Taylor series. Evidently, the first term in the series can be omitted because there
can be no entropy production without a flux. The second term can also be omitted in
view of the second law because that term is linear in the fluxes and would make the
entropy production change sign if the direction is reversed, which is not allowed since
the entropy production of spontaneous processes must be positive. The right-hand side
of Eq. (5.132) represents the third term except for a factor 1/2. Onsager thus defined a
function

�(J, J ) ≡ 1/2
∑

j

∑
k

R jk J j Jk . (5.134)

He called it dissipation function because 2� is not only equal to the rate of entropy
production, σ . Under isobarothermal conditions 2T � actually represents the rate of
Gibbs energy dissipation. Without any physical argument, Onsager then formulated a
new function, � = σ − � and examined under what conditions its value is maximized.
For a system with gradual variations of the local state he found the answer by variation
analysis. We shall avoid this complication by limiting the derivation to a small volume
with approximately uniform conditions or to a system with more than one homogeneous
region.

Comparison of Eq. (5.132) and first part of Eq. (5.134) demonstrate that � is equal to
σ/2. However, they represent different functions. This is best understood by multiplying
them with T. According to Eq. (5.53), T dipS is equal to the decrease in Gibbs energy of
the system if it is completely isolated, and −T σ is the time derivative of Gibbs energy,
Ġ. The quantity σ thus represents a rate of change of the state of the system. On the
other hand, T � with � defined by Eq. (5.134) shows how the Gibbs energy is being
dissipated by friction. The new function is thus defined as

� = σ − � =
∑

j

X j J j − 1/2
∑

j

∑
k

R jk J j Jk . (5.135)

We shall now consider a purely hypothetical case where the fluxes can vary under fixed
forces and the coefficients, if they are not constant, vary with the forces but not with the
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fluxes. Then we obtain the following conditions,under which � has an extremum,

∂�

∂ Jj
= X j − 1/2

∑
k

(R jk + Rkj )Jk = 0 (5.136)

∂�

∂ Jk
= Xk − 1/2

∑
j

(Rkj + R jk)Jj = 0. (5.137)

It is evident that this is a way of reproducing the kinetic equation, Eq. (5.131), if Onsager’s
reciprocal relation applies. On the other hand, comparison between Eqs (5.136) and
(5.137) demonstrates that this new method of deriving the kinetic equations results in
the reciprocal coefficients being equal because 1/2(R jk + Rkj ) is equal to 1/2(Rkj + R jk).
However, this cannot be taken as a proof for Onsager’s reciprocal relation because there
is no physical principle behind his extremum principle. It should be regarded simply as
a mathematical tool for formulating the linear kinetic equations.

Onsager showed that if there is an extremum it has to be a maximum. However, it
should be emphasized that the value of the maximum is of no interest, nor the fact that
it is a maximum. His principle has thus been called Onsager’s extremum principle. It
should further be emphasized that the extremum is an extremum only in comparison
with the results of non-linear kinetic equations because it is found by keeping the force
constant while varying the flux, i.e., by not requiring the linear law between force and
flux.

However, it is difficult to see how the expression for �(J, J ) in Eq. (5.134) could be
created by combining Eq. (5.128) with a non-linear kinetic equation.

Most practical applications of Onsager’s extremum principle might concern systems
under constant T and P and it is thus convenient to use Gibbs energy instead of entropy
and we know that Ġ = −σ T , e.g. from Eq. (5.53). We could thus write Eq. (5.135) as

T � = −Ġ − T �. (5.138)

One should first model Gibbs energy as a function of various internal variables, ξ j ,
and take its time derivative to form Ġ as a function of all the fluxes Jj , being defined as
dξ j/dt . One has thus identified some internal processes and from their phenomenological
equations one could express the contribution to the dissipation of Gibbs energy from
each one,

φi = T
∑

k

Rik Ji Jk, (5.139)

where T, being constant, is usually not shown explicitly but is incorporated into the R
coefficient. In addition, there could be other processes that are not identified as eas-
ily. Their contributions should also be evaluated in the same way and included in the
dissipation function

T � = 1/2�φi . (5.140)

Onsager’s extremum principle states that the kinetic equations are obtained from

T
∂�

∂ Jj
= − ∂Ġ

∂ Jj
− 1/2

∑
i

∂φi

∂ Jj
= 0. (5.141)
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By solving this set of equations one can thus calculate how the system develops with time.
In order to succeed it is necessary to express all the φi functions as functions of the same
fluxes that describe the change of Gibbs energy, Ġ. An example will be given in Section
17.4. A special advantage of this method is that one may use a model of the properties
that includes some dependent variables and apply mathematical expressions for their
dependencies as auxiliary conditions by using Lagrange multipliers when deriving the
conditions for an extremum of Onsager’s � function.

It should finally be emphasized that Onsager’s extremum principle was derived under
the condition that the phenomenological coefficients are constant. It will be discussed
again in Section 17.3.

Exercise 5.10

Onsager’s principle is sometimes regarded as a principle of extremum or maximum
entropy production. Examine if the condition of an extremum for the rate of entropy
production, σ , gives the same result as an extremum of Onsager’s function �.

Hint

Use � = σ/2 from Eq. (5.134) as an auxiliary condition by introducing a Lagrange
multiplier.

Solution

L = σ + λ(� − σ/2); ∂L/∂ Jj = X j + λ(1/2�(R jk + Rkj )Jk − X j/2) = 0. Apply-
ing Onsager’s reciprocal relation, multiplying by Jj and adding the equations for all j,
yields �X j J j + λ(��R jk Jk J j − 1/2�X j J j ) = 0 or σ + λ(2� − 1/2σ ). With � = σ/2
this shows that λ = −2, yielding the kinetic equations as ∂L/∂ Jj = 2X j − �(R jk +
Rkj )Jk = 0. This is in complete agreement with Eq. (5.136).
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6.1 Introduction

For a spontaneous internal process Ddξ must be positive according to the second law.
A positive D value would thus require that dξ is positive. The process would proceed
forward. Negative D values would reverse the direction. At equilibrium we have D = 0
by definition but it is then of interest to examine if it is a stable or unstable equilibrium.
We should thus examine the consequence of a small fluctuation dξ that brings the system
away from the state of equilibrium. Since D is zero, it is then necessary to consider a
higher term in Eq. (1.44)

T dipS = Ddξ + 1/2(dD/dξ )(dξ )2 = 1/2(dD/dξ )(dξ )2. (6.1)

When dD/dξ is positive, T dipS would increase further if dξ increases further. That
would thus happen spontaneously whether the fluctuation is positive or negative. Any
small fluctuation would grow and the system is unstable. The quantity −dD/dξ may be
regarded as the stability and will be denoted by B.

As an introduction to a more detailed discussion of stability it may be instructive to
compare with the mechanical analogues in Fig. 6.1. It shows two bodies with different
cross-sections and in contact with a flat floor. Their potential energy varies with the
angle θ .

Only very slow changes will be considered, and it will be assumed that any release of
potential energy goes into frictional losses. Kinetic energy will thus be neglected. The
extent of the process, ξ , will be expressed by the angle θ and the potential energy will
be denoted by E.

The variation of E, D and B with θ is illustrated in Fig. 6.2 for the body with an elliptical
profile. It has an energy minimum at θ = 0 and a maximum at θ = π/2. In both these
positions the driving force for a further rotation is zero, D = −dE/dθ = 0, and they
both represent equilibria. The quantity d2 E/dθ2 = −dD/dθ may there be regarded as
the stability and the lower part of the diagram shows that for θ = 0 it is positive and
the equilibrium is thus a stable one. For θ = π/2 it is negative and the equilibrium is
unstable. A small fluctuation of θ away from π /2 in any direction will here give a force
for a further growth of the fluctuation.

Figure 6.3 is for the body with a rectangular cross-section. It also has two equilibria,
at θ = 0 and π/2, which are both stable because a small fluctuation of θ will give a force
for rotation back to the initial position. This case corresponds to Fig. 1.6 where �ipS has
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θθ

Figure 6.1 Mechanical analogues of two cases of thermodynamic systems.
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Figure 6.2 The energy, driving force and stability for the elliptical body in Fig. 6.1 as function of
the angle of rotation.

a sharp maximum. In order to decide whether such an equilibrium is stable it is not only
unnecessary but even incorrect to look at the value of d2 E/dθ2 because it represents
the stability only when the driving force is zero, D = −dE/dθ = 0, which is not the
case for θ = 0 or π/2. Figure 6.3 demonstrates that d2 E/dθ2 would give an incorrect
prediction for these two equilibria. On the other hand, there is a third equilibrium which
has D = −dE/dθ = 0 at some angle between 0 and π /2 and there d2 E/dθ2 < 0 and
will correctly predict that the equilibrium is unstable.
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Figure 6.3 The energy, driving force and stability for the rectangular body in Fig. 6.1 as function
of the angle of rotation.

Of the two stable equilibria, one (θ = π/2) has a higher energy than the other (θ = 0).
For thermodynamic systems such a state is called metastable.

6.2 Some necessary conditions of stability

In the discussion of general conditions of equilibrium in Section 1.10 we saw that a
system is in a state of internal equilibrium with respect to the extensive variables if
each one of the potentials has the same value in the whole system. It remains to be
tested if it is a stable or unstable equilibrium. We thus return to the combined law
according to the energy scheme and apply dU to the whole system, but we replace Ddξ

in Eq. (1.54) by −1/2B(dξ )2 because we shall only consider a state of equilibrium where
D = 0.

dU = �Y adX a + 1/2B(dξ )2. (6.2)

First we shall consider only one internal process at a time, the transfer of dXb from
one half of the system, denoted by ′, to the other, denoted by ′′, dξ = dXb′′ = −dXb′

.
On the other hand, we shall limit the discussion to systems with no exchanges with the
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surroundings. All the dX a of the total system are zero and Eq. (6.2) simplifies to

dU = 1/2B(dξ )2 (6.3)

B = ∂2U

∂ξ 2
=

(
∂2U

(∂ Xb)2

)′

X c

+
(

∂2U

(∂ Xb)2

)′′

X c

. (6.4)

Here we have used the fact that the change of U in the total system must be equal to the sum
of the changes in the two subsystems. The two terms are equal if the system consists of a
homogeneous substance at equilibrium. By introducing the potential Y b = (∂U/∂ Xb)X c

we then obtain

B = ∂2U

∂ξ 2
= 2

(
∂2U

(∂ Xb)2

)′

X c

= 2

(
∂Y b

∂ Xb

)′

X c

. (6.5)

The value of this derivative depends upon the size of the system. It should be evaluated
for half of the system but the stability condition, B > 0, is not affected by the size. The
derivative may thus be evaluated for a system of any given size in the formulation of the
stability condition. It can be written as(

∂2U

(∂ Xb)2

)
X c

> 0 or

(
∂Y b

∂ Xb

)
X c

> 0 or UXb Xb > 0. (6.6)

The last form uses the shorthand notation for derivatives of characteristic state functions,
introduced in Section 2.5.

From Eq. (6.6) we may conclude that in order for a substance to be stable it is necessary
that it has such properties that any pair of conjugate variables must change in the same
direction if all the other extensive variables are kept constant. Actually, so far we have
proved this only for conjugate pairs appearing on the energy scheme, i.e., (T, S), (−P, V )
and (µi , Ni ). For them the stability conditions could be written as

USS > 0; UV V > 0; UNi Ni > 0. (6.7)

As an example, in a stable system the chemical potential of a component, µi , cannot
decrease when the content of the same component, Ni , increases under constant S and
V. As another example, when the temperature of a substance is increased at a constant
volume, the entropy must also increase in order for the system to be stable.

USS ≡
(

∂T

∂S

)
V,Ni

> 0. (6.8)

Using Eq. (2.27) we can write this stability condition as

T/CV > 0. (6.9)

In combination with the fact that the absolute temperature T is always positive, this
implies that the heat capacity under constant volume, CV , must be positive

CV = T (∂S/∂T )V,Ni = T/(∂T/∂S)V,Ni > 0. (6.10)
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However, in order to indicate where the limit of stability is, one should stick to the
condition as obtained directly from Eq. (6.8), i.e Eq. (6.9), or since T is positive,

1/CV > 0. (6.11)

The limit of stability occurs as 1/CV goes to zero, i.e., as CV goes to infinity. Similar
considerations can be based upon the entropy scheme, where we have

− dS = (−1/T )dU + (−P/T )dV + �(µi/T )dNi − (D/T )dξ. (6.12)

By again replacing Ddξ at equilibrium by −1/2B(dξ )2 we obtain under constant U, V
and Ni ,

−dS = 1/2
B

T
(dξ )2 (6.13)

B

T
=

(
∂2(−S)

∂ξ 2

)
=

(
∂2(−S)

∂(Xb)2

)′

X c

+
(

∂2(−S)

∂(Xb)2

)′′

X c

= 2

(
∂Y b

∂ Xb

)′

X c

. (6.14)

Since T is never negative, we find (
∂Y b

∂ Xb

)
X c

> 0, (6.15)

where Xb, Y b is any pair of conjugate variables appearing in the entropy scheme, i.e.
(−1/T, U ), (−P/T, V ) and (µi/T, Ni ). As an alternative we could have defined the
stability by replacing (D/T )dξ with −1/2B(dξ )2. Then T would not have appeared in
Eqs (6.9) and (6.10). Similar considerations can also be based on the volume scheme
introduced in Section 3.5,

dV = (T/P)dS − (1/P)dU + �(µi/P)dNi − (D/P)dξ. (6.16)

At equilibrium under constant S, U and Ni it yields

B

P
= 2

(
∂Y b

∂ Xb

)′

Xc

. (6.17)

The conjugate pairs of variables are here (T/P, S), (−1/P, U ) and (µi/P, Ni).

Exercise 6.1

In Section 2.7 we saw that Grüneisen’s constant can be evaluated from γ = V (∂ P/∂U )υ
and it often has a value of about 2. Is this a quantity that is always positive for a stable
system?

Solution

γ concerns the variation of P with U but they are not conjugate variables in any of the
schemes presented in Table 3.1. Thus, we cannot prove that γ is always positive. On the
contrary, it may be negative because α may be negative in rare cases and γ = V α/κT CV .
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6.3 Sufficient conditions of stability

So far we have discussed stability with respect to one internal process at a time. In
Chapter 5 we considered more than one simultaneous process, expressing dipS as �Xi dξi

or T dipS as �Di dξi . At equilibrium the forces are zero and we need the next higher-order
terms. Instead of Eq. (6.1) we should write

T dipS =
∑

Di dξi − 1/2

∑
i

∑
j

Bi j dξi dξ j = −1/2

∑
i

∑
j

Bi j dξi dξ j . (6.18)

We should thus generalize Eq. (6.2) and by arranging the Y adX a terms in a special order
we write the combined law as

dU = T dS − PdV + µ2dN2 + · · · + µcdNc + µ1dN1 + 1/2

∑
i

∑
j

Bi j dξi dξ j .

(6.19)

We shall again keep all the extensive variables for the whole system constant and consider
the transfer of some amounts of the extensive quantities, here S, V, N2, N3, . . . , Nc, N1,
between the two subsystems. In order for the system to be in a stable equilibrium all
the stability conditions given in Eq. (6.7) must be satisfied. However, in Chapter 5 we
found that cross terms could be very important for the kinetics and it is also true here.
It is an interesting question if it is then necessary to stipulate that all the Bi j stabilities
are positive in order to ensure that the system will be stable. In fact, it will now be
shown that it is sufficient to ensure that a smaller set of conditions are satisfied if the
members of that set are chosen in a particular way. For the present set we have the
definition

Bi j = ∂2U

∂ξi dξ j
= ∂2U

∂ X adXb
=

(
∂Y a

∂ Xb

)
X c

(6.20)

According to Section 2.5, Bi j could be denoted UX a Xb because the set of extensive
variables are the natural variables of the U.

By first considering the transfer of only some amount of one of the extensive variables,
there will be no cross effects and taking the first extensive variable we write

USS ≡
(

∂T

∂S

)
V,N2,...,Nc,N1

> 0, (6.21)

as a condition of stability. Next, consider the transfer of dV but also of some S. However,
it is possible to eliminate the cross effect between them by the use of the combined law
after subtracting d(TS),

dF = d(U − T S) = −SdT − PdV + µ2dN2 + · · · + µcdNc

+ µ1dN1 + 1/2

∑
i

∑
j

Bi j dξi dξ j . (6.22)

Instead of prescribing the amount dS to be transferred we shall consider the amount
that keeps T constant. The value of T, being a potential, must be uniform in the system
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at equilibrium and there can be no cross terms between a potential and an extensive
quantity. The new stability condition will simply be

FV V =
(

∂(−P)

∂V

)
T,N2,...,Nc,N1

> 0. (6.23)

Next we shall add d(PV ) obtaining dG and when considering the transfer of dN2 the
next stability condition in the set will be

G N2 N2 =
(

∂µ2

∂ N2

)
T,P,N3,...,Nc,N1

> 0. (6.24)

Then we subtract d(µ2 N2) obtaining a characteristic state function applied in Eq. (3.44),

d(G − µ2 N2) = −SdT + V dP − N2dµ2 + µ3dN3 + · · ·
+ µcdNc + µ1dN1 + 1/2

∑
i

∑
j

Bi j dξi dξ j . (6.25)

When considering the transfer of dN3 we obtain the stability condition

(G − µ2 N2)N3 N3 =
(

∂µ3

∂ N3

)
T,P,µ2,N4,...,Nc,N1

> 0. (6.26)

By proceeding in the same way we obtain conditions involving all the components from
2 to c and each time with one more potential among the variables that are kept constant.
Finally we obtain (

∂µc

∂ Nc

)
T,P,µ2,...,µc−1,N1

> 0. (6.27)

It would seem that there is one more derivative in this series, (∂µ1/∂ N1)T,P,µ2,...,µc,,
where all the variables to be kept constant are potentials. However, that derivative is
always equal to zero in view of the Gibbs–Duhem relation between the potentials. It says
that µ1 cannot vary if all the other potentials are constant. The final derivative thus yields
a trivial condition, which will not be included in the set of stability conditions.

We have thus been able to derive a set of c + 1 stability conditions without involving
any cross terms. As explained in more detail in Chapter 8, at equilibrium there are
c + 1 degrees of freedom in a one-phase system with c components. The set of c + 1
stability conditions can thus ensure that the system with its c + 1 degrees of freedom is
stable against all possible fluctuations that can utilize the c + 1 degrees of freedom. We
have thus obtained a sufficient set of stability conditions. Naturally, one could form a
number of such sets by rearranging the extensive variables in a different order. It should
be emphasized that if all the conditions in a sufficient set are satisfied, then all other
stability conditions are automatically satisfied. It may be mentioned that the variable, put
last among all the extensive variables, was thus chosen to express the size of the system.
For that purpose Gibbs used the volume V. Of course, any extensive variable could be
used.

Finally, it should be emphasized that a set of stability conditions can only be sufficient
with respect to the particular kinds of freedom that are considered. In addition to those
considered so far, there could be degrees of freedom concerning the homogeneous state
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of the system, e.g., the mutual order among different atoms and the crystalline structure.
Such a case will be discussed in Section 6.7.

Exercise 6.2

What would be the last stability condition if we use the combined law written according
to the basic entropy scheme?

Hint

Consult Table 3.1. Select the content of component 1 to define the size of the system.

Solution

We get (∂(µc/T )/∂ Nc)1/T,P/T,µ2/T,...,µc−1/T,Ni > 0 but since 1/T is kept constant, T is
also kept constant and because T is always positive we could just as well write this
condition as (∂µc/∂ Nc)T,P,µ2,...,µc−1,Ni > 0, which we recognize.

6.4 Summary of stability conditions

We have seen that stability conditions are defined through the derivative of a potential with
respect to its conjugate extensive variable. In Section 6.2, all the remaining extensive
variables in the same set of conjugate pairs were kept constant. In Section 6.3 it was
shown that a stability condition is also obtained if one or more of the potentials are kept
constant instead, i.e. (

∂Y b

∂ Xb

)
Y c Xd

> 0. (6.28)

However, it must be emphasized that all the independent variables appearing in a stability
condition must come one from each pair in a set of conjugate pairs. One cannot use a
mixture of variables from different sets. Nine possible sets were listed in Table 3.1
and they can all be used for this purpose. Each one yields its own form of the Gibbs–
Duhem relation and eight stability conditions, not counting those where a mixture of
µi and Ni are used. This makes 72 stability conditions, but few of them are really
useful.

Exercise 6.3

Find a stability condition concerned with CP .

Hint

Remember that CP = T (∂S/∂T )P,Ni .
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Solution

It is evident that we should look for a stability condition involving (∂T/∂S)P,Ni . We
find the combination of variables in line 1 of Table 3.1 listing pairs of conjugate vari-
ables. The combined law with S, P and Ni as independent variables is obtained as
dU + d(PV ) = dH = T dS + V d(P) + �µi dNi , where T = (∂ H/∂S)P,Ni . We get the
stability condition HSS ≡ (∂2 H/∂S2)P,Ni = (∂T/∂S)P,Ni > 0 and thus T/CP > 0.

6.5 Limit of stability

Let us now compare the stability conditions occurring in a given set of sufficient con-
ditions. Suppose we are inside a stable region and want to know which one will first
turn negative as we move into a region of instability. We can find this by first examining
which derivative is the smallest one inside the stable region. Let us start by comparing
any two conditions, which differ only by the choice of variable in a conjugate pair to be
kept constant, the extensive variable or the potential. Using the ability of Jacobians to
change the independent variable from Y c to X c we find(

∂Y b

∂ Xb

)
Y c

=
(

∂Y b

∂ Xb

)
X c

−
(

∂Y b

∂ X c

)
Xb

(
∂Y c

∂ Xb

)
X c

/ (
∂Y c

∂ X c

)
Xb

. (6.29)

In view of a Maxwell relation, (∂Y b/∂ X c)Xb and (∂Y c/∂ Xb)X c are equal and
(∂Y c/∂ X c)Xb cannot be negative for a stable system. Thus, the last term with its minus
sign cannot be positive and we find(

∂Y b

∂ Xb

)
Y c

≤
(

∂Y b

∂ Xb

)
X c

. (6.30)

It is evident that each time a potential is introduced among the variables to be kept
constant, the stability condition gets more restrictive. The most severe condition is the
one where only one extensive variable is kept constant, the one chosen to represent the
size of the system. Consequently, this derivative must be the first one to go to zero and
that happens on the limit of stability. Of course, it is possible that one or several of the
other derivatives also go to zero at the same time. However, we can always find the limit
of stability by considering the last condition in the set if we know that we start the search
from inside a stable region.

Let us now consider what happens to the last derivative in a different set of stability
conditions. We can write the condition for the limit of stability according to the first set
of necessary conditions in the following general form(

∂Y b

∂ Xb

)
Y c,N1

= 0, (6.31)

where Y c indicates that all potentials except for Y b and Y 1 are kept constant during the
derivation. However, in this situation where the derivative is zero, Y b is also constant
and, according to the Gibbs–Duhem relation, the only remaining potential, Y 1, must also
be constant. We thus find that, in this situation, it is possible to change the value of an
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extensive variable, Xb, without affecting any potential, nor the value of the extensive
variable chosen to express the size of the system. However, the other extensive variables
will change with Xb, because they are dependent variables, and it would be possible to
accomplish the same change of the system by prescribing how any one of them should
change. The above relation thus holds for any conjugate pair of variables. We thus find
that the last stability condition, obtained in each set of stability conditions, are all zero
at the same time. Anyone of them could be used to find the limit of stability if one starts
from inside a stable region.

It should be emphasized that inside a region of instability the above conditions may
again turn positive when other conditions have become negative. In the general case it
is thus necessary to apply a whole set of stability conditions. It is only when one is able
to start from a point inside a stable region that one can identify the limit by applying a
single condition.

Exercise 6.4

Show for a unary system that (∂(−P)/∂V )T and (∂T/∂S)P go to zero at the same time,
as they should because only one extensive variable, N, is kept constant (and it is omitted
from the notation in the case of a substance with fixed composition).

Hint

In order to compare them, they must be expressed in the same set of independent variables,
which can be done using Jacobians. Take S and V, for instance.

Solution

We obtain (∂(−P)/∂V )T = UV V − (USV )2/USS and (∂T/∂S)P = USS − (USV )2/

UV V = (∂(−P)/∂V )T · USS/UV V . If one expression goes to zero when USS and UV V

are still > 0, then the other expression also does. The two quantities can be expressed as
1/V κT and T/CP . It is interesting to note that κT and CP both go to infinity at the limit
of stability.

6.6 Limit of stability against fluctuations in composition

Experimentally and in practice it is most common that temperature and pressure are
approximately constant. The question of stability then concerns only fluctuations in
composition. We can omit T and P from the notation and give the limit of stability as(

∂µc

∂ Nc

)
µ2,...,µc−1,N1

= 0. (6.32)

Usually the experimental information is available as fundamental equations of Gibbs
energy. It would thus be convenient to express Eq. (6.32) in terms of Gibbs energy. This
can be done by the use of Jacobians of a higher order than discussed before. The result



118 Stability

is conveniently written with the notation Gkl for (∂µk/∂ Nl)N j which is also equal to
∂2G/∂ Nk∂ Nl . One has thus obtained the following (see [8]),

(
∂µc

∂ Nc

)
µ2,...,µc−1,N1

=

∣∣∣∣∣∣∣∣
G22 . . G2c

. . . .

. . . .

Gc2 . . Gcc

∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣

G22 . G2,c−1

. . .

Gc−1,2 . Gc−1,c−1

∣∣∣∣∣∣ . (6.33)

The second determinant can be related to the derivative for the preceding component,

(
∂µc−1

∂ Nc−1

)
µ2,...,µc−2,Nc,N1

=
∣∣∣∣∣∣

G22 . G2,c−1

. . .

Gc−1,2 . Gc−1,c−1

∣∣∣∣∣∣
/∣∣∣∣ G22 G2,c−2

Gc−2,2 Gc−2,c−2

∣∣∣∣ .
(6.34)

Again, the second determinant can be related to the derivative for the preceding compo-
nent, etc. Finally we obtain by eliminating all lower-order determinants

(
∂µc

∂ Nc

) (
∂µc−1

∂ Nc−1

)
. . .

(
∂µ2

∂ N2

)
=

∣∣∣∣∣∣∣∣
G22 . . G2c

. . . .

. . . .

Gc2 . . Gcc

∣∣∣∣∣∣∣∣
. (6.35)

For convenience, we have here omitted the indices for the derivatives. In a stable region
all these derivatives are positive. No derivative can decrease its value to zero before the
first one. The criterion of limit of stability can thus be given simply as∣∣∣∣∣∣∣∣

G22 . . G2c

. . . .

. . . .

Gc2 . . Gcc

∣∣∣∣∣∣∣∣
= 0. (6.36)

However, this is still not the most practical way of writing the criterion because the Gibbs
energy is usually given as a function of the composition, x2, x3, . . . and the size of the
system is expressed by the total number of atoms, N, rather than N1. Thus,

G = N · Gm(x2, x3, . . .). (6.37)

It should thus be most practical to express the criterion for the limit of stability in terms
of the derivatives of Gm. We should introduce dxi and dN in the expression for dG.
Using x1 = 1 − x2 − x3 − · · · because we have chosen x1 as the dependent composition
variable, we find

Ni = N xi (6.38)

dNi = Ndxi + xi dN . (6.39)∑
i

µi dNi = N
∑
i=1

µi dxi + dN
∑
i=1

µi xi = N
∑
i=2

(µi − µ1)dx1 + GmdN (6.40)

dG = −SdT + V dP + N
∑
i=2

(µi − µ1)dx1 + GmdN −
∑

Di dξ i . (6.41)
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We may proceed as before because we can keep x j of a whole system constant and transfer
dx j between two halves and the same amount of component 1 in the other direction. The
limit of stability will now be given by(

∂(µc − µ1)

∂xc

)
µ2−µ1,...,µc−1−µ1,N

= 0. (6.42)

Again we shall change the variables to be kept constant by using Jacobians. The final
expression will then contain derivatives of the type (∂(µk − µ1)/∂xl)x j ,N and they can
be expressed as (∂2Gm/∂xk∂xl)x j , which we shall abbreviate as gkl . We shall also use
the notation

µk − µ1 =
(

∂Gm

∂xk

)
x j

≡ gk, (6.43)

where x1 is a dependent variable. This was shown in Section 4.1 in which it was mentioned
that µ j − µk is regarded as the diffusion potential between j and k. The difference from
Eq. (4.8) is caused by the molar Gibbs energy Gm here being treated as a function of
T, P and all xi except for x1, which is chosen as a dependent variable. In that case
dx1 = −�dxk . By introducing the notation gk for first-order derivatives of Gm and gkl

for second-order derivatives, we obtain the following convenient form of the limit of
stability ∣∣∣∣∣∣∣∣

g22 . . g2c

. . . .

. . . .

gc2 . . gcc

∣∣∣∣∣∣∣∣
= 0. (6.44)

It should be noted that Eq. (6.42) could have been written as(
∂gc

∂xc

)
g2,...,gc−1,N

= 0. (6.45)

It should again be emphasized that gk and gkl are defined with x1 as dependent variable.
For a binary system, the condition for the limit of stability reduces to g22 = 0. Although

the limit of stability of a solution is exactly defined by the condition just given, there
have been attempts to modify this expression in order to get a function which is more
suitable for representing the properties of a solution in its stable range as well. In par-
ticular, the determinant in Eq. (6.44) goes to infinity at the sides of an alloy system,
an effect which can be removed by multiplication with x1x2 . . . xc. One may further
make the expression dimensionless by dividing by RT to the proper power. For a binary
system one has thus defined the stability function x1x2g22/RT , which is unity over
the whole range of composition for an ideal solution and goes to zero at the limit of
stability.

Exercise 6.5

Show that the stability function, just defined, is unity over the whole system for an ideal
A–B–C solution.
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Hint

An ideal solution has Gm = �xi (oGi + RT ln xi). Take the derivatives of Gm remem-
bering that x1 = 1 − x2 − x3.

Solution

g2 = dGm/dx2 = oG2 − oG1 + RT (ln x2 − ln x1); g22 = RT (1/x2 + 1/x1); g23 =
RT (1/x1) = g32; g33 = RT (1/x3 + 1/x1). We thus get

x1x2x3

∣∣∣∣g22 g32

g23 g33

∣∣∣∣
/

RT = x1x2x3

(
1

x2x3
+ 1

x2x1
+ 1

x1x3
+ 1

x1x1
−

(
1

x1

)2
)

= x1 + x2 + x3 = 1.

Exercise 6.6

Use a Jacobian transformation to show that the limit of stability in a ternary system is∣∣∣∣g22 g23

g32 g33

∣∣∣∣ = 0.

Hint

By omitting the variables that are kept constant, the stability condition in Eq. (6.42) can

be written as

(
∂(µ3 − µ1)

∂x3

)
µ2−µ1

= 0.

Solution

(
∂(µ3 − µ1)

∂x3

)
µ2−µ1

=

∣∣∣∣∣∣∣∣
∂(µ3 − µ1)

∂x3

∂(µ3 − µ1)

∂x2

∂(µ2 − µ1)

∂x3

∂(µ2 − µ1)

∂x2

∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣

∂x3

∂x3

∂x3

∂x2

∂(µ2 − µ1)

∂x3

∂(µ2 − µ1)

∂x2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

∂2Gm

∂x3∂x3

∂2Gm

∂x3∂x2

∂2Gm

∂x2∂x3

∂2Gm

∂x2∂x2

∣∣∣∣∣∣∣∣∣
/

∂2Gm

∂x3∂x2
=

∣∣∣∣g22 g23

g32 g33

∣∣∣∣ /g22 = 0.

However, g22 > 0 in the stable region and it does not reach g22 = 0 before our condition

is satisfied. Our condition can thus be written as

∣∣∣∣g22 g23

g32 g33

∣∣∣∣ = 0.

6.7 Chemical capacitance

The diagonal elements in the Gcc determinant can be written as (∂µ j/∂ N j )T,P,Nk and
they must all be positive because they are stability conditions according to Section 6.2.
In addition, the inverse quantities are sometimes regarded as the chemical capacitance
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of the component j [9],


 j j =
(

∂ N j

∂µ j

)
T,P,Nk

= 1/G j j . (6.46)

This quantity may be of practical importance because it is often of considerable interest
to be able to increase the amount of a component j in a system without increasing the
chemical potential of the same component too much. A system with a high capacity is
said to be well buffered.

An off-diagonal term in the Gcc determinant cannot by itself form a stability condition
because it concerns variables that do not make a conjugate pair. It may thus be positive
or negative in the stable region. Nevertheless, its inverse quantity may also be used as a
kind of chemical capacitance. The following relation holds between them,

1/
 jk = ∂µ j

∂ Nk
= ∂2G

∂ N j∂ Nk
= ∂µk

∂ N j
= 1/
k j (6.47)

Exercise 6.7

What gas mixture is best buffered for oxygen: (a) 1 mol of Ar and 10−6 mol of O2 at
1 bar and 1550 K; or (b) 0.99 mol of CO2 and 0.01 mol of CO at 1 bar and 1550 K?

Hint

The conditions were chosen in such a way that the equilibrium partial pressure of oxygen
is very close to 10−6 in case (b) as well as in case (a). Accept this information.

Solution

(a) PO2
∼= 1 · NO2/NAr

∼= NO2 ; µO2 = oµO2 + RT ln PO2 = oµO2 + RT ln NO2 ;
1/
O2O2 = ∂µO2/∂ NO2 = RT/NO2 = RT/10−6.

(b) If we add NO2 , most of it will react by O2 + 2CO → 2CO2 yielding NCO = 0.01 −
2NO2 and NCO2 = 0.99 + 2NO2 . We get, using the equilibrium constant K: PO2 =
K (PCO2/PCO)2 ∼= K [(0.99 + 2NO2 )/(0.01 − 2NO2 )]2; 1/
O2O2 = ∂µO2/∂ NO2 =
2RT [2/(0.99 + 2NO2 ) − (−2)/(0.01 − 2NO2 )] ∼= 4RT/0.01. Thus, (
O2O2 )b >>

(
O2O2 )a.

6.8 Limit of stability against fluctuations of internal variables

As mentioned in Section 6.3 there are c + 1 degrees of freedom with respect to fluctu-
ations resulting in differences between various regions of the system and c – 1 of them
are connected to fluctuations in composition. All these degrees of freedom are related to
the extensive variables that were originally defined from interactions with the surround-
ings. Thus, they can also be used to represent exchanges between various regions of the
system, regarded as subsystems. There is another kind of variable that can only describe
changes within a homogeneous system and without involving any interaction with the
surroundings. They give rise to internal degrees of freedom in addition to those already
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discussed. The problem of stability also applies to such variables. As an example we shall
now consider a crystalline system with more than one sublattice. In order to describe the
constitution in such cases, the concept site fraction was introduced through Eq. (4.50).

ys
j = N s

j

/∑
N s

i . (6.48)

The sum of site fractions in a sublattice is equal to 1. The superscript s identifies a
particular sublattice. If N is now the number of moles of formula units, we have

G = N · Gm
(
ys

j

)
, (6.49)

where Gm is the Gibbs energy for one mole of formula units. We now want to express
dG in terms of all the dys

j and dN . We obtain

dG = −SdT + V dP +
∑

s

∑
j

φs
j dys

j + GmdN −
∑

Di dξ i . (6.50)

The summation for each sublattice starts from the second constituent present in that
sublattice, the first constituent being chosen as the dependent one. φs

j is the conjugate
variable to ys

j just as gk = µk − µ1 from Eq. (6.43) is the conjugate variable to xk .

φs
j =

(
∂G

∂ys
j

)
T,P,yt

i ,y
s
k ,N

= N

(
∂Gm

∂ys
j

)
T,P,yt

i ,y
s
k

, (6.51)

where ys
k denotes the site fractions of all the other independent constituents on the same

sublattice and yt
i denotes the site fractions of all the independent constituents on other

sublattices. By proceeding as before we obtain for the limit of stability(
∂φr

c

∂yr
c

)
T,P,φt

2,...,φ
t
c,φ

r
2,...,φ

r
c−1,N

= 0, (6.52)

and, after changing the variables to be kept constant using Jacobians,∣∣∣∣∣∣
g11 . g1k

. . .

gk1 . gkk

∣∣∣∣∣∣ = 0. (6.53)

As before, gi j denotes the partial derivatives of Gm but, for convenience, we have now
numbered all the independent constituents in all the sublattices from 1 to k. It should be
noted that k could be equal to, smaller than or larger than c, the number of components
in the system. It should be emphasized that any internal variable, ξ i , can be included
in the k variables if it is an extensive quantity divided by the size of the system. In a
ferromagnetic alloy it could be the number of atoms per mole with magnetic spins in a
certain direction. A particularly simple case is obtained in a pure element if there is only
one interval variable. The stability condition is then

B = ∂2Gm

(∂ξ i )2
> 0. (6.54)

Finally, it should be remembered that a criterion of stability can only be applied to a state
of equilibrium and all the elements of the determinant, being partial derivatives of Gm,
must be evaluated for that state before the value of the determinant can be calculated. It
is thus necessary first to calculate the equilibrium values of all the internal variables.
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Exercise 6.8

At low T, β-brass has two sublattices and could be represented by the formula
(Cu, Zn)1(Zn, Cu)1. The major constituent in each sublattice is given first. All the sites
are equivalent and the system will disorder above a certain temperature. Calculate
the critical temperature if Gm = xA

oGA + xB
oGB + 0.5RT (y′

A ln y′
A + y′

B ln y′
B +

y′′
A ln y′′

A + y′′
B ln y′′

B) + K (y′
A y′′

B + y′
B y′′

A). K is a negative constant and ′ and ′′ identify the
sublattices.

Hint

There are two independent variables in addition to T and P, namely the alloy composition
and the degree of order. To simplify the calculations it may be convenient instead to treat
y′

A and y′′
A as the independent variables. Then y′

B = 1 − y′
A; y′′

B = 1 − y′′
A; xA =

(y′
A + y′′

A)/2; xB = (y′
B + y′′

B)/2. Treat T and P as constant. For the disordered state
y′

A = y′′
A = xA.

Solution

Let y′
A be variable 1 and y′′

A be variable 2. We find g1 = oGA/2 − oGB/2 +
0.5RT (ln y′

A − ln y′
B) + K (y′′

B − y′′
A); g2 = oGA/2 −o GB/2 + 0.5RT (ln y′′

A − ln y′′
B)

+ K (−y′
A + y′

B); g12 = K (−1 − 1) = g21; g11 = 0.5RT (1/y′
A + 1/y′

B) = 0.5RT/

y′
A y′

B; g22 = 0.5RT (1/y′′
A + 1/y′′

B) = 0.5RT/y′′
A y′′

B. The criterion for the limit of
stability gives g11g22 − g12g21 = 0; (0.5RT )2/y′

A y′
B y′′

A y′′
B = (−2K )2. The critical

temperature for ordering in a disordered alloy of composition xA, xB is thus T =
4(−K )xAxB/R.

6.9 Le Chatelier’s principle

When discussing the limit of stability we compared the values of two derivatives, which
differed only by one of the variables to be kept constant. Using the same method of calcu-
lation we can also compare the effect of changing an external variable under a frozen-in
internal variable ξ and under a gradual adjustment of ξ according to equilibrium, i.e.
D = 0. It should be remembered that ξ may be treated as an extensive variable and −D
could be regarded as its conjugate potential. We obtain(

∂Y b

∂ Xb

)
D=0

=
(

∂Y b

∂ Xb

)
ξ

−
(

∂Y b

∂ξ

)
Xb

(
∂(−D)

∂ Xb

)
ξ

/ (
∂(−D)

∂ξ

)
Xb

. (6.55)

For simplicity, the variables that have been kept constant in all the derivatives have been
omitted from the subscripts but any set of potentials and extensive variables presented
in Table 3.1 can be used. (∂Y b/∂ξ )Xb and (∂(−D)/∂ Xb)ξ are equal due to a Maxwell
relation and (∂(−D)/∂ξ )Xb is equal to the stability B at equilibrium. For a stable system,
B is positive and the second term on the right-hand side with its minus sign cannot be
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Y b

Le Chatelier’s 
modification

D =0

dY b

dXb
ξ

X c

⋅ ∆Xb

⋅ ∆Xb
dY b

dXb

Figure 6.4 Illustration of Le Chatelier’s principle. The extensive variable X b is changed by an
amount �X b by an external action. An internal process is first frozen in, dξ = 0, but then
proceeds to a new equilibrium, D = 0. The initial effect on Y b is thus partly reversed. During
the whole process either the potential or the extensive variable of the other pairs of conjugate
variables is kept constant (here represented by X c on the abscissa).

positive. We thus obtain from Eq. (6.48)

0 ≤
(

∂Y b

∂ Xb

)
D=0

≤
(

∂Y b

∂ Xb

)
ξ

. (6.56)

This relation is quite general. It has here been derived using the energy scheme. It can
also be derived using the other schemes.

Suppose the equilibrium inside a system is disturbed by an action from the outside.
For instance, Xb is changed quickly by an amount �Xb and there is not enough time for
an internal reaction, i.e. ξ is kept constant. Thus, the potential Y b is changed according
to the term appearing on the right-hand side of the inequality and first on the right-hand
side of Eq. (6.55) (see the left-hand arrow in Fig. 6.4). After a sufficiently long time the
internal reaction will occur and ξ will change to a new state of equilibrium, D = 0, and
the net change of the two stages may thus be calculated from the term appearing in the
middle part of the inequality and on the left-hand side of Eq. (6.55) (see the right-hand
arrow pointing upward in the figure). It represents the change of Y b due to a slow change
�Xb. The difference between the two changes of Y b represents the change due to the
internal reaction, the so-called Le Chatelier modification. The inequality shows that the
change in Y b will thus be partly reversed during the second stage (see the arrow pointing
downward in the figure). This principle was formulated by Le Chatelier [10] but in a less
exact manner. It should be emphasized that it concerns two conjugate variables, Xb and
Y b. It should further be emphasized that the extensive variable must be regarded as the
primary variable. If, instead, the potential variable is regarded as the primary one, then
the opposite result is obtained(

∂ Xb

∂Y b

)
D=0

≥
(

∂ Xb

∂Y b

)
ξ

≥ 0. (6.57)

The derivation of Le Chatelier’s principle is based on derivatives and it has thus been
proved only for infinitesimal disturbances. There is no guarantee that it always applies
to large disturbances.



6.9 Le Chatelier’s principle 125

Exercise 6.9

Test Le Chatelier’s principle on the change of temperature and pressure when an amount
of heat is added to a two-phase system of water vapour and liquid water under constant
volume. Suppose that evaporation is initially very slow due to a thin film of oil.

Hint

Remember that dU = dQ – PdV. At constant V we thus have dU = dQ and could choose
U as the variable that is changed by an action from the outside. Its conjugate variable
is – 1/T. The internal variable ξ may be identified with the amount of vapour.

Solution

Identify U with Xb and − 1/T with Y b. For a stable system we get, at constant ξ ,
i.e. before any change of the amount of vapour, 0 < (∂(−1/T )/∂U )ξ . This means that
−1/T, and thus also T, has increased due to the increase of U.

At the higher temperature the equilibrium vapour pressure will be higher. In a second
stage of the process there will thus be evaporation and the temperature will decrease in
agreement with Le Chatelier’s principle, 0 < (∂(−1/T )/∂U )D=0 < (∂(−1/T )/∂U )ξ .

On the other hand, the pressure has increased during the first stage due to the heating
of the vapour present from the beginning. During the second stage, the pressure will
increase further, in apparent contradiction to Le Chatelier’s principle. However, pressure
is not conjugate to U, which was the variable that was changed to a new value in the
experiment.

The result is far from trivial because there would be further evaporation during the
second stage only if the increase in pressure of the initial vapour due to its heating is
smaller than the increase of the equilibrium vapour pressure due to the heating of the
water. By relying upon Le Chatelier’s principle we may thus conclude that the heating of
the vapour gives a smaller increase of the pressure than the heating of the water would
increase the equilibrium vapour pressure.



7 Applications of molar Gibbs
energy diagrams

7.1 Molar Gibbs energy diagrams for binary systems

In this chapter we shall derive some useful thermodynamic relations relating to phase
equilibria under constant temperature and pressure, sometimes in exact form but some-
times using approximations in order to bring the final expressions into a suitable form.
We shall see how property diagrams for the molar Gibbs energy can be used in such
derivations. Most of the applications will make use of the tie-line rule (see Section 4.5).

As an introduction, some basic properties of solutions must be discussed and, in the
present section, a simple solution model will be described. A more thorough discussion
will be given in Chapter 20.

Let us first consider a case where a solution phase α can vary in composition over a
whole binary system from pure A to pure B. It is then convenient to compare the Gm

value at any composition with the value one can read on the straight line between the two
end-points, sometimes called the end-members of the solution. The difference is often
called the Gibbs energy of mixing and is denoted with a superscript M. It is illustrated
in Fig. 7.1. It is defined by the following equation

Gα
m = xA

oGα
A + xB

oGα
B + MGα

m. (7.1)

A warning should be issued regarding the interpretation of MGm. Usually it is defined
with reference to the straight line between points representing the pure components in
the same state as the phase under consideration, i.e. the end-members of the solution.
However, sometimes it is defined with reference to a different state for one of the compo-
nents, for instance the state which is most stable at the temperature under consideration.
This is illustrated in Fig. 7.1(b) where pure B is more stable as β than as α.

The Gibbs energy diagram gives information on the partial molar Gibbs energies
for the two components, i.e. the chemical potentials. For a single phase one can use
the construction explained for Vm in Fig. 4.6 and illustrated for Gm in Fig. 4.7. It is
now demonstrated again in Fig.7.2(a) and is in agreement with the following relations,
which are examples of the more general expression for all partial quantities, derived in
Section 4.1.

Gα
B = Gα

m + (1 − xB)dGα
m/dxB = Gα

m + xAdGα
m/dxB (7.2)

Gα
B − Gα

A = dGα
m/dxB. (7.3)
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Gm

(a) (b)

Gm
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α

oGB
oGB

α
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M−Gm
M−G ′m

xB xB

Figure 7.1 Molar Gibbs energy diagram for a binary system illustrating the definition of the
Gibbs energy of mixing. The end-members of the solution are used as references in (a) but a
more stable state of B is used in (b).

Gm

(a) (b)

Gm

oGA

oGB

oGB
β

GB(x ′B)
x ′B0 1.0

GA(x ′B)

GA
ideal(x ′B)

EGA(x ′B) EGm

x ′B xB xB

Figure 7.2 (a) Tangent construction to obtain a chemical potential. (b) Definitions of excess
quantities for an alloy of composition x ′

B.

An important contribution to the Gibbs energy of mixing comes from the entropy of
mixing of the two kinds of atoms. In Section 19.8 we shall consider the case where they
are distributed at random and shall find that the entropy of mixing of one mole of atoms
will then be −R(xA ln xA + xB ln xB). A solution with only this contribution to the Gibbs
energy of mixing is regarded as an ideal solution

G idealα
m = xA

oGα
A + xB

oGα
B + RT (xA ln xA + xB ln xB). (7.4)

Using Eq. (4.5) relating partial quantities to molar quantities we obtain

G idealα
B = oGα

B + RT ln xB. (7.5)

A comparison with the ideal solution is given in Fig. 7.2(b). The curve for G ideal
m shows

that the term RT (xA ln xA + xB ln xB) is negative and makes the Gm curve look like a
hanging rope. It is the main cause of the stability of solutions.
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It is common to summarize all other contributions to the Gibbs energy with a term
called the excess Gibbs energy and denoted by EGα

m.

Gα
m = G ideal

m + EGα
m = xA

oGα
A + xB

oGα
B + RT (xA ln xA + xB ln xB) + EGα

m. (7.6)

This is also illustrated in Fig. 7.2(b). In the same way we may define the mixing and
excess quantities for the partial Gibbs energies,

Gα
B = G ideal

B + EGα
B = oGα

B + RT ln xB + EGα
B. (7.7)

MGα
B = RT ln xB + EGα

B. (7.8)

It is evident that the mixing and excess quantities can be calculated directly in the same
way as Gα

B.

MGα
B = MGα

m + (1 − xB)dMGα
m

/
dxB = MGα

m − xAdMGα
m

/
dxA (7.9)

EGα
B = EGα

m + (1 − xB)dEGα
m

/
dxB = EGα

m − xAdEGα
m

/
dxA. (7.10)

It should be emphasized that one cannot give an absolute numerical value to the partial
Gibbs energies, oGα

B or oGα
A, because there is no natural zero point for Gibbs energy.

Numerical values can be given only to differences in Gibbs energy between two states.
Thus we can give a value to Gα

B − oGα
B, and another value to Gα

B − oGβ
B, where pure

α–B and pure β–B are regarded as two different choices of reference states for B. Such
a value gives the vertical distance between two points (see the B-axis in Fig. 7.2(a)).
For alloys, a numerical value can be given only to differences between two states of the
same composition. The two lines representing MGm and MG ′

m in Fig. 7.1(a) and (b),
respectively, are thus vertical. This stems from the fact that one cannot compare the
Gibbs energies for A and B. When starting to construct such a diagram one can give the
oGα

A − oGβ
B line any convenient slope.

If one has chosen the end-members of an A–B solution to define the reference states,
oGA and oGB, then it is evident that the excess Gibbs energy is zero at the two sides of
the system where Gm is equal to oGA or oGB. For a dilute solution of B in A we may
thus try to approximate EGm as LxAxB, an expression that goes to zero on both sides.
This is the regular solution approximation, and using the equation relating GB to Gm we
find

Gα
B = oGα

B + RT ln xB + EGα
B = oGα

B + RT ln xB + Lαx2
A. (7.11)

It is common to introduce the chemical activity, aB, through the expression

Gα
B = oGα

B + RT ln aB = oGα
B + RT ln xB + RT ln fB, (7.12)

where

aB = fBxB, (7.13)

and fB is called the activity coefficient of B. The activity is thus defined as

aB = exp
[(

Gα
B − oGα

B

) /
RT

]
. (7.14)
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∆oGm
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β

Figure 7.3 Molar Gibbs energy diagram illustrating the definition of the standard Gibbs energy
of formation, �oGθ

m, of a compound θ.

The activity coefficient is obtained through

RT ln fB = EGα
B. (7.15)

For a dilute solution, i.e. low xB, we may thus write

RT ln fB = EGα
B = Lαx2

A
∼= Lα or fB

∼= exp(Lα/RT ). (7.16)

With this approximation, the activity is proportional to the content. This is called Henry’s
law. We also find for low xB,

RT ln fA = EGα
A + (1 − xA)dEGα

m

/
dxA = Lαx2

B
∼= 0. (7.17)

The value of fA is thus unity close to the A side. This is called Raoult’s law. When
Henry’s law holds for B and Raoult’s law holds for A, then we obtain

dGα
m

/
dxB = Gα

B − Gα
A = oGα

B + RT ln xB + Lα − oGα
A − RT ln xA (7.18)

d2Gα
m

/
dx2

B = RT/xB + RT/xA = RT (xA + xB)/xAxB = RT/xAxB
∼= RT/xB.

(7.19)

For an intermediary phase, which does not extend to the pure components, one must
always refer the Gibbs energy to the values of the components in selected states, usu-
ally their stable states. For a phase with a well-defined composition one often talks
about the standard Gibbs energy of formation (see Fig. 7.3). From that diagram we
obtain

�oGθ
m = oGθ

m − xA
oGα

A − xB
oGβ

B. (7.20)

This quantity is often denoted by �fGθ
m or �f

oGθ
m. It is important to mention the reference

states to which it refers and also the amount of material being considered, for instance
1 mole of atoms or 1 mole of formula units (like, e.g., Cr23C6).
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−RT ln1.04
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Figure 7.4 Solution to Exercise 7.1.

Exercise 7.1

An α solution in the A–B system has aB = 0.9 at 1000 K when pure α–B is used as
reference state. Calculate aB referred to another state of B, called β–B, which is more
stable than α–B by 1200 J/mol. Illustrate with a Gm diagram.

Hint

The position of the point on the B-axis representing Gα
B does not depend upon the choice

of reference state. We can thus equate any two expressions for Gα
B.

Solution

arefα
B = 0.9; oGα

B + RT ln(arefα
B ) = Gα

B = oGα
B + RT ln(arefβ

B );
arefβ

B = arefα
B exp[(oGα

B − oGβ
B)/RT ] = 0.9 × exp(1200/8.3145 × 1000) = 1.04. Since

this is > 1, the α solution is supersaturated with B in comparison with the stable β state
of B (see Fig. 7.4).

Exercise 7.2

Fe3C is metastable at all temperatures and could thus decompose into an Fe-rich phase
and graphite. At 1169 K the stable Fe phase (γ ) dissolves about 1.24 mass% C. Mea-
surements have shown that the Gibbs energy of formation of Fe3C at 1169 K is negative
(–1620 J/mole of formula units). Explain how this can be reconciled with the fact that
Fe3C is not stable by sketching a Gm, xC diagram.

Solution

Fe3C falls 1620 J/mol below the line of reference between pure Fe and pure graphite
(dashed line in Fig. 7.5) but it falls above the common tangent representing the γ +
graphite equilibrium. Thus, Fe3C is more stable than a mixture of the pure elements but
less stable than a mixture of an Fe–C solution and pure C.
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graphite
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Fe3C

Figure 7.5 Solution to Exercise 7.2.
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Gm

x1 x2 x3

GB(x1)

GB(x2)

GB(x3)

Figure 7.6 (a) Construction showing that a negative curvature results in a decrease of GB when
xB is increased. (b) Demonstration that a system between the points of inflexion is unstable. A
small difference in composition will increase spontaneously.

7.2 Instability of binary solutions

In Figs 7.1 and 7.2 we have sketched molar Gibbs energy curves, each with two minima
and a central region where ∂2Gm/∂x2

B is negative. This region falls between two points
of inflexion and according to Section 6.6 they should define the limit of stability. In
Fig. 7.6(a) tangents have been drawn at some compositions between the points of inflexion
and it can be seen that GB decreases when xB increases. According to Eq. (6.27) this is
also a violation of the condition of stability.

The change in the total Gibbs energy of the system, when one half of the system grows
richer in A and the other one in B, is illustrated in Fig. 7.6(b). The tie-line rule requires
that the total Gibbs energy of a mixture is represented by a point on the line connecting
the points representing the two parts. Since the overall composition is not changed, the
total Gibbs energy moves down along a vertical line at the alloy composition (not shown
here). Such a system is thus unstable against fluctuations in composition.
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Figure 7.7 Solution to Exercise 7.3.

Exercise 7.3

In a binary solution one usually discusses two activities, aA and aB, and for a stable
system each of them increases monotonously with the content of the same component.
However, one may define the activity of an intermediary species, e.g. A2B. Prove that
aA2B also increases as the content of A2B increases in a stable system and thus has a
maximum at the very composition of A2B.

Hint

Instead of the chemical activity, aA2B, let us consider the chemical potential µA2B, which
is equal to 2µA + µB, i.e. 2GA + GB, or, even better, µA2/3B1/3 , i.e. (2GA + GB)/3). It
may be studied in a Gm, xB diagram.

Solution

For any alloy the tangent in the Gm, xB diagram gives GA and GB on the two sides
and the intersection of the tangent with a vertical line at xB = 1/3 thus gives (2GA +
GB)/3. By inspection it is evident that the intersection has its highest position for the
alloy xB = 1/3 (see Fig. 7.7). Otherwise, the Gm curve must have a negative curvature
somewhere.

7.3 Illustration of the Gibbs–Duhem relation

The molar Gibbs energy diagram in Fig. 7.8(a) shows a stoichiometric compound, θ,
with a well-defined composition AaBb, possibly because it is a crystalline phase with
two sublattices. Often, the composition of such a phase cannot vary appreciably without
a very steep increase of the Gibbs energy. It is thus practically impossible to vary NA

and keep NB constant and the definition of partial Gibbs energy, given in Section 4.1,
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Figure 7.8 Molar Gibbs energy diagram for (a) a binary stoichiometric phase θ and (b) a binary
solution phase α. If µA is controlled by some method, then the value of µB is given in both cases.

cannot be used. However, the tangent construction in Fig. 7.2 can still be used. For this
case we shall prefer to talk about chemical potentials and use the notations µA and
µB. The situation is not drastically different for a phase with variable composition (see
Fig. 7.8(b)). For both types of phase one may select the value of µA and the value of µB

will then be fixed. One could also talk about the chemical potential of the compound,
µAaBb . From Section 4.8 we get

GAaBb = µAaBb =
∑

as
i µi = aµA + bµB; µB = (µAaBb − aµA)/b. (7.21)

By comparing the values defined by two different tangents we find for a stoichiometric
compound, because µAaBb is fixed,

xA(µ′′
A − µ′

A) + xB(µ′′
B − µ′

B) = 0, (7.22)

where a = xA and b = xB if a + b is chosen as 1. This may be regarded as the Gibbs–
Duhem relation integrated for a phase with constant composition.

For a phase with variable composition one may also select the value for µA, and the
value for µB will then be fixed by the expression for the molar Gibbs energy,

Gm = xAµA + xBµB; µB = (Gm − xAµA)/xB, (7.23)

but here Gm varies with the composition and the composition varies with the choice of
µA, as demonstrated for a solution phase α in Fig. 7.8(b). The Gibbs–Duhem relation
holds

xAdµA + xBdµB = 0, (7.24)

but not in the integrated form given for the stoichiometric compound, because the tangents
do not intersect in a point on the Gm curve.

In a ternary system one may have a solution between two binary stoichiometric phases
if they are isomorphic (have the same structure). Figure 7.9 shows a Gibbs energy diagram
for such a case. The composition can now be varied with one degree of freedom and we
may consider two components or end-members AaCc and BaCc.

This kind of solution may be represented by the formula (A, B)aCc and the composition
may be represented by molar contents defined as

xBaCc = NBaCc/(NAaCc + NBaCc ), (7.25)
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Figure 7.9 Molar Gibbs energy diagram for a ternary solution between two binary
stoichiometric phases.

where the two Ns represent the moles of formula units. Another method of representation
is based on the molar contents evaluated for each sublattice, the so-called site fractions
which were discussed in Section 4.7.

From Fig. 7.9 it is evident that the molar Gibbs energy for this kind of solution phase
can be expressed in the following ways if a + c = 1.

Gm = xAµA + xBµB + xCµC = yAµAaCc + yBµBaCc . (7.26)

The diagram in Fig. 7.9(a) with two possible tangent planes shows that the values of
µAaCc and µBaCc are well defined by the composition but µA, µB and µC are not.

Exercise 7.4

Consider the chemical potential of Fe3C in a solution phase of Fe, C and Mn, using basic
principles. Show that it is actually equal to 3µFe + µC by making a calculation using
Section 4.6.

Hint

In the Fe–C–Mn system we usually use Fe, C and Mn as the components but now we
should change to a new set of components. Fe3C is one component and the others could
be C and Mn. Notice that dG = ∑

µi dNi cannot change its value just because we change
the set of components to be considered.
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Figure 7.10 The common-tangent construction for finding the compositions of two phases in
equilibrium at given T and P.

Solution

Let the amounts of the components be NFe, NC and NMn in the old description and
N ′

Fe3C, N ′
C and N ′

Mn in the new one. Denote the chemical potentials in the new description
with µ′

i . The mass balance for each element gives NMn = N ′
Mn, NFe = 3N ′

Fe3C and NC =
N ′

C + N ′
Fe3C.

We thus get
∑

µ′
i dN ′

i = ∑
µi dNi = µFedNFe + µMndNMn + µCdNC = µFe ·

3dN ′
Fe3C + µMndN ′

Mn + µCdN ′
C + µCdN ′

Fe3C = (3µFe + µC)dN ′
Fe3C + µCdN ′

C +
µMndN ′

Mn.
Thus, µ′

C = µC, µ′
Mn = µMn and µ′

Fe3C = 3µFe + µC.

7.4 Two-phase equilibria in binary systems

In a two-phase equilibrium we have the following two conditions at constant T and P
because the chemical potential for each component must be the same in the two phases.

Gα
B = µB = Gβ

B (7.27)

Gα
A = µA = Gβ

A. (7.28)

It is evident that these conditions can be satisfied only by a common tangent, as illustrated
in Fig. 7.10(a). The lowest possible Gm for each composition is shown in Fig. 7.10(b) and
it is evident that some mixture of α + β represents the stable state for an alloy between
the two tangent points.

For a stoichiometric phase with its well-defined composition, it is not possible to
define the chemical potentials since one can draw different tangents without changing
the composition of the point of tangency markedly. On the other hand, the chemical
potentials of a phase can be defined by equilibrium with a second phase. Figure 7.11(a)
illustrates this case when the second phase is a solution phase or (b) another stoichiometric
phase. When it is a solution phase, we obtain

Gβ
m = xθ

A · Gβ
A

(
xβ

B

) + xθ
B · Gβ

B

(
xβ

B

)
. (7.29)



136 Applications of molar Gibbs energy diagrams

.

β
Gm Gm

xB
θ xB

β xB
θ xB

φ

θ

µA

µB

µA

µB

θ φ
(a) (b)

Figure 7.11 Molar Gibbs energy diagram showing the equilibrium between (a) a stoichiometric
phase and a solution phase and (b) between two stoichiometric phases.

By solving this equation, one can determine the composition of the solution phase, β,
and from the known properties of β one can then calculate µA and µB. In Fig. 7.11(b)
both phases, θ and φ, are stoichiometric phases, and we obtain the following relations

Gθ
m = xθ

AµA + xθ
BµB; µA = xθ

BGφ
m − xφ

B Gθ
m

xθ
B − xφ

B

(7.30)

Gφ
m = xφ

AµA + xφ
B µB; µB = xθ

AGφ
m − xφ

A Gθ
m

xθ
A − xφ

A

. (7.31)

These equations also apply to the equilibrium between two solution phases if the Gθ
m

and Gφ
m are evaluated for the equilibrium compositions.

Exercise 7.5

In a binary system, where the mutual solubilities are very small, there are two stable
stoichiometric phases α(A3B2) and β(AB3). Calculate the chemical potential of B in a
50 : 50 alloy in terms of the quantities Gα

m and Gβ
m. Base the calculation on a construction

in the Gm diagram.

Hint

Remember that the Gibbs energy of a two-phase state falls on the common tangent.
Start by drawing a solid line representing all stable states. It should show that both
stoichiometric phases are stable.

Solution

Evidently, the alloy is α + β (see Fig. 7.12). With xα
A = 0.6 and xβ

A = 0.25 the con-
struction gives µB = µ

α+β
B = Gα

m + (Gβ
m − Gα

m) · (xα
A − 0)/(xα

A − xβ
A) = Gα

m + (Gβ
m −

Gα
m) · 60/(60 − 25) = (60/35)Gβ

m − (25/35)Gα
m.
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Figure 7.12 Solution to Exercise 7.5.

α

β

α
β

T

T1

To

Gm

xB

T =T1

.

Figure 7.13 The relation between Gibbs energy curves of two phases and their two-phase fields in
the phase diagram. The dashed line is the so-called To line or allotropic phase boundary.

7.5 Allotropic phase boundaries

One can sometimes draw a line inside a two-phase region to show where the two phases
would have the same Gibbs energy value if they had the same composition. It is the critical
limit for a hypothetical diffusionless phase transformation. Such a transformation is very
similar to an allotropic transformation in a pure element and the line, sometimes called
the allotropic phase boundary, is often denoted by To. This name is derived from the
word ‘allotropy’, i.e. the property of a substance of being found in two or more forms.
Figure 7.13 illustrates the relation between the allotropic phase boundary and the molar
Gibbs energy diagram.

Exercise 7.6

Consider a binary system with three phases of variable compositions and in a eutectic
equilibrium (see Section 12.5) with each other. Show reasonable positions of the three
allotropic phase boundaries. Extrapolate all of them below the eutectic temperature.
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Figure 7.14 Solution to Exercise 7.6.

Hint

Consider in particular how the three allotropic phase boundaries intersect each other when
extrapolated. Will there be one or three points of intersection? It may be instructive to
sketch a molar Gibbs energy diagram.

Solution

It is evident that T α+L
o and T L+β

o will intersect inside the α + β phase field. Consider
a Gm diagram (Fig. 7.14) at the eutectic temperature, showing one Gm curve for each
phase (thick lines in the lower portion of the figure). Each one of the three intersections
is a point on a To line. When the temperature is decreased, the L curve is lifted (see thin
line) relative to the other two until all three curves finally intersect in one point. There
the three To lines will intersect. In the phase diagram (upper portion) we should thus
draw the T α+β

o line through the intersection of the other two.

7.6 Effect of a pressure difference on a two-phase equilibrium

In order to illustrate the effect of pressure, we shall consider an incompressible phase,
β. The application of a hydrostatic pressure will lift up its Gibbs energy curve by the
amount PβV β

m . This is illustrated in Fig. 7.15(a). Since V β
m is usually dependent on the

composition, the curve will be somewhat deformed. The construction with a tangent will
yield PβV β

A and PβV β
B where V β

A and V β
B are defined from V β

m in the same way as Gβ
A

and Gβ
B are defined from Gβ

m (see Fig. 4.6).
The relative position of the Gibbs energy curves for different phases can change with

pressure due to differences in the molar volumes. The equilibrium conditions can thus
be modified by the application of a hydrostatic pressure. This effect is even stronger if
the pressure is applied to one of the phases only, which may happen due to the effect
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Figure 7.15 (a) Effect of a hydrostatic pressure on the molar Gibbs energy of a single phase. The
phase is assumed to be incompressible. (b) The effect of pressure in a stoichiometric phase on
the equilibrium composition of a coexisting phase not under pressure.

of surface energy in a curved interface. In Fig. 7.15(b) the phase under pressure is
a stoichiometric phase and its molar Gibbs energy is increased by Pθ V θ

m. We may, for
instance, imagine that the phases are contained in a cylinder where the balance of surface
energies, σ , at the wall of the cylinder gives a constant radius of curvature ρ = 2σ/Pθ .
The diagram illustrates that the solubility of θ in α is increased due to the pressure
in θ , assuming ordinary pressure in α. It should be emphasized that this case must be
treated with care because the two phases are under different pressures and the law of
additivity does not apply to the Gibbs energy unless special precautions are taken. This
was mentioned in Section 3.4 and will be discussed in Section 16.7. However, in applying
the common-tangent construction we have only made use of the definition of the chemical
potentials.

The effect on the solubility can be estimated if one knows the curvature of the Gα
m

curve. The difference in slope between the two tangents can be estimated as [xα/θ
B (Pθ) −

xα/θ
B (0)] · d2Gα

m/dx2
B if the change in composition is small. If the distance between the

two phases is reasonably constant, we obtain, by multiplying with that distance,

PθV θ
m = (

xθ
B − xα

B

) [
xα/θ

B (Pθ) − xα/θ
B (0)

] · d2Gα
m

/
dx2

B (7.32)

xα/θ
B (Pθ) − xα/θ

B (0) = PθV θ
m

/
(xθ

B − xα
B)d2Gα

m

/
dx2

B. (7.33)

When α is a dilute solution we may approximate d2Gα
m/dx2

B with RT/xα/θ
B according to

Eq. (7.19) and obtain

xα/θ
B (Pθ) − xα/θ

B (0) = PθV θ
mxα/θ

B

/
RT

(
xθ

B − xα
B

)
. (7.34)

This equation is often applied to a spherical interface and 2σ/r is then substituted for Pθ.
In that form it is known as the Gibbs–Thomson equation. For large changes in solubility
one should integrate over the pressure increase and allow xα/θ

B on the right-hand side to
vary during the integration. For an infinitesimal increase in Pθ we get

dxα/θ
B

/
xα/θ

B = [
V θ

m

/
RT

(
xθ

B − xα
B

)] · dPθ. (7.35)

For the case where (xθ
B − xα

B) is reasonably constant integration yields

ln
[
xα/θ

B (Pθ)
/

xα/θ
B (0)

] = PθV θ
m

/
RT

(
xθ

B − xα
B

)
. (7.36)
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Figure 7.16 Molar Gibbs energy diagram illustrating the change in composition of a phase, β,
under pressure when in equilibrium with another phase, α.

If the phase under pressure can also vary in composition, its equilibrium composition
will also change. This case is illustrated in Fig. 7.16. The change in composition of the
phase under pressure can be evaluated from Fig. 7.16(b) where a tangent to the initial
Gβ

m curve has been drawn for the β composition of the new equilibrium. The diagram
defines a quantity �Gm which is given as

�Gm = Pβ
(
xα

AV β
A + xα

B V β
B

)
, (7.37)

but also as

�Gm = (
xβ

B − xα
B

) · d2Gβ
m

/
dx2

B · [
xβ/α

B (Pβ) − xβ/α
B (0)

]
, (7.38)

if d2Gβ
m/dx2

B is reasonably constant. By equating the two expressions we obtain

xβ/α
B (Pβ) − xβ/α

B (0) = Pβ
(
xα

AV β
A + xα

B V β
B

)/[(
xβ

B − xα
B

) · d2Gβ
m

/
dx2

B

]
. (7.39)

If the β phase is a dilute solution of B in A, then xα
AV β

A + xα
B V β

B is approximately equal
to the molar volume for pure A in the β state, which we shall simply denote by V β

m , and
d2Gβ

m/dx2
B can be approximated by RT/xβ

B according to Eq. (7.19), yielding

dxβ/α
B /xβ/α

B = [
V β

m

/
RT

(
xβ

B − xα
B

)] · dPβ. (7.40)

We can take into account the effect of Pβ on both phases if they are both dilute solutions
of B in A but then we cannot treat xβ

B − xα
B as a constant. However, the expressions for

dxα/β
B /xα/β

B and dxβ/α
B /xβ/α

B are identical for two dilute solutions,

dxα/β
B

/
xα/β

B = dxβ/α
B

/
xβ/α

B . (7.41)

Integration yields

xα/β
B (Pβ)

/
xα/β

B (0) = xβ/α
B (Pβ)

/
xβ/α

B (0) (7.42)

xβ/α
B (Pβ) − xα/β

B (Pβ)

xβ/α
B (Pβ)

= xβ/α
B (0) − xα/β

B (0)

xβ/α
B (0)

. (7.43)
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The quantity on the left-hand side appears in the equation for dxβ/α
B with a slightly

different notation, (xβ
B − xα

B)/xβ
B . This ratio can thus be treated as a constant during the

integration of dxβ/α
B , yielding

xβ/α
B (Pβ) − xβ/α

B (0) = (
PβV β

m

/
RT

) · xβ/α
B

/(
xβ

B − xα
B

)
(7.44)

xα/β
B (Pβ) − xα/β

B (0) = (
PβV β

m

/
RT

) · xα/β
B

/(
xβ

B − xα
B

)
. (7.45)

It should again be emphasized that the equations in the present section were derived only
for an incompressible phase.

Exercise 7.7

The precipitation of Sn from a supersaturated solid solution of Sn in Pb sometimes
results in a lamellar aggregate of a Sn phase with very little Pb and a Pb phase with
less Sn. The aggregate, comprising alternate layers, grows into a Pb-rich matrix of the
original composition. Experimental studies have been made of the coarseness of such
a structure in terms of a quantity w, the combined width of one lamella of each phase.
When discussing theoretical predictions the measured w is compared with the critical
value w∗ which would completely stop the growth of the Sn phase because, due to
the effect of surface energy, it would put this phase under such a high pressure that
it would be in equilibrium with the original Pb matrix in spite of its supersaturation.
This pressure can be calculated from the effect of surface energy. In one study an alloy
with xSn = 0.112 was investigated at a temperature where the equilibrium value was
0.06. The investigators assumed that the new phase had the equilibrium composition,
xSn = 0.06, and using the Gibbs–Thomson equation for large changes they calculated
w∗ from w∗ = 2σVm/RT ln(0.112/0.06). They found that the observed w was about
100 times larger than w∗ instead of twice according to a simple theory. Check their
calculation.

Hint

Make a careful analysis of what pressure the surface energy will impose on the Sn
phase under the simplifying assumption that the Pb lamellae are not under an increased
pressure.

Solution

The pressure in the Sn phase will balance the surface energy, which gives a force of 2σL
if L is the length of the lamella. The area of the edge is f w∗L if f is the fraction of the Sn
phase. Thus, P∗ f w∗L = 2σ L . The lever rule gives f = (0.112 − 0.06)/(1 − 0.06) =
0.055. Now relate the pressure to the change in solubility, ln(0.112/0.06) = P ∗Vm/RT
(1 – 0.112) ∼= P ∗Vm/RT. Combining these equations yields w ∗ = 2σ /P ∗f = 2σVm/f RT
ln(0.112/0.06). The investigators missed the factor f ( = 0.055) which explains most of
the discrepancy.
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Figure 7.17 (a) Molar Gibbs energy diagram. (b) Method for evaluation of the driving force for
the formation of a new phase θ from a supersaturated β solution.

7.7 Driving force for the formation of a new phase

When we take some A and B away from a large quantity of a solution phase, α, it is like
taking them from one reservoir each, with the chemical potentials equal to Gα

A and Gα
B,

respectively. As long as the amount of the α phase is large, we can take A and B in any
proportion without changing the values of Gα

A and Gα
B. We can thus form a small amount

of a new phase, θ, of any composition without changing the Gibbs energy of the whole
system, provided that the new phase falls on the α tangent. If the new phase falls below
the tangent, the decrease counted per mole of atoms in the new phase is obtained as

− �Gθ
m = xθ

A · Gα
A

(
xα

B

) + xθ
B · Gα

B

(
xα

B

) − Gθ
m

(
xθ

B

)
. (7.46)

This is illustrated in the molar Gibbs energy diagram in Fig. 7.17(a). By convention,
the change of Gibbs energy accompanying a reaction is defined as �Gm = Gproducts

m −
Greactants

m . It is evident that the decrease in Gibbs energy, −�Gm, is equal to the driving
force for the precipitation of the θ phase from a supersaturated β solution, counted per
mole of θ, if the extent of the reaction, ξ , is expressed as the number of moles of θ, Nθ,

D = −
(

∂G

∂ξ

)
T,P,Ni

= −
(

∂G

∂ Nθ

)
T,P,Ni

= −�Gθ
m. (7.47)

The magnitude of the driving force for the precipitation of θ from a supersaturated
α solution, counted per mole of θ, can be estimated from the supersaturation �xα

B in
almost the same way as the effect of pressure on solubility was evaluated. By comparing
Fig. 7.17(a) with Fig. 7.15(b) we obtain from Eq. (7.32)

D = −�Gθ
m = PθV θ

m = �xα
B · d2Gα

m

/
dx2

B · (
xθ

B − xα
B

)
. (7.48)

This is the driving force at the start of the precipitation of θ. As the process continues,
the supersaturation will decrease gradually and so will the driving force. It may thus be
interesting to evaluate the integrated driving force which should represent an average
value for the whole process. The method of evaluation is illustrated in Fig. 7.17(b).
One usually evaluates the integrated driving force for the transformation of the whole
system, i.e. the difference in Gibbs energy between the final α + θ mixture and the initial
supersaturated α. It is simply given by the short vertical line in Fig. 7.17(b).
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Figure 7.18 Solution to Exercise 7.8.

Exercise 7.8

Consider the formation of a small amount of β from a large reservoir of α under condi-
tions such that the reservoir has the potentials Gα

A and Gα
B and the new phase has Gβ

A and
Gβ

B (accepting that such conditions can somehow be realized). (a) Construct a reasonable
molar Gibbs energy diagram and use it for deriving an expression for the driving force
per mole of β phase. Express the result in terms of the potentials and the compositions
of the two phases. (b) Suppose the composition of α has been decided. How should one
choose the composition of β in order to get the largest driving force?

Hint

(a) Using the given potentials one can draw the tangents to the two Gibbs energy curves.
Evaluate the distance between them at the proper composition. (b) In this exercise, the
tangent to the α curve is given. The question is how we can find the point on the β

curve which lies as low as possible relative to the α tangent. In principle, it can be found
without drawing the corresponding β tangent but it would be most helpful to do so, so
long as one draws that tangent correctly.

Solution

(a) See Fig. 7.18(a). (b) One should choose the composition obtained from a parallel
tangent construction (see Fig. 7.18(b)).

Exercise 7.9

Show with the construction in Fig. 7.17(b) the magnitude of the integrated driving force
counted per mole of the θ phase formed.

Hint

The magnitude is −�Gm/ f θ if f θ is the final fraction of θ in the alloy. The question is
how to find this by construction. Notice that f θ can be found graphically using the lever
rule.
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Figure 7.19 Solution to Exercise 7.9.

Solution

Draw a straight line joining the final α and the initial α (Fig. 7.19). Extend the line to the
composition of θ. Also use the tangent to the final α point shown in Fig. 7.17(b). Read
the distance between intersections on the θ composition.

7.8 Partitionless transformation under local equilibrium

So far, we have mainly considered stationary states and for a state with more than
one phase we have assumed equilibrium between the phases, which is a reasonable
approximation after a long enough time at a high enough temperature. The situation is
quite different during a phase transformation but it is still common to assume that full
equilibrium is established locally at the phase interface even when it is migrating through
the material. This was introduced in Section 3.10 and is called the local-equilibrium
approximation and will now be our starting point for an examination of partitionless
transformations. The local conditions at migrating interfaces will be further discussed
in Chapter 14.

When a β→ α transformation occurs in an alloy without any difference in composi-
tion between the reactant phase (also called parent phase) and the product phase (also
called daughter phase or growing phase), it is regarded as a partitionless transformation.
The two phases will fall on the same vertical line in the molar Gibbs energy diagram.
Figure 7.20(a) shows the construction for a binary system. Under constant T and P, the
driving force is given by the vertical distance between two points representing the initial
β and the growing α

D = Gβ
m − Gα

m = −�Gm. (7.49)

It is evident that the partitionless transformation cannot possibly occur under local equi-
librium unless the composition of the phases falls on the left-hand side of the point of
intersection between the two Gm curves.

Whether or not a transformation can actually occur under the conditions illustrated in
Fig. 7.20(a) will be discussed in Section 14.4. An attractive possibility is illustrated in
Fig. 7.20(b). It is based on the assumption of local equilibrium at the interface and that
is why the common-tangent construction is used here. This illustration presumes that the
parent phase is so supersaturated that its composition falls on the equilibrium composition
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Figure 7.20 (a) Change in Gibbs energy for a partitionless β → α transformation. (b) A
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drives the diffusion in the matrix phase, β. The quantity xβo is the initial composition of the β
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Figure 7.21 Use of the common-tangent construction to find the boundary conditions for the
diffusion process.

of the growing phase. It should be realized that the local-equilibrium assumption implies
that there is a gradient within the parent phase, as illustrated in Fig. 7.21. There the
composition axis has been turned vertically in order to demonstrate how the molar
Gibbs energy diagram can yield the boundary conditions for diffusion.

Figure 7.21 demonstrates that the local-equilibrium assumption implies that there is a
pile-up of one of the components in front of the migrating interface. After an induction
period during which this pile-up is being built, one could expect a steady-state process
in which the rate of migration and the composition profile stay constant. As the interface
migrates through the system and pushes the pile-up forward, it makes material of the
initial alloy composition move up on the pile-up and on the top it will be deposited
on the growing phase, the composition of which is here assumed to be equal to the
initial one. During this process the material passes through regions of higher and higher
alloy content. In each such region the chemical potentials can be described by the end-
points of the tangent to the Gm curve at the local composition. The value of Gm for the
material we consider will be found on that tangent and at the initial composition. It is thus
evident that the material will gradually decrease its Gibbs energy by an amount −�Gm

corresponding to the arrow in the Gm diagram. The length of the arrow represents the
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α

xα/β = xα = xβο

xβ/α

Dd i f f

Din t = ∆PV α
m

β

Figure 7.22 Partitionless β → α transformation under local equilibrium and under a pressure
difference, respectively.

integrated driving force dissipated by diffusion in the pile-up. Under our assumptions,
all the driving force is used to drive the diffusion and the transformation is completely
diffusion controlled.

In rapid transformations an appreciable driving force may be required in order to
make the phase interface move with the high speed. A driving force may also be required
in order to balance the pressure difference across a curved phase interface, caused by
its surface energy, 2σ/ρ. The total driving force on the interface, Dint, may actually be
regarded as a pressure difference �P = Dint/Vm. In a very crude but useful approach it
is assumed that the rate of migration, υ, of an interface is proportional to the net pressure
difference,

υ = M · �Pnet = M · (Dint/Vm − 2σ/ρ), (7.50)

where M is the mobility of the interface, σ is the specific surface energy and ρ is the
radius of curvature, assuming a spherical shape.

The part of the driving force acting on the interface, Dint, has an effect on the local
equilibrium between the two phases, as illustrated in Fig. 7.22. The Gm curve for the
growing phase is lifted by an amount Dint relative to the curve for the parent phase
as if there actually were a pressure difference Dint/Vm. Due to this construction, the
equilibrium composition of the growing phase is displaced and the local-equilibrium
assumption now requires that the parent phase is initially even more supersaturated and
falls on the other side of the equilibrium composition of the growing phase, i.e. inside
its one-phase field. The amount of driving force dissipated by diffusion will in general
be higher than before.

Exercise 7.10

Consider the partitionless growth of α into a small spherical β particle of radius ρ in
a binary alloy. Suppose there is local equilibrium at the interface and no driving force
is required in order to make the interface move at a velocity υ. Make a reasonable
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Figure 7.23 Solution to Exercise 7.10.

construction in a Gm diagram illustrating that this could occur at an alloy composition
inside the α + β two-phase region.

Hint

The surface energy, σ , may lift the Gm curve for β.

Solution

The solution is presented in Fig. 7.23.

7.9 Activation energy for a fluctuation

Sometimes one is interested in the formation of a fluctuation for which the driving force
is negative. In such cases one instead talks about the activation energy. For the moment,
we shall make two assumptions: (i) the fluctuation is only in composition, not in structure;
and (ii) the size will not be prescribed. We have already demonstrated that a system is
not stable against fluctuations in composition if d2Gm/dx2 is negative. We shall now
consider the case of a positive curvature, Fig. 7.24. The activation energy per mole of
atoms in a fluctuation �xB is represented by �Gm in the diagram. By introducing the
curvature of the Gα

m curve we directly obtain an approximate expression if both Henry’s
and Raoult’s laws hold,

�Gm
∼= 1/2

(
�xα

B

)2 · d2Gα
m

/
dx2

B
∼= 1/2

(
�xα

B

)2 · RT
/

xα
Axα

B

∼= 1/2
(
�xα

B

)2 · RT
/

xα
B . (7.51)

However, in this case we should examine the validity of the approximation by also
carrying out an exact calculation. By comparing with the evaluation of the driving force
for the precipitation of a new phase we find without any approximation

�Gm = Gf
m − x f

AGα
A − x f

BGα
B = x f

A

(
Gf

A − Gα
A

) + x f
B

(
Gf

B − Gα
B

)
, (7.52)
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Figure 7.24 Molar Gibbs energy diagram for a fluctuation in composition.

where the superscript f denotes the fluctuation. Henry’s and Raoult’s laws yield

�Gm
∼= RT

[
x f

A ln
(
x f

A

/
xα

A

) + x f
B ln

(
x f

B

/
xα

B

)]
. (7.53)

For |x f
B − xα

B | � xα
B � 1 we obtain approximately

�Gm
∼= 1/2RT

(
xα

B − x f
B

)2/
xα

B . (7.54)

This is in agreement with the previous approximation, Eq. (7.51).

Exercise 7.11

Consider a binary liquid with 0.1% of B in A at 1273 K. Evaluate the activation energy
for the formation of fluctuations with 0.05 and 0.15% of B, respectively. Express the
results as joule per mole of atoms in the fluctuations.

Hint

It might be justified to use a dilute solution approximation but not the special approxi-
mation for |x f

B − xα
B | � xα

B.

Solution

(a) �Gm = RT [0.9995 ln(0.9995/0.9990) + 0.0005 ln(0.0005/0.0010)] = 1.625RT .
(b) �Gm = RT [0.9985 ln(0.9985/0.9990) + 0.0015 ln(0.0015/0.0010)] = 1.147RT .

Notice that the approximate equation would have given:

(a) �Gm = 0.5RT (0.0010 − 0.0005)2/0.0005 = 2.646RT .
(b) �Gm = 0.5RT (0.0010 − 0.0015)2/0.0015 = 0.882RT .
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Figure 7.25 Molar Gibbs energy diagram for a two-phase equilibrium in a ternary system. The
two-phase field is created by the common tangent-plane rolling under the two surfaces. (a) Two
ordinary solution phases. (b) One ordinary solution phase, α, and one solution between two
compounds.

7.10 Ternary systems

The property diagram for Gm at constant T and P as function of the molar content
in a ternary phase is a three-dimensional diagram with a surface like a canopy. It can
be shown that for a stable phase it is everywhere convex downwards and Fig. 4.9 was
drawn in accordance with that fact. In that diagram the tangent plane to an alloy was
also drawn, the intersections of which give the partial Gibbs energies in the alloy, i.e.
the chemical potentials. We shall now apply such diagrams to various cases of phase
equilibria.

Equilibrium between two phases requires that they have the same value for the chem-
ical potential of each component. In a binary system this leads to the common-tangent
construction where the intersections with the sides represent the chemical potentials. In
a ternary system it leads to a common tangent-plane construction where the intersec-
tions with the three edges represent the chemical potentials. With the two Gibbs energy
surfaces given, one can allow this tangent plane to roll under them and thus describe a
series of possible equilibrium situations, each one represented by a tie-line between the
two tangent points in the plane. The result will be a two-phase field, formed by projection
on the compositional triangle (see Fig. 7.25(a) where one tie-line is projected).

The general equilibrium condition in a ternary system is of course Gα
A = µA = Gβ

A,
Gα

B = µB = Gβ
B and Gα

C = µC = Gβ
C. These three equations leave one degree of freedom

for the two-phase equilibrium since each phase can vary its composition by two degrees
of freedom. The two-phase region in a ternary phase diagram will thus be an area covered
by tie-lines. Each tie-line connects two points, representing the coexisting phases in a
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possible state of equilibrium. This conclusion still holds even if there is a restriction to
the variation in composition of one of the phases but the equilibrium equations will then
be modified, as we shall now see.

Let us first consider the equilibrium between a solution of compounds and an ordinary
solution phase. It can be illustrated with the molar Gibbs energy diagram in Fig. 7.25(b).
It should be noticed that here a + c = 1 because the diagram is for one mole of atoms.
The construction shows that the equilibrium condition can be derived by considering
two of the sides of the triangular tangent plane

Gθ
AaCc

= aµA + cµC = aGα
A + cGα

C (7.55a)

Gθ
BaCc

= aµB + cµC = aGα
B + cGα

C. (7.55b)

These equilibrium conditions leave one degree of freedom because there are two equa-
tions and three possible variations in composition, one for the solution of compounds
and two for the ordinary solution phase. By taking the difference between the equations
we find that (

Gθ
AaCc

− Gθ
BaCc

)/
a = Gα

A − Gα
B. (7.56)

Let us next consider the equilibrium between two solutions of compounds, θ and φ, with
the formulas (A, B)aCc and (A, B)bCd, where a + c = 1 = b + d. The previous type
of equation applies to each one of these phases although the chemical potentials on the
right-hand side cannot be referred to any one of the phases but are simply the chemical
potentials of the two-phase equilibrium.

Gθ
AaCc

= aµA + cµC

Gθ
BaCc

= aµB + cµC

Gφ
AbCd

= bµA + dµC

Gφ
BbCd

= bµB + dµC.

By eliminating the unknown potentials we find a single equilibrium condition(
Gθ

AaCc
− Gθ

BaCc

)/
a = µA − µB = (

Gφ
AbCd

− Gφ
BbCd

)/
b. (7.57)

We have thus found that there will again be one degree of freedom because now there
are two possible variations in composition, one for each line compound. If one selects a
composition for one phase, the composition of the other one is given by this equation.
The result will be similar but mathematically more complicated if the two solution phases
are formed by the mixing of a different pair of components.

Exercise 7.12

Consider the equilibrium between a solution phase (A, B)aCc and a stoichiometric com-
pound AlBmCn in a ternary system. Show how the chemical potential of the element C
can be calculated.
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Hint

For the stoichiometric compound, φ, there is only one relation. For the solution phase,
θ, there are two. Find a combination of Gs that eliminates µA and µB.

Solution

oGφ
m = lµA + mµB + nµC; Gθ

AaCc
= aµA + cµC; Gθ

BaCc
= aµB + cµC. Elimi-

nate µA and µB by taking aoGφ
m − lGθ

AaCc
− mGθ

BaCc
, which is found to be equal to

(an − cl − cm)µC. We obtain µC = (aoGφ
m − lGθ

AaCc
− mGθ

BaCc
)/(an − cl − cm).

7.11 Solubility product

According to Eq. (3.18) the Gibbs energy of a phase φ is always related to the chemical
potentials µi by the following relation

Gφ
m =

∑
xφ

i µi , (7.58)

where xφ
i represents the composition of the phase. When the phase is a compound, the

composition is constant and it is described by the indices in the formula, e.g. l,m,n in
AlBmCn. For one mole of formula units we have, if l + m + n = 1,

oGφ
m = lµA + mµB + nµC. (7.59)

The superscript o is used in order to indicate that the value refers to the compound itself,
the ‘pure compound’, and not to a compound phase, diluted by other components being
dissolved in it.

Figure 7.26 illustrates the equilibrium between a compound φ and a solution phase, α.
There is only one equilibrium condition and it is obtained by inserting the partial Gibbs
energies of the solution phase instead of the chemical potentials in the last equation. So,

oGφ
m = lGα

A + mGα
B + nGα

C (7.60)

Let us consider the solubility curve of φ in α close to the A corner and introduce
activities instead of chemical potentials. The activity ai is defined through the equation

Gi = oGi + RT ln ai , (7.61)

where oGi is the molar Gibbs energy of some reference state for i. Eq. (7.59) yields(
oGφ

m − loGA − moGB − noGC
) /

RT = l · ln aA + m · ln aB + n · ln aC. (7.62)

Using the standard Gibbs energy of formation of the φ phase from the pure components
in their reference states, which is equal to the expression in parentheses, we get

exp
(
�oGφ

m

/
RT

) = (aA)l(aB)m(aC)n. (7.63)
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Figure 7.26 Molar Gibbs energy diagram for a ternary system with an ordinary solution phase, α,
and a ternary stoichiometric phase, φ.
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Figure 7.27 Isothermal and isobaric section of the Fe–Cr–C phase diagram near the Fe corner.
The solubility curves for strictly stoichiometric compounds would have been straight lines in the
logarithmic diagram (b) and hyperbolic in the linear diagram (a).

In a dilute solution the activity of minor components is approximately proportional to the
content expressed, for instance, as the molar content. The activity of the major component
is approximately unity and can thus be omitted from the equations. Thus,

exp
(
�oGφ

m

/
RT

) = (aB)m(aC)n. (7.64)

The left-hand side is often denoted by K and is regarded as the solubility product. The
solubility curve for a compound in a terminal solution may thus be approximated by a
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Figure 7.28 Solution to Exercise 7.13.

hyperbolic curve in a linear phase diagram and with a straight line in a logarithmic phase
diagram. As an example, in Fig. 7.27 an isobarothermal section of the phase diagram
Fe–Cr–C is presented. The diagram shows the solubilities of three carbides in γ. In the
logarithmic diagram the solubility lines are almost straight although the compositions
of the carbides are not quite constant.

Exercise 7.13

Consider the equilibrium between two ternary stoichiometric phases. Even though the
compositions are fixed, there is a degree of freedom from a thermodynamic point of view
because there must be three chemical potentials. After a value has been chosen for one
of them, the other two are fixed. Derive equations for their calculation.

Hint

There are only two equations relating the three potentials, one for each phase. Choose
one of the potentials as the independent one and eliminate one of the other two.

Solution

Write the two conditions as oGθ
m = aµA + bµB + cµC and oGφ

m = lµA + mµB + nµC.
A Gibbs energy diagram demonstrates that there is indeed one degree of freedom
(Fig. 7.28). We can thus take any value of µC, for instance, and then express the other
two in µC. After eliminating µB by multiplying the first equation with m and the other
with b and subtracting, we get µA = [moGθ

m − boGφ
m + (bn − cm)µC ]/(am − bl) and

in the same way µB = [loGθ
m − aoGφ

m + (an − cl)µC]/(bl − am).
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Figure 7.29 Solution to Exercise 7.14.

Exercise 7.14

Sketch the whole γ + M7C3 two-phase field in Fig. 7.27 and include a series of tie-lines.

Hint

Tie-lines are straight lines in diagrams with linear scales. When the scales are changed
to logarithmic, only those tie-lines remain straight that are horizontal or vertical or have
a slope of unity.

Solution

The solution is given in Fig. 7.29.



8 Phase equilibria and potential
phase diagrams

8.1 Gibbs’ phase rule

We saw in Section 3.1 that the internal energy of a c-component system is a function
of c + 2 independent, extensive state variables, with the possible addition of internal
variables, and the fact is that the equilibrium state of the system is completely determined
by the c + 2 variables. Consequently, if the state of a system is known, one may calculate
the change of internal energy U by specifying the change of these variables, assuming
that there is no entropy-producing process inside the system. So, for a reversible change
we have

dU = T dS − PdV + �µi dNi , (8.1)

where T, − P and µi are potentials. We have also seen that one can instead introduce
other independent variables, for instance the potentials T and – P, obtaining

dG = d(U − ST + V P) = −SdT − V d(−P) + �µi dNi . (8.2)

The state of the system is still determined by c + 2 independent variables. However,
when we further introduced all the chemical potentials µi as variables in Section 3.3,
we obtained a relation between the c + 2 variables which did not involve any other state
function,

0 = d(G − �Niµi ) = −SdT + V dP − �Ni dµi . (8.3)

Instead, this equation gave a relation between the c + 2 potential variables. As mentioned
in Section 3.3 it is usually called the Gibbs–Duhem relation. As a consequence, only
c + 1 of the potentials, T, −P and µi are independent and any one of them may be
regarded as the dependent potential. In order to define the state of a system completely
it is thus necessary to use at least one extensive variable and that is for the purpose of
defining the size of the system. It is convenient to use the total content of matter, N, for
this purpose or the content of one of the components, Nj. If one is only interested in the
properties of a substance, one may disregard the size of the system and regard the state as
completely defined by c + 1 potentials. In order to represent all the states we then need
a diagram with r = c + 1 axes, a state diagram according to Section 1.1. We shall call r
the dimensionality of that diagram. In the following, when we talk about the properties
of a system, we shall disregard its size.
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If µ1 is chosen as the dependent potential, then it is convenient to divide by N1 and
thus introduce molar quantities per mole of component 1.

dµ1 = −Sm1dT − Vm1d(−P) −
c∑
2

zi dµi . (8.4)

In this connection it may again be emphasized that one should always specify how the
formula unit is defined for molar quantities like Sm and Vm. In Section 4.3 the molar
quantities, obtained by dividing by N1, were identified with the subscript ‘m1’ and Ni/N1

was denoted by zi. For clarity this notation is adopted in the present discussion.
When considering more than one phase in mutual equilibrium, one has a relation of

the above type for each phase and every such relation should be obeyed simultaneously
if the phases are to stay in equilibrium during the change. Of course, T must have the
same value in all the phases and the same holds for all µi. Neglecting the effect of surface
energy, the same holds for P. The Gibbs–Duhem relations for all phases will thus contain
the same changes of the potentials. For each new phase, added to the equilibrium, there
will thus be one more relation between the changes of the potentials and the number
of independent variables will decrease by one. This is expressed by Gibbs’ phase rule,
Eq. (8.5).

υ = c + 2 − p, (8.5)

where υ is called the variance or the number of degrees of freedom for the equilibrium
with p phases.

The independent variables in Gibbs’ phase rule are primarily the potentials because
the derivation of the expression for the variance is based upon the Gibbs–Duhem relation,
which concerns the change of potentials. An extensive quantity must be included in the
set of independent variables in order to define the size of the system but that feature is
not covered by Gibbs’ phase rule and will not be further discussed here. On the other
hand, instead of a potential one may alternatively use one of the molar quantities Sα

m1,
V α

m1 and zα
i for any phases α, because they are intensive variables and are strictly related

to T, −P and µi. However, it may again be emphasized that the molar quantities are not
potentials like T, −P and µi although they are intensive quantities. They will generally
have different values in the individual phases.

It should be emphasized that c is the number of independent components. In an alloy
system it is usually the number of elements but in a system with molecules it may not
be immediately evident how many species should be included in the set of independent
components because it is affected by stoichiometric constraints. In a complicated system
it may be difficult to identify the number of stoichiometric constraints. We shall return
to this problem in Chapter 13.

We may encounter even more complicated cases in systems with molecules of
restricted capability to react with each other. In order to describe such cases with Gibbs’
phase rule one sometimes includes all molecules or ‘chemical substances’ and then sub-
tracts a term for the number of ‘independent reactions’ in order to obtain the number of
components. However, the problem remains and is now focused on defining the number
of independent reactions. This problem was discussed in Section 5.5. As a consequence,
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we shall not modify Gibbs’ phase rule in this way. By components we shall understand a
set of chemical substances necessary and sufficient for defining the over-all composition
of every phase, taking due notice of all the chemical reactions which can occur and also
of all stoichiometric constraints.

In the remainder of the present chapter we shall discuss the consequences of Gibbs’
phase rule for a kind of diagram which will be introduced soon, the so-called phase
diagrams.

Exercise 8.1

Consider as a system the content of an expandable vessel. In the vessel one has enclosed
a certain amount of water. Then one varies T and P by actions from the outside and
studies what happens to V in an attempt to decide whether the system behaves as a unary
system. Due to its larger volume, it is easy to see when a gas phase forms. Discuss what
one would expect to happen. Suppose the wall of the vessel acts as a catalyst for the
dissociation of H2O into H2 and 1/2 O2.

Hint

The discussion should be based upon Gibbs’ phase rule written as c = υ − 2 + p.

Solution

The vapour pressure of H2O depends on T. At any arbitrary external P there will be a
unique T where water and vapour can coexist. To choose P arbitrarily is the only freedom,
which yields c = υ − 2 + p = 1 − 2 + 2 = 1. This system behaves as a unary. It would
start to behave as a binary if some hydrogen can leak out through the wall of the vessel.
Then water and gas can coexist over a range of T although very small.

8.2 Fundamental property diagram

Let us first discuss a T, P diagram for a substance with one component, A, and one
phase, α. According to Gibbs’ phase rule the state is completely determined by giving
the values of T and P, i.e. by giving a point in the T, P diagram. In this sense we may
thus regard the T, P diagram as a state diagram according to Section 1.1. The value
of µA for the substance can be calculated and plotted as a surface above the T, P state
diagram, yielding a three-dimensional diagram, see Fig. 8.1. This type of diagram we may
regard as a property diagram for the particular substance under consideration. Actually,
this diagram can be looked at from any direction and any one of T, P and µA may be
regarded as the dependent variable. The state may be defined by a point on any side of
the property diagram. As a state diagram one may thus use a diagram formed by any two
of the potentials.
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µA

T

P

Figure 8.1 Fundamental property diagram for a unary system with one phase. Any one of the
three potentials can be chosen as the dependent variable (property). The potential P has been
plotted in the negative direction because –P appears naturally in thermodynamic equations.

This kind of property diagram is of special interest because it is composed of a
complete set of potentials. We shall call it the fundamental property diagram and it
has the axes T, P and one µi for each component. In a unary system µA is identical to
Gm and the surface in the diagram thus represents a fundamental equation, Gm(T, P).

For a higher-order system it represents a fundamental equation µ1(T, P, µ2, µ3, . . .)
which is of a type we have not defined before. In principle, we could calculate a point on
the surface from any one of the fundamental equations, if it is available. One can then
follow the surface by applying the Gibbs–Duhem relation. For a unary system we get

SdT − V dP + NAdµA = 0. (8.6)

The direction of the surface is given by the relations(
∂µA

∂(−P)

)
T

= − V

NA
< 0;

(
∂µA

∂T

)
P

= − S

NA
;

(
∂(−P)

∂T

)
µA

= − S

V
. (8.7)

As many times before, we take −P as a potential rather than +P. The numerical values of
the last two ratios depend on what reference we choose for the entropy. If we accept the
common choice of S = 0 at T = 0 K, then S and all the ratios are positive at T > 0 and all
the derivatives are negative. Figure 8.1 was constructed accordingly. Similar expressions
can be derived for a system with several components and we can summarize all the
expressions in a general form (

∂Y a

∂Y b

)
Y c

= − Xb

X a
< 0, (8.8)

where Y c represents all the potentials except Y a and Y b.
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µA

T
−P

Figure 8.2 Fundamental property diagram for a unary phase. The surface is everywhere convex.
The property surface is here shown for negative pressures, which is not unrealistic for solid
substances.

Since a point on any side of the T, P, µA diagram defines the state, we can use the
third axis for the representation of some other property. We may, for instance, represent
the refractive index r as a function of T and P but that would not be a fundamental
property diagram. However, knowing a point on the surface, we may follow the surface
by applying an equation similar to the Gibbs–Duhem relation.

dr =
(

∂r

∂T

)
P

dT +
(

∂r

∂ P

)
T

dP. (8.9)

The surface in Fig. 8.1 was given as a plane for the sake of simplicity. That would require
that V/NA and S/NA are constant for the α phase, independent of T and P. In reality,
they are not constant and the surface would be curved. We shall now examine in what
direction it will be curved. The fundamental property diagram is independent of the size
of the system since only potentials are concerned. However, we have the right to consider
a system of a constant size and to define that size by any extensive variable. If we take
X a as that variable, and keep it constant when we evaluate the curvature in a section of
constant Y c from the derivative of Eq. (8.8), we obtain(

∂2Y a

∂(Y b)2

)
Y c,X a

=
(

∂(−Xb/X a)

∂Y b

)
Y c,X a

= − 1

X a

(
∂ Xb

∂Y b

)
Y c,X a

= − 1

X a

/(
∂Y b

∂ Xb

)
Y c,X a

< 0.

(8.10)

in view of the stability condition Eq. (6.28). The result is illustrated in Fig. 8.2 for an
element A with the choice of µA > 0 at T = 0 and P = 0. The surface looks like part of a
dome and is everywhere convex, as seen from the origin. A different choice of reference
for µA will simply displace the whole surface vertically.

Let us return to the simple picture in Fig. 8.1. Suppose that we make a similar diagram
for the same substance in another possible structure (phase), β, and plot the two surfaces
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Figure 8.3 Fundamental property diagram for a unary system with two phases. One may regard
µ

β
A − µα

A as the integrated driving force for transformation from β to α at the given values of T
and P.

in the same coordinate frame. We can then compare the two phases at the same T and P,
for instance, and evaluate the difference in µA, see Fig. 8.3.

Let us consider a possible transition from phase β to phase α at the fixed values
of T and P. We cannot evaluate the driving force for that transition without knowing
the detailed mechanism, i.e. the reaction path. However, we can evaluate the integrated
driving force for the transition,

∫
Ddξ . We should then use the form of the combined law

having T, −P and µA as the variables:

0 = −SdT − V d(−P) − NAdµA − Ddξ, (8.11)

in which T and P must be regarded as independent variables if they are kept constant.
The third potential, µA, must then be regarded as a dependent variable. In addition, we
may choose one of the extensive variables as independent in order to define the size of
the system and it must come from the conjugate pair, which has not yet been used to
define an independent variable. It must thus be NA. For a system at constant T, −P and
NA we obtain∫

Ddξ = −
∫

NAdµA = −NA
(
µα

A − µ
β
A

) = NA
(
µ

β
A − µα

A

)
. (8.12)

It is evident that the phase with the lower µA value will be the more stable phase. At the
combination of T and P, marked in Fig. 8.3, α is thus the more stable phase. Furthermore,
the line of intersection of the two surfaces must be a line of coexistence because on that
line there is no driving force for a change. This line is shown in Fig. 8.3. In the figure the α

phase is stable in front of the coexistence line and the β phase behind it. It is evident that
the coexistence line represents a ridge on the composite surface representing the stable
states. We may generalize this observation and conclude that the surface representing
stable states in a system with several phases is composed of pieces, one for each stable
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Figure 8.4 Fundamental property diagram for a substance having four different structures
(phases). The two-phase lines are all ridges. There are no re-entrant angles.

phase, and joined by coexistence lines which are all ridges. An example with four phases
is shown in Fig. 8.4. If we combine this with the previous conclusion that the surface
for each single phase is convex, we may conclude that the composite surface is also
convex.

Exercise 8.2

Using the criterion that the more stable phase in a unary system under constant T and
P has the lower chemical potential, it is possible to obtain a so-called phase diagram
from Fig. 8.3. (This will be demonstrated in Fig. 8.5.) Suppose that one would instead
like to choose µA and T as the independent variables and construct a phase diagram
with these axes. What criterion could then be used for deciding where each phase is
stable?

Hint

The answer can be found by again considering the combined law in the form of
Eq. (8.12). What extensive variable should be regarded as independent when µA and
T are chosen as independent potentials?

Solution

We must choose V as the independent extensive variable. By keeping V constant together
with T and µA we should obtain

∫
Ddξ = ∫

V dP = ∫
V (Pα − Pβ) > 0 if α is the more

stable phase. It is evident that the phase with the highest P will be the more stable
phase.
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Figure 8.5 Projection of the fundamental property diagram onto the T, P state diagram, yielding
a potential phase diagram.

8.3 Topology of potential phase diagrams

A coexistence line in the fundamental property diagram can be projected onto any side
of the diagram, for instance the T, P side (see Fig. 8.5). In that T, P diagram (Fig. 8.5(b))
we may indicate on which side of the line each phase is stable, i.e. has a lower µA value
than the other phase. We may further indicate that the coexistence line represents the
α + β equilibrium. Such a diagram is called a phase diagram and it is actually a state
diagram used for plotting coexistence lines. In this chapter we shall mainly be concerned
with phase diagrams. In order to emphasize the character of the axis variables we may
call the present diagram a potential phase diagram. It is worth remembering that it
is actually a projection of the fundamental property diagram. When T, −P, µA is used
as the complete set of potentials, one usually projects in the direction of µA and presents
the T, P phase diagram. However, it should be remembered that in Section 3.5 it was
shown that there are at least nine ways of writing the Gibbs–Duhem relation and there
are thus at least nine sets of potentials that can be used in the construction of potential
phase diagrams.

Knowing one point on the coexistence line in the fundamental property diagram we
can determine the direction of the line by applying the Gibbs–Duhem relation to both
phases using the fact that dT, dP and dµA must be the same in both phases if they still
coexist

dµA = −Sα
mdT + V α

m dP (8.13)

dµA = −Sβ
mdT + V β

m dP. (8.14)

This system of equations defines the direction of the α + β coexistence line in the
fundamental property diagram. The direction of the projected line in the T, P phase
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Figure 8.6 The T, P phase diagram for carbon, according to a thermodynamic assessment.

diagram, i.e. the α + β phase field, is obtained by eliminating dµA from the Gibbs–
Duhem relations

dP

dT
= Sα

m − Sβ
m

V α
m − V β

m

. (8.15)

As an example Fig. 8.6 shows the equilibrium between graphite and diamond in a
T, P phase diagram for carbon. Except for low temperatures the equilibrium line is
almost a straight line because the differences in Sm and Vm stay rather constant. At low
temperature the line becomes parallel to the T axis because the difference in Sm goes to
zero at absolute zero in agreement with the third law of thermodynamics.

Using the alternative form of the Gibbs–Duhem relation, obtained from line 5 in
Table 3.1, we may introduce (Hα

m − Hβ
m)/T instead of (Sα

m − Sβ
m).

d(−P)

d(−1/T )
= − Hα − Hβ

(V α − V β)/T
(8.16)

dP

dT
= − (Hα − Hβ)/T

V α − V β
. (8.17)

This is known as Clapeyron’s relation. It should be realized that the molar volumes
of condensed phases are so small that pressures of about 1 bar have an effect on the
equilibrium temperature which is negligible for many purposes.

Suppose there is a third possible phase. We shall then have a third surface in the
property diagram. There will be three coexistence lines and one point of intersection, a
triple point, and by projection they will all show up on the phase diagram (see Fig. 8.7).

It is immediately evident that all the angles between the three intersecting lines in
the phase diagram are less than 180◦. We have thus found the 180◦ rule which says that
the corners of a one-phase field must have angles less than 180◦. The dashed lines in
Fig. 8.7 represent metastable extrapolations of the two-phase coexistence lines and they
fall inside the one-phase field of the third phase. The geometrical elements of the potential
phase diagram are called phase fields and they are listed here.
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Figure 8.7 Projection of a property diagram (a) onto the T, P state diagram, yielding a phase
diagram (b) with three univariant and one invariant phase equilibria. Metastable equilibria are
shown with dashed lines.

(a) Points where three phases are in equilibrium. We cannot change any variable without
changing the kind of equilibrium. We call this an invariant equilibrium or a zero-
dimensional phase field.

(b) Lines where two phases are in equilibrium. We can change only one variable inde-
pendently without leaving the line. We call this a univariant equilibrium or a one-
dimensional phase field.

(c) Surfaces where a single phase exists. We can change two independent variables
without leaving this kind of phase field. We call this a divariant equilibrium or a
two-dimensional phase field.

The dimensionality of a phase field in the potential phase diagram is thus equal to the
variance of the corresponding phase equilibrium. We shall denote the dimensionality by
d and can calculate it from Gibbs’ phase rule. With one component it yields

d = υ = c + 2 − p = 3 − p. (8.18)

A three-phase equilibrium thus has a variance of 0 and appears as a point (d = 0). A
single phase has a variance of 2 and it thus requires a surface (d = 2) to be represented.

More phases can be added but there will be no new kind of geometrical element.
The probability of more than three surfaces meeting in a point in a property diagram
is negligible for any real system. As an example of a more complex phase diagram,
Fig. 8.8 reproduces the Fe phase diagram. Most of the lines are fairly straight similar
to the line in Fig. 8.6. An exception is the two branches of the bcc + fcc line because
they can be joined by a curve looking as a parabola by extrapolating them to negative P
values. Clapeyron’s relation shows that the heat of transformation has different signs for
the two branches and must go through zero at some intermediate temperature, i.e. at a
negative pressure. The reason is a magnetic transition in the bcc phase.
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Figure 8.8 T, P phase diagram of Fe according to an assessment of experimental information.

Exercise 8.3

Derive an equation for the α + β line in a unary T, P phase diagram under the conditions
that �Hm and �Vm can be regarded as constant.

Hint

Start with Clapeyron’s relation, Eq. (8.17).

Solution

dP = (�Hm/�Vm)(dT/T ) and P − P0 = (�Hm/�Vm) ln(T/T0) under constant �Hm

and �Vm. In addition, a point on the line, T0, P0, must be known. It should be noticed
that it is sometimes more convenient to approximate �Sm as constant than �Hm. The
result is then a straight line in a linear T, P phase diagram. When one of the phases is
a gas, one may approximate �Vm by RT/P and integration yields, if �Hm is constant,
lnP = K exp(−�Hm/T ).

Exercise 8.4

A T, P phase diagram for a unary system (pure A) is given in Fig. 8.9. It shows four
phases. Construct a reasonable T, µA property diagram at P1. It should show all the
stable and metastable two-phase equilibria at P1.

Hint

The T values for all the two-phase equilibria at P1 are easily found by extrapola-
tion. Approximate all the T, µA lines by straight lines, intersecting at the two-phase
equilibria.
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Figure 8.10 Solution to Exercise 8.4.

Solution

The solution is given in Fig. 8.10. The convex polygon close to the origin represents the
stable equilibria.

8.4 Potential phase diagrams in binary and multinary systems

So far we have discussed a system with one component, a unary system. In a binary
system we have two components and four potentials, T, −P, µA and µB. The fundamental
property diagram will be four-dimensional and cannot be visualized. The phase diagram
will be three-dimensional and it will be composed of four geometrical elements as
illustrated in Fig. 8.11. They are all phase fields.

(a) Points where four phases are in equilibrium. We cannot change any variable without
changing the kind of equilibrium.

(b) Lines where three phases are in equilibrium. We can change only one variable inde-
pendently without leaving the line.
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Figure 8.11 T, P, µB phase diagram for a binary system with four phases.

(c) Surfaces where two phases are in equilibrium. We can change two independent
variables without leaving this phase field.

(d) Volumes where a single phase exists. We can change three independent variables
without leaving this kind of phase field. Its equilibrium is trivariant.

For higher-order systems, ternary, quaternary, quinary, etc., the principles will be the
same. The phase diagram will have c + 1 axes, where c is the number of components.
The geometrical elements will be points, lines, surfaces, volumes, hypervolumes, etc.,
and they will represent phase equilibria which have a variance of zero, one, two, three,
four, etc., in accordance with Gibbs’ phase rule.

Suppose one wants to calculate a state of equilibrium under the requirement that it
must consist of p specified phases. Then one must, in addition, specify the values of υ

independent variables, where υ is given by Gibbs’ phase rule, υ = c + 2 − p. On the
other hand, suppose one wants to calculate a state of equilibrium without specifying any
phase. Then one must specify the values of υ independent variables, where υ is equal
to c + 1 because the phase diagram will have c + 1 axes. That corresponds to the case
of one specified phase. This does not violate Gibbs’ phase rule because one will always
fall inside a one-phase field, p = 1. In practice one will never be able to hit exactly on
the other types of geometrical elements.

Figure 8.3 illustrated the integrated driving force for a transition from β to α. The
same situation cannot be illustrated for a higher-order system but the integrated driving
force can be derived in the same way under conditions where T, P and all the chemical
potentials except for µ1 are kept constant. The combined law yields

N1dµ1 = −SdT + V dP −
c∑
2

Nkdµk − Ddξ = −Ddξ (8.19)∫
Ddξ = −N1

(
µα

1 − µ
β
1

) = N1
(
µ

β
1 − µα

1

)
. (8.20)

It is thus necessary that µ1 is lowest in the stable phase if all the other potentials are kept
constant.
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In the above integration it was assumed that N1 is kept constant which was the way
to define the size of the system. However, it must be noted that the content of all the
other components will most probably change during a transition carried out under the
conditions considered here. It may be of more practical interest to derive the integrated
driving force for a transition under constant T, P and composition. It can be obtained
from the combined law expressed in terms of Gibbs energy,

dG = −SdT + V dP + �µi dNi − Ddξ = −Ddξ (8.21)∫
Ddξ = Gβ − Gα. (8.22)

Exercise 8.5

Try to formulate the equivalence of the 180◦ rule for a point where four phases coexist
in a binary three-dimensional phase diagram.

Solution

All such points must be on pointed tips. The four adjoining three-phase lines must fall
on ridges.

8.5 Sections of potential phase diagrams

In order to visualize a higher-order potential phase diagram one may decrease the
number of dimensions by making a section at a constant value of some potential, an
equipotential section. It will show exactly the same geometrical elements as a poten-
tial phase diagram for a system with one component less. One may section several
times and thus decrease the dimensions of a higher-order phase diagram until it can
be plotted as a two-dimensional diagram. It is common first to keep P constant and
then T. One may then continue and keep the chemical potential of some component
constant.

At each sectioning one will lose the geometrical element of the lowest dimensionality.
This is demonstrated in Fig. 8.12 which was obtained by taking a horizontal (T = T1)
section through the potential phase diagram in Fig. 8.11. The chance of hitting the
four-phase point is negligible and no four-phase point should be included in this type
of diagram. The topology of a diagram will thus be the same whether the number of
dimensions is decreased by sectioning at a constant value of a potential or by reducing
the number of components by one. In order to distinguish the two cases, one may call
the diagram with axes for all the independent potentials a complete potential phase
diagram. It has c + 1 axes.

In Section 8.3 we called the geometrical elements phase fields. In the complete poten-
tial phase diagram a phase field has the dimensions given by Gibbs’ phase rule. However,
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Figure 8.12 Equipotential (isothermal) section of the potential phase diagram in Fig. 8.11 at
T = T1.

its dimensionality decreases by one unit for each sectioning and we obtain

d = υ − ns = c + 2 − p − ns, (8.23)

where ns is the number of sectionings. In order to avoid confusion with the variance of
a phase equilibrium, which is given by Gibbs’ phase rule and is independent of what
kind of diagram is used, this will be called the phase field rule. The number of axes in
the diagram, r, which initially is c + 1, will also decrease by sectioning, r = c + 1 − ns,
and we can thus write the phase field rule as

d = r + 1 − p. (8.24)

Phase fields for which d < 0 will normally not show up in the final diagram, as
demonstrated by the negligible chance of hitting the four-phase point in the above
case.

It is evident from the second form of the phase field rule that a diagram with r axes
has the same topology independent of how many sectionings of potential axes have been
used to obtain it. By inspecting a diagram without knowing the number of components,
it is thus impossible to tell if it is a section or not.

Exercise 8.6

Consider the equilibrium Fe + S(gas) ↔ FeS under a constant P. Can it exist in a range
of T ?

Solution

We have two components, Fe and S, i.e. c = 2, and three phases, Fe, gas and FeS, i.e.
p = 3. If we section at some pressure, we have ns = 1. Thus d = c + 2 − p − ns = 2 +
2 − 3 − 1 = 0. Under these conditions the equilibrium can exist only at a particular T.
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Figure 8.13 Isobaric section at 1 bar of the W–C phase diagram with two potential axes, drawn in
two alternative ways. 1/T has been plotted in the negative direction because –1/T appears
naturally as a potential in thermodynamic equations.

8.6 Binary systems

As an example of a sectioned phase diagram, Fig. 8.13 shows the bcc–W and WC phases
in the W–C phase diagram at 1 bar. Two different sets of axes are used. Since a chemical
potential has no natural zero point, a reference must be chosen. In this case graphite at
1 bar and the actual temperature was chosen for carbon.

It is interesting to note that the univariant two-phase field approximates very well to
a straight line in Fig. 8.13(b). Its slope is obtained from the Gibbs–Duhem relation for
constant P, applied to each one of the phases. In order to calculate the slope of the line
in Fig. 8.13(b) we shall apply the Gibbs–Duhem relation in an alternative form obtained
from the fifth line of Table 3.1 after dividing all the extensive quantities by NW.

d(µW/T ) = H W
m1d(1/T ) − zW

C d(µC/T ) (8.25)

d(µW/T ) = H WC
m1 d(1/T ) − zWC

C d(µC/T ). (8.26)

On the line of coexistence the change of each potential must be the same in both phases.
We may thus eliminate d(µW/T) by subtracting one equation from the other, to obtain

d(µC/T )

d(1/T )
= H WC

m1 − H W
m1

zWC
C − zW

C

. (8.27)

Here, zW
C = 0 and zWC

C = 1. Since the solubility of carbon in bcc–W is very low, we can
approximate H W

m1 with the enthalpy of pure bcc–W, o H bcc
W , to obtain

d(µC/T )

d(1/T )
= H WC

m1 − o H bcc
W . (8.28)

However, in order to define a numerical value for the right-hand side, it is necessary to
choose a state of reference for carbon. By introducing graphite as the state of reference
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Figure 8.14 The Fe–C phase diagram at 1 bar, plotted with two potential axes.

for carbon, we obtain

d
((

µC − oGgr
C

)/
T

)
d(1/T )

= H WC
m1 − o H bcc

W − o H gr
C , (8.29)

because d(oGgr
C /T )/d(1/T ) = o H gr

C . The right-hand side is the heat of formation of one
mole of WC units from the pure elements, a quantity we may denote by �o

f HWC. The
fact that the curve in Fig. 8.13(b) is almost straight, indicates that the heat of formation
is approximately constant. By definition µC − oGgr

C is equal to RT lnaC where aC is the
carbon activity, referred to graphite, and Eq. (8.29) can be written as

Rd ln aC

d(1/T )
= �o

f HWC, (8.30)

and we could have plotted RlnaC as the abscissa and still have the almost straight line.
In Fig. 8.13(a) the potentials T and µC − oGgr

C have been used on the axes and with
the usual form of the Gibbs–Duhem relation we obtain

d(µC − oGgr
C )

dT
= −SWC

m1 + oSbcc
W + oSgr

C = �o
f SWC. (8.31)

The abscissa could have been interpreted as RTlnaC. From the fact that the slope is rea-
sonably constant we may conclude that the entropy of formation of WC is approximately
constant, but not as constant as the heat of formation.

The situation will be more complicated if one or both phases can vary in composition.
As an example, a complete Fe–C phase diagram at a constant pressure is presented in
Fig. 8.14, using the axes 1/T and (µC − oGgr

C )/T . The strong curvatures are caused by
the strong variation in composition of the fcc and liquid phases. All the lines turn vertical
at low values of µC . That is where the C content goes to zero and all phases become pure
Fe. The difference in composition thus goes to zero.

For reactions involving oxygen it is natural to use an O2 gas of 1 bar as reference.
However, we may also express the oxygen potential by the ratio of the partial pressures
of CO2 and CO in an ideal gas and use as a reference a gas where these partial pressures
are equal. Figure 8.15 gives an example of such a diagram with information from a large
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Figure 8.15 Combination of isobaric phase diagrams for many M–O systems at 1 bar. The
oxygen potential is represented by PCO2/PCO in a hypothetical gas which is not present, except
for the line CO + CO2.

number of M–O systems. An oxide is stable above each line. Below the line the stable
state is either the pure metal or a lower oxide. The diagram is calculated for 1 bar and the
state for pure Zn above the boiling point is thus Zn gas of 1 bar because the O2 pressure
is low enough to be neglected. This diagram is often called the Ellingham diagram. It
should be emphasized that the effect of pressure is so small that this diagram could be
used for any pressure down to zero and up to many bars, except for (i) the line CO +
CO2 which holds only for PCO + PCO2 = 1 bar and (ii) the line for gaseous Zn.

Exercise 8.7

Consider a system with graphite in a vessel under a pressure of 1 bar and a temperature
of 1000 ◦C. The vessel can expand and accommodate a gas. What would be the partial
pressures in the gas if a small amount of oxygen is introduced?

Hint

In this case the ordinate axis in Fig. 8.15 expresses not only the oxygen potential but
also gives the actual value of PCO2/PCO.

Solution

The system would place itself on the CO + CO2 line and from Fig. 8.15 we read for
1000 ◦C: log(PCO2/PCO) = −2 which together with PCO2 + PCO = 1 bar yields PCO2 =
0.01 bar and PCO = 0.99 bar.
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Figure 8.16 Solution to Exercise 8.8.

Exercise 8.8

From the information given in Fig. 8.15 construct an Fe–O potential phase diagram at a
constant pressure of 1 bar.

Hint

It is not necessary to change the axes. The liquid phase cannot be included due to lack
of information.

Solution

The phase diagram is shown in Fig. 8.16.

8.7 Ternary systems

For a ternary system one may obtain a two-dimensional phase diagram by sectioning at
constant T and P. Figure 8.17 shows such a diagram for the Ti–O–Cl system and the
axes represent µO/RT and µCl/RT, expressed by the logarithm of the partial pressures
of O2 and Cl2 in an imagined ideal gas that would be in equilibrium with the system.

Again we find that the univariant phase equilibria are represented by lines which look
straight, a fact that can again be illustrated by application of the Gibbs–Duhem relation.
For constant T and P we get by applying the Gibbs–Duhem relation in its ordinary form,
Eq. (3.84), and dividing all the extensive quantities by NTi and thus introducing zi ,

dµTi = −zα
OdµO − zα

CldµCl (8.32)

dµTi = −zβ
OdµO − zβ

CldµCl (8.33)

dµCl

dµO
= − zα

O − zβ
O

zα
Cl − zβ

Cl

. (8.34)
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Figure 8.17 The Ti–O–Cl phase diagram at 1 bar and 1273 K, plotted with two potential axes.
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Figure 8.18 The Ce–O–S phase diagram at 1 bar and 1273 K, plotted with two potential axes. The
potentials are expressed in terms of the contents in liquid iron which is not present.

It is interesting to note that the slope can be calculated directly from the compositions
involved.

A sectioned potential diagram like Fig. 8.17 is sometimes called a Kellogg diagram.
It must be emphasized that here the gas phase is not considered in the phase equilibria.
The partial pressure is simply a popular means of expressing the chemical potential of
volatile elements. It may be expressed in bar and the reference states are chosen as an
ideal gas with a partial pressure for O2 or Cl2 of 1 bar. Thus we have, for instance,

2
(
µO − oGref

O

)/
RT = ln PO2 . (8.35)

Alternatively, one may express chemical potentials through the content in any other phase
that happens to be present or could be present. As an example, Fig. 8.18 shows a case
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Figure 8.19 The Cu–O–S phase diagram sectioned at 1 bar and a potential of SO2 equal to the
potential of pure SO2 gas of 1 bar.
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Figure 8.20 See Exercise 8.9.

where the logarithm of the contents of O and S in liquid iron are used for representing the
Ce–O–S phase diagram at constant temperature and pressure. With these axes one can
directly see what cerium compound should form first from liquid iron if the cerium con-
tent is gradually increased. However, the diagram does not reveal what cerium contents
are required in the liquid iron phase.

One may also section a ternary phase diagram at some value of a chemical potential
and keep the temperature as an axis. Figure 8.19 shows such a case sectioned at a constant
value of µS + 2µO and plotted with µO/RT versus 1/T. Here µO/RT is expressed by the
ratio of the partial pressures of CO2 and CO in an ideal gas.

Exercise 8.9

Figure 8.20 shows at what O2 and N2 pressures three nitrides can form from pure Si at
1840 K. (a) Use the slopes in order to evaluate the O content in α and β, both of which
are usually considered to be Si3N4. (b) Their coexistence lines are missing in the phase
diagram. Calculate their slopes.
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Figure 8.21 Solution to Exercise 8.9.

Hint

The axes may be regarded as potential axes for O and N because T is constant. We can
thus apply the relation dµO/dµN = −(zγ

N − zδ
N)/(zγ

O − zδ
O), similar to Eq. (8.34). The Si

phase does not dissolve noticeable amounts of O or N. In all the oxides and oxynitrides
we can assume the following valencies: +4 for Si, −2 for O, −3 for N.

Solution

(a) zi is here defined as Ni/NSi. For α/Si we read dµO/dµN = −45 = −(zα
N − 0)/

(zα
O − 0) = −zα

N/zα
O. Applying electroneutrality, 4 = 2zα

O + 3zα
N = 2zα

O + 45 ·
3zα

O = 137zα
O; zα

O = 0.0292; zα
N = 45 · 0.0292 = 1.3139. Figure 8.21 thus predicts

that the formula for the α phase is Si1N1.3139O0.0292 or Si2.978Va0.022N3.913O0.087.
For β/Si we read dµO/dµN = ∞ = −(zβ

N − 0)/(zβ
O − 0); zβ

O = 0. The formula
for β is Si3N4.

(b) For α/β we then get: dµO/µN = −(1.313 − 1.3333)/(0.0292 − 0) = 0.664. For
α/Si2N2O we get: dµO/µN = −(1.3139 − 1)/(0.0292 − 0.5) = 0.667. The two
new coexistence lines will thus be parallel and almost vertical in Fig. 8.21 because
of the very enlarged scale for log PN2 .

Exercise 8.10

For the invariant equilibrium TiCl4 + TiO2 + Ti3O5 in Fig. 8.17 it has been found that the
partial pressure of Ti is 5 × 10−22 bar. Construct a reasonable log PO2 , log aTi diagram
for these three phases at the constant values of T and P.

Hint

Evidently, the potential diagram in Fig. 8.17 was obtained from the fundamental property
diagram by first sectioning twice (at constant T and P) and then projecting in the µTi

direction. Now we are asked instead to project in the µCl direction. Start by plotting the
point for the three-phase equilibrium at log PTi = −21.3 and a value of log PO2 obtained
from Fig.8.17. Then we can calculate the slopes of invariant equilibria in terms of the
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compositions involved. When one obtains an indeterminate value one should go back to
the derivation of the equation used.

Solution

At constant T, P we have a three-dimensional property diagram looking like Fig. 8.7(a)
but with µTi, µO and µCl on the axes. Figure 8.17 is the projection on the µO, µCl side.
Now we want the projection on the µO, µTi side. Then we must project in the µCl direc-
tion and define zi as Ni/NCl. For TiO2 and Ti3O5 we get zO and zTi equal to infinity.
We should thus go back to the Gibbs–Duhem relation for two phases, α and β, and get
xα

TidµTi + xα
OdµO + xα

CldµCl = 0 and xβ
TidµTi + xβ

OdµO + xβ
CldµCl = 0.

For TiO2/TiCl4: xα
Cl = 0 and already the first equation yields dµTi/dµO = −xα

O/xα
Ti =

−2 and d ln aTi/d ln PO2 = 0.5dµTi/dµO = −1.

For Ti3O5/TiCl4: xα
Cl = 0 and already the first equation yields dµTi/dµO =

−xα
O/xα

Ti = −5/3 and d ln aTi/d ln PO2 = 0.5dµTi/dµO = −5/6.
For TiO2/Ti3O5: xα

Cl = xβ
Cl = 0 and the only solution to the two equations is dµTi = 0

and dµO = 0. This two-phase equilibrium will thus occur in one point only (see Fig.
8.22). The reason is that we have projected the property diagram in the direction of the
TiO2 + Ti3O5 coexistence line.

In a two-dimensional potential phase diagram we normally expect to see two-
dimensional phase fields for single phases and one-dimensional phase fields for two
phases in equilibrium. As expected, the phase field for TiCl4 is two-dimensional but not
the one for TiO2 or Ti3O5. However, since TiO2 and Ti3O5 do not dissolve any Cl, their
properties are not affected by µCl. The µCl axis in the fundamental property diagram is
thus parallel to the property surface of both phases and hence parallel to the line rep-
resenting their intersection. In the µCl projection these surfaces will become lines and
their intersection, representing a two-phase equilibrium, will become a point. Compare
Fig. 8.7 and let µTi correspond to µA, let µO correspond to −P and µCl correspond to T.
Rotate all the surfaces slightly until the β + γ coexistence line is parallel to the T axis.
It will then appear as a point in the T projection.

8.8 Direction of phase fields in potential phase diagrams

In the discussions of two-dimensional phase diagrams we have several times derived
equations for the slope of two-dimensional phase fields. We shall now give a more general
treatment. The direction of phase fields is governed by the Gibbs–Duhem relation, which
applies to each one of the p phases in an equilibrium, e.g. for the phase α:

− Sα
mdT + V α

m dP −
∑

xα
i dµi = 0. (8.36)

If all the phases stay in equilibrium with each other when some variation is made, each of
dµi , dT and dP must have the same value for all phases. By combining the Gibbs–Duhem
relation for all phases one obtains a system of equations for the coexistence of the phases
in the fundamental property diagram. With p phases we have p Gibbs–Duhem relations
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and can thus eliminate p − 1 of the variables. If we would choose to eliminate µi for i
from 1 to p − 1, we should multiply each equation by a factor that we can represent by a
determinant. For example, the equation for the α phase should be multiplied by a factor∣∣∣∣∣∣∣∣∣∣∣∣∣

xβ
1 xβ

2 . . xβ
p−1

xγ
1 xγ

2 . . xγ
p−1

. . . . .

. . . . .

xε
1 xε

2 . . xε
p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

As a shorthand notation such a determinant will be written by giving the diagonal ele-
ments |xβ

1 xγ
2 . . xε

p−1| . By adding the equations for all the phases, we obtain

−
∣∣∣Sα

mxβ
1 xγ

2 . . xε
p−1|dT + |V α

m xβ
1 xγ

2 . . xε
p−1

∣∣∣ dP −
∑ ∣∣∣xα

i xβ
1 xγ

2 . . xε
p−1

∣∣∣ dµi = 0.

(8.37)
Using an alternative form of the Gibbs–Duhem relation found from line 5 in Table 3.1
we instead obtain∣∣∣Hα

m xβ
1 xγ

2 . . xε
p−1 |d(1/T )+| (V α

m

/
T

)
xβ

1 xγ
2 . . xε

p−1

∣∣∣ dP

−
∑ ∣∣∣xα

i xβ
1 xγ

2 . . xε
p−1

∣∣∣ d(µi/T ) = 0. (8.38)

The factors in front of dµi or d(µi/T) for i from 1 to p − 1 are zero because two
columns have the same elements. For instance, with i = p − 1 the first and last columns
in the last determinant are identical. It should be emphasized that the equation can be
formulated in many ways by including different µi in the set of eliminated variables. All
such alternative equations apply simultaneously and together they give the direction of
the phase field. We shall now consider various cases by considering different values of
p − c and in some cases different values of p.
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For p = c + 1 we have a univariant equilibrium according to Gibbs’ phase rule, υ = 1,
and shall thus obtain a linear phase field in the potential phase diagram. All the dµi or
d(µi/T) can be eliminated mathematically because c = p − 1. Furthermore, in this case
each column in each determinant contains all the xi in a phase and we can make use of
�xi = 1 in the remaining terms,

∣∣Hα
m 1 xγ

2 . . xε
c

∣∣ d(1/T ) + ∣∣V α
m 1 xγ

2 . . xε
c

∣∣ dP/T = 0. (8.39)

This gives the direction of the phase field in a (1/T), P phase diagram produced by
projection of the complete phase diagram. As an example, for a binary system with three
phases the equation gives

∣∣Hα
m 1 xγ

2

∣∣ d(1/T ) + ∣∣V α
m 1 xγ

2

∣∣ dP/T = 0. (8.40)

This gives the slope of the phase field for a univariant phase equilibrium in a projection
onto the (1/T), P side of the phase diagram. It can also be written as follows,

dP

dT
=

(
xγ

2 − xβ
2

)
Hα

m + (
xα

2 − xγ
2

)
Hβ

m + (
xβ

2 − xα
2

)
Hγ

m(
xγ

2 − xβ
2

)
V α

m + (
xα

2 − xγ
2

)
V β

m + (
xβ

2 − xα
2

)
V γ

m

· 1

T
. (8.41)

In Section 13.2 we shall see that the equation can be reduced to a much simpler form.
In fact, the numerator is equal to the heat of the three-phase reaction between α, β and
γ and is thus independent of the choice of reference states chosen for the H values. The
denominator is equal to the change in volume. Thus, the value of dP/dT is indepen-
dent of the choice of references, as it should be, and Eq. (8.41) is a generalization of
Eq. (8.17).

If we had eliminated d(µ1/T ) and dP instead of d(µ1/T ) and d(µ2/T ) we would have
obtained

d (µ2/T )

d (1/T )
=

(
V γ

m − V β
m

)
Hα

m + (
V α

m − V γ
m

)
Hβ

m + (
V β

m − V α
m

)
Hγ

m(
V γ

m − V β
m

)
xα

2 + (
V α

m − V γ
m
)
xβ

2 + (
V β

m − V α
m

)
xγ

2

. (8.42)

This is the slope of the phase field for a univariant phase equilibrium in a projection onto
the (µ2/T ), (1/T ) side of the complete phase diagram. The value of the numerator here
depends upon the choice of reference states for the H values and that choice will thus
affect the value of d(µ2/T )/d(1/T ).

For p = c we have a divariant equilibrium, υ = 2, and the corresponding phase field
will form a surface in the phase diagram. We can, for instance, eliminate all d(µi /T) terms
except for d(µc/T) and obtain a relation between d(1/T), dP and d(µc/T), representing
the direction of the two-dimensional phase field in a three-dimensional projection of the
complete phase diagram:

∣∣Hα
m xβ

1 xγ
2 . . xε

c−1

∣∣d(1/T ) + ∣∣(V α
m /T

)
xβ

1 xγ
2 . . xε

c−1

∣∣dP

= ∣∣xα
c xβ

1 xγ
2 . . xε

c−1

∣∣d(µc/T ). (8.43)
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Under isobaric conditions we obtain a one-dimensional phase field, the slope of which
is given by∣∣xα

1 xβ
2 . . xδ

c−1 H ε
m

∣∣d(1/T ) = ∣∣xα
1 xβ

2 . . xδ
c−1 xε

c

∣∣d(µc/T ).
(8.44)

For p = c − 1 we obtain a similar equation but now two terms will remain of the
summations in Eqs (8.38) and (8.39) since both c and c − 1 will be larger than p − 1.
Under isobarothermal conditions it simplifies to∣∣xα

c−1xβ
1 . . xε

c−2

∣∣dµc−1 + ∣∣xα
c xβ

1 . . xε
c−2

∣∣dµc = 0. (8.45)

We may thus evaluate the slope dµc/dµc−1 for the one-dimensional phase field in the
constant T and P section of the phase diagram. We can see that it is completely defined
by the ratio of two subdeterminants of the complete composition determinant.

For a two-phase equilibrium in a ternary system at constant T and P, the equation
reduces to

dµ2

dµ3
= − xα

3 xε
1 − xα

1 xε
3

xα
2 xε

1 − xα
1 xε

2

= − zα
3 − zε

3

zα
2 − zε

2

. (8.46)

This is an example where the final result is simplified by introducing the z variables
defined as zi = xi/x1. This equation was derived in a more direct way when ternary
systems were discussed in Section 8.7. We could apply the present method to two-phase
equilibria in general, obtaining

c∑
2

(
zα

i − zβ
i

)
dµi = −(

Sα
m1 − Sβ

m1

)
dT + (

V α
m1 − V β

m1

)
dP (8.47)

c∑
2

(
zα

i − zβ
i

)
d(µi/T ) = (

Hα
m1 − Hβ

m1

)
d(1/T ) + (

V α
m1 − V β

m1

)
dP

/
T . (8.48)

Exercise 8.11

Calculate the change of µO for the Al + Al2O3 two-phase equilibrium when the pressure
is increased. The densities of the phases are 2.7 and 3.5 g/cm3, respectively.

Hint

Since p = 2 and also c = 2, we have the case p = c and there is a relation between
d(µc/T), d(1/T) and dP. It is thus necessary to define the problem better. Let us assume
that the intention was to keep T constant.

Solution

Let Al be α: V α
m = (1/2.7) · 27 = 10 cm3/mole of atoms. Let Al2O3 be β: V β

m =
(1/3.5) · (102/5) = 5.8 cm3/mole of atoms. (∂(µO/T )/∂ P)T = (xα

1 V β
m − xβ

1 V α
m )/

T (xα
1 xβ

2 − xβ
1 xα

2 ) = (1 · 5.8 − 0.4 · 10)/T (1 · 0.6 − 0) = 3/T cm3/mol K.

Since T = constant, J = Nm and Pa = N/m2 we get (∂µO/∂ P)T = 3 ×
10−6 J/molPa.
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8.9 Extremum in temperature and pressure

For convenience we shall now use the relation derived from the Gibbs–Duhem relation
in its ordinary form, i.e. we shall use S instead of H.

For p = c we obtain, by rearranging the terms in the determinants,

− ∣∣xα
1 xβ

2 . . xδ
c−1 Sε

m

∣∣dT + ∣∣xα
1 xβ

2 . . xδ
c−1 V ε

m

∣∣dP

= ∣∣xα
1 xβ

2 . . xδ
c−1 xε

c

∣∣dµc. (8.49)

Suppose the composition determinant on the right-hand side is zero, i.e., suppose∣∣xα
1 xβ

2 . . xδ
c−1 xε

c

∣∣ = 0. (8.50)

Under isobaric conditions this would yield dT/dµc = 0 for the linear phase field obtained
in the µc, T phase diagram and the phase field must go through a temperature extremum.
Equation (8.50) is thus the requirement for an extremum to occur and it can also be
written in the following form because �xi = 1 in each phase,∣∣1 xβ

2 . . xδ
c−1 xε

c

∣∣ = 0. (8.51)

This is a well-known equation from the theory of determinants and shows that the phases
fall on the same point (i.e. have the same composition) for c = p = 2, they fall on a
straight line for c = p = 3, on a plane surface for c = p = 4, etc. The first two cases
are described by Konovalov’s and von Alkemade’s rules, respectively (see Sections 10.8
and 10.9). Furthermore, if one knows that there is such a temperature extremum under
isobaric conditions, then one can conclude that the composition determinant must be zero
and the equation shows that there will also be a pressure extremum under isothermal
conditions. For a binary case, c = p = 2, this is illustrated in Fig. 8.23.

For p = c − 1 we obtain

− ∣∣xα
1 xβ

2 . . xδ
c−2 Sε

m

∣∣dT + ∣∣xα
1 xβ

2 . . xδ
c−2 V ε

m

∣∣dP

= ∣∣xα
1 xβ

2 . . xδ
c−2 xε

c−1

∣∣dµc−1 + ∣∣xα
1 xβ

2 . . xδ
c−2 xε

c

∣∣dµc. (8.52)

In order to obtain an extremum in T at constant P (and thus in P at constant T), it is now
necessary that two determinants are zero,∣∣xα

1 xβ
2 . . xδ

c−2 xε
c−1

∣∣ = 0 (8.53)

∣∣∣xα
1 xβ

2 . . xδ
c−2 xε

c

∣∣∣ = 0. (8.54)

For a binary system this condition has no meaning because p = 1. For p = 2 and c =
3 it implies that the two phases fall on the same point in the composition plane (in
agreement with a generalization of Konovalov’s rule), for p = 3 and c = 4 it implies
that the three phases fall on a straight line in the composition volume (in agreement with
a generalization of Alkemade’s rule), etc. For a ternary system this can be demonstrated
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Figure 8.23 Potential phase diagram for a binary system showing a divariant phase field having a
T extremum in an isobaric section (see thin horizontal curve). It follows that an isothermal
section will show a P extremum (see thin vertical curve).

easily ∣∣xα
1 xβ

2

∣∣ = 0 (8.55)

∣∣xα
1 xβ

3

∣∣ = 0. (8.56)

By adding the two equations we get

0 =
∣∣∣xα

1

(
xβ

2 + xβ
3

) ∣∣∣ = ∣∣xα
1 1

∣∣ = xα
1 − xβ

1 . (8.57)

or xα
1 = xβ

1 . By inserting this in the Eqs (8.55) and (8.56) we get xα
2 = xβ

2 and xα
3 = xβ

3

and, consequently, also
∣∣xα

2 xβ
3

∣∣ = 0. This case is illustrated in Fig. 8.24 which may be
regarded as a diagram corresponding to the P section through the diagram in Fig. 8.23 but
with one more axis due to the third element. It follows from Eq. (8.52) that here will also
be an extremum in P under isothermal conditions but we would need four dimensions
to show a diagram corresponding to the whole diagram in Fig. 8.23.

For p = c − 2 the conditions for an extremum in T at constant P (and thus in P for
constant T) is obtained as a set of three determinants equal to zero and this means that
the compositions of the phases fall on the same point for p = 2 and c = 4, same line for
p = 3 and c = 5, same plane for p = 4 and c = 2, etc.

Exercise 8.12

Consider a three-phase equilibrium at 1 bar in a ternary system between pure A, a com-
pound B1C1 and a third phase with variable composition. Can this equilibrium go through
a T maximum? Under what conditions?
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Figure 8.24 Potential phase diagram showing a divariant phase field with a T extremum at a
certain combination µB, µC. The complete phase diagram has been sectioned at a constant P.

Hint

Notice that p = 3 and c = 3 and thus c = p.

Solution

0 =

∣∣∣∣∣∣∣∣
xα

1 xα
2 xα

3

xβ
1 xβ

2 xβ
3

xγ
1 xγ

2 xγ
3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 xα

2 xα
3

1 xβ
2 xβ

3

1 xγ
2 xγ

3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0

1 0.5 0.5

1 xγ
2 xγ

3

∣∣∣∣∣∣∣∣
= 0.5xγ

C − 0.5xγ
B,

or xγ
B = xγ

C. The variable phase must fall on the straight line between A and B1C1 in
order for a T extremum to occur. However, we cannot tell if it will be a T maximum or
minimum.

Exercise 8.13

Consider a ternary system where the potential of the third component is kept constant
(by means of a high diffusivity and equilibrium with an external reservoir). The pressure
is also kept constant. Suppose one will thus find that there is a maximum temperature for
a certain α + β equilibrium. What conclusion can be drawn regarding the compositions
of the two phases? What would be the most convenient composition variable to use in
such a case?

Hint

p = c − 1. Equation (8.52) was derived for that case. Under constant P and µc it yields∣∣xα
1 xβ

2 . . xδ
c−2 xε

c−1

∣∣dµc−1 = −∣∣xα
1 xβ

2 . . xδ
c−2 Sε

m

∣∣dT .
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Solution

At the T maximum, the equation yields |xα
1 xβ

2 . . xδ
c−2 xε

c−1| = 0 and for a

ternary system |xα
1 xβ

2 | = 0 or xα
1 /xα

2 = xβ
1 /xβ

2 . The ratio of components 1 and 2 is
thus the same in the two phases. The most convenient composition variable in this case
is ui = xi/(1 − xc) since u1 + u2 + · · · + uc−1 = 1 and we find

∣∣uα
1 uβ

2 . . uδ
c−2 uε

c−1

∣∣ = ∣∣1 uβ
2 . . uδ

c−2 uε
c−1

∣∣ = 0.

For a ternary system we get
∣∣1 uβ

2

∣∣ = uα
2 − uβ

2 = 0.



9 Molar phase diagrams

9.1 Molar axes

If one starts from a potential phase diagram, one may decide to replace one of the poten-
tials by its conjugate variable. However, the potential phase diagram has no information
on the size of the system and one should thus accept introducing a molar quantity rather
than its extensive variable. By replacing all the potentials with their conjugate molar
variables, one gets a molar diagram. One would like to retain the diagram’s character
of a true phase diagram, which means that there should be a unique answer as to which
phase or phases are stable at each location. In this chapter we shall examine the properties
of molar diagrams and we shall find under what conditions they are true phase diagrams.
Only then may they be called molar phase diagrams. However, we shall start with a
simple demonstration of how a diagram changes when molar axes are introduced.

Figure 9.1(a)–(d) demonstrates what happens to a part of the T, P potential phase
diagram for Fe when Sm and Vm axes are introduced. Initially the P axis is plotted in the
negative direction because V is conjugate to −P. It can be seen that the one-phase fields
separate and leave room for a two-phase field. It can be filled with tie-lines connecting the
points representing the individual phases in the two-phase equilibrium. It is self-evident
how to draw them when one axis is still a potential but they yield additional information
when all axes are molar (Fig. 9.1(d)).

Figure 9.2(a)–(d) is a similar demonstration using a part of the Fe phase diagram with
a three-phase equilibrium, a triple point. It forms a tie-triangle when both potentials
have been replaced (Fig. 9.2(d)). All the phase fields are then two-dimensional. One may
also notice that each one-phase field from the potential diagram maintains its general
shape. Their corners still have angles less than 180◦ (see the 180◦ rule formulated in
Section 8.3).

It should be emphasized that the phase fields never overlap in these diagrams. They
may all be classified as true phase diagrams because each point represents one and only
one phase equilibrium. Three requirements must be fulfilled in order for this to happen.
Firstly, the two one-phase fields meeting at a two-phase line in a potential phase diagram
must move away from each other and leave room for an extended two-phase field, when
a molar axis is introduced. Secondly, the one-phase field extending from the two-phase
field in the direction of increasing values of a potential must also extend to increasing
values of the conjugate molar variable that is introduced. If it goes the other way, it
would overlap the two-phase region. The other one-phase field must extend in the other
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the same set of conjugate variables.

direction, before as well as after replacing the potential with the conjugate molar variable.
Thirdly, a one-phase field is nowhere allowed to fold over itself.

The last two requirements are fulfilled if the system is everywhere stable because of
the stability condition from Eq. (6.28),(

∂Y b

∂ Xb

)
Y c,Xd

> 0. (9.1)

The potential Y b and its conjugate variable Xb thus increase in the same direction.
However, as already emphasized, this stability condition requires that all the variables to
be kept constant, here represented by Y c,Xd, come from the same set of conjugate pairs
as Y b and Xb. Nine such sets were presented in Table 3.1 but it is necessary to examine
what happens to them when the size of the system is measured in different ways. This
will be discussed in the next section. Figure 9.3 is an example of what can happen if
one uses two molar variables which do not appear in the same set of conjugate variables,
S and H. It is not a true phase diagram according to the definition given at the very
beginning of this section. Other cases will be discussed in Section 10.7.

The first requirement can be tested as follows, using the form of the Gibbs–Duhem
relation with molar quantities introduced in Eq. (8.4),

dµ1 = −Sm1dT + Vm1dP −
c∑
2

zi dµi = −
c+2∑

2

X j
m1dY j . (9.2)

Consider two phases, α and β, which are initially in equilibrium with each other. The
system is then moved away from equilibrium by changing the value of one poten-
tial, Y j , keeping the other independent potentials in the summation constant. Apply-
ing the Gibbs–Duhem relation to each of the two phases and taking the difference, we
obtain

d
(
µ

β
1 − µα

1

) = (
X jα

m1 − X jβ
m1

)
dY j . (9.3)
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Figure 9.4 Four-phase equilibrium in a phase diagram with three molar axes. The four-phase
field is tetrahedral and is covered by triangular prisms representing three-phase equilibria. The
two- and one-phase fields are not outlined but they are also three-dimensional.

Suppose α is the phase favoured by the increased Y j value. Then µα
1 must be smaller

than µ
β
1 as demonstrated by Fig. 8.3. We thus obtain

X jα
m1 − X jβ

m1 = d
(
µ

β
1 − µα

1

)
dY j

> 0. (9.4)

It is thus evident that the two one-phase fields will move apart by a positive distance
X jα

m1 − X jβ
m1 when X j

m1 is introduced as an axis instead of Y j . The one-phase fields will
separate and give room for the two-phase field in between, X jα

m1 − X jβ
m1 being the length

of the tie-line.
In a binary system there are three independent potential axes. If they are all replaced

by molar axes, all the phase fields become three-dimensional and the invariant four-
phase equilibrium expands into a tetrahedron. This is demonstrated by Fig. 9.4 which
corresponds to the central region of Fig. 8.11.

It was emphasized that the topology of potential phase diagrams is very simple and
each geometrical element is a phase field. A phase diagram with only molar axes has
a relatively simple topology. All the phase fields have the same dimensionality as the
diagram itself. For the unary system in Fig. 9.2 all the phase fields have two dimensions
and for the binary system in Fig. 9.4 they have three dimensions.

Exercise 9.1

Suppose one studies the total vapour pressure of a liquid mixture of two metals, A and
B, at a constant temperature. One finds that the total vapour pressure increases if more
B is added to the mixture. Show whether the vapour or the liquid is richer in B.
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Figure 9.5 Solution to Exercise 9.1.

Hint

At constant T, the P, µB potential phase diagram will be two-dimensional. Sketch it
using µA as the dependent potential variable. Remember that the conjugate composition
variable to µB would then be zB = NB/NA. High pressure should favour the liquid, being
much denser than the vapour.

Solution

The construction (Fig. 9.5) shows that the vapour would be richer in B than the liquid if
measured relative to A.

9.2 Sets of conjugate pairs containing molar variables

A molar variable can easily be introduced in the stability condition, Eq. (6.28), by dividing
Xb with the quantity used to define the size of the system because that quantity is kept
constant. Expressing the size by N, we get for instance,(

∂Y b

∂ Xb
m

)
Y c,Xd

m

= N ·
(

∂Y b

∂ Xb

)
Y c,Xd

> 0. (9.5)

However, with this measure of size the Gibbs–Duhem relation gives

SmdT − VmdP +
∑

xi dµi = 0, (9.6)

where one of the xi is dependent on the others because
∑

xi = 1. Choosing x1 as the
dependent one, we obtain x1 = 1 − ∑

2
xi ,

− dµ1 = SmdT − VmdP +
∑

2

xi d(µi − µ1). (9.7)

Then it is logical to regard µ1 as the dependent potential but the consequence is that the
conjugate variable to xi is no longer µi but (µi − µl).

If we instead measure the size with the amount of a certain component, N1, then we
obtain the form given by Eq. (9.2),

− dµ1 = Sm1dT − Vm1dP +
∑

2

zi dµi . (9.8)
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Table 9.1 Sets of conjugate pairs of independent state variables using
molar quantities defined by dividing with �Ni

T, Sm −P, Vm
∑

2
(µi − µ1), xi

T, (T Sm − PVm)/T −P/T, T Vm
∑

2
(µi − µ1), xi

T/P, P Sm P, (T Sm − PVm)/P
∑

2
(µi − µ1), xi

−1/T, Um −P/T, Vm
∑

2
(µi − µ1)/T, xi

−1/T, Hm −P, Vm/T
∑

2
(µi − µ1)/T, xi

−P/T, Hm/P −1/P, PUm/T
∑

2
(µi − µ1)/T, xi

T/P, Sm −1/P, Um
∑

2
(µi − µ1)/P, xi

−1/T, T Um/P −T/P, Fm/T
∑

2
(µi − µ1)/P, xi

T, Sm/P −1/P, Fm
∑

2
(µi − µ1)/P, xi

In this way one may keep µi but its conjugate variable is zi = Ni/N j and Sm1 and Vm1

are also defined by dividing with N1.
Sometimes it is convenient to measure the size as the total content of more than one

component, e.g. of those which do not easily evaporate. Suppose they are the first k
components. Using u1 = 1 − ∑k

2 ui we obtain

Sm(1...k)dT − Vm(1...k)dP +
c∑
2

ui(1...k)dµi = 0 (9.9)

−dµ1 = Sm(1...k)dT − Vm(1...k)dP +
k∑
2

ui(1...k)d(µi − µ1)+
c∑

k+1

ui(1...k)dµi = 0.

(9.10)

where the S, V and u variables are defined in Section 4.3.
These three methods of measuring the size of the system can be applied to all the

rows in Table 3.1. We may thus construct Tables 9.1, 9.2 and 9.3 for the sets of conjugate
potentials and molar variables. Each row defines a set of conjugate variables and each
pair can be used to construct a stability condition if the variables to be kept constant are
taken from the same set. There is an important difference from Table 3.1 which gave
sets of conjugate pairs related by the Gibbs–Duhem relation. A dependent potential has
now been eliminated using the Gibbs–Duhem relation and the new tables contain one
pair less and give sets of pairs of independent variables.
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Table 9.2 Sets of conjugate pairs of independent state variables using
molar quantities defined by dividing with N1

T, Sm1 −P, Vm1
∑

2
µi , zi

T, (T Sm1 − PVm1)/T −P/T, T Vm1
∑

2
µi , zi

T/P, P Sm1 P, (T Sm1 − PVm1)/P
∑

2
µi , zi

−1/T, Um1 −P/T, Vm1
∑

2
µi/T, zi

−1/T, Hm1 −P, Vm1/T
∑

2
µi/T, zi

−P/T, Hm1/P −1/P, PUm1/T
∑

2
µi/T, zi

T/P, Sm1 −1/P, Um1
∑

2
µi/P, zi

−1/T, T Um1/P −T/P, Fm1/T
∑

2
µi/P, zi

T, Sm1/P −1/P, Fm1
∑

2
µi/P, zi

Table 9.3 Sets of conjugate pairs of independent state variables using molar quantities defined by
dividing with N1 + N2

T, Sm12 −P, Vm12 (µ2 − µ1), ui(12)
∑

3
µi , ui(12)

T, (T Sm12 − PVm12)/T −P/T, T Vm12 (µ2 − µ1), ui(12)
∑

3
µi , ui(12)

T/P, P Sm12 P, (T Sm12 − PVm12)/P (µ2 − µ1), ui(12)
∑

3
µi , ui(12)

−1/T, Um12 −P/T, Vm12 (µ2 − µ1)/T, ui(12)
∑

3
µi/T, ui(12)

−1/T, Hm12 −P, Vm12/T (µ2 − µ1)/T, ui(12)
∑

3
µi/T, ui(12)

−P/T, Hm12/P −1/P, PUm12/T (µ2 − µ1)/T, ui(12)
∑

3
µi/T, ui(12)

T/P, Sm12 −1/P, Um12 (µ2 − µ1)/P, ui(12)
∑

3
µi/P, ui(12)

−1/T, T Um12/P −T/P, Fm12/T (µ2 − µ1)/P, ui(12)
∑

3
µi/P, ui(12)

T, Sm12/P −1/P, Fm12 (µ2 − µ1)/P, ui(12)
∑

3
µi/P, ui(12)
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Figure 9.6 See Exercise 9.3.

Exercise 9.2

At the end of Section 6.6 we found that the stability limit in a binary solution is g22 = 0.
Show how this condition can be obtained from the list of conjugate variables presented
in Table 9.1.

Hint

The index 2 in g22 indicates a derivative with respect to x2, with x1 as a dependent
variable. Thus, one should use a set of conjugate variables containing x2.

Solution

From the first row of Table 9.1 we can formulate the condition (∂(µ2 − µ1)/∂x2)T,P,N =
0. However, x1 is a dependent variable and µ2 − µ1 = ∂Gm/∂x2 and our stabil-
ity condition can be expressed as ∂2Gm/∂x2

2 = 0 and g22 is the notation for that
derivative.

Exercise 9.3

Two diagrams of the Mo–N system are presented in Fig. 9.6. How would you interpret
them?

Hint

In diagram (a) notice that the phase field for the gas is not included but isobars for the N2

gas are given. In order to interpret diagram (b) it is helpful first to construct a T, log PN2

diagram and then replace the T axis with a log xN axis.

Solution

Diagram (a) above is a T, xN diagram at 1 bar. The lines for various N2 pressures should
be understood as isoactivity lines for N expressed as PN2 of a gas which is not present.
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Figure 9.8 (a) Elementary unit of a phase diagram with two molar axes. (b) Topological
equivalence.

Using these values of PN2 it is easy to construct a T, log PN2 diagram (see Fig. 9.7(a)).
For convenience, we shall make T the abscissa. Next we shall introduce xN (with a
logarithmic scale) instead of T, i.e. a molar quantity instead of a potential. The two-
phase fields will open up but there may be overlapping because the new variable, xN, is
not conjugate to the old one, T. As an example, the α + L field falls inside the α + Mo2N
field.

9.3 Phase boundaries

Since all the phase fields in a molar diagram have the same dimensionality as the diagram
has axes, it is evident that all other geometrical elements, surfaces, line and points in
a three-dimensional diagram, are not phase fields. They separate phase fields and may
be called phase boundaries. When discussing the topology of a molar phase diagram
in terms of the phase boundaries, it is possible and convenient to choose a smaller
elementary unit than a phase field. A smaller unit is shown in Fig. 9.8(a) and it is
composed of four linear phase boundaries meeting at a point. Topologically it may be
represented by two intersecting lines as shown in Fig. 9.8(b). Any complicated two-
dimensional phase diagram with molar axes is composed of such units.
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Figure 9.9 Elementary unit of a phase diagram with three molar axes.

It can be seen by inspection of the three-dimensional diagram in Fig. 9.4, that it
is possible to divide it into four topologically identical, elementary units, each one
composed of a point where eight phase fields meet, although only four of them are shown.
Six linear phase boundaries radiate from these points. They are all shown for the β and
δ points. Topologically, this elementary unit can be represented by three intersecting
planes as shown in Fig. 9.9. Evidently, the topology of a complicated three-dimensional
molar diagram can be represented by a system of intersecting surfaces.

When studying two-dimensional molar diagrams, Masing [11] observed that the num-
ber of phases in the phase fields changes by one unit when one crosses a linear phase
boundary. This is easily verified by inspection of Fig. 9.2(d). Masing’s rule was later
generalized by Palatnik and Landau [12] who gave it the following form

D+ + D− = r − b, (9.11)

where D+ and D− are the number of phases that appear and disappear, respectively, as
one crosses a phase boundary of dimensionality b, and r is the number of axes in the
molar diagram. This rule may be referred to as the MPL boundary rule, after Masing,
Palatnik and Landau.

It may be added that phase boundaries sometimes have special names. The boundary
between a liquid phase and a liquid + solid phase field is called the liquidus and the
corresponding boundary for the coexisting solid phase is called the solidus. The boundary
between a solid and the two-phase field with another solid is sometimes called the solvus.

Exercise 9.4

In the central region of Fig. 9.4 there is a tetrahedron, representing a four-phase field.
Apply the MPL rule in order to find how many phases there are outside the α − β line
and outside the β point.

Hint

There are only four phases in the system and D+ must be zero when we move out from
the four-phase field because there is no new phase that can be added.
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Solution

This is a three-dimensional diagram, r = 3, and the dimensionality of the α − β line
is one, b = 1. We get D− = r − b = 3 − 1 = 2. The number of phases has decreased
from 4 to 2. We have moved into the α + β two-phase region by crossing the α − β line.
The dimensionality of the β point is zero, b = 0, and we get D− = r − b = 3 − 0 = 3.
The number of phases has decreased from 4 to 1. We have moved into the β one-phase
region by crossing the β point.

9.4 Sections of molar phase diagrams

A diagram with a full set of molar axes may be called a complete molar phase diagram.
For practical reasons one often likes to reduce the number of axes. A popular method is
to section at a constant value of a potential, e.g. P or T. The resulting diagram looks just
like a complete molar phase diagram for a system with one component less. Another
method is to section at a constant value of a molar variable, a so-called isoplethal section
or an isopleth.

Since all phase fields in a molar phase diagram have the same dimensionality as
the phase diagram has axes, all kinds of phase fields may show up in that kind of
section whereas a phase field with the maximum number of phases (i.e. for an invariant
equilibrium) will disappear in an equipotential section because the section cannot be
expected to go exactly through a given point. The topology of a molar section is simplified
if it is again accepted that it will not be possible to place a section exactly through a point.
All two-dimensional sections with molar axes will be composed of the elementary unit
shown in Fig. 9.8 and all three-dimensional sections will be composed of the elementary
unit shown in Fig. 9.9, independent of how many potential or molar axes have been
sectioned. Of course, if one adds a component, one must section once more in order
to keep the number of dimensions. As an example, two sections through Fig. 9.4 are
indicated in Fig. 9.10. In each case, the section gives the same arrangement of lines as in
Fig. 9.8(a). Furthermore, the MPL boundary rule applies to the sections, since the value
of r – b does not change by sectioning.

Inspection of the two sections in Fig. 9.10 reveals that one shows an intersection
between phase fields of 2, 3, 3 and 4 phases and the other 1, 2, 2 and 3 phases. We may
thus give the general picture shown in Fig. 9.11. For the sections shown in Fig. 9.10 we
have e = 3 and 4, respectively, where e is the highest number of phases in any of the two
adjoining phase fields. In fact, the maximum value of e in a two-dimensional diagram,
which is also the maximum number of phases in a phase field, depends upon the number
of sectioned molar axes, nms,

emax = 3 + nms. (9.12)

Exercise 9.5

On the right-hand side of the tetrahedron in Fig. 9.10 there is a triangular prism. Make
a section through that prism parallel to the side of the tetrahedron. Make a sketch of the



196 Molar phase diagrams

zB

Sm1

Vm1

Figure 9.10 Two sections through the molar phase diagram of Fig. 9.4. The sections are shown
with thin lines.
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Figure 9.11 Elementary unit of a molar phase diagram, sectioned a sufficient number of times to
make it two-dimensional. The diagram may have units with different e values from 3 up to a
maximum, determined by the number of sectionings.

intersection obtained at the front edge of the prism. Indicate the number of phases in the
four adjoining phase fields.

Hint

It may be useful to go back to the Exercise 9.4.

Solution

The solution is given in Fig. 9.12.



9.5 Schreinemakers’ rule 197

1

2

3

2

zB

Sm1

Figure 9.12 Solution to Exercise 9.5.

α+β

α+β+γ

β+γ

α+γ
α

β

γ

α

β

γ
α+β

α+γ

β+γ

α+β+γ

X j
m1

(a) (b)

X k
m

Figure 9.13 Elementary unit of a phase diagram with two molar axes. Two of the phase
boundaries of the one-phase field are shown.

9.5 Schreinemakers’ rule

When studying isobarothermal sections of ternary diagrams Schreinemakers [13] found
that the extrapolations of the boundaries of the one-phase field in the elementary unit
must either both fall inside the three-phase fields or one inside each of the two two-
phase fields. This is illustrated in Fig. 9.13 and is called Schreinemakers’ rule. It can be
generalized in the following way [14].

Let us examine if Schreinemakers’ rule applies to different e values and start by
considering a complete phase diagram constructed with molar axes only. A discussion of
thermodynamic properties should then be based upon the internal energy. For reversible
changes we obtain

dU = T dS − PdV +
c∑
1

µi dNi . (9.13)

In Section 4.6 we saw that it is always possible to introduce a new set of components
instead of the old one by combining the components in a new way as long as we get
a complete set of independent components and do not change the value of the sum,
�µi dNi . We can do so by selecting c points in the compositional space and make sure
that they can be used to define a new set of independent components by checking that
three of them never fall on a line, four of them never fall on a plane, etc. We shall use this
method of changing to a new set of components but we shall then consider entropy and
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Figure 9.14 General proof of Schreinemakers’ rule.

volume as components, whose amounts are expressed by S and V, and whose chemical
potentials are T and −P, respectively. The introduction of c + 2 new components instead
of the old ones will now be effected by selecting c + 2 points in the state diagram. They
will each be identified by an index d.

We can follow the procedure outlined in Section 4.6 and obtain

dU =
c+2∑

1

µi dNi =
c+2∑

1

µddNd , (9.14)

where µd = ∑
i ad

i µi and Ni = ∑
d ad

i Nd . For these generalized chemical potentials,
the following Maxwell relation is obtained(

∂µ j

∂ Nk

)
N j

= ∂2U

∂ Nk∂ N j
=

(
∂µk

∂ N j

)
Nk

. (9.15)

When considering the cases in Fig. 9.13 with a tie-triangle in the section, we shall include
the β and γ corners in the set of new components. In a more general case we shall denote
them by k and j (see Fig. 9.14).

At the point under consideration, one of the two boundaries, the extrapolations of
which we discuss, represents equilibrium with k, and is thus an equipotential line for k
in α. If it extrapolates outside the α − k − j triangle, the potential of k must increase on
moving closer to the point j, because this path intersects equipotential lines for k in α

situated closer to the point k, i.e.

∂µk

∂ N j
> 0 (9.16)

(see thin line in Fig. 9.14(b)). Then, from the Maxwell relation,

∂µ j

∂ Nk
> 0 (9.17)

It follows that the second boundary must also extrapolate outside the α − k − j triangle.
On the other hand, if the k boundary extrapolates into the triangle, a movement towards
the point j will intersect equipotential lines for k further away from the point k (see thin
line in Fig. 9.14(a)). Both derivatives must then be negative, and both boundaries must
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Figure 9.15 Calculated phase diagram for system with seven components. The complete phase
diagram has two potential axes and six molar axes and has been sectioned at one constant
potential, P, and five constant molar quantities, xi . Schreinemakers’ rule holds at all
intersections. Numbers given are number of phases in each phase field.

extrapolate into the triangle. It has thus been shown that the extrapolations of both phase
boundaries under consideration must fall either outside the highest-order phase field or
inside it, in agreement with Schreinemakers’ rule. It may be emphasized that the rule also
holds for equipotential sections. In order to prove it in such a case, one must use a Maxwell
relation based on a thermodynamic function which allows the corresponding potentials
to be kept constant, for instance G in the case actually considered by Schreinemakers,
constant T and P.

In the derivation of Schreinemakers’ rule it is essential that the two boundaries of
the highest-order phase field of those considered are straight lines. That this happens
in the ternary case under isobarothermal conditions is self-evident because then the tie-
triangle is situated in the plane of the diagram. In a quaternary system the sides of a
four-phase equilibrium will be planar and the intersections shown in a two-dimensional
section will be straight lines. The components k and j then represent two-phase mixtures
situated in the section. On the other hand, a three-phase equilibrium will not be bounded
by planar sides and its boundaries in the two-dimensional section will not be straight
lines. Then the boundaries of the one-phase field will not be equipotential lines for any
components k and j chosen in the section. It may be concluded that the proof, given above,
is not rigorous except when an equilibrium of the highest order allowed in the section
is involved. However, experience shows that Schreinemakers’ rule is obeyed in most
cases, and it may be used as a convenient guide when other information is lacking. As
an example, the result of a computer-operated calculation of a section through a seven-
component system is presented in Fig. 9.15. The rule is satisfied at all the intersections
in this diagram.

Figure 9.16 shows an apparent violation of Schreinemakers’ rule at the corner of the
bct phase field. However, this is not a true phase diagram because Sm and zi never appear
in the same set of conjugate variables in Table 9.2.
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Figure 9.16 Sm, zSn diagram for Pb–Sn at 1 bar. It shows an apparent violation of
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Figure 9.17 Use of Schreinemakers’ rule to decide which phase fields have equal number of
phases.

Usually, Schreinemakers’ rule is used to predict the directions of phase boundaries.
On the other hand, if the phase boundaries are given, for instance from calculation or
experiment, then the rule can help to give the number of phases in the various phase
fields. Suppose the arrangement in Fig. 9.17(a) is given, but the numbers of phases in
the four adjoining phase fields are not known. One should then extrapolate all the lines,
as shown in Fig. 9.17(b). Two of the phase fields will contain one extrapolation each,
and these phase fields will be opposite to one another. According to Schreinemakers’
rule, these will be the phase fields with the same number of phases, e − 1 in Fig. 9.17(c).
Of the two remaining phase fields, one will contain two extrapolations and the other
none. These phase fields will contain one phase more and one phase less than the others,
respectively. However, the rule does not allow us to tell which has more and which less.
It would be possible to predict the number of phases in all the phase fields of Fig. 9.15
by this method, if it were known that the phase field in the upper left corner has one
phase.
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Figure 9.18 See Exercise 9.6.
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Figure 9.19 Solution to Exercise 9.6.

Exercise 9.6

A diagram for a multicomponent system is given in Fig. 9.18 but the numbers of phases
have been left out except for one phase field. Try to decide the numbers of phases in all
the other phase fields.

Hint

Discuss first what kind of phase diagram it is.

Solution

It looks like a molar diagram because at each point of intersection there are four lines.
It may thus be reasonable to use Schreinemakers’ rule. The result is shown in Fig. 9.19.

9.6 Topology of sectioned molar diagrams

Before leaving the discussion of sections of molar phase diagrams we should further
consider the topology of diagrams with several phases. Figure 9.8 showed the elementary
unit of a two-dimensional molar diagram. The result of sectioning can vary depending
upon the direction of sectioning and the regularity of the diagram before sectioning.
However, topologically the whole section can be regarded as composed of intersecting
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Figure 9.20 Two diagrams topologically equivalent to the sectioned molar phase diagram of
Fig. 9.15.
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Figure 9.22 (a) The Fe–W–Cr phase diagram at 1 bar and 1673 K. α and β are both bcc but do
not mix completely. µ and σ are intermetallic phases. (b) Topologically equivalent diagram but
drawn with lines without any sharp points. These lines represent the limit of existence for one
phase each, as given by the letters outside the triangle. The circle is the limit for σ.
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Figure 9.23 See Exercise 9.7.

lines, and the elementary unit will be the same as in Fig. 9.8(b). By the same reasoning,
a three-dimensional diagram will have elementary units like the one in Fig. 9.9 and will
give units like the one in Fig. 9.8(b) after sectioning. A many-dimensional molar phase
diagram, after being sectioned a sufficient number of times, may look something like the
one illustrated in Fig. 9.20(a). It was constructed to be topologically equivalent to the
phase diagram in Fig. 9.15. In Fig. 9.20(b) it has been further simplified but it still has
the same topology. This is an unusually simple case. The lines may very well intersect
in a more complicated manner, as illustrated in Fig. 9.21.

The observation by Masing can be generalized. For each one of the lines in a two-
dimensional section of a molar phase diagram there is a phase which ceases to exist
on the line. It is illustrated for a complicated case in Fig. 9.22(a), using the topo-
logically equivalent diagram in Fig. 9.22(b). These lines running through a compli-
cated phase diagram have been called ‘zero-phase-fraction’ lines by Gupta, Morral
and Nowotny [15] and they can be used as a valuable tool for identifying the phase
fields and even for constructing a phase diagram from experimental information. The
same principle applies to the surfaces in three-dimensional sections of molar phase
diagrams.

Exercise 9.7

In order to investigate the phase relations in a quinary system Gupta, Morral and Nowotny
established equilibrium in 21 alloys by isothermal treatment at 1400 K and 1 bar. All
alloys had the same molar content of two components. The phases found in the various
alloys could thus be shown in a composition triangle (see Fig. 9.23, where the composi-
tions are represented by the relative fractions of the three remaining components). Draw
a reasonable phase diagram.
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Figure 9.24 Solution to Exercise 9.7.

Hint

The diagram is a molar phase diagram. Start by drawing lines showing the limit of
existence of each phase (zero-phase-fraction lines). Improve the diagram by making the
various phase boundaries reasonably straight. Phase boundaries for invariant equilibria
must be quite straight. Improve the diagram further by applying Schreinemakers’ rule.

Solution

At constant T and P the maximum number of phases in a quinary system is five. None
of the alloys falls in such a phase field. All the phase boundaries may thus be curved but
we may find that it is possible to use straight lines which is preferable when we do not
know in which direction a line should be curved. Figure 9.24 shows a possible solution.



10 Projected and mixed phase diagrams

10.1 Schreinemakers’ projection of potential phase diagrams

Another method of reducing the number of axes is based on projection. By projecting all
the features onto one side of the phase diagram, one will retain all the features, but the fea-
tures of the highest dimensionality will no longer be visible because the dimensionality of
a geometrical element will decrease by one unit by projection and they may thus overlap
each other and also overlap features of the next-higher dimensionality. As an example,
Fig. 10.1(b) shows a P, T diagram obtained by projection of Fig. 8.11 (shown again as
Fig. 10.1(a)) in the µB direction. Such a P, T diagram is called Schreinemakers’ projection
[16]. In a system with c components it is obtained by projecting in the directions of c − 1
µi axes. It will show invariant equilibria with c + 2 phases as points, univariant equi-
libria with c + 1 phases as lines and in the angles between them there will be surfaces
representing divariant equilibria with c phases. Using a short-hand notation developed
by Schreinemakers, the coexistence lines for c − 1 phases are here identified also by
giving in parentheses the phases from the invariant equilibrium which do not take part.
For example, the (α) curve represents the α-absent equilibrium, i.e. β + γ + δ. By com-
parison with Fig. 10.1(a) it can be seen that the angle between (α) and (β) is covered
by the γ + δ surface but also by the α + δ surface which extends to the (γ) line and by
the β + γ surface which extends to the (δ) line. The α one-phase field covers the whole
diagram and the other one-phase fields each cover part of it.

Suppose we have a binary system with five phases, denoted 1, 2, 3, 4 and 5. An invariant
equilibrium would have four phases. Suppose the system shows two such equilibria and
by giving the absent phase they may be denoted (1) and (5). The complete phase diagram
would have three dimensions (same as for a one-phase field). Projection would give just
one of the diagrams shown in Fig. 10.2 but by presenting two diagrams obtained by
projection in slightly different directions as a stereographic pair one can preserve the
three-dimensional information. It is thus evident that the apparent intersection between
the lines (1, 4) and (5, 3) is not an intersection in three dimensions. Therefore, it does
not represent an invariant equilibrium.

T, P diagrams obtained by projection are particularly useful for multinary systems and
are obtained by projecting in the direction of all the independent chemical potentials. We
shall return to such diagrams in Section 10.5 but first we shall consider simpler cases.

In a projected diagram one sometimes includes a series of parallel sections drawn
with thinner lines. Such lines may be called equipotentials (or isotherms or isobars when
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Figure 10.1 (a) The binary potential phase diagram of Fig. 8.11 reproduced to illustrate the
projection in the µB direction. (b) The diagram obtained by projection. The positions of some of
the two-phase surfaces are shown.
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Figure 10.2 Stereographic pair of Schreinemakers’ projection of a binary system, showing the
three-dimensional shape. The phases not taking part in an equilibrium are given in parentheses.
It can be seen that lines (1.4) and (5.3) do not intersect.

appropriate). Such a section was presented in Fig. 8.12. Figure 10.3(b) shows a diagram
with several parallel sections. In order to simplify this picture, only the equilibria with
the δ phase are shown here. Arrows within the figure show the direction of decreasing
temperature.

Sometimes one uses both projecting and equipotential sectioning in order to reduce
the number of axes. One may be interested in the changes of various phase equilibria
with T and the chemical potential of some volatile component, e.g. oxygen, and one
is willing to limit the information by making an equipotential section at P = 1 bar.
Figure 10.4 gives an illustration from a quaternary system. According to Gibbs’ phase
rule an invariant equilibrium is obtained with c + 2 = 6 phases for c = 4, and six uni-
variant equilibria should radiate from it. Let us denote the phases by 1 to 6. A section
at P = P1 will cut through the lines (1), (2) and (3). They will thus appear as points in
the right-hand part where one of the projected axes, µO2 , is now shown. The surfaces
extending between the lines in the T, P diagram (see Fig. 10.1(b)) will appear as lines in
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Figure 10.3 (a) Equipotential sections inserted in the potential phase diagram of Fig. 8.11.
(b) The projection of the same potential phase diagram with inserted equipotential sections of
the two-phase surfaces involving the δ phase.
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Figure 10.4 (a) Schreinemakers’ projection of a quaternary system. (b) Section at P = P1. The
new axis, µO2 , is one of those projected in the T, P diagram.

the section. A major difference between the two diagrams is that in (a) all other potentials
were projected but in (b) one of them, P, was sectioned.

Exercise 10.1

Find the section of the 2 + 4 + 5 + 6 equilibrium in the T, µO2 diagram of Fig. 10.4.
Then, find its surface in the T, P diagram.

Hint

How would that equilibrium be denoted using the absent phases?
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Solution

It would be (1.3). In the T, µO2 diagram it is represented by a line between the points (1)
and (3). In the T, P diagram its surface covers the angle between the (1) and (3) lines.

Exercise 10.2

A series of Fe–Cr alloys are heat treated together in a flowing gas of constant C and N
potentials. After heat treatment for a long time at 1273 K, it is sometimes found that
four phases are present but not all in the same specimen. The experiment is repeated
several times with different C and N potentials and in some of those experiments the
four phases are again found. It may be assumed that Cr is not transferred between the
alloys. Is it possible that the four phases are found in more than one experiment, i.e. at
different combinations of C and N potentials?

Hint

We may treat T and P as constant in addition to the potentials of C and N. With four
components we thus have the same situation as in a binary system at variable P and T.
We may use Fig. 10.1(b) and identify µB with µCr, T with µC and − P with µN.

Solution

It is thus useful to look at a µN, µC diagram obtained by projection in the µCr direction.
Each experiment should be represented by a point in that diagram but individual spec-
imens would fall on different positions along the projected µCr axis, which may also
be regarded as a projection along the conjugate molar axis, zCr according to Table 9.2.
Such a diagram is given in Fig. 10.1(b). We can see that all experiments falling between
lines (α) and (β) may cut through three two-phase surfaces, together involving all four
phases. With all such combinations of µC and µN we will cut through all four one-phase
fields in Fig. 10.1(a). Four phases can thus be found in several of the experiments with
different values of µC and µN.

10.2 The phase field rule and projected diagrams

In Section 8.5 we derived the phase field rule for equipotential sections. Expressed in
terms of the number of components, c, it was given by Eq. (8.23) and in terms of the
number of axes in the diagram, r, by Eq. (8.24) by the use of r = c + 1 − ns. The rule
will now be extended to include projections as well. The dimensionality of phase fields
with a large number of phases will not change their dimensionality by projecting. For
example, the phase field for an invariant equilibrium will still be a point, Eq. (8.23) would
still hold,

d = c + 2 − p − ns. (10.1)
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On the other hand, the dimensionality of the diagram would decrease by each projection,
yielding the following relation,

r = c + 1 − ns − npr. (10.2)

Inserting this in Eq. (8.23), here reproduced as Eq. (10.1), we obtain instead of Eq. (8.24),

d = υ − ns = c + 2 − p − ns = 1 + r − p + npr. (10.3)

The dimensionality of the diagram after a number of projections may have decreased to
the dimensionality of a phase field, i.e. to r = d, and that happens when npr = p − 1 as
demonstrated by Eq. (10.3). Each further projection will decrease the dimensionalities
of the diagram and the phase field by one unit because a feature in the diagram can never
have a higher dimensionality than the diagram itself. We thus find that

d = r = c + 1 − ns − npr for npr ≥ p − 1. (10.4)

whereas Eq. (10.3) holds for npr ≤ p − 1.
A practical example is given in Fig. 10.5, concerning the Fe–O–S system. Since there

are four lines radiating from each point we may conclude that the invariant equilibria
concern four phases. The phase field rule in Eq. (10.3) gives, for large p,

0 = c + 2 − p − ns

= 3 + 2 − 4 − ns

= r + 1 − p + npr

= 2 + 1 − 4 + npr

ns = 1; npr = 1.

It is evident that one has sectioned at a constant value of some potential, probably P at
1 bar. Then one has projected once, in the direction of µs or µFe. However, it must be
remembered that the complete phase diagram was first obtained from the fundamental
property diagram by projecting in the direction of some µi, the one which was consid-
ered as the dependent variable. Figure 10.5 has thus been obtained from the fundamental
property diagram by projecting twice, and sectioning once, and it does not matter which
projection was made first, µs or µFe. It should be emphasized that npr represents the num-
ber of projections of the complete phase diagram. The first projection of the fundamental
property diagram is not included in npr.

It is interesting to note that the two three-phase lines h (FeO + Fe3O4 + L) and
f (Fe + FeO + L) stop inside the diagram. They stop at invariant three-phase points
in the binary Fe–O system which overlaps the diagram. In principle, the whole surface
of the diagram is covered by the binary Fe–O diagram which may be regarded as the
bottom plate of the three-dimensional phase diagram, where µs = −∞, assuming that
the fundamental property diagram was first projected in the µFe direction to give a phase
diagram. On the bottom plate, there is no S and the number of components c is thus 2
instead of 3. Three-phase equilibria would thus appear as points and two-phase equi-
libria as lines. That bottom plate is shown in (b) but was not included in (a) because
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Figure 10.6 Potential phase diagram for (a) Cu−O−S and (b) Mn−O−S at 1 bar and 1000 K.
These phase diagrams are two-dimensional and are not projections.

it would have made the diagram difficult to interpret. Only the binary end-points for
FeO + Fe3O4 + L and Fe + FeO + L were marked.

In many cases one should consider the top plate as well as the bottom plate. A
log PSO2 , log PO2 diagram of the Cu–Mn–O–S system under P = 1 bar and T = 1000
K would be an example. The top and bottom would represent the Cu–O–S and Mn–O–S
systems, respectively, if the projected axis is taken as (µCu − µMn). These diagrams are
given in Fig. 10.6.

The solubilities of Cu in the Mn phases and of Mn in the Cu phases are all very
low. The equilibria between the Cu–O–S phases will not be affected by the presence
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Figure 10.7 Projected phase diagram for Cu–Mn–O–S at 1 bar and 1000 K. For clarity, all the
lines from the Cu–O–S side are presented with dashed lines here.

of Mn, nor the Mn–O–S phases by Cu. Both diagrams can thus be plotted in the same
RT ln PSO2 , RT ln PO2 coordinate frame to form the Cu−Mn−O−S diagram (Fig. 10.7).
The lines in the ternary systems can be copied into the quaternary system and they
become surfaces in the projected direction and still appear as lines in the Cu–Mn–O–S
diagram. New two-phase surfaces form between the previous one-phase fields and they
are identified in the diagram.

An interesting question is the choice of projected axis in Fig. 10.7. In order to treat Cu
and Mn in a symmetric way, it is convenient to consider (µCu + µMn) as the projected axis
to give a phase diagram from the fundamental property diagram and then (µCu − µMn)
as the axis used for projection of the phase diagram to reduce the number of axes to two.

Exercise 10.3

Only three lines intersect at the invariant equilibrium I in Fig. 10.5. What line is not
shown and why not?

Hint

The fourth line should be the one without FeS.

Solution

The Fe + FeO + Fe3O4 line is not shown because one has projected the diagram exactly
in its direction and the line thus appears as a point. The reason is that the projection has
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been made in the µS direction and S does not dissolve in any one of these three phases.
Thus, the equilibrium Fe + FeO + Fe3O4 is not affected by S and its line goes exactly in
the µs direction. It exists at a certain T, PO2 , only, and it is shown in the binary Fe−O
diagram in Fig. 10.5(b).

Exercise 10.4

At 1000 K one measures the emf of an electrolytic cell where one electrode is a mixture
of MnS, MnO, Cu2S and Cu and the other is a mixture of Cu2O and Cu. The electrolyte
is solid zirconia stabilized with calcia. Use Fig. 10.7 to estimate the resulting emf.

Hint

The electrical current can pass through this electrolyte mainly by the diffusion of
O−2 ions. The emf will thus be an expression of the difference in oxygen potential
between the two electrodes and it can be estimated from the difference in RT ln PO2 for
two points in the diagram representing the electrodes.

Solution

The point for Cu2O + Cu can be taken anywhere on the corresponding line yield-
ing log PO2 = −10.2 in Fig. 10.6(a) (also dashed line in Fig. 10.7). The other point
is obtained as the intersection between two lines in the lower left part of Fig. 10.7
and yields log PO2 = −21.2. We get �µO = 0.5�µO2 = 0.5RT (1n P ′

O2
− 1n P ′′

O2
) =

0.5RT 1n 10 · (−10.2 + 21.2) = 12.7 RT . Remembering that the O ion is divalent we
get E · 27 = �µo where 7 is Faraday’s constant (96 486 coulomb/mole) and thus E =
0.547 V.

10.3 Relation between molar diagrams and Schreinemakers’
projected diagrams

As demonstrated by Figs. 8.7 and 8.11, the elementary units of potential diagrams are very
simple from the topological point of view. In this sense, the projections of such diagrams
are more interesting. This is evident if one considers the dashed extrapolations shown in
the projected diagram in Fig. 10.8(b). Between the lines there are two extrapolations in
one case, one extrapolation in two cases, and no extrapolation in one case. In fact, this
is the only way to draw four lines in different directions if the 180◦ rule is to be obeyed.
It is evident that, in the projected direction, the four phases are related to each other in a
special way. This phenomenon will now be examined. In order to simplify the discussion
the method of identifying a univariant line by giving within parentheses the absent phase
is used in Fig. 10.8(b).

If potential axes are chosen for plotting the complete, three-dimensional phase diagram
of a binary system, the four phases of an invariant equilibrium will fall on one point. If
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Figure 10.8 (a) Binary phase diagram and (b) projection in the µB direction, taken from
Fig. 10.1. The extrapolations of the three-phase lines are marked with dashed lines.
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Figure 10.9 Introduction of a molar axis into the potential diagram of Fig. 10.8. Only the lower
half of that diagram is used here. The surface marked with horizontal tie-lines represents the
α + β + γ equilibrium.

one molar quantity is introduced, say, instead of Y j , then the four phases will fall on a
line, just as the three phases in the three-phase equilibrium in Fig. 9.2(a) fall on a line
in Fig. 9.2(b). In that case, it is easy to see the order in which the phases are arranged
along the line. The hcp phase must be placed between bcc and fcc. Otherwise, there
would be some overlapping of the one-phase fields which is not allowed according to
Section 9.1. Using the same reasoning, it is easy to see the order in which the four phases
of Fig. 10.8 will be arranged when a molar quantity is introduced. One simply looks at
the direction of the two-phase surfaces. Each one will turn into a two-phase volume when
zB is introduced instead of the µB axis. In Fig. 10.9 these volumes are demonstrated for
the three surfaces between α, β and γ. It is evident that γ must fall between α and β

along the zB axis.
When the phase diagram of Fig. 10.8(a) is projected in the µB direction and

Fig. 10.8(b) is formed, much information is lost. However, the information regarding the
order of arrangement along the projected direction, obtained when the molar quantity is
introduced, is not lost. This is because some conclusions can still be drawn regarding the
directions of the two-phase surfaces. They are situated between the three-phase lines.
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Figure 10.10 One-dimensional molar phase diagram at constant T and P, showing the relative
position of four phases along the zB axis, introduced instead of a µB axis, through the invariant
equilibrium in Fig. 10.8(a). The composition is here expressed with the zB variable because it is
the conjugate variable to µB according to Table 9.2. The relative positions of all the four phases
along a zB axis, going through the invariant phase equilibrium are demonstrated schematically in
Fig. 10.3.

This was demonstrated in Fig. 10.1(a). It is thus possible to get an impression of the
relative positions of the six surfaces and thus of the relative positions of the phases along
the molar axis of the projection.

The simplest method to interpret an experimental diagram like Fig. 10.8(b) is to
draw the four extrapolations and then turn the diagram in the same way as Fig. 10.8(b)
with respect to the dashed extrapolations. The compositions of the phases will then be
arranged in the order given by Fig. 10.10 or in the completely reverse order. A more
logical method will be described in the following section.

Exercise 10.5

In Exercise 10.2 we considered a heat treatment of several Fe–Cr specimens under
carburizing and nitriding conditions at constant T and P. It had been found that four
phases could be present in some experiments but not in the same specimen. Now try to
find what is the maximum number of phases in any one specimen.

Hint

As already explained, we can use Fig. 10.1(b) because our quaternary system at constant
T and P behaves like a binary system at variable T and P. In our case the two axes should
be µC and µN and the projection has been made in the direction of µCr, which is the
same as the direction of zCr.

Solution

In Exercise 10.2 we saw that four phases can be present if µC and µN fall between
the lines (α) and (β) in Fig. 10.1. The specimens fall on different positions along the
projected axis. Most of them may fall between the surfaces representing two phases and
they will thus have only one phase. What is the chance that some fall on the two-phase
surface? Since the specimens are defined by their contents of Cr we should regard the
projected molar axis rather than the potential axis. The two-phase surface in the potential
diagram has a thickness when the molar axis has been introduced. There is thus definite
chance that a specimen falls within the two-phase region.
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Figure 10.11 Modification of Fig. 10.8 by rotation of the β + γ surface until it is parallel to the
µB axis. In the µB projection the β + γ + δ(α) and α + β + γ + (δ) lines will now coincide
and their extrapolations will not be visible.

On the other hand, if predetermined amounts of C and N are added to a set of specimens
in a capsule, then one could not use Fig. 10.1(b) directly. For each specimen one should
rather consider a molar diagram like Fig. 9.4 and it is evident that the four phases could
occur in the same specimen and this could even happen in more than one specimen in
the same experiment.

10.4 Coincidence of projected surfaces

The method to determine the relative compositions of phases, now to be described, can
be used in higher-order systems as demonstrated in the next section, but a binary system
will be considered first.

Suppose one could gradually change the properties of the system in such a way that
the β + γ surface in Fig. 10.8 would rotate around an axis roughly parallel to the T axis.
One could thus make the two lines (α) and (δ) in the projection approach each other
without changing the topology of the projected diagram. At the moment of coincidence,
one has a situation such as that illustrated in Fig. 10.11.

The β + γ surface is now parallel to the direction of projection, µB, and a continued
rotation would put the β + γ surface on the other side of the (α) and (δ) lines. Thus,
β and γ would be transposed in Fig. 10.10. It is possible to conclude that the β and γ

phases have the same value of zB if the µB projections of the (δ) and (α) lines coincide
when they meet at the four-phase point. Evidently, before the gradual rotation the β and
γ phases must have been neighbours along the zB line in Fig. 10.10. When the lines
coincide, the phases fall on the same point on the zB axis. This rule of coincidence is
closely related to Konovalov’s rule which will be discussed in Section 10.8. The relative
positions of the phases for the various cases of coincidence are shown in Fig. 10.12.
Other cases of coincidence may occur but not until at least one of these has occurred.
Before any rotation, the phases must have been arranged along the zB axis as shown in
Fig. 10.10 or in the completely reverse order.
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Figure 10.12 Three cases of coincidence of three-phase lines in a projected potential phase
diagram obtained by modifying Fig. 10.8.
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Figure 10.13 (a) Modification of Fig. 10.8 by rotation of the entire diagram until the
β + γ + δ(α) is parallel to the µB axis. All three surfaces, β + γ, γ + δ and δ + β, are then
parallel to the µB axis. In the µB projection (b), β + γ + δ(α) degenerates to a point and will
thus coincide with all the other lines without them coinciding with one another.

It is interesting to note from Fig. 10.8 that it should be possible to rotate the α + β

surface in such a way that the (γ) and (δ) lines approach each other and finally coincide.
However, the 180◦ rule prevents this from happening before there is another coincidence.

What happens if three of the four phases β, γ and δ, have the same zB value will
now be investigated. The three surfaces representing β + γ, β + δ, γ + δ must all be
parallel to the µB axis and the β + γ + δ(α) line must point in the µB direction. It thus
degenerates to a point. This case is illustrated in Fig. 10.13.

Exercise 10.6

Prove mathematically that the compositions of β and γ must coincide when the µB axis
in a binary system is parallel to the β + γ surface, as in Fig. 10.11.
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Hint

Apply Eq. (8.47) to the binary case.

Solution

For a binary system we get (zβ
B − zγ

B)dµB = −(Sβ
m1 − Sγ

m1)dT +(V β
m1 − V γ

m1)dP . When
the β + γ surface is parallel to µB, then we can change µB and stay on the surface
without changing T or P, i.e. with dT = 0 and dP = 0. The coefficient of dµB must
thus be zero, i.e. zβ

B = zγ
B.

Exercise 10.7

Suppose one has measured µC as function of T at 1 bar for a ternary A–B–C system.
What conclusion could be drawn if the diagram looks like Fig. 10.11(b) with µC inserted
instead of P?

Hint

Compared to Fig. 10.11 we have one component more but the dimensionality has been
reduced to the same by keeping P constant. In both cases µA and µB are the potentials
that are not shown in the projection, i.e. those used to reduce the number of axes by
projection from the four-dimensional fundamental property diagram.

Solution

One of µA and µB is the dependent variable and the final projection has been made in the
direction of the other one. From the coincidence of the (α) and (δ) lines we may conclude
that zβ

B = zγ
B if µA is the dependent variable and zβ

A = zγ
A if µB is the dependent one.

These two results are identical since zB = NB/NA = 1/zA.

10.5 Projection of higher-order invariant equilibria

The topological examination may be extended to higher-order invariant equilibria and
adjoining univariant equilibria, although the visibility is then lost. However, it has been
shown by analytical methods [17–19] that the same principles, which have been derived
here by inspection, apply. Three components will yield a four-dimensional phase diagram
and it must be projected twice in order to yield a two-dimensional picture. It may show an
invariant five-phase equilibrium and five adjoining four-phase lines. If no lines coincide,
they can arrange themselves in three different ways, as illustrated in Fig. 10.14.

For a closer discussion of the compositions of the phases taking part in the five-
phase equilibrium, the two potentials on the axes will be kept constant at the values of
the invariant equilibrium, while the two projected potentials will be replaced by their
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Figure 10.14 Possible Schreinemakers’ projections for a ternary system obtained by projecting the
Y j, Y k, Y m, Y n phase diagram in the Y m and Y n directions. Points represent invariant five-phase
equilibria. The five lines radiating from each point represent four-phase equilibria and are
identified by giving the absent phase in parentheses. Dashed lines are metastable extrapolations.
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Figure 10.15 Molar phase diagrams at constant Y j and Y k showing the relative positions of the
five phases in the invariant equilibria in Fig. 10.14. The change occurring when lines (ε) and (β)
in case (a) are rotated to approach each other can be illustrated by moving point α towards the
straight line between δ and γ. Case (b) is obtained by letting the (ε) and (β) lines pass one
another, thus making point α cross the δ − γ tie-line. Case (c) is obtained by letting the (α) and
(δ) lines rotate and pass one another, whereupon ε will cross the β − γ line.

conjugate molar quantities. The five phases will fall on different points on the plane
formed by the two molar quantities, and Fig. 10.15 illustrates the arrangement of the
phases in the three different cases. Three phases may here be regarded as neighbours
if their points can be connected to form a triangle with no other point inside and if the
triangle can be changed into a line without any one of its points first moving inside any
other such triangle. If two lines in the projected potential phase diagram coincide, then
the three phases they have in common will fall on a straight line in the molar diagram.

Four components yield a five-dimensional phase diagram and it must be projected
three times in order to yield a two-dimensional picture. A six-phase equilibrium will
be invariant and represented by a point from which six lines will radiate, representing
univariant equilibria with one phase absent in each. The relative positions of the six lines
will reveal how the six phases are arranged in the three-dimensional compositional space
formed by three molar quantities. However, this is not easy to visualize. The rule relating
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Figure 10.16 See Exercise 10.8.

the coincidence of lines in a projected potential phase diagram to the positions of the com-
mon phases in the space formed by the molar quantities has been called the ‘coincidence
theorem’ [19]. The theorem can be generalized as demonstrated by the following exam-
ple. Suppose that two of the points, α and δ, in the left-hand picture of Fig. 10.15 coincide.
Then δ, α and γ fall on a line, and lines (β) and (ε) in Fig. 10.14 should coincide. However,
β, δ and α would also fall on a line, and lines (γ) and (ε) in Fig. 10.14 should also coin-
cide. As a consequence all three lines, (β), (γ) and (ε), should coincide. It is thus possible
to generalize the coincidence theorem as follows. Consider a two-dimensional projection
of an r-dimensional potential diagram. It may have an invariant equilibrium involving
r + 1 phases. From this point, r + 1 univariant equilibria, each with r phases, radiate. The
theorem concerns the positions of the phases in the (r − 2)-dimensional space formed
by the molar quantities conjugate to the projected potentials. If t of the phases fall in a
(t − 2)-dimensional section through that space, then all the univariant equilibria, which
contain the t phases, coincide in the two-dimensional projection. There would be
r + 1 − t such equilibria.

Exercise 10.8

Figure 10.16 is part of the potential phase diagram for the Fe–Si–O system, showing the
five-phase equilibrium, metallic melt (met), liquid melt (L), wüstite (w), fayalite (fay)
and gas (gas). Use the information in the diagram to decide how the composition of L
falls relative to the other phases.

Hint

By extrapolating the lines we find that our case corresponds to case (b) in Fig. 10.14 with
L identified as α. Our diagram can be regarded as obtained by projecting the fundamental
potential diagram in the directions of P, µFe and µSi, leaving T and µO as axes in our
diagram. The first projection produces a complete potential phase diagram and, since
we are interested in comparing compositions, we shall regard P as subjected to the
first projection. We should thus write the Gibbs–Duhem relation as dP = (S/V )dT +
�(Ni/V )dµi . The conjugate variable to the next two potentials to be projected would
thus be NFe/V and NSi/V . They should appear in our diagram as in Fig. 10.15(b).
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Figure 10.17 Solution to Exercise 10.8.

Solution

Since L is identified as α, it will have to form within the quadrangle formed by the other
four phases. Fayalite is 2FeO · SiO2, wüstite is approximately FeO and the metallic melt
is mainly Fe. The gas has a very large volume and will thus fall close to the origin in the
diagram. Since the extension of the (L) line in our potential phase diagram falls between
(gas) and (fay), corresponding to (γ) and (δ), its composition falls close to the gas + fay
join, corresponding to γ + δ join, as illustrated in Fig. 10.17.

10.6 The phase field rule and mixed diagrams

The number of axes in a complete phase diagram, whether a potential one or a molar
one, is r = c + 1. For a closed system one has fixed the composition and has actually
sectioned at c − 1 molar axes. The number of remaining axes is r = c + 1 − (c − 1) = 2.
For a closed system the equilibrium state is thus uniquely defined by choosing values
for T and P or their conjugate variables independent of how many phases it has. This is
called Duhem’s theorem.

In the most common type of phase diagram there is a temperature axis and a com-
position axis. It is thus an example of phase diagrams with a mixture of potential and
molar axes. Such diagrams are more complicated and due to the large variety no general
description will be given. However, it is worth discussing how the phase field rule can
be generalized to such diagrams but first it should be emphasized that the discussion
only concerns true phase diagrams, i.e. diagrams obtained from a single set of conjugate
pairs of variables. The nine possibilities were discussed in Section 3.5 and they resulted
in 27 sets when molar variables were introduced in Section 9.2. As a consequence, all
the variables in a mixed diagram, including those that have been projected or sectioned,
must come from one of the 27 sets in Tables 9.1, 9.2 and 9.3.

Figures 8.1 and 8.2 give the impression that the degrees of freedom increase by
one unit for each molar axis that is introduced instead of its conjugate potential axis.
However, it should be remembered that Gibbs’ phase rule was derived by considering
potentials and not molar quantities. The freedom to vary the amounts of the phases by
moving along a tie-line without varying the compositions of the individual phases is
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not regarded as a degree of freedom in Gibbs’ phase rule because the potentials do not
vary. Instead of redefining Gibbs’ phase rule we have thus decided to also to work with
a parallel concept, the dimensionality of a phase field. That was the main reason why the
phase field rule was introduced in Section 8.5. The effect of molar axes on Eq. (8.23)
yields

d = υ − ns + nm = c + 2 − p − ns + nm, (10.5)

where ns is the total number of sectioned quantities, potentials as well as molar quantities,
and nm is the total number of molar quantities used, i.e. sectioned molar quantities, nms,
as well as molar axes in the final diagram, nma. Of course, nm = nms + nma. On the other
hand, if we project a phase diagram in the direction of an axis, then it does not matter
what kind of variable was chosen on that axis, a potential or its conjugate molar quantity.
The projected phase diagram will look the same and all the projections will thus have
the same effect on the phase field rule. The number of projected molar quantities should
not be included in nm.

As before, the number of axes in the phase diagram will be given by Eq. (10.2),
r = c + 1 − ns − npr, and Eq. (10.5) can thus be written as

d = c + 2 − p − ns + nm = 1 + r − p + npr + nm for p ≥ 1 + npr + nm. (10.6)

This expression is valid only as long as p ≥ 1 + npr + nm because it yields d = r for
p = 1 + npr + nm. This is a critical value because when the number of projections or
molar axes is increased further Eq. (10.6) would yield d > r which is impossible. For
each one of further projections and molar axes both the phase field and the diagram will
lose one dimension and retain the relation d = r . For less phases we obtain instead of
Eq. (10.4),

d = r = c + 1 − npr − ns for p ≤ 1 + npr + nm. (10.7)

A few more considerations of the properties of mixed diagrams should be added. The
lowest possible dimensionality of a phase field will occur for the maximum number of
phases. In a potential phase diagram that dimensionality will be zero but it is evident
from the preceding discussion that it will increase by one unit for each molar axis and
the lowest possible dimensionality will thus be equal to the number of molar axes in the
final diagram, nma, and this will occur at the maximum number of phases. By inserting
nms + nma = nm we obtain

nma = dmin = c + 2 − pmax − ns + nma + nms

= r + 1 − pmax + npr + nma + nms (10.8)

pmax = c + 2 − ns + nms = r + 1 + npr + nms. (10.9)

The MPL boundary rule can be applied to mixed diagrams but only with caution. It
is important first to distinguish between phase fields and phase boundaries. The rule
concerns two adjoining phase fields separated by a phase boundary. As an example, we
may examine the case illustrated in Fig. 9.2(c). It is reproduced in Fig. 10.18 without
tie-lines and with the three-phase field bcc + fcc + hcp marked with a thick line. All the
other lines are phase boundaries. The MPL rule cannot be applied to the contact between
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Figure 10.18 Mixed phase diagram from Fig. 9.2(c), reproduced without tie-lines. The thick line
represents the three-phase field. All other lines are phase boundaries.

fcc and bcc + hcp phase fields because they are not connected by a phase boundary but
separated by the three-phase field bcc + fcc + hcp. For the contact between fcc and bcc +
fcc + hcp the rule gives

b = r − D+ − D− = 2 − 2 − 0 = 0,

in agreement with the fact that these two phase fields meet at a point, only. For the contact
between bcc + hcp and bcc + fcc the rule gives

b = r − D+ − D− = 2 − 1 − 1 = 0.

This is also correct because these two phase fields do not make contact along the thick
horizontal line, where they are separated by the bcc + fcc + hcp phase field. They
only make contact at the upper end-point of the thick line. Cases like this can be easily
analyzed by imagining that the one-dimensional phase field is a very thin triangle [12].
That method is also helpful if one wants to draw zero-phase-fraction lines. Each one-
dimensional phase field will have one such line on each side.

Exercise 10.9

The T, %C phase diagram (Fig. 10.19) is for a quaternary A–B–C–D system at 20% B
and 20% D and at 1 bar. Test it with the phase field rule.

Solution

There are four components, c = 4. The complete phase diagram has been sectioned
three times, ns = 3, but two of the sections were for the molar quantities %B and %D,
nms = 2. In the final diagram there is one molar axis, nma = 1. There is no projection,
npr = 0. In the diagram we can see a horizontal line. Let us test if it is a phase field or
just a boundary between two-dimensional phase fields. A line has the dimensionality
1 and it thus gives 1 = d = c + 2 − p − ns + nma + nms = 4 + 2 − p − 3 + 1 + 2 =
6 − p; p = 5. If the horizontal line is a phase field, it should have five phases. From
the neighbouring phase fields we find α + β + γ + δ + L. We may conclude that this
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Figure 10.19 See Exercise 10.9.
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Figure 10.20 T, Sm diagram for Fe. This is not a true phase diagram.

line is a phase field. The diagram is two-dimensional, r = 2. Let us now check for
what number of phases a field should be two-dimensional, p ≤ 1 + npr + nma + nms =
1 + 0 + 1 + 2 = 4. This is also confirmed by the diagram.

10.7 Selection of axes in mixed diagrams

For mixed diagrams it is particularly important to pay attention to how the axes are
selected. As already emphasized, they must all come from a set of conjugate pairs
of variables and one from each conjugate pair. The various possibilities are listed in
Tables 9.1, 9.2 and 9.3. A number of examples will now be given in order to demonstrate
what could otherwise happen.

Figure 10.20 shows part of the T, Sm diagram for Fe. Two two-phase fields overlap
which is made possible by the fact that T and Sm do not represent different conjugate
pairs in any of the sets in the tables. This is not a true phase diagram.
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Figure 10.21 Sm, µPb diagram for Pb–Sn. This is not a true phase diagram.
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Figure 10.22 xCr, aC diagram for Fe–Cr–C. This is not a true phase diagram.

Figure 10.21 shows the Sm, µPb diagram for the Pb–Sn system at 1 bar. Two two-phase
fields overlap because Sm and µPb do not come from the same set of conjugate pairs.
This is not a true phase diagram. One should have combined Sm with µPb − µSn or Sm1

with µPb.
Figure 10.22 shows the xCr, aC diagram for Fe–Cr–C at 1 bar and 1200 K. The inter-

secting phase boundaries in the upper left corner, forming two ‘swallow-tails’, indicate
that this is not a true phase diagram. The activity aC can be regarded as an expression
for µC/T and should have been combined with uCr or zCr but not xCr.

Figure 10.23 shows the T, xCr diagram for Fe–Cr–C at 1 bar and aC = 0.3, relative to
graphite. The two intersecting phase boundaries on the right-hand side indicate that this is
not a true phase diagram. The two axes, T and xCr, do belong to the same set of conjugate
variables but one must also consider the sectioned axes. In this case one has sectioned
at constant P and aC, i.e. µC/T . However, µC/T and xCr do not belong to the same set.

Figure 10.24(a) shows the Hm1, aC diagram for Fe–C at 1 bar. This is not a true phase
diagram although Hm1 and µC/T, here represented by aC, come from the same set of
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Figure 10.23 T, xC diagram for Fe–Cr–C at 1 bar and aC = 0.3. This is not a true phase diagram.
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Figure 10.24 Hm1, aC diagram for Fe–C at 1 bar. This is not a true phase diagram as revealed by
the overlapping two-phase fields, shown when the tie-lines are included in (b).

conjugate variables. That is revealed by the tie-lines which are included in Fig. 10.24(b).
The reason is that the numerical values used for Hm1 refer to reference states of Fe and
C at 298 K but aC refers to graphite at the actual temperatures. It is evident that one
should also be careful when representing the oxygen potential with PO2 . It is only under
isothermal conditions that it should be combined with an axis for a molar quantity given
relative to references at 298 K. It should be noted that the diagrams in Figs 8.13 and
8.14 used µC − oGgr

C or (µC − oGgr
C )/T as an axis and oGgr

C was defined at the actual
temperature which varied. That did not cause any problem because there was no molar
axis in those diagrams.

Exercise 10.10

Figure 10.23 showed an incorrect selection of axes. If one really wanted to section at a
constant value of aC, what composition axis should one have used?
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Hint

Consult the Tables 9.1, 9.2 and 9.3.

Solution

aC represents µC/T which may be combined with −1/T , −P , and zCr (according to
fifth row in Table 9.2) or uCr (according to fifth row in Table 9.3). Of course, −1/T could
be replaced by T.

10.8 Konovalov’s rule

The rule that two one-phase fields are separated from each other by a positive distance,
when the proper molar quantity is introduced instead of a potential, was described in
Section 9.1. That rule is not as trivial as it may appear. It was discovered experimentally
by Konovalov [20] when measuring the vapour pressure of liquid solutions of water and
various organic substances under isothermal conditions. He established that, compared
with the solution, the vapour contains a higher relative content of that component which,
when added to the solution, increases the total vapour pressure. In addition, he found
two cases with a pressure maximum and realized that the liquid and vapour must have
the same composition at such a point. A case of this type is shown in Fig. 10.25, and it
is evident that it is simply due to the fact that the molar quantity which is used, here zB,
replaces a potential whose axis happens to be parallel to a line tangential to the linear two-
phase field in the potential diagram. Except for that, the system has no unique properties
at this point. The point is sometimes called a singular point and the equilibrium under
this special condition is called singular equilibrium.

Figure 10.26(a) shows a three-dimensional diagram for the same kind of system but
including both temperature and pressure axes. It was presented in Fig. 8.23 and it was
then concluded that an extremum in P at constant T must lead to an extremum in T at
constant P. The corresponding diagram, where zB has been introduced instead of µB, is
shown in Fig. 10.26(b) and it confirms that the two phases have the same composition at
the point of extremum considered. In fact, there is a whole series of such points, marked
as a dotted line. This is the locus of points of tangency for tangents parallel to the µB

or zB axis. That line represents a singular equilibrium and could be included in the T, P
diagram, obtained by projecting in the µB (i.e. zB) direction, Schreinemakers’ projection.
The line representing singular equilibrium is called a singular curve. Singular equilibria
will be further discussed in Sections 12.6 and 13.7 to 13.9.

A major difference between univariant lines and singular curves should be noted. A
univariant line shows exactly where a particular univariant equilibrium occurs. A singular
curve shows the maximum extension of a divariant equilibrium which is otherwise not
shown in the diagram. It would thus be wise to indicate on what side of a singular curve
the particular equilibrium exists. This is done in Fig. 10.27, which is a projection of
Fig. 10.26.
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Figure 10.25 An isothermal section of a binary diagram with a singular point for two phases
illustrating Konovalov’s rule.
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Figure 10.26 (a) A two-phase equilibrium in a binary system illustrated with the complete
three-dimensional potential phase diagram. Points of tangency for lines parallel to the µB axis
are marked with a dotted line. (b) After µB has been replaced by its conjugate molar quantity,
zB, the phases still coincide along the dotted line where the two phases have the same
composition, expressed through zB.

Points of extremum in P and T were discussed in Section 8.9 and Konovalov’s rule was
actually derived there in an analytical way, using the ordinary molar quantities, Sm, Vm

and xi. In Chapter 8 and the present one we have mainly used molar quantities defined by
dividing the integral quantities with the content of a certain component, NA for instance.
We denote these quantities with Sm1, Vm1 and zi. However, if all the molar quantities we
are interested in are molar contents, then the results look the same in both notations. As
an example, the insertion of xi = x1zi in the result for p = c in Section 8.9 yields

0 =
∣∣∣1 xβ

2 . . xε
c

∣∣∣ =
∣∣∣xα

1 xβ
2 . . xε
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∣∣∣
=
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c
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1 xβ
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c

∣∣∣ . (10.11)
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Figure 10.27 Singular curve showing the maximum extension of the α + β equilibrium in
Fig. 10.25. Projected in the zB direction. The α + β surface is folded and to the left of the curve
one would intersect that surface twice by moving in the projected direction, i.e., perpendicular
to the picture.
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Figure 10.28 See Exercise 10.11.

We shall continue to use zi but it should be remembered that the results hold for xi as
well.

The importance of Konovalov’s rule stems from the fact that composition is often
used as an experimental variable. A system with a composition at a point of maximum
or minimum undergoes an azeotropic or congruent transformation on passing through
it and such a point is often given a special name, azeotropic (actually meaning ‘boiling
unchanged’) or congruent.

Exercise 10.11

The phase diagram (Fig. 10.28) is an isobarothermal section at 1273 K and 1 bar of the
Fe–Cr–N phase diagram under conditions where N2 gas does not form. An isoactivity
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Figure 10.29 Solution to Exercise 10.11.

line for N has been drawn in the γ phase field. Show a reasonable continuation of it after
first sketching the corresponding µCr, aN phase diagram.

Hint

Notice that there is a tie-line for which the α and γ phases have the same Cr content. It
should be a point of extremum for the N potential (or N activity).

Solution

The solution is given in Fig. 10.29.

10.9 General rule for singular equilibria

It is evident that Konovalov’s rule does not only apply to composition. It may thus be
generalized. Suppose that a linear two-phase field in a Y k, Y j diagram, determined at
constant values of all the other potentials except Y l , which is chosen as the dependent
potential, shows a Y j maximum or minimum. At the point of extremum the two phases
must have the same value of Xk

m−1. Furthermore, if Y j is kept constant and another
potential is allowed to vary, it will also have an extremum at the same value of Xk

m−1.
Let us now consider a two-phase equilibrium in an isobaric potential diagram for a

ternary system, which is three-dimensional. Thus, p = c − 1. Suppose there is a point
of tangency for a plane parallel to the µB, µC plane (i.e. an isothermal plane) as shown
in Fig. 10.30(a) which is a reproduction of Fig. 8.24. As demonstrated in Fig. 10.30(b),
the two phases thus have the same composition and the point of extremum is a congruent
transformation point. This was already proved in Section 8.9 using an analytical method.
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Figure 10.30 (a) Isobaric potential phase diagram of a ternary system with a doubly singular
point on a divariant phase field. Thin lines represent points of tangency for lines parallel to the
µB or µC axis. Their intersection is a point of tangency on a µB, µC plane. It gives an extremum
of T. (b) By replacing µB and µC with their conjugate molar quantities, zB and zC, it is shown
that the two phases in the point of T extremum must have the same zB and the same zC value.
The point of extremum thus defines the composition of an alloy which can transform
congruently between the two phases.

The point of extremum in Fig. 10.30 may be characterized as a doubly singular point.
It would also appear in a diagram with a P axis under a constant value of T equal to the
extreme value. In order to show in one diagram that this point is an extremum for P as
well as T, one would need a fourth dimension. It is evident that the doubly singular point
in Fig. 10.30 would fall at a different T value if the constant P value was different and in
a P, T projection all such points would form a line, a doubly singular curve.

From Section 8.9 it is evident that Konovalov’s rule is just a special case of a more
general rule. In fact, for the ternary case, p = c = 3, it was formulated by von Alkemade
[21]. His rule was originally formulated for a liquid which solidifies to two solid phases
and P is regarded as constant. It may be stated as follows, ‘The direction of falling
temperature of the liquid in equilibrium with two solid phases is always away from the
tie-line between the solid phases. If the liquid falls on the tie-line, then the three-phase
equilibrium is at a temperature maximum.’ Figure 10.31 illustrates von Alkemade’s rule.
It is evident that Alkemade neglected the possibility of having a temperature minimum.

The reasoning applied to Konovalov’s rule can also be applied to von Alkemade’s rule.
If T is kept constant at the extreme value and P is varied with the three phases present,
then one will find that P also has an extremum. At a different constant value of P, the
T extremum would occur at a different value. The locus of these three-phase equilibria
would also give a line in Schreinemakers’ projection, a singular curve.

From the mathematical study of conditions of extrema given in Section 8.9 it is evident
that Konovalov’s rule can be applied to two-phase equilibria and von Alkemade’s rule to
three-phase equilibria in systems with c > p, although they were originally formulated
for c = p. Konovalov’s rule: T at constant P and P at constant T have extreme values for a
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Figure 10.31 Ternary phase diagram at constant P and with two molar axes showing a
three-phase equilibrium with an extremum of T (here represented by Ym), illustrating von
Alkemade’s rule. The triangles are parallel to the Xk

m1, Xl
m1 plane.

two-phase equilibrium if the two phases have the same composition, i.e. fall on the same
point; von Alkemade’s rule: T at constant P and P at constant T have extreme values for
a three-phase equilibrium if the compositions of the three phases fall on a straight line.
We can combine these cases into a general rule for singular equilibria: T at constant
P and P at constant T have extreme values for an equilibrium between p phases if their
compositions fall on a point for p = 2 (Konovalov’s rule), on a line for p = 3 (von
Alkemade’s rule), on a plane for p = 4, etc. In all these cases a curve representing the
locus of these equilibria can be plotted in the T, P diagram obtained by Schreinemakers’
projection. For p = c such a line is called a singular line, for p = c − 1 a doubly singular
line, etc. The connection between such lines will be demonstrated in Fig. 12.15.

Finally, it may be instructive to apply the phase field rule to the diagram in Fig. 10.25(b).
For the two-phase field liquid + vapour we get

d = c = +2 − p − ns + nm = 2 + 2 − 2 − 1 + 1 = 2,

because we have sectioned once, ns = 1, by keeping temperature, which is a potential,
constant. There is one molar variable, used as axis in the P, zB diagram, nm = 1. The
result agrees with the diagram because it shows a two-dimensional phase field for the
two phases. However, if we section once more, at a constant value of zB, then ns = 2
and we get d = 2 + 2 − 2 − 2 + 1 = 1. The phase diagram is now just a vertical line
and in general it will show that the two-phase field extends over a range of P values in
agreement with the calculated d = 1. However, the special section, going through the
point of extremum (the singular point), will show the two phases coexisting at a point,
and one should thus have expected to obtain d = 0. It is evident that one should exercise
special care when applying the phase field rule to systems with singular points. This
problem will be discussed further in Chapter 13.

Exercise 10.12

Try to construct a diagram similar to Fig. 10.31 for a case where α falls between L and
β at the maximum.
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Figure 10.32 Solution to Exercise 10.12.

Solution

The solution is given in Fig. 10.32.



11 Direction of phase boundaries

11.1 Use of distribution coefficient

In this chapter we shall examine in more detail the direction of phase boundaries in molar
and mixed phase diagrams. As an introduction we shall first discuss some approximate
calculations based upon the use of the distribution coefficient of a component between
two phases but later we shall use a more general method.

In multinary systems one is often interested in the distribution of a particular com-
ponent between two phases. One may for instance define a distribution coefficient (also
called partition coefficient) which can be used to represent experimental data and to
carry out calculations of phase boundaries and changes in chemical potentials.

Let us consider the equilibrium between two solution phases, α and β, which exist
already without an element B. On adding B one finds that it partitions between the two
phases in a characteristic manner, which can be derived from the equilibrium condition
Gα

B = Gβ
B. By applying a general model for a solution phase we obtain

oGα
B + RT ln xα

B + EGα
B = oGβ

B + RT ln xβ
B + EGβ

B, (11.1)

in which EGα
B and EGβ

B represent the deviation from ideal solution behaviour. We may
define a distribution coefficient K α/β

B as

K α/β
B = xα/β

B /xβ/α
B = exp

[
1

RT

(
oGβ

B − oGα
B + EGβ

B − EGα
B

)]
. (11.2)

In many cases the distribution coefficient is relatively independent of composition. This
occurs when the composition dependence of the partial Gibbs energy of each phase is
mainly given by the RT lnx term. In such cases the distribution coefficient may be a useful
tool. As an example we may consider the case where both phases are dilute solutions in
a major component A. The excess Gibbs energy terms may then be approximated by a
regular solution parameter L and we find, for low B contents,

K α/β
B = exp(�GB/RT ) where �GB = oGβ

B − oGα
B + Lβ − Lα, (11.3)

It should be emphasized that �GB, being a Gibbs energy, may be represented as �HB −
T �SB and we thus obtain

K α/β
B = Ko exp(�HB/RT ), (11.4)
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in which Ko and �HB are often approximated as constant. When there are several minor
components, we can define a distribution coefficient for each one

xα
j

/
xβ

j ≡ K α/β
j . (11.5)

For the major component we obtain, from Gα
A = Gβ

A,

oGα
A + RT ln xα

A + EGα
A = oGβ

A + RT ln xβ
A + EGβ

A, (11.6)

but it is not useful to define a distribution coefficient for this component. Instead we can
apply another approximation if the total content of alloying elements is small,

lnxA = ln(1 − �x j ) ∼= −�x j . (11.7)

For dilute solutions we may neglect the excess Gibbs energy for this component, obtaining

∑
xβ

j −
∑

xα
j = (

oGβ
A − oGα

A

)/
RT . (11.8)

For a binary system we thus have two equations derived from the equilibrium conditions
for the two components. For any temperature and pressure we can calculate two unknown
quantities, i.e. the compositions of the two phases. The temperature dependence of the
various parameters will give the directions of the two phase boundaries in a T, x diagram.
In an isobarothermal section of a ternary system there will be three equations and each
of the two phase boundaries will be represented by a line. With the approximations used
here we have been able to simplify all the equilibrium equations to linear equations
and the phase boundaries will thus be approximately straight lines as far as the dilute
solution approximation is valid. It is thus possible to construct the A-rich corner of a
ternary diagram from the binary diagrams by simply using a ruler. Two examples are
given in Fig. 11.1 and it should be noticed that the construction of the second one is based
upon an extrapolation of the phase boundaries in one of the binary systems to negative
compositions. This is non-physical but in accordance with the form of the mathematical
equations.

Exercise 11.1

Fe has two allotropic modifications, γ(fcc) and α(bcc). At 1423 K γ is more stable by
71 J/mol but α can be stabilized by alloying with 5 atom % Si. Estimate how much Si
is required if the alloy also contains 0.5 atom % Ni, which has a distribution coefficient
between γ and α of 1.3.

Hint

First evaluate the distribution coefficient for Si from the information.
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Figure 11.1 Isobarothermal section of ternary phase diagram showing equilibrium between two
phases, both with the same major component.

Solution

�xγ
j − �xα

j = (oGγ
Fe − oGα

Fe)/RT = −71/8.3145 · 1423 = −0.006; For the binary

Fe–Si system: −0.006 = xγ
Si − xα

Si = xα
Si(K γ/α

Si − 1) = 0.05(K γ/α
Si − 1); K γ/α

Si = 1 −
0.12 = 0.88.

For Fe–Si–Ni alloy: −0.006 = xα
Si(K γ/α

Si − 1) + xα
Ni(K γ/α

Ni − 1) = xα
Si · (0.88 − 1) +

0.005 · (1.3 − 1) = −0.12xα
Si + 0.0015; xα

Si = 0.0075/0.12 = 0.0625.

11.2 Calculation of allotropic phase boundaries

On an allotropic phase boundary the two phases have the same composition (see
Section 7.5). When comparing two phases we get the following expression by definition
if we apply the regular solution model to both phases (EGm = xAxBL , see Section 7.1)
because the ideal entropy term will be the same for two solution phases of the same
compositions and will thus drop out.

Gβ
m − Gα

m = xA
(

oGβ
A − oGα

A

) + xB
(

oGβ
B − oGα

B

) + xAxB(Lβ − Lα). (11.9)

For low B contents it may be convenient to rearrange the equation as

Gβ
m − Gα

m = oGβ
A − oGα

A + xB
(

oGβ
B − oGα

B − oGβ
A + oGα

A + Lβ − Lα
) − x2

B(Lβ − Lα).

(11.10)

At sufficiently low B contents we can neglect the last square term. Close to the temperature



236 Direction of phase boundaries

α

α

β

.
.

.

TTT

−0.01 0.01 0.01 0.02 0.01 0.020 0 0

.
.

. β

Gβ
m − Gα

m

xB xC

(a) (b) (c)

oG
β
A − oG

α
A + 0.02∆oG

α
B

→ βA
 

oG
β
A − oG

α
A + 0.01∆oG

α
B

→ βA
 

oG
β
A − oG

α
A + 0.01∆oG

α
C

→ βA
 

oG
β
A − oG

α
A + 0.02∆oG

α
C

→ βA
 

oG
β
A − oG

α
A

Figure 11.2 The effects of two types of alloying elements on the allotropic phase boundary.
The equilibrium phase boundaries (solid lines) fall one on each side of the allotropic phase
boundary (dashed lines). The diagrams are calculated with �oGα→βA

B = RT ln 2 and
�oGα→βA

C = −RT ln 2.

of the allotropic phase transformation for pure A we can neglect the term oGβ
A − oGα

A in
the bracket, which is there close to zero, and we thus get

Gβ
m − Gα

m
∼= oGβ

A − oGα
A + xB · �oGα→βA

B , (11.11)

where we have introduced the following notation

�oGα→βA
B = oGβ

B − oGα
B + Lβ − Lα. (11.12)

We have already seen that the distribution coefficient of B between α and β can be
approximated by an expression for low B contents

K α/β
B = exp

(
�oGα→βA

B

/
RT

) = exp
[(

oGβ
B − oGα

B + Lβ − Lα
)/

RT
]
. (11.13)

We thus find the following relation between the parameters used in the calculation of
allotropic boundaries as well as ordinary phase boundaries

�oGα→βA
B = RT ln K α/β

B . (11.14)

Within a narrow range of temperature and composition, it is reasonable to assume that
�oGα→βA

B is constant and we can then describe the effect of the alloying element as
a parallel displacement of the curve for oGβ

A − oGα
A by the amount xA · �oGα→βA

B .
We shall thus get two types of alloying effect, which are demonstrated by B and C in
Fig. 11.2. There it is assumed that oGβ

A − oGα
A varies linearly with temperature.
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Figure 11.3 The effects of two types of alloying elements on the allotropic phase boundary (thick
lines) when the low-temperature phase comes back at high temperatures. The phase boundaries
are here given with thin lines.

We can obtain an equation for the allotropic phase boundary by inserting Gβ
m − Gα

m =
0 in Eq. (11.11).

xallot
B = −(

oGβ
A − oGα

A

)/
�oGα→βA

B = −(
oGβ

A − oGα
A

)/
RT ln K α/β

B . (11.15)

Close to the transition point To for pure A we obtain

xallot
B = −(T − To)

(
o Hβ

A − o Hα
A

)/
To�

oGα→βA
B . (11.16)

This type of construction is especially interesting for iron because its high-temperature
phase δ is identical to its low-temperature phase α. As a consequence, the allotropic
phase boundary must be strongly curved as demonstrated in Fig. 11.3. It should be
noticed that one can extrapolate all phase boundaries mathematically, even to negative
alloy contents if one avoids the use of mathematical expressions containing lnxB. The
two types of alloying effects on iron, the stabilization of austenite (γ) by element B and
ferrite (α) by element C, thus look like each other’s mirror images. It should finally be
emphasized that the approximate equations derived in this section are valid only up to a
few atomic per cent of the alloying element.

Exercise 11.2

Suppose pure A has an α/β transition at 1000 K. An alloying element B, which itself
has the α structure at all temperatures, has been found first to expand the range of the
β phase to lower temperatures but at higher B contents the α phase will win. Find
the congruent point for the α/β equilibrium from the following kind of expression for
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both phases: Gm = xo
AGA + xo

BGB + RT (xAlnxA + xBlnxB) + LxAxB, where oGα
A −

oGβ
A = R(T − 1000); oGα

B − oGβ
B = −RT ; Lα = 200R and Lβ = −1000R.

Hint

At a point of extremum, where the ordinary phase boundaries are horizontal, the allotropic
phase boundary coincides with them and is also horizontal. It is much easier to calculate
this point from the allotropic phase boundary than from the ordinary ones. It is given by
Gα

m − Gβ
m = 0.

Solution

Gα
m − Gβ

m = xA(oGα
A − oGβ

A) + xB(oGα
B − oGβ

B) + (Lα − Lβ)xAxB; xA R(T − 1000) +
xB(−RT ) + (200 + 1000)RxAxB = 0; RT (xA − xB) − 1000RxA + 1200RxAxB =
0; T = (1000xA − 1200xAxB)/(xA − xB) = 1000(1 − 2.2xB + 1.2x2

B)/(1 − 2xB);
dT/dxB = 1000[(1 − 2xB)(−2.2 + 2.4xB) − (1 − 2.2xB + 1.2x2

B)(−2)]/(1 − 2xB)2 =
0; xB = 0.092; T = 990K.

11.3 Variation of a chemical potential in a two-phase field

We shall now consider the effect of a ternary alloying addition on a two-phase equilibrium
which exists already in a binary system. The effect of the minor binary component on the
chemical potential can be estimated rather accurately from the distribution coefficient
of the alloying element between the two phases without using any information on the
direction of the phase boundaries in the ternary system. In Section 8.8 we considered the
effect of any small change in composition of phases in a ternary system by combining
two Gibbs–Duhem relations at constant T and P. We can easily introduce a distribution
coefficient in Eq. (8.46).

dµC = − xα
B xβ

A − xβ
B xα

A

xβ
Axα

C − xα
Axβ

C

· dµB = xα
B xβ

A · 1 − K β/α
BA

xα
Axβ

C − xβ
Axα

C

· dµB. (11.17)

By dividing through with (xα
A + xα

B) · (xβ
A + xβ

B ), which is equal to 1, we can change
from the x composition to u (see Section 4.3). The distribution coefficient for B and A
between the two phases can be defined with both types of variable

K β/α
BA = xβ

B xα
A

/
xβ

Axα
B = uβ

Buα
A

/
uβ

Auα
B. (11.18)

At low contents of B in both phases we can approximate uα
A and uβ

A with unity and we
can apply Henry’s law to B in the α phase in the following form if the C content in α is
also low,

µB = Gα
B = oGα

B + RT ln f α
B + RT ln uα

B (11.19)

dµB = (
RT

/
uα

B

) · duα
B. (11.20)
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Figure 11.4 The effect of the slope of tie-lines on the activity of a component in a two-phase field.

The equation is thus simplified to

dµC

duα
B

= RT · 1 − K β/α
BA

uβ
C − uα

C

. (11.21)

By approximating the right-hand side with its value close to the binary A–C side of the
system, we can easily integrate and obtain

µ
ternary
C − µ

binary
C = RT · 1 − K β/α

BA

uβ
C − uα

C

· uα
B, (11.22)

where uα
B is the B content of α in the ternary alloy. By introducing the activity for C we

instead obtain

ln
aternary

C

abinary
C

= 1 − K β/α
BA

uβ
C − uα

C

· uα
B. (11.23)

This is a useful equation for rough calculations. It demonstrates that an alloying element
which concentrates to the phase which is richest in C, i.e. which has K β/α

BA > 1 if β is
the C-rich phase, will decrease the C activity for the two-phase equilibrium α + β. An
alloying element that concentrates to the C-poor phase will increase the C activity. From
the derivation it is evident that this effect is additive for several alloying elements if
evaluated for µC or lnaC.

The value of K β/α
BA is directly related to the slope of the tie-lines in the uC, uM

phase diagram. We can thus illustrate the two cases with the phase diagrams in
Fig. 11.4 where the u parameters are used. The alloying element will have no effect on
the C activity of the two-phase equilibrium if the tie-lines are horizontal, i.e. if they are
directed towards the C corner which is situated infinitely far away in a diagram with the u
variable.

The equation shows that µC does not change in a two-phase field where K = 1, i.e.
where the two phases have the same content of B relative to A. This is thus a point
of extremum and the present result is in complete agreement with Konovalov’s rule.
Compare with Exercise 10.11 where N plays the role of C and Cr the role of B.
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The chemical potential of a two-phase equilibrium can also be strongly affected by
a difference in pressure, caused by the surface energy in a curved phase interface. The
complete form of the Gibbs–Duhem equation is the following:

xAdµA + xBdµB + xCdµC = VmdP − SmdT . (11.24)

Now we shall let the pressure vary in the β phase but keep the temperature constant.
Equation (11.17) will thus have one more term, which can be written as

xα
AV β

m dPβ

xα
Axβ

C − xβ
Axα

C

or
uα

AdPβ

uα
Auβ

C − uβ
Auα

C

· V β
m

1 − xβ
C

. (11.25)

For low B contents we can thus write

dµC = k · dµα
B + l · dPβ, (11.26)

where k = RT (1 − K β/α
BA )/(uβ

C − uα
C) and l = V β

m /(1 − xβ
C )(uβ

C − uα
C).

Exercise 11.3

Low-carbon steels are sometimes carburized in order to increase the surface hardness.
This is done at a temperature where γ(fcc) is the stable phase. A hard and brittle carbide
called cementite, Fe3C, may form if one uses a high carbon activity in the gas. In the
binary system it has a carbon activity of 1.04 when in equilibrium with γ at 1173 K.
What would be the highest carbon activity to be used if one wants to avoid cementite for
a steel with 1.5 atom % Cr and 3 atom % Ni. They can both replace Fe in cementite and
the distribution coefficient K cementite/γ

MFe is 6 for Cr and 0.1 for Ni.

Hint

The effects of two alloying elements on µC or lnaC are additive. The alloy contents given
are for the initial low-carbon steel and we should evaluate the u variable because it does
not change when C is added due to its definition. We obtain uγ

Cr = 0.015 and uγ
Ni = 0.03.

For cementite uC = 1/3 and for γ in equilibrium with cementite at 1173 K we have 1.23
mass % C which gives uC = 0.059.

Solution

ln(aalloy
C /abinary

C ) = [(1 − 6) · 0.015 + (1 − 0.1) · 0.03]/[(1/3) − 0.059] = −0.17;
aalloy

C = abinary
C · exp(−0.17) = 1.04 · 0.84 = 0.88. This is the highest value one should

use.

11.4 Direction of phase boundaries

So far, we have discussed the direction of phase boundaries in some simple cases. For
the general case we need a more powerful method and we should then turn to the Gibbs–
Duhem relation. In fact, we have already calculated the directions of phase fields in



11.4 Direction of phase boundaries 241

potential phase diagrams by the application of the Gibbs–Duhem relation. However, in
order to calculate the directions of the phase boundaries in molar phase diagrams we
must introduce the molar quantities instead of the potentials as variables in the Gibbs–
Duhem relation. No general treatment can be given here in view of the large variety that
can occur in mixed phase diagrams. Only the special case will be treated where T and P
are retained but all the chemical potentials are replaced by molar contents.

The fact that the molar quantities of two phases in equilibrium are generally different,
although the potentials are equal, makes it necessary to choose one of the phases, for
instance α, and express the potentials through its molar quantities. If T and P are retained,
then it is convenient to express the changes of the chemical potentials µi through the
composition dependence of the partial Gibbs energies in the α phase, Gα

i . In order to
make the enthalpy appear in the final expression instead of the entropy we shall use
the potentials occurring in the special form of the Gibbs–Duhem relation containing
enthalpy. It is obtained from the fifth line in Table 3.1.

Hβ
md(1/T ) + (

V β
m

/
T

)
dP −

c∑
i=1

xβ
i d(µi/T ) = 0. (11.27)

We shall now introduce the properties of the chosen phase α by using µi = Gα
i and

with 1/T, P and xα
j for j > 1 as the independent variables, treating xα

1 as the dependent
composition variable. We can then eliminate d(µi/T) using

d(µi/T ) = ∂Gα
i

∂(1/T )
d(1/T ) + ∂Gα

i

∂ P
dP/T +

c∑
j=2

∂Gα
i

∂xα
j

dxα
j

/
T . (11.28)

We can insert

∂
(
Gα

i

/
T

)/
∂(1/T ) = Hα

i (11.29)

∂Gα
i

/
∂ P = V α

i . (11.30)

Applying Eq. (4.7) to the Gibbs energy we obtain by selecting component 1 as the
dependent one,

Gα
i = Gα

m + ∂Gα
m

/
∂xα

i −
c∑

l=2

xα
l ∂Gα

m

/
∂xα

l . (11.31)

Using the notation of second derivatives of Gm when component 1 is the dependent one,
which was introduced in Section 6.6, we obtain,

∂Gα
i

/
∂xα

j = gα
i j −

c∑
l=2

xα
l gα

jl . (11.32)

It should be noted that gα
1 j does not exist since component 1 is the dependent one. When

inserting these expressions in Eq. (11.27) we shall also replace Hβ
m by �xβ

i Hβ
i and V β

m

by �xβ
i V β

i .∑
xβ

i Hβ
i d(1/T ) +

∑
xβ

i V β
i dP/T

−
∑

xβ
i

[
Hα

i d(1/T ) + V α
i dP/T +

c∑
j=2

(
gα

i j −
c∑

l=2

xα
l gα

jl

)
dxα

j /T

]
= 0. (11.33)
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However,

c∑
i=1

xβ
i

(
gα

i j −
c∑

l=2

xα
l gα

jl

)
=

c∑
i=2

xβ
i gα

j i − 1 ·
c∑

l=2

xα
l gα

jl =
c∑

i=2

(
xβ

i − xα
i

)
gα

j i ,

(11.34)

since gij for i = 1 does not exist and the terms in the summation over index l are
independent of index i. We obtain, because d(1/T ) = −dT/T 2

c∑
i=2

c∑
j=2

(
xβ

i − xα
i

)
gα

j i dxα
j +

c∑
i=1

xβ
i

(
Hβ

i − Hα
i

)
dT/T −

c∑
i=1

xβ
i

(
V β

i − V α
i

)
dP = 0.

(11.35)

This is the desired relation. Contrary to the Gibbs–Duhem relation this equation always
concerns two phases, and all the terms become zero when applied to the phase which was
chosen for expressing the chemical potentials. When applied to more than two phases it
yields a system of equations and some variables can then be eliminated with the method
used for calculating the direction of phase fields from the Gibbs–Duhem relation. The
elements of the determinants will then be �(xβ

i − xα
i )gα

i j instead of xβ
i . However, we

shall apply the equation to equilibria concerning two coexisting phases and the equation
can then be applied directly.

For a binary system under isobaric conditions we get for the phase boundaries

(
∂xα

2

∂T

)
coex

= xβ
i

(
Hα

1 − Hβ
1

) + xβ
2

(
Hα

2 − Hβ
2

)
(
xβ

2 − xα
2

)
gα

22T
= �Hβinα

m(
xβ

2 − xα
2

)
gα

22T
(11.36)

(
∂xβ

2

∂T

)
coex

= xα
i

(
Hβ

1 − Hα
1

) + xα
2

(
Hβ

2 − Hα
2

)
(
xα

2 − xβ
2

)
gβ

22T
= �Hαinβ

m(
xα

2 − xβ
2

)
gβ

22T
(11.37)

The numerator is equal to the heat of solution of the other phase (α or β) in the phase
being considered (β or α). The phase boundary will be vertical if the heat of solution is
zero. Figure 11.3(c) shows a case where both boundaries turn vertical at almost the same
temperature and then lean the other way. Both phases were rich in one component,1, and
the heat of solution mainly depended on the terms with (Hα

1 − Hβ
1 ), a quantity that went

through zero in that temperature range.
Either of these two equations can be used to evaluate the slope of a phase boundary

but also to calculate the width of a two-phase field if the slope is known.

xβ
2 − xα

2 = �Hβinα
m

gα
22T

(
dxα

2

/
dT

)
coex

= − �Hαinβ
m

gβ
22T

(
dxβ

2

/
dT

)
coex

. (11.38)

Exercise 11.4

Derive an equation for the solubility of pure component 2 in a phase α which is almost
pure component 1.
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Hint

Section 7.1 gives gα
22 ≡ d2Gα

m/d(xα
2 )2 ∼= RT/xα

2 if xα
2 is small. Also use xβ

2 − xα
2

∼= 1.

Solution

dxα
2 /dT = �Hm/(RT 2/xα

2 ); d(ln xα
2 )/d(1/T ) = �Hm/R; xα

2 = K · exp(�Hm/RT ).
Usually, �Hm is replaced by −L , where L is the heat given off by the dissolution
of β.

Exercise 11.5

Apply Eq. (11.35) to a binary case at constant P. Then consider the α/α + β phase
boundary in the T, x phase diagram in a system where α is almost pure A and β is a bcc
phase close to the 50–50 composition. Suppose β has a sharp transformation at To from
a perfectly ordered to a perfectly disordered state (which would never happen). Calculate
the angle of the α/(α + β) phase boundary at To (or, more precisely, the difference in
direction, dx/dT, of this phase boundary just below and just above To).

Hint

At constant P: [xβ
i (Hα

1 − Hβ
1 ) + xβ

2 (Hα
2 − Hβ

2 )]dT = (xβ
2 − xα

2 )gα
22T dxα

2 . Notice that
xβ

1 Hβ
1 + xβ

2 Hβ
2 = Hβ

m and that the entropy of disordering is −R(x1 ln x1 + x2 ln x2) =
R ln 2 for x1 = x2 = 0.5. For the dilute solution of component 2 in α we may use gα

22 =
RT/xα

1 xα
2 .

Solution

xβ
1 = xβ

2 = 0.5 gives dxα
2 /dT = 0.5(Hα

1 − Hβ
1 + Hα

2 − Hβ
2 )/(0.5 − 0)gα

22T . By tak-
ing the difference between just below and just above the transition, we eliminate Hα

1

and Hα
2 and thus get �(dxα

2 /dT ) = (Hβ
m − Hβ ′

m )/0.5gα
22To. But Hβ

m − Hβ′
m = �H ordering

m

and at the transition point the two states have the same Gibbs energy and thus
�H ord

m − To�Sord
m = 0; �(dxα

2 /dT ) = To�Sord
m /0.5gα

22To = R ln 2/(0.5RTo/xα
2 ) =

2xα
2 ln 2/To.

Exercise 11.6

When adding a third component C to a certain binary system A–B under constant P,
one found that the depression of the freezing point of a stoichiometric phase AaBb only
depended upon the molar content xC and was independent of whether one kept xA, xB or
xA/xB constant. Examine if this result can be expected in general. Suppose the pressure
is constant.
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Hint

Apply the general equation for the direction of phase boundaries, Eq. (11.35), to the
ternary case, making C the dependent component 1. Remember that g2 is the deriva-
tive of Gm with respect to x2, keeping x3 constant, i.e. with dx1 = −dx2. Writing Gm

as �xi (oGi + RT ln xi ) + EGm(x2, x3) we get: g2 = oG2 − oG1 + RT (ln x2 − ln x1) +
∂EGm/∂x2 and g22 = RT (1/x2 + 1/x1) + ∂2EGm/∂x2

2 , etc. Look for the predominating
term when x1 is small. Furthermore, the liquid composition is close to that of AaBb.

Solution

For xC ≡ x1 → 0 we get [(xβ
2 − xL

2 )gL
22 + (xβ

3 − xL
3 )gL

23]dxL
2 + [(xβ

2 − xL
2 )gL

32 + (xβ
3 −

xL
3 )gL

33]dxL
3 = −[xL

2 (Hβ
2 − H L

2 ) + xL
3 (Hβ

3 − H L
3 )]dT/T under constant P. The pre-

dominating term in g22 is RT/x1 and all the other second derivatives of g have the same
predominating term. By neglecting other terms we get [(xβ

2 − xL
2 + xβ

3 − xL
3 ) · RT/xL

1 ]
dxL

2 + [(xβ
2 − xL

2 + xβ
3 − xL

3 ) · RT/xL
1 ]dxL

3 = [(xβ
2 − xL

2 + xβ
3 − xL

3 ) · RT/xL
1 ](dxL

2 +
dxL

3 ) = −[xL
2 (Hβ

2 − H L
2 ) + xL

3 (Hβ
3 − H L

3 )]dT/T . The depression of the freezing point
thus depends on dxL

2 + dxL
3 which is equal to −dxL

C whether one keeps xA, xB or xA/xB

constant.

11.5 Congruent melting points

It is immediately clear from our equations for dx/dT that for a congruent transformation
point in a binary system, e.g. for xβ

2 = xL
2 , the phase boundaries must be horizontal and

such a point must be a point of temperature extremum. This is also in agreement with
Konovalov’s rule (see also [22]). However, at the side of the system where xL

2 approaches
zero, gL

22 approaches infinity as RT/xL
2 and the whole denominator in Eq. (11.37), with L

instead of β, approaches RT 2(xα
2 /xL

2 − 1) which is not zero. Thus, the phase boundaries
do not turn horizontal on the sides of the system. The two cases are demonstrated in
Fig. 11.5.

The slopes of the phase boundaries at the left-hand side of the binary system in
Fig. 11.5 can be evaluated from the limiting value of gα

22 which is RT/xα
2 when xα

2 → 0
(see Section 7.1).(

∂xα
2

∂T

)
coex

= 1

xβ
2 − xα

2

·
o Hα

1 − o Hβ
1(

RT/xα
2

)
T

= K α/β
2

1 − K α/β
2

·
o Hα

1 − o Hβ
1

RT 2
(11.39)

(
∂xβ

2

∂T

)
coex

= 1

xα
2 − xβ

2

·
o Hβ

1 − o Hα
1(

RT/xβ
2

)
T

= 1

1 − K α/β
2

·
o Hα

1 − o Hβ
1

RT 2
. (11.40)

The width of the two-phase field at some temperature T below the transformation point
To for pure component 1 is obtained from the difference,

o Hβ
1 − o Hα

1

RT 2
= ∂

(
xβ

2 − xα
2

)
∂T

∼= xβ
2 − xα

2

To − T
. (11.41)
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Figure 11.5 Binary T, x phase diagram at 1 bar. The point of congruent melting of β must have
horizontal phase boundaries. At the melting points of the two components the phase boundaries
are not horizontal.

If one of the phases is liquid, one can often neglect the solubility in the solid phase
and one thus obtains a simple expression for the freezing-point depression,

To − T = xL
2 · RT 2

/(
o H L

m − o Hα
m

)
. (11.42)

It should be emphasized that it would be difficult to see the horizontal part of a phase
boundary at a congruent transformation point if the properties of the phase change so
rapidly that g22 is very large. An obvious case is the β/(β + L) boundary when β is
almost stoichiometric, i.e. the composition of β does not vary noticeably. The phase
boundary of the surrounding phase, in our case L/(L + β) can also be very sharp if the
properties of the liquid change rapidly with composition at the particular composition
of the congruent transformation. For such cases it may be interesting to evaluate the
curvatures of the two phase boundaries. At the congruent point we have xα

2 = xβ
2 and

the heat of solution of each phase in the other one is simply the heat of transformation
of the other phase into the phase under consideration.

dxβ
2

dxα
2

= dxβ
2

/
dT

dxα
2

/
dT

=
(
Hβ

m − Hα
m

)(
xβ

2 − xα
2

)
gα

22T(
Hα

m − Hβ
m
)(

xα
2 − xβ

2

)
gβ

22T
= gα

22

gβ
22

(11.43)

d2T

d
(
xα

2

)2 = gα
22T

Hα
m − Hβ

m

(
dxβ

2

dxα
2

− 1

)
= gα

22T

Hα
m − Hβ

m

(
gα

22

gβ
22

− 1

)
(11.44)

d2T

d
(
xβ

2

)2 = gβ
22T

Hβ
m − Hα

m

(
dxα

2

dxβ
2

− 1

)
= gβ

22T

Hβ
m − Hα

m

(
gβ

22

gα
22

− 1

)
= d2T

d
(
xα

2

)2

(
gα

22

gβ
22

)2

.

(11.45)

For an almost stoichiometric phase, gβ
22 would be very large and for the liquid at a

congruent melting point we then get

d2T

d
(
xL

2

)2 = gL
22T

Hβ
m − H L

m

. (11.46)

It should be noted that Hβ
m − H L

m is negative and so is d2T/d(xL
2 )2.
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Figure 11.6 See Exercise 11.7.

It should be emphasized that another possibility of finding a horizontal phase boundary
is by having gα

22 approach zero, i.e. a limit of stability.

Exercise 11.7

The T, x phase diagram of Al–Zn shows an unusual feature (Fig. 11.6). The solidus line
turns almost horizontal in the centre of the system but the liquidus does not. It thus seems
to be due to some property of the solid phase rather than the interaction between the two
phases. Examine the possible explanation by inspecting the equation for the slope of a
phase boundary. If a conclusion is reached, try to test it by examining other features of
the diagram.

Hint

If the explanation is to be found in the Gm function of the solid, then the same factor
may have consequences for other phase equilibria with the solid.

Solution

The equation suggests that gα
22 is very small at the centre of the system. We may thus be

close to a limit of stability of the α phase where gα
22 goes through zero to turn negative.

Indeed, at lower temperatures one can see the top of a miscibility gap in the α phase where
a homogeneous fcc alloy starts to decompose in regions of two different compositions.

Exercise 11.8

In elementary textbooks one can sometimes see a series of sketched phase diagrams as
shown in Fig. 11.7. Criticize it.
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Figure 11.7 See Exercise 11.8.
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Figure 11.8 Solution to Exercise 11.8.

Hint

The author may not have remembered that there are two different effects which can make
a phase boundary horizontal.

Solution

In diagram (a) the two phase boundaries at the minimum are horizontal because it is
a congruent transformation point. It is an effect of the combined properties of the two
phases. The top of the miscibility gap, α1 + α2, is horizontal because gα

22 = 0 and that
is a property of the α phase alone. It would be highly unlikely that these two phenomena
should occur at the same composition, as indicated in diagram (b). Figure 11.8 gives an
idea of how the two phase boundaries may meet. Compare with the phase diagram to
Exercise 11.7.

Exercise 11.9

Calculate what value of gL
22 would give the melting point of a stoichiometric phase such

a strong curvature that it looks sharp. Compare with the value for an ideal solution.

Hint

Suppose Richard’s rule can be applied, �Hm = Hα
m − H L

m
∼= −RT . The maximum may

look sharp if the radius of curvature −1/(d2T/dx2) is less than 0.005/T.
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Figure 11.9 The T, x phase diagram for Ag–Pb. The solidus of the Ag phase is retrograde.

Solution

Equation (11.46) yields −d2T/dx2 = −g22T/(−RT ) > T/0.005; g22 > 200RT . If
the solution is ideal we have g22 = RT/x1x2, which is generally very much lower.

11.6 Vertical phase boundaries

It is also interesting to discuss the possibility of finding a vertical phase boundary. This
requires that the numerator is zero, i.e. that the heat of reaction, when β is dissolved in
α, is zero. An example is given in Fig. 11.9 showing a so-called retrograde solidus line.

As another example we may take the well-known case of the so-called γ loop in
binary iron diagrams with α-stabilizing alloying elements (see Fig. 11.3(c)). Here both
phases are rich in iron and we can approximate the numerator in Eq. (11.36) for α with
Hα

Fe − Hγ
Fe and for γ with Hγ

Fe − Hα
Fe since the alloy contents are low. The characteristic

γ loop thus depends upon the fact that the enthalpy difference between α–Fe and γ–Fe
changes sign and goes through zero in this range of temperature.

Exercise 11.10

From the detail of the Fe–O phase diagram (Fig. 11.10), what can be said about the heat
of solution of γ–Fe in the wüstite phase?

Hint

Examine the boundary representing the solubility of γ–Fe in wüstite (W).

Solution

Since the γ phase is almost pure Fe, the numerator in the expression for dxW
O /dT ,

obtained from Eq. (11.37), is xγ
Fe(H W

Fe − Hγ
Fe) + xγ

O(H W
O − Hγ

O) ∼= H W
Fe − Hγ

Fe, i.e. the
heat of solution of γ–Fe in wüstite. This quantity is thus close to zero over a wide range
of temperature because the boundary is almost vertical.
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Figure 11.10 See Exercise 11.10.

11.7 Slope of phase boundaries in isothermal sections

For a ternary system under isobarothermal conditions we get[(
xβ

2 − xα
2

)
gα

22 + (
xβ

3 − xα
3

)
gα

32

]
dxα

2 + [(
xβ

2 − xα
2

)
gα

23 + (
xβ

3 − xα
3

)
gα

33

]
dxα

3 = 0.

(11.47)
We can here introduce the slope of the α + β tie-line,

n = (
xβ

3 − xα
3

)/(
xβ

2 − xα
2

)
(11.48)

dxα
3

dxα
2

= −gα
22 + ngα

32

gα
23 + ngα

33

. (11.49)

As an application we shall examine when the α/(α + β) phase boundary is parallel to
the x2 axis, i.e. when dxα

3 /dxα
2 = 0. We find the condition

gα
22

/
gα

32 = −n. (11.50)

When the α phase is a dilute solution of components 2 and 3 in 1, the leading term
in gα

22/RT is 1/xα
2 and it may be more convenient to recast the result into one of the

following forms by inserting gα
22/RT − 1/xα

2 + 1/xα
2 instead of gα

22/RT .

xα
2 = − 1

gα
22

/
RT − 1

/
xα

2 + ngα
32

/
RT

(11.51)

xα
2 = − xβ

2(
xβ

2 − xα
2

)(
gα

22

/
RT − 1

/
xα

2

) + (
xβ

3 − xα
3

)
gα

32

/
RT − 1

. (11.52)

The latter equation can be rearranged into a form which is even more convenient because
the ideal entropy of mixing gives a contribution of RT/xα

1 to both gα
22 and gα

23,

xα
2 = xβ

2(
xβ

2 − xα
2

)(
1/xα

1 + 1/xα
2 − gα

22

/
RT

) + (
xβ

3 − xα
3

)(
1
/

xα
1 − gα

32

/
RT

) + xβ
1

/
xα

1

.

(11.53)
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We have thus made the first term in the denominator so small that it can often be neglected.
One could then write

xα
2

∼= xβ
2(

xβ
3 − xα

3

) (
1
/

xα
1 − gα

32

/
RT

) + xβ
1

/
xα

1

(11.54)

It is common to introduce Wagner’s interaction parameter ε3
2 which will be discussed in

Section 20.7. It yields

xα
2 = − xβ

2

ε3
2

(
xβ

3 − xα
3

) − xβ
1

/
xα

1

∼= − xβ
2

ε3
2

(
xβ

3 − xα
3

) (11.55)

Exercise 11.11

According to Schreinemakers’ rule the phase boundary α/(α + γ ) in an isobarothermal
section of a ternary phase diagram must be directed towards the β point if α/(α + β) is
directed towards the γ point. Prove this using Eq. (11.49).

Hint

Denote the slope of the α + γ tie-line by nα/γ and the slope of the α + β tie-line by nα/β.

Solution

nα/γ = (dx3/dx2)α/β = −(gα
22 + nα/βgα

32)/(gα
23 + nα/βgα

33). Thus, −gα
22 − nα/βgα

32 =
nα/γgα

23 + nα/γnα/βgα
33. By rearranging the terms we get −gα

22 − nα/γgα
23 = nα/βgα

32 +
nα/βnα/γgα

33 and we can form nα/β = −(gα
22 + nα/γgα

23)/(gα
32 + nα/γgα

33) which is equal
to (dx3/dx2)α/γ since gα

23 = gα
32.

Exercise 11.12

Figure 11.11 shows the solubilities of the three oxides in liquid Fe at 1823 K according to
an experimental study. All curves show minima. Use this information in order to estimate
the Cr content of the two spinels.

Hint

Start by evaluating εO
Cr from the minimum for the phase with a known composition, Cr3O4.

Knowing εO
Cr one can then calculate the Cr content for another oxide from its minimum.

Both spinels can be represented by the general formula (Fe,Cr)3O4. Considering the
limited accuracy of the data it is justified to approximate mass fraction Cr in liquid Fe
as molar content Cr.

Solution

Let β = oxide; α = liquid; 2 = Cr; 3 = O. Then xβ
3 = xoxide

O = 4/7 for all these
oxides and xα

3 = xL
O

∼= 0.
From the known composition of Cr3O4: 0.1 = xL

Cr = xα
2 = −xβ

2 /ε(xβ
3 − xα

3 ) =
−(3/7)/ε(4/7); ε = −3/4 · 0.1 = −7.5.
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Figure 11.11 See Exercise 11.12.

Using this value we find: For an undistorted spinel: 0.02 = −xoxide
Cr /(−7.5)(4/7);

xoxide
Cr = 0.6/7. The formula is Fe2.4 Cr0.6 O4.

For distorted spinel: 0.06 = −xoxide
Cr /(−7.5)(4/7); xoxide

Cr = 1.8/7. The formula is Fe1.2

Cr1.8 O4.

11.8 The effect of a pressure difference between two phases

In Section 11.4 we derived an expression for the change in composition of an α phase in
equilibrium with a β phase caused by changes in T and P. It was then assumed that T and
P had always the same values in both phases. The derivation of Eq. (11.35) can be carried
out even if P changes in different ways in the two phases. This will occur when they are
separated by a curved interface. In Section 16.2 we will find the equilibrium condition
Pβ = Pα + 2σ/r . Now we shall simply assume that α and β can be in equilibrium even
at a difference in pressure. The result will then be

c∑
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(11.56)

Let us now apply this equation to a binary case in which dPα = 0 and dT = 0. Using
V β

m = xβ
1 V β

1 + xβ
2 V β

2 we get

dxα
2 = V β

m dPβ(
xβ

2 − xα
2

)
gα

22

. (11.57)

An expression for the simultaneous change in the β phase can be obtained by first
exchanging α and β in Eq. (11.56) and then applying it to the case dPα = 0 and dT = 0,(

xβ
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)
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)
dPβ (11.58)

dxβ
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1 V β
1 + xα

2 V β
2

)
dPβ(
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2 − xα

2

)
gβ

22

. (11.59)

It is interesting to see that α and β change their composition in the same direction.
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It should be noted that these equations were actually derived graphically by means of
molar Gibbs energy diagrams in Figs 7.15 and 7.16.

Exercise 11.13

For the α/β equilibrium in a ternary system at constant T and Pα one obtains
(V β

m /RT )dPβ = hαdxβ
2 + kαdxα

3 . Show that hα = xβ
2 /xα

2 − xβ
1 /xα

1 and kα = xβ
3 /xα

3 −
xβ

1 /xα
1 if α and β are ideal solutions.

Hint

The right-hand side of Eq. (11.56) again yields V β
m dPβ. For an ideal solution g22/RT =

1/x1 + 1/x2; g23 = g32 = RT/x1; g33/RT = 1/x1 + 1/x3.

Solution

The dxα
2 coefficient for (V β

m /RT )dPβ, obtained from the left-hand side of Eq. (11.56)
for j = 1, is (xβ
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2 )gα
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1 = hα. The dxα
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ficient is obtained in the same way.



12 Sharp and gradual phase
transformations

12.1 Experimental conditions

There will be a driving force for a phase transformation if the conditions of a system are
changed in such a way that the system moves from one phase field into another in the
phase diagram. In this chapter we shall examine the character of such phase transforma-
tions and we shall find that they depend upon the experimental method of controlling
and changing the conditions. It is important first to realize that the possibility of effi-
ciently controlling the various state variables is very different. For gaseous and liquid
phases it is comparatively easy to control the pressure. It can be kept constant or it can
be changed gradually according to an experimental programme. At any moment it is
very uniform in the system apart from effects due to the surface energy of curved phase
interfaces. For solid systems it is more difficult to control the pressure, in particular
during a phase transformation resulting in a volume change. This may give rise to local
deformation and internal stresses. On the other hand, solid phases are usually so dense
and rigid that the thermodynamic effect of pressure differences and stresses can often be
ignored. From a practical point of view we may often regard the pressure as an experi-
mental variable which can be reasonably well maintained at a low enough level to have
a negligible effect.

The temperature can often be kept relatively constant but in a large piece of material
it may be difficult to change the temperature according to an experimental programme.
This is due to the limited rate of heat conduction. As a consequence, in a well-controlled
experiment the required change of temperature must be slow enough. Another way to
change the temperature is to control the flow of heat to the system. If the pressure is kept
constant we have

dH = dU + d(PV ) = dU + PdV + V dP = dQ + V dP = dQ. (12.1)

and this is therefore a way of controlling the enthalpy rather than the temperature. Again,
the rate of heat conduction may be a limiting factor and in order for an experiment to be
well controlled it can only involve slow internal changes or small specimens. Further-
more, the heat content will change locally if there is a spontaneous phase transformation.
Only slow phase transformations or small specimens can thus be studied if one wants to
have at least approximately isothermal conditions.

If the chemical potential of an element is changed gradually by changing its value
in the surroundings, considerable potential differences within the system will normally
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prevail for a long time unless the change is extremely slow. This is because equilibration
of the chemical potential requires a change of the local composition, which can only be
accomplished by diffusion or convection. Diffusion is usually many orders of magnitude
slower than heat conduction.

There are cases where a particular component is much more mobile than the other
components. This may occur for elements with small atoms when dissolved interstitially
in solid phases. An example of some practical importance is carbon in steel. An even
better example is hydrogen in most metals and alloys. In such cases one may have some
success in controlling the chemical potential of that particular component.

A phase transformation may itself give rise to severe difficulties in the control of
the experimental conditions. Under the given values of the potential variables the new
phase will most probably have different values for all the molar quantities and there
will be a tendency for their conjugate potential variables to change locally during a
phase transformation, independent of what potential is being changed experimentally. In
practice, the difficulties in carrying out a well-controlled experiment may be the same
whatever potential one has decided to change. As an example, if the changed conditions
give rise to a phase transformation, then the transformation may in turn give rise to
a redistribution of the components by diffusion, heat flow by conduction and material
transport by plastic and elastic deformation.

Due to the complications caused by a phase transformation in a solid material it may
be somewhat easier to carry out a well-controlled experiment under constant values of
some extensive variables rather than potentials. However, that will affect the character
of the phase transformation. This will be evident from the discussion in this chapter.

Exercise 12.1

A solid substance is kept at its melting point T1 under a certain high pressure P1. Discuss
what happens if the pressure is suddenly released. Suppose that the liquid form of the
substance is less dense.

Hint

The solid phase with its higher density was favoured by the high pressure. T1 being the
melting point at P1 is thus above the melting point at P = 0.

Solution

Melting will most probably start somewhere. The melt will instantaneously be at the new
melting point which is lower than T1. Heat will thus start to flow into the melted region
from the remaining solid which may thus cool down to the new melting point. Thus,
a mixture of the two phases may be established and its temperature will be at the new
melting point. However, this may cause heat flow into the system from the surroundings
if they are kept at T1. The whole system will thus melt eventually. On the other hand, if
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Figure 12.1 Illustration of the conditions for a sharp phase transformation in a simple case where
all external variables to be kept constant are potentials.

the new melting point is very low compared to T1, then the whole system may melt even
before any heat has flown into the system. See Exercise 14.2.

12.2 Characterization of phase transformations

In this section we shall neglect the difficulties mentioned in Section 12.1 regarding the
control of the variables. We shall limit the discussion to cases where we have selected
one variable to be varied in a controlled fashion, keeping all the others constant. Thus,
we shall not consider any projections here. The present question is not how we look at
the system but how we control it. From the phase diagram point of view this means that
c of the c + 1 independent variables in a set of external state variables will be sectioned,
ns = c, and the selected variable can be represented on the resulting one-dimensional
phase diagram, r = 1.

When the selected variable is changed gradually, the system may move from one phase
field into another and a phase transformation may thus occur. It can be represented by a
reaction formula obtained by combining the names of the phase fields. For instance, when
moving from an α phase field into a γ phase field we expect the transformation α → γ. In
doing so we must pass an α + γ phase field and one may characterize the transformation
as a sharp one if the α + γ phase field has no extension in the one-dimensional phase
diagram we are using. The phase field rule, Eq. (10.6), must yield d = 0. Otherwise, it
may be characterized as a gradual transformation and has d ≥ 1. These cases may be
illustrated by starting with two-dimensional phase diagrams. The main part of Fig. 12.1
is a two-dimensional diagram obtained by starting with only potential variables, c − 1
of which have then been sectioned, ns = c − 1, (here an isobaric section of a binary
system). A further sectioning (making ns = c) could be made at T = T1, giving the one-
dimensional phase diagram in the lower part of the figure. The phase field rule yields for
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Figure 12.2 Illustration of the conditions for a gradual phase transformation in the simple case
where one molar variable is used.

α + γ: d = c + 2 − p − ns + nm = c + 2 − 2 − c + 0 = 0 and confirms that the phase
transformation α → γ should be a sharp one if µB is increased gradually. A similar result
would be obtained if one could keep µB constant at µ1

B and gradually increase T (see the
right-hand part of Fig. 12.1).

Figure 12.2 shows the diagram for the same system when the chemical potential has
been replaced by the conjugate variable, zB. By sectioning at T = T1 one obtains the
one-dimensional diagram in the lower part. Compared to the lower part of Fig. 12.1,
the two-phase fields have opened up and the α → γ transformation will be gradual
if zB is increased gradually. It is evident that a transformation can never be sharp if
it occurs under a gradual increase of a molar quantity because all phase fields have
some extension in the direction of a molar quantity. The result would be the same if one
instead worked with the ordinary molar content, xB, which is the conjugate variable to
µB − µA.

A section at zB = z1
B is shown to the right of Fig. 12.2. It also shows a grad-

ual transformation when T is changed gradually but that result cannot be predicted
without inspecting the phase diagram or applying the phase field rule. In this case
c = 2, p = 2, ns = 2 (P and zB) and nm = 1(zB), yielding d = c + 2 − p − ns + nm =
c + 2 − 2 − c + 1 = 1.

Let us now return to the case of a sharp transformation in Fig. 12.1. If the gradual
change of µB at T = T1 is continued, then the sharp transformation α → γ will be
followed by another sharp transformation γ → β at a higher value of µB. It is then inter-
esting to discuss what would happen if the section were made exactly at the temperature
of the three-phase equilibrium. The lower part of the figure would show a point for the
α + β + γ equilibrium instead of two points for α + γ and γ + β. However, with p = 3
the phase field rule would yield d = c + 2 − p − ns + nm = c + 2 − 3 − 0 + 0 = −1.
Since d = 0 represents a point, one may conclude that d = −1 represents a phase field
which should not show up at all in the one-dimensional diagram and the reason is that it
is practically impossible to place the section exactly through the three-phase equilibrium.
Let us for a while neglect that practical difficulty and suppose that the section actually
goes right through the three-phase equilibrium. What phase transformation would one
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then observe on gradually increasing µB? One could expect to observe the sharp trans-
formation α → γ, followed by γ → β but also a direct transformation α → β. We may
regard this as a case of overlapping sharp transformations.

Let us next replace µB by zB and still assume that T can be chosen and controlled in such
a way that the section goes right through the three-phase equilibrium, in this case right
through the three-phase horizontal in Fig. 12.2. The lower part of that figure would then
show an α + β + γ region instead of the three regions, α + γ, γ and γ + β. For three
phases the phase field rule would now give d = c + 2 − p − ns + nm = c + 2 − 3 −
c + 1 = 0 yielding the incorrect prediction of a three-phase point instead of an extended
region.

In order to understand this puzzling result one should remember that a transformation
can never be sharp when taking place under a gradual change of a molar quantity. If the
phase field rule gives d = 0 for a molar axis, the interpretation must be that it is practically
impossible to carry out such an experiment. It thus corresponds to the improbable case
of d = −1 for a potential axis. We may conclude that, if a molar quantity is varied,
d = 0 predicts overlapping gradual transformations (in the present case α → β or
α → γ followed by γ → β). However, it is as unlikely as the case of overlapping sharp
transformations for d = −1.

It is evident that the only way to get a sharp transformation is to vary a potential.
Usually this is T and one keeps P and the composition constant, ns = c and nm = c − 1.
Using Eq. (10.6) we find that the sharp transformation will then occur when 0 = d =
c + 2 − p − ns + nm = c + 2 − p − c + (c − 1) = c + 1 − p, i.e. p = c + 1.

If p = c + 2 under the same conditions, one would obtain d = −1, i.e. overlapping
sharp transformations. The present discussion thus results in two schemes for the char-
acter of phase transformations. When a potential is varied gradually we obtain

for d = +1: gradual transformation
for d = 0: sharp transformation
for d = −1: overlapping sharp transformations.

When a molar quantity is varied gradually, we obtain

for d = +1: gradual transformation
for d = 0: overlapping gradual transformations.

In a sharp transformation (i.e., d = 0 and a potential is varied) the fractions of the phases
(i.e. the extent of the transformation) are not fixed by the value of the changing variable.
This is why the corresponding state of phase equilibrium is sometimes called ‘indifferent’
[23]. On the other hand, the compositions of all the phases are fixed. This is why any
sharp transformation is sometimes called ‘azeotropic’ although that term is usually
reserved for the case with an extremum discussed in connection with Konovalov’s rule in
Section 10.8. Cases with an extremum have been neglected in the present discussion but
will be further discussed in Sections 13.7 to 13.9.

In addition, overlapping sharp transformations (i.e., d = −1 and a potential is varied)
are sometimes called ‘indifferent’, because the extent of transformation is not fixed. In
that case, however, there is more than one transformation and their relative progress is
also not fixed.
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Before leaving this topic, it should be emphasized that the present discussion is based
on considerations of equilibrium. In practice, there are many kinetic obstacles and it
is not impossible to observe overlapping transformations (often regarded as competing
reactions) if the experimental conditions come close to the improbable ones, for which
the phase field rule predicts overlapping transformations.

Exercise 12.2

Consider an A–B system with two solid phases, A-rich and B-rich, and liquid and gas.
What type of transformation should one expect between these phases if T is changed
gradually for a system with constant composition and pressure?

Hint

If needed, assume that A has a higher vapour pressure than B.

Solution

c = 2, p = 4 and Gibbs’ phase rule yields υ = c + 2 − p = 2 + 2 − 4 = 0. This equi-
librium would thus show up as a point in the complete potential phase diagram.
Under the present experimental conditions, nm = c − 1 (constant overall composi-
tion), and ns = c (constant overall composition and pressure), the phase field rule
in Eq. (10.6) predicts d = c + 2 − p − ns + nm = 2 + 2 − 4 − c + (c − 1) = −1. The
chance of observing the corresponding phase transformation would be negligible since
it would require that a particular value of P could be chosen and kept constant. If
we were to succeed in doing this, the system could transform with all four phases
present but it would be a case of overlapping sharp transformations. They could be
A + B → liq., A + B → vapour, A + liq. → vapour, liq. → B + vapour.

Exercise 12.3

Consider the same system as in Exercise 12.2 but suppose that the system is heated
gradually.

Hint

As before, ns = c, but instead of a gradually changing temperature, we should now
consider a gradually changing enthalpy. Thus nm = c − 1 + 1 = c.

Solution

Under the new experimental conditions d = c + 2 − p − ns + nm = 2 + 2 − 4 − c +
c = 0. We would observe the same overlapping transformations but they would now be
gradual.
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Figure 12.3 Phase transformation α → β is a unary system under pressure P1 and heating
through the surface. d is the distance from the surface.

12.3 Microstructural character

We shall now discuss how the phases will be distributed within a system as a result of a
phase transformation. With most materials one needs a microscope in order to study the
distribution of the phases, thus the term microstructure.

During a gradual transformation the new product will only occupy some fraction of the
volume. It there are many nuclei, the result may be an intimate mixture of the old and new
phases, with a gradual change of the fractions and of the compositions of the phases.
Such a transformation may be regarded as microstructurally gradual. On the other
hand, in a sharp phase transformation the new phase or phases will completely replace
the old ones but it may still be interesting to discuss the microstructural appearance
during the transformation because it is never instantaneous, due to kinetic restrictions.
Thus, let us first consider the effect of the limited rate of heat conduction when heating
a pure element with two solid phases, α and β.

Whether one regards T or Hm (enthalpy per mole of the system) as the controlling
variable, heat supplied from the surroundings must normally flow into the system through
the surface layer. If there is no other kinetic restriction, then the phase transformation
should start at the surface where the temperature must be at least slightly higher than in
the interior. After some time there will be a massive surface layer of the new β phase.
It will form with a sharp interface to the old α phase in the interior. Thus, the phase
transformation will be microstructurally sharp in both cases. Figure 12.3 illustrates the
variation of the local value of the molar enthalpy as a function of the distance from the
surface, assuming that the whole system was initially in a state of α at the temperature of
equilibrium with β. The P axis has been added to Fig. 12.3(a) in order to illustrate that
P is kept constant. The difference between the two cases is that with T as the controlling
variable the process will not stop until the microstructurally sharp transformation has
proceeded through the entire system. With Hm as the controlling variable, the process
will stop when the average value of Hm has reached the prescribed value.

On the other hand, suppose that the phase transformation is so slow due to kinetic
reasons that it would be possible to increase Hm of the initial α phase to a value falling
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inside the α + β phase field and, thus, to increase T to a value falling inside the β phase
field before the phase transformation starts. Wherever there are β nuclei, they could
then grow and an α + β mixture would develop, the final fractions of α and β being
controlled by the lever rule applied to the prescribed Hm value. The kinetics may be so
slow that α and β are not in equilibrium, not even at the α/β interfaces, until the fraction
of β has approached its final value. In that case the progressing phase transformation
may look similar to the microstructurally gradual transformation.

We have here considered a phase transformation which is sharp when a potential is
varied. We have found that in order to predict its microscopic appearance one must first
examine if the transformation is slow due to other kinetic restrictions. If that is the case,
the transformation may be microstructurally gradual. If the transformation is fast enough
to follow the changes of the controlling variable, then it may be microstructurally sharp.
In both cases the result will be the same whether one varies the potential or its conjugate
molar quantity. However, in the remainder of the present chapter we shall always use a
potential as the variable.

Exercise 12.4

Is it possible to solidify a pure liquid substance by increasing P to a new value if the
solid form is denser? If so, will the solidification be complete or only partial? Will it be
microscopically sharp or not?

Hint

It all depends upon what other variable is controlled. One will probably try to keep some
variable constant. Consider two conditions, isothermal (very slow) and adiabatic (very
rapid). It may be helpful to sketch the appropriate phase diagrams.

Solution

We get complete solidification if T is kept constant. Adiabatic conditions are more
difficult to discuss, because they give, according to the first law,: dQ = dU + PdV = 0
and dQ = dH − V dP = 0 . Neither U nor H is thus constant when P is changed. In
order to find a state function which is constant, we must assume reversible conditions,
and, using the second law, we then get dQ = T dS − Ddξ = T dS = 0. For this case we
should thus use an Sm, P diagram. We could then see that the solidification may be partial
or complete depending upon how large the P change is. This conclusion may not change
if there is some internal entropy production due to the transformation.

When considering the microstructural character we may first examine the adiabatic
case and accept that the change of P is more rapid than the transformation. Then many
nuclei distributed over the whole system may form and give the transformation a gradual
appearance. In the slow isothermal case we may assume that the transformation starts at
the surface or very close to it. The transformation will then be microstructurally sharp
if the phase field rule predicts that the dimensionality of the α + L phase field should
be zero. For a unary system Eq. (10.6) yields d = c + 2 − p − ns + nm = 1 + 2 − 2 −
1 + 0 = 0.
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Figure 12.4 Illustration of difficulty for a phase transformation in a binary system to occur under
constant µB when T is increased under constant P.

12.4 Phase transformations in alloys

Diffusion is usually much slower than heat conduction and may thus give a very severe
kinetic restriction on the phase transformations in alloys. This is true even if we would
decide to control the experimental conditions by keeping all the potentials constant except
for T, which is varied gradually. The complications are not immediately evident from the
T, µB phase diagram but are clearly demonstrated by the T, xB phase diagram at constant
P in Fig. 12.4.

If we could keep µB constant during an increase of T, we would move through
the T, xB phase diagram according to the broken arrow in Fig. 12.4(b). This corre-
sponds to the straight arrow in the T, µB phase diagram of Fig. 12.4(a) and represents
a sharp transformation α → γ. However, this would require an exchange of atoms with
the surroundings and, due to the low rate of diffusion compared to heat conduction,
the system would rather move along the straight arrow in the T, xB phase diagram of
Fig. 12.4(b), when T is increased, and the composition rather than the chemical potential
would stay constant if the time of the experiment is not very long. One would not manage
to keep µB constant except in very special cases. The composition would not have time
to change much and the system would move into the α + γ two-phase field. A grad-
ual phase transformation would result. The transformation would be microstructurally
gradual and the system would show a mixture of α and γ and the fraction of γ would
gradually increase on increasing T.

The effect of slow diffusion discussed here is the reason why most experimental
conditions can be approximated by assuming that the composition is constant during a
change of T (or P).

Exercise 12.5

Suppose the temperature is increased gradually under constant pressure. Consider a
phase transformation which would be sharp if a particular chemical potential were kept
constant. However, due to slow diffusion it is difficult to study a phase transformation
under a constant chemical potential. Instead, one keeps the molar content of the same
component constant. Is it thus possible to minimize the role played by diffusion?
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Hint

If d = 0 when the particular chemical potential is kept constant, then d = 1 if instead
the corresponding molar content is kept constant because nm in Eq. (10.6) increases by
one unit. The transformation may thus be classified as gradual.

Solution

Since this transformation is now gradual, there will be a gradual change of the fractions
of various phases. One will thus get a mixture of phases. If they have different composi-
tions, diffusion is required over distances related to the coarseness of the microstructure.
However, such diffusion distances will normally be much shorter than those which are
necessary under conditions of constant potential.

12.5 Classification of sharp phase transformations

Sharp phase transformations in alloys at constant P involving few phases have been
classified into various groups. For unary systems there is only one type, α → β, and
it is called an allotropic transformation; melting may be regarded as a special case. In
binary systems there are two main types,

γ → α + β eutectoid transformation
γ + α → β peritectoid transformation.

The α + β mixture resulting from the first transformation is often called a eutectoid
structure or simply a eutectoid. In order to identify a particular eutectoid it is sometimes
denoted by the name of the parent phase. In the present case it would thus be called
γ-eutectoid. In addition there are special names depending upon the role played by the
liquid phase. The following names refer to transformations occurring on cooling but, in
addition, the same names are often applied to the corresponding features in the phase
diagram and even to the phase diagrams with such features.

L → α + β eutectic
L1 → α + L2 monotectic
α → L + β metatectic
L + α → β peritectic
L1 + α → L2

L1 + L2 → α syntectic
α + β → L.

The first transformation to be given a name was the eutectic transformation L → α + β.
The word ‘eutectic’ is taken from Aristotle who used it as meaning ‘beautifully or easily
melted’ and that was the definition when first used by Guthrie [24]. He was not yet aware
of the regular microstructure usually formed in such alloys on solidification, a lamellar
example of which is sketched in Fig. 12.5. Today, when we speak of a ‘eutectic’ we tend
to imply this type of microstructure. The eutectoid transformation has come to mean
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Figure 12.5 Cooperative growth of two phases in a eutectic transformation. The arrows indicate
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Figure 12.6 Conditions of a eutectic transformation, L → α + β, in a binary system at constant
P and a constant overall composition. The temperature was decreased from T1 to T2.

γ → α + β independent of whether it occurs on heating or cooling or under isothermal
conditions and independent of how the phase diagram looks. It is interesting to note that
the eutectic type of microstructure can form on partial melting of an intermetallic phase
from a peritectic phase diagram.

The growth conditions for a eutectic transformation are illustrated by Fig. 12.6, where
two two-phase regions have been extrapolated to a transformation temperature below the
equilibrium temperature for L + α + β. Figures 12.6(b) and (c) show the variation of
composition within the parent phase, L, in front of β and α, respectively. Diffusion of B
may thus occur inside the L phase from the α interface to the β interface and growth is
thus made possible. As illustrated by the arrows in Fig. 12.5, diffusion may also occur
inside the two growing phases, α and β, when they grow side by side, but that diffusion
is generally much slower than diffusion in the liquid.

It is interesting to note that eutectoid transformations often result in a rather regular
arrangement of the two new phases. The reason is that such arrangements give short
diffusion paths. It is called cooperative growth.

The peritectoid transformations derive their name from the peritectic transformation,
L + α → β, which occurs on solidification. The name ‘peritectic’ means that a phase
formed by such a reaction grows along the interface, i.e. along the periphery of the
primary solid phase as illustrated in the sketched microstructure of Fig. 12.7.
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Figure 12.7 Geometric arrangement of the growing β phase during a peritectic transformation,
obtained by growth along the previous phase interface, L/α, and by subsequent thickening.

α

β

β

L

L d

T = T2

.

.

α

L
+
α

xB

T T1 T2

(a) (b)

Figure 12.8 Conditions for an L + α → β transformation in a binary system at constant P and a
constant overall composition. The temperature was changed from T1 to T2. The arrows above
diagram (b) indicate the migration of the new phase interfaces during thickening.

Normally, all peritectoid transformations give the same type of geometric arrangement.
The growth conditions during a transformation can be illustrated by Fig. 12.8.

The diffusion distance is shortest close to the β tip advancing along the L/α interface
in Fig. 12.7. That growth process is thus rapid. The subsequent thickening of β, can occur
only by diffusion through β itself. It grows slower the thicker it gets and a peritectoid
reaction seldom goes to completion. On continued cooling, β can also grow into the
matrix phase as an ordinary primary precipitation but it is common that some of the
primary solid phase, α, remains.

In ternary systems there are three kinds of sharp phase transformations.

α → β + γ + δ Four-phase eutectoid transformation or class I
four-phase transformation

α + β → γ + δ Four-phase peritectoid transformation or class II
four-phase transformation

α + β + γ → δ Class III four-phase transformation.

The four-phase transformations are illustrated in Fig. 12.9.

Exercise 12.6

Vertical sections through two different ternary T, xB, xC diagrams at constant P are
reproduced in Fig. 12.10. Discuss what type of sharp four-phase transformations the
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class I class II class III

T >TO
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Figure 12.9 Different types of four-phase reactions in a ternary system, represented in a
compositional coordinate system.
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Figure 12.10 See Exercise 12.6.

four alloys, indicated by arrows, go through on cooling. Show projections of the four-
phase planes and draw lines representing the two sections.

Hint

In both diagrams all four three-phase fields connected to the invariant four-phase field are
shown in the section. It is thus possible to know the type of transformation. In diagram
(a), three of the four fall above the invariant one and these three all contain liquid. It is
evident that this is a four-phase eutectic transformation. Both the alloys, 1 and 2, give
L → α + β + γ and the parts of these alloys, already solidified, remain unchanged. In
diagram (b) there are two three-phase fields on each side of the four-phase horizontal.
This must be a class II transformation and both alloys, 3 and 4, give L + α → β + γ.

Solution

The solution is shown in Fig. 12.11.
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Figure 12.11 Solution to Exercise 12.6.

12.6 Applications of Schreinemakers’ projection

Schreinemakers’ T, P diagram, introduced in Section 10.1, can be very useful in a dis-
cussion of phase transformations, in particular for higher-order systems where all other
methods of reducing the number of axes to two would yield much more complicated
pictures. As an introduction, consider the diagram in Fig. 10.1(b). It shows that there are
three two-phase surfaces covering the angle between the (α) and (β) lines. By keeping
P and T constant at values within that angle and varying µB we could expect the trans-
formations α ↔ δ, γ ↔ δ and β ↔ γ. Of course, they should occur one after the other
and only two reaction sequences are possible, β → γ → δ → α or the reverse. By this
consideration we can immediately conclude that the phases are arranged in this order
along the composition axis, zB. This is confirmed by Fig. 10.10. Similar considerations
based on the other angles will give less complete answers. Unfortunately, this very sim-
ple way of deciding the relative compositions of the phases taking part in an invariant
equilibrium gets much more complicated in higher-order systems. The method based on
coincidence, described in Section 10.4, may be more powerful.

Next, let us consider a transformation occurring by changing T or P and keeping
the other constant. If the composition is also constant, then the phase field rule from
Eq. (10.6) would yield

d = c + 2 − p − ns + nm = c + 2 − p − c + c − 1 = c + 1 − p

because ns = 1 + c − 1 = c and nm = c − 1. A sharp transformation should be obtained
for d = 0, i.e. p = c + 1, and should thus occur if the system would cross a uni-
variant line (for which p = c + 1, see Section 10.1). This can be accomplished by
a suitable choice of composition. For illustration, see the arrow in Fig. 10.9. Then
the question is, what type of sharp transformation will it be. From the projection
in Fig. 10.1(b) we would only know that the (δ) line should give a transformation
between α, β and γ. However, the following method can be used to give more detailed
information.

Since δ does not exist along the (δ) line, it can only exist on the other side of the
invariant point. It will thus exist on the upper sides of the other univariant lines but
not on their lower sides (see Fig. 12.12(a)). Using the same kind of information from
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Figure 12.12 Method to decide the type of transformation. For instance, the δ phase only exists
on the other side of the invariant point, counted from the δ-absent line, here denoted (δ). The
arrow in Fig. 10.9, which is an expansion of the lower part of the present figure in the zB

direction, illustrates the γ → α + β transformation.

Figure 12.13 Detail of binary T, x phase diagram with a point of minimum for the β + L
equilibrium. There the transformation β → L will be congruent. Three sets of lines
representing equilibrium with α at different P are given.

the other lines we get the results shown in Fig. 12.12(b). By crossing the (δ) line from
left to right, i.e. by decreasing P, under a suitable constant value of zB, we thus get the
transformation α + β → γ. It should be emphasized that the transformations described
by the positions of the Greek letters in Fig. 12.12 only occur when a line is crossed in
the plane of the projected diagram. It gives no information on the transformations in any
other direction.

In Section 10.8 it was concluded that one can include in Schreinemakers’ projection
a curve showing where an equilibrium with p = c phases degenerates by the phases
falling on the same point for a binary system, on the same line for a ternary system,
etc. An example was shown in Fig. 10.27. Such a singular curve may originate from
a univariant line, as demonstrated in Figs 12.13 and 12.14, using a binary system for
illustration.
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α+β
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Figure 12.14 Schreinemakers’ P, T diagram corresponding to Fig. 12.13. The univariant line
changes character at the black point. That is where the singular curve originates and there is a
compositional degeneracy in that point. The α phase does not take part in the reaction there.

In order to simplify the construction, it was here assumed that the β + L equilibrium is
not affected by P but an increased P will increase the stability of α. Lines for equilibrium
with α are presented for three P values. With the lowest P value, P1, the α + β + L
equilibrium is of the peritectic type. With the highest P value, P3, it is of the eutectic
type and the intermediate P value, P2, shows the transition where α does not take part
in the transformation of L to β. That will give a singular point on the univariant line for
α + β + L in Fig. 12.14 and that is where the singular curve for β + L starts.

At low P (to the left of the transition point in Fig. 12.14) an alloy of suitable composition
would transform by L + α → β on the univariant line if its composition is such that it
reaches the three-phase horizontal in Fig. 12.13 on cooling. Otherwise, it would transform
by L → β at lower T. That would happen if the composition is to the right of the L point
for P1 in Fig. 12.13. In any case, the transformation L → β would be completed at or
before the point of minimum in Fig. 12.13, i.e. the singular curve in Fig. 12.14. At high
P (to the right of the transition point) an alloy of suitable composition would transform
by L → α + β on the univariant line. That would happen for compositions on both sides
of the L point for P3 in Fig. 12.13, but usually after a proeutectic precipitation of α or
β. If the liquid alloy can be undercooled by α not nucleating, it may solidify by L → β

according to the part of the L + β phase field below the eutectic temperature. The lowest
temperature of solidification by L → β according to the phase diagram is again the
minimum. However, this part of the L + β phase field is only metastable at P3. That is
why the singular curve in Fig. 12.14 has been drawn with a dashed line to the right of
the transition point.

Figure 10.3 illustrated a congruent point in a ternary system and it was concluded
that the position of such points could also be illustrated by a line in Schreinemakers’
projection. The name ‘doubly singular’ was proposed. Such a curve can originate from a
transition point on a singular curve, much in the same way as the singular curve originates
from a univariant line. This is illustrated in Fig. 12.15 where an invariant equilibrium
is also included. The L + β + γ surface covers the area between the (α) and (δ) lines.
However, to the left of the singular point L/(β + γ) that surface, when coming from the
(α) line, will overshoot the (δ) line, reach the singular curve and then bend back and
end up on the (δ) line. If the composition is suitable, then the alloy will not transform by
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Figure 12.15 Schematic Schreinemakers’ projection of a ternary system, illustrating a possible
arrangement of a univariant line, a singular curve and a doubly singular curve.

L + α → β + γ on the univariant line because there will be no α present. Such an alloy
will solidify by L → β + γ below the univariant line but in any case not later than on
the singular curve. However, if there is a transition point on the singular curve, to the left
of which the solidification reaction is L + γ → β, then the solidification can only occur
by L → β if there is no γ present. The alloy may then pass the singular curve on cooling
but in any case it should have solidified before passing the doubly singular curve.

Exercise 12.7

What transformation would occur on crossing the (α) line in Fig. 10.14(b) by increasing
the value of Y k at constant values of Y j , Xm

m1 and Xn
m1?

Hint

Use the method illustrated by Fig. 12.12.

Solution

β + γ → δ + ε.

Exercise 12.8

Use the three-phase reactions indicated by Fig. 12.12(b) to decide on the relative com-
positions of the four phases.

Hint

The reactions on decreasing T are δ → α + β, β + δ → γ, δ → α + γ and γ → α + β.

Solution

δ must fall between α and β, γ between β and δ, δ between α and γ and finally γ between
α and β. They must be arranged in the order β, γ, δ, α or in the opposite direction.
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α + β + γ

δ + ε

Figure 12.16 See Exercise 12.9.

Exercise 12.9

Figure 12.16 gives a detail of Schreinemakers’ projection of a quinary system. It shows a
univariant line for the α + β + γ + δ + ε + φ equilibrium and a singular curve for the
α + β + γ + δ + ε singular equilibrium. What transformation can be expected when
the univariant line is crossed?

Hint

Use the fact that the singular curve is stable only on the indicated side of the singular
point.

Solution

To the left of the transition point one can avoid the univariant reaction and reach the
singular curve if φ is not present before the univariant line is reached. Thus, φ does not
form by the univariant reaction but would be consumed if it were present. The reaction
must be α + β + γ + φ → δ + ε. To the right of the transition point, the univariant
reaction cannot be suppressed, not even if φ is absent, and the reaction must be α + β +
γ → δ + ε + φ.

12.7 Scheil’s reaction diagram

In many types of systems, P has a negligible effect and without any loss of information
one can section at P = 1 bar. For a binary system one will thus get the usual T, x diagram.
For a ternary system there is one dimension more but one could project in the T direction
and use xB and xC as axes. Such diagrams are useful but tend to be overloaded with
phase boundaries if many phases are solutions because there will be lines showing the
compositional changes of all those phases. A simpler diagram would be obtained by
using µB and µC (or aB and aC) as axes. However, much information would be missing.
Using the method illustrated in Fig. 12.12 one could easily find what transformation
would occur on crossing a univariant line but that would be of limited use. In order to
hit the line one must now work with a constant heat content because the projected axis
is T. Furthermore, one would have to vary µB or µC which is rarely very practical.

A rather useful method was proposed by Scheil [25] for ternary systems. His reaction
diagram shows how the lines representing three-phase equilibria are connected to form
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L→β + γ

L→ α + β + γ

L→ α + β

L→ α + γ

B−C B−A B−A−C A−C

Figure 12.17 Scheil’s reaction scheme for a simple ternary system with eutectic reactions.

L+ λ → κ

L→ κ + (Al)
L→ θ + (Al)

L+ θ + κ → τ

L+ θ → τ + (Al)

L→κ + τ + (Al)

Fe−AI Fe−Ni Fe−Ni−AI Ni−AI

Figure 12.18 See Exercise 12.10.

four-phase equilibria as a function of T but with no regard for composition. His diagram
also shows what three-phase equilibria originate from the binary sides. In addition, the
reactions occurring on cooling through the four-phase equilibria are given explicitly in
boxes. The diagram for a simple eutectic system is presented in Fig. 12.17. Of course,
similar diagrams can be constructed for quaternary systems, showing four- and five-
phase equilibria.

Exercise 12.10

Part of Scheil’s diagram for the Al–Fe–Ni system is shown in Fig. 12.18, reproduced
from a publication. A mistake was made by joining the binary (L + λ → κ) with (L →
κ + τ1 + (Al) ). Try to correct it.

Hint

What phases are common for the four-phase equilibria? What one-dimensional equilibria
should connect them?

Solution

The solution is shown in Fig. 12.19.
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L+λ → κ

L→ κ + (Al)
L→ θ + (Al)

L+ θ + κ → τ

L+ θ → τ + (Al)

L→ κ + τ + (Al)

Fe−AI Fe−Ni Fe−Ni−AI Ni–AI

Figure 12.19 Solution to Exercise 12.10.
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Figure 12.20 A section at constant P and xC through a ternary phase diagram in (b), compared
with a binary diagram in (a).

12.8 Gradual phase transformations at fixed composition

If a new component is added to a system where a sharp transformation with p = c + 1
has been found at constant P (see Fig. 12.20(a)), then the value of c increases by one
unit and for the same transformation one will now have p = c. The dimensionality of
the corresponding phase field will thus increase by one unit. This case may be illustrated
by an xC section at a low value of xC (see Fig. 12.20(b)).

It is evident that the phase transformation between γ and α + β, occurring when T is
changed, can no longer be sharp but is somewhat gradual. However, if the addition of
the new component is small, its effect on the actual phase transformation should also be
small and one may still recognize its characteristic features, for instance in the resulting
eutectic microstructure illustrated in Fig. 12.5, in particular if the temperature has been
changed enough to move the system from the γ phase field to the α + β phase field
before the transformation has started. The transformation may thus appear as sharp even
though it is classified as a gradual transformation on thermodynamic grounds. As an
example, we shall now examine a case involving three phases and three components.
Figure 12.21 shows the T projection of such a phase diagram under constant P.
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Figure 12.21 Temperature projection of the isobaric A–B–C phase diagram.
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Figure 12.22 Conditions for (a) a eutectic transformation and (b) a peritectic transformation in a
ternary system under constant pressure and a gradual decrease of the temperature.

In this particular case the same three-phase equilibrium occurs in two of the binary
systems but it has different character, being eutectic on one side and peritectic on the
other. Evidently, there must be a transition between the two types somewhere inside the
ternary system. In order to decide where the transition is situated we must first examine
how we can recognize the two types when the compositions of the phases change during
the transformation. This is fairly easy if we consider a system which consists of an L
phase only and if it has the correct composition for equilibrium with the α and β phases.
As the temperature is lowered slightly, the three-phase triangle moves and covers the
composition of the system (see the cross in Fig. 12.22(a)). Evidently, we should expect
the reaction L → L + α + β. Here we have included the L phase on both sides because
it has different compositions and it would be impossible to satisfy the mass balance
condition if that is not taken into account.

The dashed line in Fig. 12.22(a) is the extrapolation of the direction in which the L
phase is moving. It goes through the L corner of the triangle and the average composition
of the system, and it intersects the opposite side, a and b being the intercepts. From
Fig. 4.5 it is easy to see that the α and β phases must form in the proportion b:a and this
will be the ratio between them in the microstructure. As far as α and β are concerned they
have formed from material corresponding to the circle. It may not be very important that
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Figure 12.23 See Exercise 12.11.

this material has been drawn from a phase with a different composition. From this point
of view, the reaction is clearly of the eutectic type. The result will be quite different if the
extrapolation does not intersect the opposite side. An example is given in Fig. 12.22(b).
The composition of the system will then fall outside the new three-phase triangle and
inside a two-phase field, L + β. The reaction will simply be L → L + β and L will not
move in the direction of the L line in the phase diagram (solid arrow) but straight away
from the β phase (dashed arrow). L will no longer be in equilibrium with α.

The limiting case is found when the extrapolation, i.e. the solid arrow, is directed
away from the β corner. Using that criterion one could find the point of transition in the
phase diagram in Fig. 12.21 if it were equipped with a series of three-phase triangles for
slightly different temperatures. Even though the criterion was derived by considering an
alloy composed of an L phase only, it is more general because, in practice, it may often
be justified to neglect the diffusion inside the solidified material in comparison with the
rapid diffusion in the liquid phase. The progress of the reaction at each stage is thus
mainly determined by the momentary composition of the L phase and in which direction
it is moving. For a reaction, where three solid phases are involved, it may be necessary
to make a detailed analysis of the diffusion of all the elements in all the phases. In the
next section we shall consider a special case where one component diffuses much faster
than the others.

Exercise 12.11

The sketched detail of an isobarothermal section of a ternary phase diagram (Fig. 12.23)
shows how all the phases in a three-phase equilibrium change on cooling.

(a) Test how a melted specimen with the composition of the L corner will react on
cooling. Give a reaction formula.

(b) Test how a β phase specimen with the composition of the β corner will react on
cooling. Give a reaction formula.

(c) Compare the two results. Discuss anything that may seem surprising.
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Figure 12.24 Conditions of a transformation under changing the content or chemical potential of
C in a ternary system. T and P are kept constant. The arrow in (a) points towards the C corner.
In (b) it would be horizontal.

Solution

(a) L → α + β(+L); (b) β → L + α(+β); (c) The first reaction looks like a eutec-
tic reaction and the second one like a metatectic one although the phase diagram is the
same. The reason is that this is not a sharp transformation and the concepts developed
for sharp transformations cannot be strictly applied.

12.9 Phase transformations controlled by a chemical potential

It is sometimes possible to contain a system inside a wall, which allows some components
to penetrate but not others. In alloy systems it sometimes happens that one component
diffuses much faster than the others. In other cases, one or a few components are volatile
and can easily be exchanged with the surroundings. In these cases it is possible to
produce a phase transformation by gradually changing the chemical potential of the
mobile component but keeping constant the content of all the other components and
also T and P. The conditions may be illustrated by the pair of xC, xB and µC, uB phase
diagrams in Fig. 12.24(a) and (b), respectively, for a case where p = c and the mobile
component is denoted by C. The arrow in Fig. 12.24(a) represents a discontinuous change
of the C content and is pointing towards the C corner. The uB variable in Fig. 12.24(b)
is explained in Section 4.3.

It is evident that the binary A–B alloy represented by a cross will eventually undergo
a phase transformation γ → α + β if the C content is gradually increased. This may be
indicated in the following way using a reaction formula, γ + C(source) → α + β.

The µC, uB diagram demonstrates that the transformation will be sharp if the µC

potential can be controlled experimentally and there are no kinetic restrictions. In fact,
the result of such a transformation would be very similar to the result of the well-known
pearlite transformation taking place on a gradual change of temperature in an iron–
carbon alloy. As a consequence, one should expect γ to transform to an intimate mixture
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Figure 12.25 See Exercise 12.12.

of the two new phases, α and β, a so-called eutectoid microstructure. This has actually
been observed in many carbon-containing alloyed steels when carburized.

As demonstrated by Fig. 12.24(a), the same transformation is predicted to be gradual if
the C content is increased. However, when the supply of C comes from the surroundings,
there must be a chemical potential difference driving the diffusion of C. A growing surface
layer of α + β will thus form and the transformation will behave as a microscopically
sharp one. A region has either transformed completely to α + β or is still pure γ.

Exercise 12.12

Figure 12.25 shows a very rough sketch of the Ni–O–Be phase diagram at 1623 K and
1 bar. The hyperbolic solubility curve for BeO in the Ni-rich phase approaches the Ni
corner very closely. It is known that pure Ni oxidizes to NiO in air at 1623 K. Construct
a reasonable profile for the O content from the surface and into the interior of the Ni–Be
alloy denoted by the filled circle on the uBe axis, after some time in air at 1623 K.

Hint

The composition of all layers must lie on the horizontal line through the initial alloy
composition because the uBe axis has been used and the diffusion of Be is slow compared
to that of O. Remember that the inward diffusion of O requires a continuous decrease of
the O potential or, more conveniently in the present case, a continuous decrease of the
O content of the Ni phase close to the corner of the diagram (because its Be content is
too low to affect the O potential).

Solution

Suppose an oxide scale of NiO + BeO will form on the surface and also an inner layer
of Ni + BeO. Between them there will be a sharp interface because a three-phase layer
of Ni + NiO + BeO could not exist in a potential gradient. It can exist at a particular O
potential, only, that of the three-phase equilibrium. Furthermore, the average O content
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Figure 12.26 Solution to Exercise 12.12.
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Figure 12.27 See Exercise 12.13.

in the layer of Ni + BeO varies quickly close to its inner side where the O solubility
in the Ni phase is low and the solubility line is almost vertical in the phase diagram
(Fig. 12.26). Otherwise, practically no O could diffuse through that part.

Exercise 12.13

The micrograph (Fig. 12.27) shows the structure of an Fe–20 mass% Mo–1 mass% C
alloy at a magnification of 500×, which has been carburized further at 1273 K and then
quenched. The lower part shows the original structure of M6C particles (black) in a
matrix of γ (now martensite after quenching) and the upper part the new structure. The
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surface is above this picture. Explain the microstructure using the phase diagram which
is for the same temperature.

Hint

From the composition given we calculate uMo = 0.13 and uC = 0.05. The value of uMo

does not change when we add more carbon. The alloy will thus move along a horizontal
line to the right in the phase diagram.

Solution

The alloy is initially in the γ + M6C phase field. Moving to the right in the phase
diagram the alloy may enter the three-phase triangle γ + M6C + M2C and approach the
γ + M2C phase field. We can thus understand that M6C must transform. A horizontal
line from the M6C corner to the γ + M2C side of the triangle would illustrate the reaction
M6C + carbon → M2C + γ. This may be regarded as a eutectoid transformation where
carbon plays the role usually played by heat. The conclusion is confirmed by the upper part
of the picture showing regions of a eutectic-like two-phase mixture, evidently M2C + γ

formed from previous M6C particles by the above reaction formula.



13 Transformations in closed systems

13.1 The phase field rule at constant composition

Most of the discussion in the preceding chapter concerned transformations in systems
of constant composition, so-called closed systems. We shall now examine that case in
more detail.

To keep a variable constant means that the phase diagram is sectioned at that value
of the variable. Constant composition means that c − 1 molar axes have been sectioned
and thus nm = c − 1 = ns. This can be inserted in the phase field rule which is given
by Eqs (10.6) and (10.7). They hold one on each side of a critical p value. Without any
projection the critical value will be

p = 1 + npr + nm = 1 + 0 + (c − 1) = c. (13.1)

Equation (10.7) will then apply to all p ≤ c, yielding

d = r = c + 1 − ns − npr = c + 1 − (c − 1) − 0 = 2. (13.2)

The two variables are T and P. Equation (10.6) will apply to all p ≥ c, yielding

d = c + 2 − p − ns + nm = c + 2 − p. (13.3)

This expression resembles Gibbs’ phase rule but it should be emphasized that it applies
to systems with constant composition only for p ≥ c, and in all such cases we obtain
d ≤ 2.

In Sections 13.8 and 13.9 it will be shown that one must take special account of the
presence of congruent transformations. They were neglected when the phase field rule
was derived.

Exercise 13.1

Consider the equilibrium CH4 ↔ C(gr) + 2H2 at a constant pressure of 1 bar. Can it
exist at one temperature only or in a range of temperatures?

Hint

Graphite is solid C, CH4 and H2 are both gaseous but there can be only one gas phase
which is thus a mixture of them.



280 Transformations in closed systems

Solution

We have two components, C and H, c = 2. We have two phases, graphite and gas, p = 2,
and thus p = c and d = c + 2 − p = 2 + 2 − 2 = 2. We may vary P and T, i.e. under
any value chosen for P we can still vary T.

Exercise 13.2

Consider the equilibrium CaCO3 ↔ CaO + CO2 in an atmosphere, initially composed
of pure N2. Can the equilibrium exist in a range of temperature if the pressure is kept
constant at 1 bar?

Hint

CaCO3 and CaO are two different solid phases. If CO2 forms, it will go into the gas and
may form several species, CO2, CO and O2, mixed with N2, but there will still be only
one gas phase.

Solution

We have four components, Ca, C, O and N, c = 4. We have three phases, CaCO3, CaO
and gas, p = 3. Thus p < c and the phase field rule gives d = 2. For any chosen value
of P we can still vary T. It should be emphasized that without N2 we could not vary T at
a chosen P.

13.2 Reaction coefficients in sharp transformations for p = c + 1

Keeping P constant in a closed system, i.e. in a system with constant composition, we
have nm = c − 1 but ns = c. Instead of Eq. (13.3) we obtain

d = c + 2 − p − ns + nm = c + 2 − p − c + (c + 1) = c + 1 − p. (13.4)

With p = c + 1 phases, we will thus get a sharp transformation (d = 0) by changing T.
The result would be the same by keeping T constant and varying P. This is why we shall
now discuss the case p = c + 1 in more detail.

Figure 13.1 shows conditions for a sharp transformation in (a) a binary and (b) a
ternary system. For the binary case (c = 2, p = 3) we can write the reaction formula for
the sharp transformation as follows if we omit any part of an initial phase that remains
when the reaction is completed.

α + β → γ (13.5)

This is independent of whether one passes from α + β to α + γ or from α + β to γ + β,
i.e. independent of whether some α or β will remain.
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Figure 13.1 Conditions for (a) a three-phase transformation in a binary system and (b) a
four-phase transformation in a ternary system at a low constant value of xC. P is constant in both
cases.

It is common to write chemical reaction formulas with reaction coefficients,ν. Accepting
this procedure we can modify the reaction formula for the phase transformation and make
it more quantitative,

ναα + νββ = νγγ. (13.6)

It expresses the fact that να moles of the α phase react with νβ moles of the β phase to
form νγ moles of the γ phase. As an example we may consider the oxidation of solid Ag
by gaseous O2

4Ag + 1O2 = 2Ag2O. (13.7)

In this simple case the reaction coefficients can be given as small integers. In the general
case this is not possible since the phases are not always stoichiometric.

By making the reaction coefficients negative for all the reactants and positive for all
the products we can simply write the formula as �ν j J = 0. The ν j values will represent
the relative amounts of the phases taking part in the reaction, for instance expressed as
formula units. Naturally, the ν j values must be such that mass balance is fulfilled for
each component i,

∑
j

ν j a j
i = 0 for each component i, (13.8)

where a j
i is the number of i atoms per formula unit of phase j. We are considering a

sharp phase transformation with p = c + 1 and we thus have a system of c equations
with p = c + 1 coefficients each and in the form of a (c + 1) × c matrix. By excluding
the jth column of coefficients one obtains a c × c determinant and the value of each ν j

is given by such a determinant.

ν j = (−1) j−1
∣∣∣aα

1 . . a j−1
j−1 a j+1

j . . aε
c

∣∣∣ . (13.9)
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It is easy to see that the above condition is fulfilled by this expression because we find∑
j

a j
i ν j = aα

i

∣∣∣aβ
1 aγ

2 . . aε
c

∣∣∣ − aβ
i

∣∣aα
1 aγ

2 . . aε
c

∣∣ + . . .

=
∣∣∣aα

i aβ
1 aγ

2 . . aε
c

∣∣∣ = 0. (13.10)

The reason is that two columns in Eq. (13.10) have identical elements because i is one
of the numbers 1 to c. It should be noticed that in the calculation of ν j one makes no
distinction between reactants and products. Some of the ν values will turn out positive
and others negative and one may thus identify the members of each group. If the value
for a selected phase turns out with the wrong sign, according to the direction chosen for
the reaction, then one should simply change all the signs.

When non-stoichiometric phases are involved it may be convenient to identify the ai

coefficients with the molar contents xi. We get, for instance,

να = (−1)1−1
∣∣∣xβ

1 xγ
2 . . xε

c

∣∣∣ =
∣∣∣xβ

1 xγ
2 . . xε

c

∣∣∣. (13.11)

The reaction coefficients of a sharp phase transformation can be used for evaluating the
change of any molar quantity, Xm, during the transformation. We obtain

�Xm =
∑

X j
mν j =

∣∣∣Xα
m aβ

1 aγ
2 . . aε

c

∣∣∣ . (13.12)

This value refers to 1 mole of the reaction formula, as defined by the reaction coefficients.
It must be emphasized that the present discussion only applies to phase equilibria with

p = c + 1, i.e. phase equilibria which are univariant in the complete phase diagram. That
is exactly the case considered in Section 8.8. There Eq. (8.39) was derived which can be
written as∣∣∣Hα

m xβ
1 xγ

2 . . xε
c

∣∣∣ dT/T =
∣∣∣V α

m xβ
1 xγ

2 . . xε
c

∣∣∣ dP. (13.13)

It can now be transformed into the simpler form

dP

dT
= �Hm/T

�Vm
. (13.14)

Consequently, this simple expression holds for any univariant equilibrium and not only
for the two-phase equilibrium considered initially in Section 8.3.

Exercise 13.3

Prove Kirchhoff’s law for a reaction between well-defined substances, (∂�H/∂T )P =
�CP .

Hint

For well defined substances all ν j are fixed. Express �H in terms of Hm for the various
substances and the reaction coefficients.
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Solution

�H = �ν j H j
m; (∂�H/∂T )P = (∂�ν j H j

m/∂T )P = �ν j (∂ H j
m/∂T )P = �ν j C j

P =
�CP but only because (∂ν j/dT )P = 0 for well-defined substances.

Exercise 13.4

From dilatometric measurements on the pearlite transformation in the Fe–C system at
1 bar we know T = 1000 K and �Vm = 0.047 cm3/mol and from calorimetric measure-
ments we know that �Hm = −4540 J/mol. Calculate the pressure dependence of the
transformation temperature.

Hint

The pearlite transformation is γ → α + Fe3C. First check how many degrees of freedom
this equilibrium has in a binary system. Then use an equation derived for that particular
case.

Solution

We have p = 3 and c = 2 and, thus, p = c + 1, i.e. a sharp transformation at con-
stant P. For that case we get the slope dT/dP = T �Vm/�Hm = 1000 × 0.047 ×
10−6/(−4540) = −1.04 × 10−8 K/Pa = −10−3 K/bar.

13.3 Graphical evaluation of reaction coefficients

The reaction coefficients for a sharp transformation in a closed system can also be
evaluated graphically using the lever rule. For c = 2, p = 3 one of the phases transforms
into a mixture of the other two. The composition of the first phase is thus equal to the
average composition of the other two and the lever rule can be applied directly. For
c = 3, p = 4 there are three different cases as illustrated by Fig. 12.9. In class I and
class III reactions one of the phases may transform into a mixture of the other three
and, again, the composition of the first phase is equal to the average composition of the
others. If the reaction coefficient of the first phase is taken as −1, the coefficients of the
other phases are obtained as the fractions of the subsystems using one of the methods
described in Fig. 4.5.

Class II can be handled by considering that a mixture of two phases will transform into
a mixture of the remaining two phases. Evidently, the compositions of the two mixtures
must be equal and should thus fall on the point of intersection between the two diagonals,
point ‘i’ in Fig. 13.2.

If the average composition of the system does not coincide with the first phase dis-
cussed for classes I and III, then it falls inside one of the three smaller triangles (see
the diagram for δ → α + β + γ in Fig. 13.3(a)). The composition of δ will be adjusted
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Figure 13.2 Compositions of phases in a class II reaction in a ternary system. The weighted
average of the two reacting phases, say α and γ, must fall on the intersection between the
diagonals and so must the weighted average of the two product phases, say β and δ.
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Figure 13.3 Relations between phase compositions in (a) a class I or III transformation and in (b)
a class II transformation.

by precipitation of first one and later two of the other phases in the small triangle as
the temperature of the four-phase plane is approached. There the rest of it will fall on
the δ point in the diagram and will transform to a mixture of the other three phases.
The microstructure will show a matrix with a characteristic pattern of the three-phase
mixture in which one can see imbedded one-phase regions of the first phase to precipitate
and eutectoid regions of the two co-precipitated phases. If the average composition falls
outside the triangular four-phase plane, then the δ phase will never reach the four-phase
plane.

For class II there are four alternatives and it is interesting to note that the range
of existence of each one of the four phases extends to both sides of the four-phase
plane. In Fig. 13.3(b) the three-phase fields α + β + δ and β + δ + γ extend to one side
and α + β + γ and α + γ + δ extend to the other side. If a specimen with an average
composition falling inside the α − β − i triangle is approaching the four-phase plane
from the first side, then it will contain a mixture of α + β + δ when reaching the four-
phase plane. From a mass balance point of view it may be regarded as a mixture of β + δ

falling on point i and some extra amounts of α and β. The mixture of β + δ will
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transform to α + γ when the system crosses the four-phase plane. However, since the
extra amount of β is present in the β + δ mixture over the whole specimen, there are no
particular β regions predestined not to take part in the β + δ → α + γ transformation.
The progress of the transformation will determine which parts of β will not transform
and, afterwards, they will be found scattered all over the specimen. The α, present before
the four-phase reaction, may indirectly take part in the reaction by providing favourable
sites for the precipitation of α.

Exercise 13.5

Suppose the δ phase in Fig. 13.3(b) is a liquid and that the average composition of the
system is such that the liquid will be just about consumed by the four-phase reaction.
What phases will the system contain at a temperature just below the four-phase plane.

Hint

Suppose there is full equilibrium at each temperature. Remember that the amount of a
phase in a three-phase assemblage is given by the position in the three-phase triangle.

Solution

At an earlier stage the composition may fall inside the α + β + δ(L) or β + γ + δ(L)
triangle. If a very slight amount of liquid should remain below the four-phase temperature
then the system would be in the α + β + δ(L) triangle. If the liquid would be just about
consumed then the system, should fall on the α + γ line.

13.4 Reaction coefficients in gradual transformations for p = c

Let us now consider a gradual transformation in a closed system with p = c by keeping
pressure constant and changing the temperature. In order to write a reaction formula with
the mass balance conserved it is now necessary also to include the change in composition
of regions not taking part directly in the phase transformation. As a simple example of
p = c = 2, consider the precipitation of Al2Cu from α phase, a solution of Cu in fcc-Al.
The solubility decreases with decreasing temperature at constant pressure and there will
thus be a gradual precipitation of Al2Cu. One way of writing this reaction would be

α(transformed) + Cu(from remaining α) → Al2Cu. (13.15)

The reaction coefficients can then be evaluated with the same method used for sharp
transformations with p = c + 1 but with the extra supply of Cu introduced instead of
the missing phase c + 1. However, it should be emphasized that this way of writing the
transformation is not unique. Another possibility would be

α(to be transformed) → Al2Cu + Al(to the remaining α). (13.16)
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Figure 13.4 Gradual three-phase transformation in a ternary system. The arrow shows the
direction of change in composition of the L phase.

In order to define a unique way one would have to specify some special criterion. If one
is interested in the mechanism of the transformation, then one should consider exchange
of both Cu and Al but in proportions balanced according to their rates of diffusion in the
α phase.

A three-phase transformation in a ternary system is another case of gradual transfor-
mation, now with p = c = 3. An example was given in Fig. 12.22 but in Fig. 13.4 it
is reproduced with the composition triangle included. Two of the ways of writing this
transformation are

L + (BC) → α + β (13.17)

L → α + β + (AC), (13.18)

where (BC) and (AC) represent the compositions one can read on the two sides of the
composition triangle. In each case one can calculate the reaction coefficients by including
(BC) or (AC) instead of the missing phase c + 1. The ratio between α and β will indeed
be independent of whether one includes (BC) or (AC). It will be b/a according to the
lever rule.

Exercise 13.6

In an Al–Cu–Si specimen at 1 bar and 803 K one finds that the phases have the follow-
ing compositions at equilibrium: α(0.025Cu; 0.006Si) + L(0.16Cu; 0.05Si) + Al2Cu.
When the temperature is decreased, L changes in the direction away from the point
0.83Al;0.17Cu. Calculate the relative amounts of α and Al2Cu in the eutectic structure
formed by L → α + Al2Cu on further cooling. (The numbers given above are molar
contents.)

Hint

We have c = 3 and p = 3 but we should write the transformation in a way resembling
a sharp transformation for p = c + 1. The relative amounts of the two phases are then
obtained as the ratio of their reaction coefficients.
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Solution

Write the reaction as L + (0.83Al; 0.17Cu) → α + Al2Cu. Eq. (13.11) yields

να = (−1)3−1

Al Cu Si∣∣∣∣∣∣
−0.79 −0.16 −0.05
−0.83 −0.17 0

2 1 0

∣∣∣∣∣∣ = +0.0245

νAl2Cu = (−1)4−1

Al Cu Si∣∣∣∣∣∣
−0.79 −0.16 −0.05
−0.83 −0.17 0
0.969 0.025 0.006

∣∣∣∣∣∣ = +0.00719

νAl2Cu/να = 0.00719/0.0245 = 0.2935 = 0.23 : 0.77.

13.5 Driving force for sharp phase transformations

The driving force for the precipitation of a new phase under a gradual transformation in
a closed system was discussed in Section 7.7. As an introduction to a discussion of the
driving force for a sharp transformation we shall now consider a eutectoid transformation
in a binary alloy. We have seen that it usually gives rise to an intimate mixture of the two
new phases, illustrated by Fig. 12.5. It may give the material advantageous properties.
The most famous example is pearlite, the eutectoid formed from the austenite phase in
steel.

Because the rate of transformation is controlled by slow diffusion and evolution of the
heat of transformation will thus be slow, it is often possible to control the temperature and
it makes sense to discuss the transformation under isothermal conditions, for instance
at T2 in Fig. 12.6. The character of the transformation as sharp is evident from its
progress. A region has either been completely transformed or is not at all affected. The
transformation occurs by the growth of colonies composed of an intimate mixture of the
two new phases and, under isothermal conditions, the growth continues until the whole
system has transformed.

It is well known that the mixture will be the finer, the lower the temperature of formation
is. The reason is that the interfaces in the mixture have surface energy and cannot
form without the supply of a corresponding amount of driving force. According to an
approximate treatment, one-half of the available driving force goes into surface energy
and the other half is used for driving the diffusion.

The conditions for cooperative growth of the two new phases can be illustrated by
extrapolating the phase boundaries in the T, xB phase diagram as shown in Fig. 12.6. This
kind of construction is given again in Fig. 13.5(a) but a solid phase, γ, has been substituted
for the liquid phase and the diagram has been rotated. The transformation temperature is
now denoted by T1. The diagram shows how one can evaluate the composition difference
driving the diffusion in each one of the phases if there is local equilibrium with the γ

phase (see the arrows in Fig. 12.5).
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Figure 13.5 Evaluation of the differences in composition (a) and chemical potential (b) driving
the diffusion in a three-phase transformation in a binary system.
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Figure 13.6 Gibbs energy diagram illustrating the eutectoid transformation γ → α + β at T1 in
Fig. 13.5.

A similar construction in the T, µB phase diagram in Fig. 13.5(b) yields a difference in
chemical potential of B, �µ

γ
B, which may be used in a treatment of the rate of diffusion

of B in γ, although the composition difference is usually used for that purpose. The
conditions for the eutectoid reaction γ → α + β may also be illustrated with a molar
Gibbs energy diagram at T1 (see Fig. 13.6).

As explained in Section 7.7, the driving force for the precipitation of a new phase in
a gradual transformation decreases during its growth but for the whole reaction one can
define and evaluate an integrated driving force along the reaction path. This problem is
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absent if the phase transformation is a sharp one because the parent phase which has not
yet transformed has not changed at all. Under constant T and P the driving force is thus
constant and the integrated driving force is equal to the momentary driving force if they
are both expressed per mole of the transformed structure. Under constant T and P we
obtain, by identifying the extent of the transformation, ξ , with the number of moles of
the products which is also equal to the number of moles of transformed reactants,

D = −
(

∂G

∂ξ

)
T,P,Ni

= −Gm(products) + Gm(reactants). (13.19)

This quantity is illustrated in Fig. 13.6 for a eutectoid transformation γ → α + β in a
binary system.

The value of the driving force may be calculated using the reaction coefficients for a
sharp phase transformation at fixed composition. Per mole of the reactant, γ, we obtain
from Eq. (13.12),

D = −�Gm = −
∑

G j
mν j/(−νγ) = −

∣∣∣ Gα
m xβ

1 xγ
2

∣∣∣/∣∣∣ xα
1 xβ

2

∣∣∣. (13.20)

Even though this expression looks quite simple, it may sometimes be difficult to evaluate
all the molar contents to be inserted. A useful approximation would be to assume that
all the phases have the same compositions they have at the equilibrium temperature. If
it is further assumed that the resulting value of �Gm varies linearly with temperature,
we could use the method introduced in Section 3.9 for a transformation that we now
recognize as a sharp one. Since D stays constant for a sharp transformation, we get

�S(T1 − T0) = �H (T1 − T0)/T0 = −�G =
∫

Ddξ = D

∫
dξ = D�ξ. (13.21)

Let �ξ be the number of moles transformed. The driving force for the transformation
of one mole is thus

D = �Sm(T1 − T0) = �Hm(T1 − T0)/T0. (13.22)

Here, To is the equilibrium temperature and T1 is the actual temperature of the transfor-
mation. For small �T the heat of transformation may be taken as the value at T0. It may be
available from direct measurements. For larger undercoolings one may have to consider
variations of �Hm with temperature, for instance due to changes of the compositions of
various phases.

Let us now examine the situation below the equilibrium temperature in more detail.
Figure 13.6 demonstrates the complexity found in a eutectoid transformation in a binary
system. Each one of the phases is in contact with the other two phases and two dif-
ferent compositions are thus defined for each phase. Figure 13.5 shows how they are
obtained from the phase diagram by extrapolating the phase boundaries to the tempera-
ture of transformation T1 under the assumption of local equilibrium at all the two-phase
interfaces.

The situation gets even more complicated if one tries to analyze how the driving force
is consumed during the transformation. This is illustrated in Fig. 13.7. This diagram
demonstrates several complications. Firstly, α and β grow under an increased pressure
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Figure 13.7 Molar Gibbs energy diagram for a binary system with a eutectoid transformation,
showing three dissipations of the driving force, �G1, �G2 and �G3.

because the interfaces to the parent γ are curved (as illustrated in Fig. 12.5). The corre-
sponding −�G1 is consumed by the creation of all the α/β interfaces in the eutectoid
structure. Secondly, the two new phases are not formed with their final compositions,
which are governed by the α/β equilibrium, because they grow from the γ phase. The
corresponding −�G2 is consumed by diffusion from the interior of α to the interior of β

behind the reaction front. The remaining part of the driving force, −�G3, is consumed
by diffusion at the reaction front.

As already mentioned, according to an approximate treatment of the rate of transfor-
mation, the highest growth rate is obtained when one-half of the total driving force goes
into the surface energy of all the α/β interfaces.

Exercise 13.7

The difference in chemical potential of B driving the diffusion in the γ phase during
the eutectoid transformation, shown in Fig. 12.5, was identified in Fig. 13.5(b). Find the
corresponding differences for α and for β. How are the three related?

Solution

�µα
B is found between the lines for γ/α and β/α and �µ

β
B is found between the lines

for β/α and β/γ. Evidently, �µ
γ
B = �µα

B + �µ
β
B.
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Exercise 13.8

The heat of formation of pearlite from austenite is �Hm = −4.5 kJ/mol and the equi-
librium temperature is To = 1000 K. Estimate the coarseness of pearlite formed at
T1 = 950 K, assuming that all the driving force goes into interfacial energy between the
two phases of pearlite. Suppose that the interfacial energy is approximately σ = 1 J/m2

and the molar volumes of all the phases are approximately Vm = 7 × 10−6 m3/mol.
Compare with an experimental value of the coarseness, w = 0.14 µm.

Hint

w is the total thickness of one lamella of each phase in pearlite. One mole of pearlite
then contains an area of 2Vm/w of interfaces.

Solution

The total interfacial energy is 2σ Vm/w J/mol. The driving force is (�Hm/To)(T1 −
To). Thus, 2σ Vm/w = (�Hm/To)(T1 − To); w = 2σ VmTo/(−�Hm)(To − T ) = 2 ×
1 × 7 × 10−6 × 1000/4500 × 50 = 6 × 10−8 m = 0.06 µm.

The observed value is about twice as large, which is expected if only one-half of the
driving force should go into interfacial energy.

13.6 Driving force under constant chemical potential

In the preceding section it was shown how the driving force for a sharp transformation
can be estimated from the undercooling �T at which the transformation occurs. In the
same way, the driving force for a γ-eutectoid transformation in a ternary A–B–C system,
controlled by the chemical potential of a mobile component C under constant T and P,
should depend upon the difference in chemical potential of C during the transforma-
tion and at equilibrium, �µC. We can illustrate the conditions by extrapolations in the
µC, uB phase diagram in Fig. 12.24 or in the corresponding µC, µB phase diagram (see
Fig. 13.8 where the diagram has been rotated in order to emphasize the similarity with
the binary case in Fig. 13.5).

Since µC is assumed to be constant instead of NC, we must evaluate the driving force
from a new alternative of the combined first and second law,

Ddξ = V dP − SdT +
∑
j �=C

µ j dN j + µCdNC − dG + NCdµC − NCdµC

= V dP − SdT +
∑
j �=C

µ j dN j − NCdµC − d(G − NCµC) (13.23)

where G − NCµC is a new characteristic state function. At constant T, P, N j and µC

we get

Ddξ = −d(G − NCµC). (13.24)
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Figure 13.8 Evaluation of the driving force,�µC, for an isobarothermal transformation under
changing C content in a ternary system.
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Figure 13.9 Sharp transformation γ → α + β in a ternary system with a mobile component, C.
The increase of the C content can be read directly.

However, by identifying the extent of the transformation, ξ , with the increased content
of C, NC, we return to more well known quantities,

D = −(∂G/∂ NC)T,P,N j + µC = −oµC + µC = �µC. (13.25)

By definition, the first term is the chemical potential of C at equilibrium. Therefore,

D = µC − oµC = �µC. (13.26)

This is the driving force per mole of C added to the system. It should be multiplied by
the amount of C required by the transformation. That quantity is conveniently expressed
in terms of the uC fraction, the amount of C per mole of A + B. Figure 13.9 demon-
strates how the increase �uC can be evaluated graphically and the driving force for the
transformation γ → α + β expressed per mole of A + B is given by

D = �uC × �µC.
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Figure 13.10 See Exercise 13.9.

Figure 13.9 resembles Fig. 12.24 but the choice of u axis makes the arrow horizontal.
The analytical evaluation of �uC is described in the next section.

Exercise 13.9

In the Fe–C system the γ phase exists above 1000 K and at lower temperatures it trans-
forms to a lamellar aggregate of α and cementite (Fe3C) that is called pearlite. The phase
diagram (Fig. 13.10) for 923 K shows that it is possible to stabilize γ by the addition
of Mn. Consider an alloy composed of γ with a composition falling exactly on the γ

corner of the α + γ + cementite triangle at 923 K. That alloy must have a C activity of
0.7. By carburizing such an alloy one can form a surface layer of pearlite. Estimate its
coarseness if one carburizes with an atmosphere having a carbon activity of 0.9. Use the
values Vm = 7 × 10−6 m3/mol and surface energy σ = 1 J/m2.

Hint

It should first be realized that we do not know how much of the difference in carbon
activity is lost by driving the diffusion of carbon through the carburized layer. In order to
get a numerical result, let us assume that all the driving force acts at the reaction front.

The increase of the C content is obtained from a horizontal construction in the three-
phase triangle. The increase in C potential is obtained from the activity through µC =
oµC + RT ln aC. Assume that half of the driving force goes into surface energy. Express
the coarseness with w, the total width of one lamella of α and one of cementite. The area
of α/cementite interfaces is then 2Vm/w per mole of the material and we thus get the
relation 2Vmσ/w = 0.5 × �uC�µC.

Solution

By measuring the horizontal distance of the γ point from the α + cementite side
of the triangle we get �µC = 0.08. By comparing the C activities we get �µC =



294 Transformations in closed systems

RT ln(0.9/0.7) = 1930 J/mol and using half of this we find w = 2Vmσ/0.5�uC�µC =
2 × 7 × 10−6 × 1/0.5 × 0.08 × 1930 = 2 × 10−7 m = 0.2 µm.

13.7 Reaction coefficients at constant chemical potential

In Section 13.2 we were able to calculate the fractions of the various phases taking
part in a sharp transformation in a system of constant composition because p was equal
to c + 1. Now we shall consider the case p = c where one of the components is very
mobile and is controlled through its potential. The total contents of all the other com-
ponents in the system will be kept constant, i.e. nm = c − 2. Together with the constant
potential and pressure we have ns = c − 2 + 1 + 1 = c and instead of Eq. (13.3) we
now obtain d = c + 2 − p − ns + nm = c + 2 − c − c + (c − 2) = 0. This will also be
a sharp transformation. The mobile component will be denoted C and will be given the
number c. By not considering that component we get the same condition as before but
must now express the molar contents without regard for the mobile component. Thus
we must use the u variable instead of the ordinary molar content x, and we obtain for
instance

νγ =
∣∣∣uα

1 uβ
2 uδ

3 . . uε
c−1

∣∣∣ . (13.27)

The mobile component is not included in the determinant. The amount of the γ phase
taking part in the reaction, νγ, is here expressed without regard for the mobile component.
The change in content of the mobile component can be evaluated just like the change of
any other molar quantity using Eq. (13.12).

�uC =
∣∣∣uα

C uβ
1 uγ

2 . . uε
c−1

∣∣∣. (13.28)

This is the increase of C per mole of units of the reaction formula as given by the ν j

values. If γ is the only reactant and all the other phases are products, it is interesting
to evaluate �uC per mole of all the other components in γ. It is obtained by dividing
with – νγ.

�uC =
∣∣∣uα

C uβ
1 uγ

2 . . uε
c−1

∣∣∣ /∣∣∣uα
1 uβ

2 uδ
3 . . uε

c−1

∣∣∣ . (13.29)

If a mixture of α and β in the ternary A–B–C system is treated under conditions of a
lower chemical potential for C, the system will move from right to left in Fig. 13.9 and
one should expect the reverse transformation

α + β → γ + C(sink).

This is a peritectoid transformation and one should primarily expect the new γ to form
at the α/β interfaces. If the transformation is not inhibited due to slow diffusion of the
two sluggish elements, it will look almost as a sharp phase transformation.

Exercise 13.10

The equation for �uC, the addition of a mobile component C consumed by a sharp
transformation, can be applied to the reaction γ + C(source) → α + β in a ternary
system at constant T and P and the result will be �uC/νγ = |uα

Cuβ
1 uγ

2 |/|uα
1 uβ

2 |. Show



13.8 Compositional degeneracies for p = c 295

that the same result is obtained if C(source) is regarded as a phase taking part in the
transformation.

Hint

According to the text we really have p = c = 3 but now we shall insert p = c + 1 = 4
which is the condition for a sharp transformation. We can then use the ordinary equations
expressed in terms of x fractions. We can calculate the amount of the ‘phase’ C, taking
part in the reaction, as νC. The amount per mole of metal in γ is νC/νγ(1 − xγ

C).

Solution

Let C(source) be the fourth phase and let C be the third component.
Then, νC = −|xα

1 xβ
2 xγ

C| = −|xα
C xβ

1 xγ
2 | and νγ = −|xα

1 xβ
2 xC

C | =
−|xα

1 xβ
2 | since xC

C ≡ xC
3 = 1 and xC

1 = 0 = xC
2 . Thus, νC/νγ(1 − xγ

C) =
−|xα

C xβ
1 xγ

2 |/|xα
1 xβ

2 |(1 − xγ
C) = −|uα

C uβ
1 uγ

2 |/|uα
1 uβ

2 |. The minus sign is
due to the fact that C(source) must lose C in order for the mixture of the other phases to
gain C.

13.8 Compositional degeneracies for p = c

Let us now return to transformations in closed systems, i.e. systems of constant com-
position. In Chapter 11 we saw that a transformation involving c + 1 phases will be
sharp if P and the composition are kept constant and T is varied gradually (or T is kept
constant and P is changed gradually). In Section 13.2 we then saw how one can calculate
the reaction coefficients for each phase in a sharp transformation from the determinant
obtained by omitting the corresponding column from the composition matrix. A phase
transformation involving less than c + 1 phases will normally be gradual. It will extend
over a range of T at constant P and the compositions of non-stoichiomtric phases will
normally change gradually. However, it sometimes happens that such a transformation
is sharp even for p < c + 1. This possibility will now be examined.

Let us start with the case p = c, which normally yields a gradual transformation. We
saw in Section 13.4 that the reaction coefficients in such a case can be calculated by
treating the exchange of components with the remaining parts of the system as a reaction
with a hypothetical phase c + 1. The amount of that exchange is thus obtained as

νc+1 = (−1)c
∣∣∣xα

1 xβ
2 . . xε

c

∣∣∣ . (13.30)

If this coefficient happens to be zero, then there is no exchange with the real parts of the
system and the transformation between them is sharp in spite of the fact that p = c and
not c + 1. The condition for having a sharp transformation with p = c is thus that the
composition determinant involving the real phases is zero:∣∣∣xα

1 xβ
2 . . xε

c

∣∣∣ = 0. (13.31)
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Figure 13.11 Projection of a ternary phase diagram at P = 1 bar, showing a temperature
maximum for a three-phase equilibrium.

This means that the real phases fall on a point, line, plane, etc., when p = c = 2, 3, 4,
etc. This was shown in Chapter 9 in connection with Konovalov’s and von Alkemade’s
rules. As an illustration, Fig. 13.11 presents a three-phase equilibrium in a ternary system
with a temperature maximum. A liquid with the composition represented by the point
will thus solidify by a sharp transformation. A three-dimensional illustration of the same
situation was given in Fig. 10.31.

In many cases of p = c, where the composition determinant is zero, all the phases are
stoichiometric. The reason may be that their compositions are governed by the valency of
the elements. This puts a constraint on the compositions of the phases which is manifested
mathematically by the composition determinant being equal to zero. This phenomenon
may thus be called stoichiometric constraint. However, Fig. 13.11 demonstrates that it
may happen even if the phases are not stoichiometric and we shall thus use the more
general term compositional degeneracy. We can formulate the following rule: ‘A trans-
formation involving p = c phases will be sharp when T or P is varied if there is one
compositional degeneracy’ and that may be tested with Eq. (13.31). In Section 10.8 we
called the corresponding phase equilibrium singular.

In order to evaluate the reaction coefficients in sharp transformations where p = c, we
can make any convenient assumption regarding the composition of the additional phase
because it does not take part in the reaction anyway. If we assume that the additional
phase is pure component 1 we obtain

να =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xβ
1 xβ

2 xβ
3 . . xβ

c

xγ
1 xγ

2 xγ
3 . . xγ

c

. . . . . .

. . . . . .

xε
1 xε

2 xε
3 . . xε

c

1 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣ xβ
2 xγ

3 . . xε
c

∣∣∣ , (13.32)

νβ = − ∣∣ xα
2 xγ

3 . . xε
c

∣∣ , (13.33)

etc.
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Figure 13.12 The composition space for a quaternary, reciprocal system reduced to a plane due to
a stoichiometric constraint, common to all the phases.

The mass balance is satisfied because for each component i from 2 to c we find,∑
j

x j
i ν j = xα

i

∣∣∣xβ
2 xγ

3 . . xε
c

∣∣∣ − xβ
i

∣∣xα
2 xγ

3 . . xε
c

∣∣ + . . .

=
∣∣∣xα

i xβ
2 xγ

3 . . xε
c

∣∣∣ = 0. (13.34)

This is zero because there are two identical columns, since i has a value from 2 to c.
In this example, the first column of elements in the composition matrix dropped out

because the additional phase was taken as pure component 1. For a different choice,
another column would have dropped out. We may summarize the result of this section
as follows: If the composition determinant for a phase transformation with p = c is
equal to zero, then it is a sharp transformation and there is a compositional degener-
acy. The reaction coefficients can be calculated from the determinants obtained by first
omitting any column from the composition matrix and then, in turn, the row correspond-
ing to each phase. In addition, a minus sign must be added for the second, fourth, etc.,
phase.

Figure 13.11 illustrates a case where a compositional degeneracy occurs only in a
particular place in the phase diagram where the phases happen to fall on a line. There
is another very important case where the compositions of several phases are subject to
a stoichiometric constraint that results in a compositional degeneracy for equilibrium
between those phases in an extended portion of the phase diagram. An example is an
ionic system where each element has a fixed valency (see Fig. 13.12 which gives the
composition space for the Na–K–Cl–Br system). It is evident that all possible mixtures
of the ionic phases will fall on a plane inside the three-dimensional space. The phase
relations can thus be plotted in a diagram with one dimension less. Such a diagram is
called a quasi-ternary diagram. In the same way, a ternary system can sometimes be rep-
resented with a quasi-binary diagram. In practice, one often uses the word quasi-binary
to describe an isopleth section of a ternary diagram when many or the most important
tie-lines fall in or close to the section even without full stoichiometric constraints. In the
present case a composition square can be used and, except for the different outer shape,
the diagram would have the same properties as a triangular diagram for a ternary system.
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This is often called a reciprocal system because the amounts of the four components
are not independent but are related by a reciprocal reaction

NaCl + KBr → NaBr + KCl.

All ionic phases in a reciprocal system will fall in the composition square and the
composition of each phase can only move inside the square. As an example, the liquid
phase may cover the whole square at high temperatures and each solid covers a small area
close to its corner at low temperatures. However, it should be realized that the chemical
system under consideration may contain other phases which are not subject to the same
constraint. In the present case there may be metallic phases of Na and K and a gas phase
composed mainly of Cl2 and Br2. They fall outside the plane and they can be shown only
by the use of the three-dimensional quaternary diagram in Fig. 13.12(a).

The results of this section may be summarized as follows. When there is a composi-
tional degeneracy for the phases taking part in a certain transformation, it is possible to
define the compositions of the phases with a new set of components having one member
less but at least one of the components in the new set cannot be a member of the initial
set. If c still represents the initial number of components, one should modify Gibbs’
phase rule to

υ = c − ncd + 2 − p, (13.35)

where ncd is the number of compositional degeneracies. In the section through the phases,
taking part in the transformation, the phase diagram has the properties of a system with
c − ncd components. Normally, it is interesting to calculate such a section only if the
degeneracies are caused by stoichiometric constraints. If there are other phases in the sys-
tem, not subjected to the same stoichiometric constraints, it may be inconvenient to apply
a new set of components for the equilibria containing only some of the phases. It may be
more convenient to introduce an additional component into the calculation with a com-
positional constraint. The amount of that component will automatically come out as zero.

Exercise 13.11

Suppose we have a computer program for the calculation of phase equilibria. When trying
to calculate the equilibrium temperature for SiO2 + Al2SiO5 + Al2O3 at a pressure of 1
bar we get the message, ‘cannot calculate because degrees of freedom not zero’. What
action could we take?

Hint

Evidently, the program can only deliver a unique answer and there is a unique temper-
ature for the equilibrium only if it is invariant at the given pressure, i.e., monovariant
according to the Gibbs’ phase rule. The program may require p = c + 1. We should
start by checking if our transformation is sharp, although p = c. Otherwise, we have a
gradual transformation or overlapping transformations and cannot expect to calculate a
unique value of T.
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Solution

The composition determinant is

Si O Al
SiO2

Al2SiO5

Al2O3

∣∣∣∣∣∣
1 2 0
1 5 2
0 3 2

∣∣∣∣∣∣ = 10 − 4 − 6 = 0.

This transformation thus has a compositional degeneracy and is sharp. The reason is that
all the c phases fall on the straight line going from SiO2 to Al2O3. It is thus possible to
calculate a unique transformation temperature. Our program seems to need p = c + 1
phases. We can solve the problem by introducing a fourth phase in the Al–O–Si system,
which is outside the straight line, e.g. pure Al. It will not affect the equilibrium between
the initial phases.

Exercise 13.12

We have seen the following. For p = c + 1 we get a sharp transformation by gradually
changing T, keeping the composition and P constant. For p = c we get a sharp trans-
formation by gradually changing µ for a mobile component, keeping the composition
constant except for the mobile component, and keeping P and T constant.

Then we saw that for p = c it may happen that one gets a sharp transformation by
gradually changing T and keeping the composition and P constant. Discuss whether it
is possible also to get a sharp transformation in a system where p = c − 1 by gradually
changing µ for a mobile component, keeping the composition constant, except for the
mobile component, and keeping P and T constant. If so, what should be the expression
for the reaction coefficients, να, etc.

Hint

Accept that equations for the case of a mobile component are obtained by using ui instead
of xi.

Solution

For p = c we can get a sharp transformation in the ordinary case by gradually chang-
ing T if |xα

1 xβ
2 . . xε

c | = 0 for constant P. For p = c − 1 we would get a sharp
transformation by gradually changing µC if |uα

1 uβ
2 . . uε

c−1| = 0 for constant P
and T.

13.9 Effect of two compositional degeneracies for p = c − 1

Let us now consider whether there can be a sharp transformation in a closed system
if p = c − 1. By comparison with Section 13.8 it may be suggested that we need two
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compositional degeneracies in order to get a sharp transformation at constant composition
and pressure or temperature. If this is correct, we could treat this case by introducing
two additional phases, c and c + 1, and then require that their reaction coefficients are
both zero. We can try this suggestion by first letting phase c be pure component 1. The
requirement for phase c + 1 to represent a degeneracy would be

νc+1 = (−1)c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xα
1 xα

2 xα
3 . . xα

c

xβ
1 xβ

2 xβ
3 . . xβ

c

. . . . . .

. . . . . .

xε
1 xε

2 xε
3 . . xε

c

1 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)c
∣∣∣xα

2 xβ
3 . . xε

c

∣∣∣ = 0.

(13.36)

By letting phase c + 1 be pure component 2, the requirement for phase c to represent a
degeneracy would be

νc = (−1)c−1
∣∣∣xα

1 xβ
3 . . xε

c

∣∣∣ = 0. (13.37)

We have thus found that two compositional degeneracies can be defined for a system,
which has a sharp transformation between c − 1 phases in a closed system when P or
T is varied. In Section 10.9 we called the corresponding equilibrium doubly singular.
The conditions of the two compositional degeneracies may be obtained by forming two
determinants from the composition matrix by omitting first one column and then another,
irrespectively of which ones, and putting to zero the two determinants thus obtained. Such
a set of two equations was obtained in Section 8.9 when extrema in both T and P were
discussed and it was concluded that they imply that the compositions of the phases fall
on the same point for p = 2, same line for p = 3, etc. The same is true here, of course.

We may also look at the situation from the other side and conclude that there is a sharp
transformation at constant composition and pressure in the case p = c − 1 if there are
two compositional degeneracies. Then we may evaluate the reaction coefficients from
the determinants obtained by omitting two columns from the composition matrix and
then the row corresponding to each phase, one at a time

να =

∣∣∣∣∣∣∣∣∣∣∣∣∣

xβ
1 xβ

2 xβ
3 . . xβ

c

. . . . . .

. . . . . .

xε
1 xε

2 xε
3 . . xε

c

1 0 0 0 0 0
0 1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣xβ
3 xγ

4 . . xε
c

∣∣∣ . (13.38)

We may summarize the result of this section as follows: If the composition determinants,
obtained in a case of p = c − 1 by excluding one column at a time, are equal to zero,
one will get a sharp transformation when T or P is varied The reaction coefficients can
be calculated from the determinants obtained by excluding any two columns from the
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composition matrix and, in turn, the row corresponding to each phase. In addition, a
minus sign must be added for the second, fourth, etc. phase. A sharp transformation at
constant composition and constant T or P thus requires that there are ncd = c + 1 − p
composition degeneracies.

We may generalize the above result. A transformation involving p phases in a system
with c components will be sharp if the composition determinants, obtained by omitting
c − p columns from the composition matrix, are all zero. The reaction coefficients can
then be evaluated from the determinants obtained by omitting c + 1 − p columns and
then omitting in turn the row corresponding to each phase.

When a chemical reaction involving compounds and species is written in the form
�ν j J = 0, it is implied that all the compounds and species with negative ν j disappear
completely by the reaction and all with positive ν j appear suddenly. This is equivalent
to assuming that there is a sharp transformation and the rule for calculating the reaction
coefficients, derived here, applies if each compound and species is regarded as a phase.

Exercise 13.13

Suppose we have a computer program for the calculation of phase equilibria. When
trying to calculate the equilibrium temperature at 1 bar for the equilibrium between
Ca2SiO4, Ca3Mg(SiO4)2 and Ca5Mg(SiO4)3, we get the message, ‘cannot calculate
because degrees of freedom not zero’. What action should one take?

Hint

We would expect an equilibrium temperature if there is a sharp transformation and for
a closed system we normally need p = c + 1 phases but we have p = 3 and c = 4, i.e.,
p = c − 1. However, the number of phases will decrease by 1 for each degeneracy. Start
by checking for degeneracies.

Solution

Ca Mg Si O

Ca2SiO4

The composition matrix is Ca3Mg(SiO4)2

Ca5Mg(SiO4)3




2 0 1 4

3 1 2 8

5 1 3 12


 .

By omitting one column at a time we find

∣∣∣∣∣∣∣
0 1 4

1 2 8

1 3 12

∣∣∣∣∣∣∣ = 0 and

∣∣∣∣∣∣∣∣
2 1 4

3 2 8

5 3 12

∣∣∣∣∣∣∣∣
= 0.

We may conclude that there are two compositional degeneracies and the transformation
is sharp when T is varied for any chosen value of P. In fact, the determinants obtained
by omitting any of the other columns are also zero. The solution to the computational
problem would be to add two new phases, e.g., O and Mg.



14 Partitionless transformations

14.1 Deviation from local equilibrium

As discussed in Section 7.8 it is common to assume that the rate of a phase trans-
formation in an alloy is controlled by the rate of diffusion. The local compositions at
the phase interfaces are then used as boundary conditions for the diffusion problem
and they are evaluated by assuming local equilibrium at the interfaces. That is a very
useful approximation but there are important exceptions. It is necessary to realize that
the exceptions are of two different types and they have opposite effects. The first type
of exception is caused by a limited mobility of the interface. In order to keep pace
with the diffusion, the interface requires a driving force which is subtracted from the
total driving force and decreases the driving force for the diffusion process. Due to this
effect, a partitionless transformation, which would otherwise be completely diffusion-
controlled but rapid due to a very short diffusion distance, requires an increased super-
saturation of the parent phase, as shown in Section 7.8. Formally, this case was treated
by assuming a pressure difference between the two phases as if the interface were curved
more than it actually is, and the local equilibrium assumption was modified to this
case.

The other type of exception will instead decrease the driving force needed by decreas-
ing the need for diffusion and will thus result in a higher rate of transformation and make
it possible for an alloy with a lower supersaturation to transform. It is primarily caused
by a low atomic mobility in the migrating interface. The present chapter will discuss
such cases but also related cases of full local equilibrium. Naturally, such phenomena
cannot be described by assuming local equilibrium under a pressure difference which
would increase the driving force needed. Instead, the local equilibrium seems to be con-
strained in some way. Sometimes one talks about partial equilibrium or deviation from
local equilibrium.

In general, the rate of migration of an interface during a phase transformation is
limited by the mobility of the interface itself and by the transport of various extensive
quantities, i.e., contents of various components by diffusion, enthalpy by heat conduction
and volume by elastic and plastic flow. We shall not consider the latter problem but
presume that there is some efficient mechanism for the accommodation of changes in
volume. However, there are many interesting thermodynamic features that could have
been discussed. In general, we shall also neglect the need for heat conduction and assume
that isothermal conditions can be maintained in spite of the heat of transformation. We
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shall start with that problem because it has much in common with diffusion and may be
used to demonstrate important principles.

14.2 Adiabatic phase transformation

For a process taking place under adiabatic and isobaric conditions, dQ = 0 and dP = 0,
we have from the first law

dH = d(U + PV ) = dU + PdV + V dP = dQ + V dP = 0. (14.1)

For a system which is closed to exchange of matter as well as heat we also have dNi =
0 and it is convenient to use the combined law in the following form obtained from
Eqs (14.1) and a generalized form of Eq. (1.72)

T · dipS = T dS + V dP + �µi dNi − dH = T dS. (14.2)

It should be emphasized that here we have not represented T · dipS with the driving force
Ddξ because the reaction is not isothermal. The condition for a reversible reaction is
dipS = 0 and thus dS = 0. In order for the reaction to proceed with a measurable rate it
is necessary that dipS > 0 and thus dS > 0.

A homogeneous reaction (e.g. a spontaneous reaction between molecules in a gas)
occurs gradually in the whole system and one can usually presume that it has proceeded
to the same extent ξ in all parts of the system. It is evident that such a reaction can occur
under adiabatic and isobaric conditions. The situation is different for a heterogeneous
reaction which takes place by nucleation and growth. Let us examine the simple case of a
sharp phase transformation which goes to completion instantaneously at any point as an
interface passes by. The extent of reaction can be measured as the fraction of the system
which has undergone the transformation. Thus, ξ would go from 0 to 1. Alternatively,
ξ can be given as the number of atoms in the transformed part. Let us suppose that this
reaction can occur under adiabatic conditions. Due to the heat of transformation, this
should mean that the transformed part of the system is at a different temperature than
the rest and heat would thus flow between the different parts unless the transformation is
extremely rapid and leaves no time for the flow of heat. Such high transformation rates
are not very common. An explosion may come close. We may thus conclude that the
transformation in a material cannot normally be truly adiabatic even if it occurs inside
a thermally insulated system. Before considering the effect of the heat transfer we shall
nevertheless examine the conditions for a hypothetical transformation which is truly
adiabatic. Since we realize that the transformation will cause a change of temperature
we must start by defining the thermal properties.

Let us consider a unary system with two phases, α and β, and let us suppose that the
difference in their heat capacities, �Cp, is independent of temperature. Then the differ-
ences in molar enthalpy �Hm and in entropy �Sm at any temperature are independent of
temperature but may vary with pressure. The equilibrium temperature at a given pressure
will be T e = �Hm/�Sm. Schematic T, P and Hm, P phase diagrams are given in Fig. 14.1.
The boundary betweenα andα + β is denotedα/βbecause it representsα in equilibrium
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Figure 14.1 Ordinary phase diagram for a unary system.

with β. We have here taken β as the high-temperature phase and it is evident from the
Hm, P diagram that �Hm = Hβ

m − Hα
m is positive and then �Sm = Sβ

m − Sα
m must also

be positive because T e is positive.
On the other hand, if the two phases are at different temperatures we get

�H = �Hm + CP (T β − T α) (14.3)

�S = �Sm + CP ln(T β/T α). (14.4)

Suppose it were possible to transform β of T β to α of T α under adiabatic and reversible
conditions, i.e. under isentropic conditions, �S = 0. If the pressure is also kept constant,
then �H = 0 and we have two equations from which we can evaluate T α and T β,

T β = T e · �Sm/CP

exp(�Sm/CP ) − 1
∼= T e − �Hm/2CP (14.5)

T α = T e · �Sm/CP

1 − exp(−�Sm/CP )
∼= T e + �Hm/2CP , (14.6)

where the approximation is justified for �Sm � CP , only. These results are plotted
in two new diagrams, see Fig. 14.2. In this case there is only one line in the P, Hm

diagram and it shows where α and β have equal values of Hm and also equal values of
Sm. This results in the α and β one-phase fields overlapping in the T, P diagram. The
interpretation is that, on cooling under these conditions, a β phase would not transform
to α of the same temperature when cooled to the equilibrium temperature T e, but it would
transform at T β = T e − �Hm/2CP and the α phase would be at a higher temperature
T α = T e + �Hm/2CP when it forms. The two-phase boundaries in the T, P diagram
have thus separated by T α − T β = �Hm/CP . This diagram would predict that β, if
super-cooled to reach the (α + β)H line, could transform instantaneously and completely
to α if there were no kinetic obstacles. It would be a sharp transformation at the constant
Hm value. It has been speculated that this kind of reaction could occur in solidification
of very rapidly cooled liquid droplets.

However, there are two major objections. First, the reaction must be extremely fast
in order to prevent heat flowing from the warmer, growing α into the colder parent β,
T α − T β being positive (equal to �Hm/CP ). Secondly, even if α of the temperature T α



14.3 Quasi-adiabatic phase transformation 305

α

β

α

β

P PH (α+β)(α/β)H(β/α)H

∆Hm/CP

T e

T Hm

(a) (b)

Figure 14.2 Phase diagram for isobaric and adiabatic conditions in a unary system. Notice that
the α and β one-phase fields in the P, T diagram overlap in a region around the equilibrium
temperature.

could form, it would not be stable because it is inside the stable one-phase field for β

according to the T, P diagram in Fig. 14.1. Part of α could thus transform back to β. In
the next section we shall examine a more realistic model.

Exercise 14.1

Estimate the internal entropy production when 1 mole of a pure substance transforms
adiabatically from α to β when the temperature of α is �T above the value where there
is no entropy production.

Hint

Of the two conditions used in the text, only one holds here, �H = 0, but �ipS is still
equal to �S and can be calculated from �Sm + CP ln(T β/T α), if CP is constant and
equal in the two phases.

Solution

T α = T e + �Hm/2CP + �T = T e + T e�Sm/2CP + �T .
From 0 = �H = �Hm + CP (T β − T α) = T e�Sm + CP (T β − T α) we get T β =

T α − T e�Sm/CP = T e − T e�Sm/2CP + �T ; �ipS = �Sm − CP ln(T β/T α) =
�Sm − CP ln{[1 − T e(�Sm/2CP )/(T e + �T )]/[1 − T e(�Sm/2CP )/(T e + �T )]} ∼=
�Sm − CP T e(�Sm/CP )(T e + �T ) ∼= �Sm�T/T e.

14.3 Quasi-adiabatic phase transformation

Let us now examine if there are conditions under which the transformation can occur by
a steady-state process, i.e. without a gradual change of the conditions at the migrating
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Figure 14.3 Steady-state conditions for a quasi-adiabatic β → α transformation under constant
P. The growing α has the same enthalpy as the initial β.

interface. The growing α should then have a uniform temperature, T α, but the tem-
perature may vary inside the parent β. The temperature profile can be illustrated by
Fig. 14.3(a) which has been drawn under the assumption of local equilibrium at the
interface. All of the α phase must be at the equilibrium temperature, T e. In order for this
to be a steady-state process it is necessary that α has the same enthalpy as the bulk of
the β phase. This is illustrated in Fig. 14.3(b) and the following equations are obtained
if the heat capacity can be approximated as constant and the same in both phases.

�H = �Hm + CP (T β − T α) = 0 (14.7)

T β = T α − �Hm/CP = T e − �Hm/CP . (14.8)

The reaction can thus be essentially adiabatic if it is possible to change the temperature
of the whole β system to T e − �Hm/CP before the nucleation of α occurs. This model
thus requires twice as large a �T as the truly adiabatic model. This is a demonstration
of the fact that a deviation from local equilibrium results in less need of driving force.
After a transient period, during which an enthalpy spike of height �Hm will develop in
the β phase at the migrating interface, steady-state conditions will be established and
then maintained towards the end of the reaction. The duration of the transient period
and the width of the temperature spike in the parent phase will depend upon the rate of
transformation and the rate of heat flow. We can use the phase diagrams, given below,
for a summary of our conclusions (see Fig. 14.4).

Point 1 in Fig. 14.4 is the isothermal transformation temperature for β. A β phase
cooled just below that point could start to transform to α but the progress of the trans-
formation would be directly controlled by the further extraction of heat from the system.
The growing α phase will be at point 2. If a β phase could be cooled to point 3 before
the transformation starts, then the transformation could, in principle, occur very quickly
and adiabatically and the α phase would be at point 4. However, if the phase interface
does not move with an extremely high velocity, there will be heat conduction into the
remaining β phase and it will no longer be able to transform adiabatically but would
depend upon further heat extraction. Finally, if a β phase could be cooled to point 5
before the transformation starts, then the transformation could occur without any further
heat extraction even if there is time for heat conduction. All of the α formed would be
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Figure 14.4 Phase diagram illustrating the conditions for a quasi-adiabatic transformation in a
unary system. Subscript T indicates isothermal conditions. Subscript H indicates adiabatic
conditions because P is kept constant.

at point 2 and β at the interface would be at point 1. The transformation could occur
in a steady-state fashion where the growing α phase forms at T e. The initial β is at a
lower temperature (compare point 2 in the P, T phase diagram with point 5) but has the
same enthalpy (compare point 2 in the P, Hm phase diagram with point 5). This type of
reaction could be called a quasi-adiabatic transformation. It is interesting to note that it
occurs when the parent phase, by cooling, is entering into the field for the new phase in
the P, Hm diagram.

It is usually assumed that a transformation starts from a stationary nucleus and picks
up speed during an initial transient period. It would then be natural to expect a situation
somewhat similar to Fig. 14.3 to be established after some short time. It is an interesting
question whether it could later develop into a truly adiabatic mechanism. The requirement
would be that the speed becomes so fast that the temperature spike in the parent phase
becomes so thin that it disappears between the atoms. A simple calculation would show
that the thickness should be less than about D/υ, where D is the diffusion coefficient of
heat and υ is the growth rate. This transition turns out to be very unlikely.

Exercise 14.2

Figure 14.5 gives the relations between Sm and Hm for bcc and liquid W. The melting
point is marked with an asterisk for each phase. Evaluate the change of entropy during
quasi-adiabatic melting and solidification.

Hint

The growing phase must be stable in contact with the parent phase at the interface, i.e., it
must grow at the melting temperature. The bulk of the parent phase must be at a different
temperature in order to have the same enthalpy as the growing phase.

Solution

The melting point on the liquid curve (the asterisk) represents the growing liquid and
the bulk of the parent bcc is situated exactly below it. The change of entropy can be read
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Figure 14.5 See Exercise 14.2.

as +1.5 J/mol, K and for solidification as +2.8 J/mol, K. In both cases the entropy is
produced in the thermal spike in front of the interface.

Exercise 14.3

Estimate how fast a transformation should be in order to reach truly adiabatic conditions.

Hint

The diffusion coefficientD for heat conduction is about 10−5 m2/s. The atomic distances
are about 10−10 m.

Solution

D/υ < 10−8 yields ν > 10−5/10−10 = 105 m/s. This is higher than the speed of sound.

14.4 Partitionless transformations in binary system

We shall now examine a partitionless transformation, i.e., a transformation where the
components do not partition between the parent phase and the product, and we shall
find striking similarities with the adiabatic case. We shall use the combined law from
Eq. (3.27) because temperature and pressure will be kept constant in addition to
composition.

Ddξ = −SdT + V dP + �µi dNi − dG = −dG. (14.9)

In this case G plays the same role as S from Eq. (14.2) under adiabatic conditions. The
driving force for the reaction is D = −dG/dξ and for D = 0 we would have a reversible
reaction which would occur without a change of the Gibbs energy but infinitely slowly.
The reaction could proceed with a measurable rate if D > 0, i.e. dG < 0. Partitionless
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Figure 14.6 Conditions for a true diffusionless transformation.
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Figure 14.7 Crude model for deviation from local equilibrium under a quasi-diffusionless
transformation.

transformations were discussed in Section 7.8. We shall now examine such a reaction in
more detail and discuss two limiting cases depending on whether any diffusion is
involved. In principle, it could be completely diffusionless, a case that is illustrated
in Fig. 14.6. However, there could also be some diffusion, e.g. in a thin pile-up of a
component which is pushed forward in front of the advancing interface. It is illustrated
in Fig. 14.7 and resembles the quasi-adiabatic case in Fig. 14.3 and may be regarded
as quasi-diffusionless. Both cases are illustrated in Fig. 14.8 which can be compared
with Fig. 14.4 for the adiabatic cases. The dashed line in the T, xB diagram, denoted
by To, corresponds to the dashed line in the P, Hm diagram, which showed where α

and β have equal values of Hm. On the To line, α and β have equal values of xB and
equal values of Gm, i.e., a true diffusionless transformation. The other limiting case is
found when there is full local equilibrium at the migrating interface, according to the full
lines in Fig. 14.8(b), similar to the quasi-adiabatic case in Fig. 14.4(b). It is the limiting
case of a quasi-diffusionless transformation and could be called local-equilibrium parti-
tionless transformation or simply LE-partitionless transformation. It was discussed in
Section 7.8 and illustrated in Fig. 7.21.

The true diffusionless transformation is easy to understand. If a β alloy is cooled below
the To line, where α of the same composition has the same Gm value, then Gm may
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Figure 14.8 Phase diagram for a binary system illustrating the conditions for diffusionless and
LE-partitionless transformations. The full lines show the phase boundaries under equilibrium
(constant T, P and µi ). The dashed lines hold if there is no diffusion.

decrease by the β → α transformation even without any change of the composition.
The molar Gibbs energy diagram in Fig. 14.6 demonstrates that µB will increase by
that transformation, which corresponds to the increase of T during the true adiabatic
transformation.

In practice, it is seldom possible to avoid diffusion completely. It would be necessary
that the mathematical width of the pile-up in Fig. 14.7 is below atomic dimensions. The
growth rate should be of the order of D/d or higher. D is the diffusion coefficient and d is
about 10−10 m. Otherwise, the transformation could not be regarded as diffusionless. On
the other hand, at diffusion-controlled transformations the growth rate may often be low
enough to make the LE-partitionless transformation a reasonably good approximation.
Figure 14.7 demonstrates a more general case where there is some deviation from local
equilibrium at the interface and the compositions at the interface do not fall on the points
of tangency for the common tangent.

In metallic materials there are two well-known partitionless transformations called
‘martensitic’ and ‘massive’. The martensitic transformation is usually very rapid and
comes close to the true diffusionless case but its interface migrates with an atomic
mechanism that creates strong stresses which require a high driving force. This type
of transformation can very well occur far inside the α + β two-phase field but only
at a considerable distance below the To line due to the necessity of a driving force.
The massive transformation is rapid but not extremely rapid. There may be time for
individual atoms to diffuse across the interface and maybe even for a pile-up to form.
This transformation may thus fall well between the two limiting cases.

An interesting problem may be mentioned in this connection. Figure 14.6 demonstrates
that the chemical potential of B increases as it crosses the interface and moves from β

to α. One should ask what forces the B atoms to move against their driving force. In
the LE-partitionless transformation the problem is solved by the presence of the pile-up.
As it moves in front of the migrating interface, it gradually lifts the B atoms to higher
potential as illustrated in Fig. 14.7. For the martensitic transformation the explanation
must be that all atoms cross the interface with some kind of a cooperative mechanism.
For a rapid massive transformation there may not be a sufficiently well developed pile-up
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Figure 14.9 Solution to Exercise 14.4.

and the mechanism of transfer of atoms across the interface must be partly cooperative.
This will be further discussed in Chapters 16 and 17.

Exercise 14.4

Given the phase diagram in Fig. 14.6, mark the regions where one could expect the
massive or the martensitic transformations β → α. Suppose that the martensitic trans-
formation requires an undercooling below To which is independent of the composition
and that the massive transformation occurs with some small deviation from equilibrium.

Hint

Martensite will normally grow much faster because it requires no diffusion. Martensite
would thus predominate in a region where both types of transformation could occur, in
principle.

Solution

The solution is given in Fig. 14.9.

14.5 Partial chemical equilibrium

In a ternary alloy it could very well happen that one of the elements diffuses very much
faster than the other two, for example if it is an interstitial solute. It is then possible that a
new phase forms with a different content of the mobile element but without a change of
the relative contents of the other two. Such a transformation would be partly partitionless.
Hultgren [26] proposed that it could even occur without any diffusion of the latter two
elements and used the term paraequilibrium to describe the local equilibrium at the
phase interface under such a transformation. We shall now examine that kind of local
equilibrium. Hultgren studied systems with Fe, C and a metallic solute which we shall
denote by M. We shall keep those symbols but Fe could represent any element, C any
mobile element and M any element as sluggish as Fe.
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Under full local equilibrium at a phase interface, there is no driving force on the
interface as shown by the following form of the combined law Eq. (3.33),

Ddξ = −SdT + V dP − �Ni dµi = 0, (14.10)

because T, P and all µi have the same values on both sides of the interface. When
a transformation occurs under paraequilibrium, µC has the same value on both sides
because C is very mobile, but µFe and µM have different values. Instead, uFe and uM

have the same values if ui is defined as Ni/(NFe + NM). It is thus useful to consider the
combined law in a new form which can be derived as follows,

Ddξ = −SdT + V dP − �Ni dµi (14.11)

Ddξ/(NFe + NM) = −Sm12dT + Vm12dP − �ui dµi ± (µFeduFe + µMduM)

= −Sm12dT + Vm12dP − �uCdµC + µFeduFe + µMduM − d(uFeµFe + uMµM).

(14.12)

The subscript ‘m12’ is explained in Section 4.3. Under paraequilibrium dT = dP =
dµC = duFe = duM = 0 and we find

Ddξ/(NFe + NM) = −d(uFeµFe + uMµM) = 0. (14.13)

The driving force has here been put to zero for a transformation occurring under parae-
quilibrium conditions because, ideally, paraequilibrium is supposed to be a kind of local
equilibrium. It is thus necessary that uFeµFe + uMµM has the same value on both sides
of the interface. Of course, T, P and µC must also have the same values on both sides.
The new quantity that must have the same value in both phases is simply an average
value for Fe and M, as if they together have formed a new element. The quantity can be
written in various ways because Gm12 = �uiµi ,

uFeµFe + uMµM = Gm12 − uCµC = Gm − xCµC

1 − xC
. (14.14)

Suppose the three elements can form a compound θ of the formula (Fe, M)aCc with
a + c = 1. For paraequilibrium between θ and a solution phase, γ, we find(

Gm − cµC

a

)θ

=
(

Gm − xCµC

1 − xC

)γ

. (14.15)

It should be noted that uFeµFe + uMµM is a characteristic state function. It was actually
derived in Section 13.6 in a slightly different way and written as G − NCµC.

In a molar Gibbs energy diagram the tie-line between the two phases in paraequilibrium
is directed towards the C corner. It falls on a common tangent line to the two Gibbs
energy surfaces but not on the common tangent plane. Figure 14.10 demonstrates that
the common tangent line for paraequilibrium, which must go through the C axis, is
situated above the common tangent plane that holds for full equilibrium. The chemical
potential of C will thus be slightly different.

Figure 14.11(a)–(d) gives various versions of the phase diagram showing the equilib-
rium between two solution phases, α and γ, at some convenient T and P values. Instead
of using the chemical potentials, µC and µM, as axes the chemical activities, aC and
aM, have been used in order to make the diagram show low contents of C and M where
the chemical potentials would approach negative infinity. It is interesting to note that
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Figure 14.10 Molar Gibbs energy diagram for a ternary system illustrating the paraequilibrium
conditions. The common tangent line from the C axis is situated above the common
tangent plane.
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Figure 14.11 The phase diagram for a ternary system at constant T and P, drawn with different
sets of axes in order to illustrate the paraequilibrium conditions (dashed lines), assuming that C
is the only mobile component.

Figs 14.11(a) and (b) are very similar to Fig. 14.6 but T has been replaced by aC. In fact,
the two reactions are very similar because the additional component in the present case
is compensated by the temperature being kept constant.

The point of equal Gibbs energy of α and γ on the binary Fe–M side has been marked
as To in Fig. 14.11(d) because it belongs to the To line in the binary T, xM diagram. It
is important to note that the two paraequilibrium phase boundaries fall inside the full
equilibrium two-phase field. This is a general rule.
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Figure 14.12 Dashed lines show the conditions for quasi-paratransformation γ → α in a ternary
system with a very mobile component C.

As in the binary case, discussed in the preceding section, we should also examine
the possibility of obtaining a partitionless (here of Fe and M) transformation under full
local equilibrium. That should be possible if there is a composition spike in front of the
migrating interface. The critical limit for a γ → α transformation to take place under
such quasi-paraequilibrium conditions is that the initial γ phase falls on the α phase
boundary in the aC,xM phase diagram (see Fig. 14.12(b)). Again the conclusions are
very similar to the previous case. However, in the present case it is more common to use
an xC,xM phase diagram (see Fig. 14.12(d)). It should be noticed that the critical limit
for a quasi-paratransformation will not fall on the α phase boundary in such a diagram
because γ and α must have the same µC (i.e. aC) and that requires different xC.

Finally, we may compare the critical limit for the two partitionless kinds of growth
by means of Fig. 14.13. It is interesting to note that paraequilibrium with its devi-
ation from full local equilibrium requires less supersaturation of the parent γ. This
is in agreement with a more general principle mentioned in Section 14.1. In prac-
tice, one should expect something between quasi-paraequilibrium and paraequilib-
rium depending on the mobilities of Fe and M, especially inside the interface, rela-
tive to the rate of migration of the interface. In the next section we shall give a more
detailed account of some phase transformations assuming that they take place under
quasi-paraequilibrium.

Exercise 14.5

In Fig. 14.11 there are two diagrams with dashed tie-lines. They hold for paraequilibrium.
In the other two diagrams the corresponding tie-lines have not been drawn. Indicate where
they should fall.
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Figure 14.13 Comparison of two partitionless growth conditions for the γ → α transformation in
a ternary system with a very mobile component C.
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Figure 14.14 Solution to Exercise 14.5.

Hint

Find tie-lines in Fig. 14.11(c) by projection from Fig. 14.11(a) and (d).

Solution

The α + γ two-phase field under paraequilibrium is a line in Fig. 14.11(b) and there are
no tie-lines. A tie-line in Fig. 14.11(c) is shown in Fig. 14.14.

14.6 Transformations in steel under quasi-paraequilibrium

In a steel with carbon and some substitutional alloying elements it often happens that
a new phase forms with the same alloy content as the parent phase but with a different
carbon content. Such a phase transformation may occur under local paraequilibrium at
the migrating interface, or under quasi-paraequilibrium, or in between. In this section we
shall examine the quasi-paraequilibrium case, using results from the preceding section.
As a simple example we shall first discuss the γ → α transformation. In a uM,uC phase
diagram all products of a paratransformation or a quasi-paratransformation will fall on
the same horizontal line as the parent phase. In the phase diagram we can easily find
a point representing the composition of a growing phase, because it must fall on the
correct level of alloy content but also on the appropriate phase boundary, the α/γ phase
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Figure 14.15 Construction yielding the conditions at the phase interface for a
quasi-paratransformation γ → α in a ternary system with a mobile component C.

boundary in the present case. Having located that intersection we have found a tie-line
representing the local equilibrium conditions at the migrating α/γ interface. We can
thus construct a composition profile for the alloying element. In order to do this we shall
plot uM on the ordinate axis (see Fig. 14.15).

From the composition profile we may conclude that there is a thin spike of the alloying
element in front of the migrating interface. This is similar to the quasi-diffusionless case
in a binary alloy. According to the mathematics of diffusion, we can estimate the width
of the spike to DM/υ, where υ is the rate of migration of the interface and DM is
the diffusion coefficient of the alloying element M relative to Fe. The width is usually
extremely small and the alloy content in the spike originates from a transient stage of
growth at a very early time.

One may normally expect that the rate is governed by the rate of long-range diffusion
of carbon. In order for the transformation to proceed, carbon must diffuse from the α/γ

interface and into the interior of the γ phase because the growing α phase has less carbon
than γ. It is thus necessary that the carbon potential is higher at the interface than in
the interior of the γ phase. The critical limit for the position of the initial γ phase is
thus found on the intersection of the level of alloy content, ualloy

M , and the isoactivity line
for carbon in γ which goes through the γ end-point of the tie-line. This construction
is shown in Fig. 14.16. Naturally, this isoactivity line must be extrapolated below the
γ/(α + γ) boundary. The critical limit is represented by a circle in the diagrams and falls
on the line for quasi-paraequilibrium in Fig. 14.13. The rapid, quasi-paratransformation
can only occur on the left-hand side of that critical line, i.e. in this case below the
line.

Suppose the carbon activity for a γ phase is initially lower than for the isoactivity
line in Fig. 14.16. The γ → α transformation can then start in the way described above.
However, during the growth of α, the γ phase will accumulate more and more carbon.
Its carbon activity will increase and eventually reach the value for the isoactivity line in
Fig. 14.16. The rapid growth will then stop and the transformation can only continue at
a much slower rate which permits the sluggish alloying element M to be redistributed
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Figure 14.16 Construction yielding the critical limit for a quasi-paratransformation γ → α in a
ternary alloy with a mobile component C.
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Figure 14.17 Growth conditions of α from γ at a stage where diffusion of the sluggish alloying
element M is required.

relative to Fe. During this stage of slow growth there will be sufficient time for the mobile
carbon to equilibrate inside the system and at each moment all the γ phase present may
fall practically on a common isoactivity line for carbon in γ. If we know the momentary
composition of the interior of the γ phase we can easily find the γ end-point of a tie-line
representing the equilibrium conditions on the migrating α/γ interface. We can thus
construct the composition profile for the alloying element M during any stage of very
slow growth; see Fig. 14.17 in which the filled circle represents the present composition
of the interior of the γ phase and the arrow indicates that its carbon content is gradually
increasing during this growth. In the composition profile the spike has now widened to
a considerable thickness, which may be evaluated by using the fact that the two shaded
areas represent the same amount of M. The rate of growth is now governed by diffusion
of the alloying element down the spike.

Let us now examine the more complicated case where the γ phase transforms to the
eutectoid mixture of α and cementite, (Fe,M)3C, which is called pearlite. In order for
that reaction to be governed by the rate of carbon diffusion it is necessary for both α and
cementite to inherit the alloy content of the parent γ. Each one of the two growing phases
must fall on the correct side of its critical line. We shall first illustrate this by two separate
phase diagrams in Fig. 14.18(a) showing the α/γ equilibrium and (b) showing the
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Figure 14.18 The critical limit for the quasi-paratransformation of γ to (a) α; and (b) cementite in
an Fe–M–C alloy.
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Figure 14.19 Phase diagram for an Fe–M–C system, illustrating the conditions for a rapid
formation of α + cementite (so-called pearlite) under quasi-paraequilibrium (see shaded
triangle).

γ/cementite equilibrium. The position of the region for rapid precipitation of cementite,
relative to the full equilibrium phase boundary, has been drawn in agreement with the
general rule that the paraequilibrium phase boundaries lie inside the full equilibrium
two-phase field.

If the alloy is at a temperature where the γ → α + cementite transformation is pos-
sible, the two two-phase regions α + γ and γ + cementite must overlap to some degree
and there must be a three-phase α + γ + cementite region, as illustrated in Fig. 14.19.

This phase diagram resembles the Fe–Ni–C phase diagram because Ni prefers to
dissolve in γ rather than in α or cementite. The metastable parts of the phase boundaries
have been drawn with dotted lines. The two critical lines form a small triangular region
which we may regard as a critical triangle. Rapidly growing quasi-parapearlite can be
expected to form from a γ phase situated inside the critical triangle. A γ phase situated
to the left of the triangle should first precipitate so-called proeutectoid α and thus move
into the triangle where pearlite can start forming. A γ phase situated to the right of
the triangle should first precipitate proeutectoid cementite and then pearlite. However, a
requirement is that the level of alloy content falls below the top of the triangle. Otherwise,
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the rapid, proeutectoid precipitation will stop at its critical line. The transformation can
continue only by the slow rate of diffusion of the alloying element into the interior of the
austenite because both α and cementite must dispose of nickel into the parent γ. That
should normally be a very slow reaction and pearlite formed under such conditions has
not been reported. In solidification, the growth conditions for a eutectic may be similar
but the rate of diffusion in the liquid phase is so rapid that the eutectic reaction is not
inhibited above the triangle for the rapid eutectic transformation.

Exercise 14.6

An Fe–Ni alloy with uNi = 0.01 is first in the state of γ (fcc) at 1273 K but then it
is carburized and cementite (Fe3C) forms isothermally. Suppose one would like to try
to produce homogeneous cementite with uNi = 0.01. Estimate what carbon activity is
required during the carburization. It is known that the γ + cementite equilibrium in the
binary Fe–C system is 1.01 at 1273 K. It is also known that the distribution coefficient
for Ni between cementite and γ is K cementite/γ

Ni = 0.26.

Hint

Inspiration can be obtained from Fig. 14.18(b) because formation of cementite with the
initial Ni content can only occur under a rapid reaction. However, in order to calculate
the necessary carbon activity we can go to Section 11.3. The carbon content of cementite
is uC = 1/3 and for γ it is about 0.073.

Solution

If the growing cementite has uNi = 0.01 and there is local equilibrium (quasi-
paraconditions) then the adjoining γ has uNi = 0.01/0.26 = 0.038. Equation (11.23)
gives ln(aC/abinary

C ) = (1 − 0.26)/[(1/3) − 0.073] × 0.038 = 0.108; aC = 1.01 × 1.114 =
1.125. The carbon activity must be higher than this value.

14.7 Transformations in steel under partitioning of alloying elements

In the preceding section we concluded for Fe–Ni–C that, for Ni contents falling above the
top of the critical triangle, pearlite could grow only by nickel diffusing into the remaining
γ because both growing phases, α and cementite, require that the nickel content is lower
than in the adjoining γ. The situation will be quite different if one of the phases, α or
cementite, can grow with a higher alloy content than the adjoining γ. Then it would be
sufficient that the alloying element diffuses side-wise and distributes itself between the
two growing phases. This process can take place with an observable speed by diffusion
inside the pearlite/γ interface. Interfacial diffusion can be orders of magnitude faster
than volume diffusion.
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Figure 14.21 Solution to Exercise 14.7.

Examples of alloying elements allowing pearlite to grow under partitioning between
α and cementite are manganese and silicon. Cementite will attract manganese and α will
attract silicon.

Exercise 14.7

Suppose a steel is first transformed to homogeneous γ at a high temperature and then
cooled to 1023 K where it is represented by the cross in the Fe–Si–C phase diagram
(Fig. 14.20). The thin line is an isoactivity line for γ going through the cross. Examine if
there would be a positive difference in Si content inside γ, �uγ

Si, to drive the redistribution
of Si between α and cementite and thus allow γ to transform to pearlite. If that is the
case, evaluate the fractions of α and cementite in that pearlite.
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Hint

First find the intersections with the isoactivity line and the extrapolated phase boundaries
for γ. Then try to find the other end-points on the corresponding tie-lines.

Solution

The construction is shown in Fig. 14.21(a) and again, with an expanded uC scale, in
(b). The intersection of the isoactivity line with the two phase boundaries will give the
compositions of γ at the interfaces to α and cementite if there is full local equilibrium.
The difference �uγ

Si = uγ/cementite
Si − uγ/α

Si is positive and will thus make silicon diffuse
away from cementite to α. Pearlite can thus grow but it must have the same average
Si content as the initial γ, uSi = 0.01. Since cementite has practically no Si and α has
about 0.035, we find that the fraction of α is 0.01/0.035 = 0.3. The fraction of cementite
is thus 0.7 and the carbon content of this pearlite is extremely high. It requires a large
supply of carbon to be drawn from the interior of the γ phase.



15 Limit of stability and critical
phenomena

15.1 Transformations and transitions

In Chapter 12 we were mainly concerned with the question whether a transformation
is sharp or gradual. The difference between those cases is very practical and straight-
forward. It is based on a one-dimensional phase diagram where the only axis represents
the quantity that is being varied. If that diagram shows a two-phase field of some exten-
sion between the two one-phase fields, then the transformation between the two phases
will be gradual. If the two-phase field has no extension, then the transformation will be
sharp. For a unary system with a transformation this will happen if one varies a potential,
e.g. T. The Gibbs energy is a continuous function of T across the sharp transformation
but its derivatives, yielding S and V, show discontinuous jumps. This is why the phase
boundaries separate when a molar axis is introduced (see Figs 9.1 and 9.2). In other
cases there is no such separation because the first-order derivatives are zero. A typical
example is found in a ferromagnetic substance, which gradually loses its magnetization
as the temperature is increased. At the Curie temperature it reaches zero and the sub-
stance has thus become paramagnetic. There is no temperature where ferromagnetic and
paramagnetic regions coexist in a pure substance, not even if one varies a molar quantity.
As a consequence, there is not really a two-phase field between the two one-phase fields
and this fact is indicated by the use of a dashed line to separate the one-phase fields
(see Fig. 15.1 where the two phases are denoted by β and β′ in order to emphasize their
close relationship). If there is no discontinuous jump in the first-order derivatives but
there is one in the second-order derivatives, then one calls this a second-order transi-
tion as distinguished from a first-order transition when there is a jump in the first-order
derivatives.

When considering a T, P diagram and calculating the locus of a sharp transformation
between two phases in Section 8.3, we applied the Gibbs–Duhem relation to each of
the phases, obtaining two equations for dµA. By requiring that µA must change in the
same way for the two phases along their line of coexistence, it was possible to calculate
the slope of that line, (see Fig. 8.6). In this way dP/dT was obtained as a function of
discontinuous jumps in the two first-order derivatives, �S and �V . This method does
not work in the present case because the two equations become identical on the line we
want to calculate, and �S and �V both go to zero there. This problem was solved by
Ehrenfest [27] who instead used the fact that on the line there is no difference between
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Figure 15.1 Characteristics of a second-order transition β ↔ β′. The γ ↔ β transition is first
order.

V of the two states. The expression for dV,

dV =
(

∂V

∂T

)
P

dT +
(

∂V

∂ P

)
T

dP = V α dT − V κT dP, (15.1)

must give the same value in both states. Because V itself also has the same value in both
states but α and κT do not, we get, by taking the difference between the two states,

dP

dT
= �α

�κT
(15.2)

It is also possible that the discontinuous jumps first occur in the third-order deriva-
tives of G and the corresponding transition would be of third order, etc. In practice, it
is often difficult to decide by experimental measurements whether �α and �κT differ
from zero, as they should for a second-order transition. Sometimes the individual values
of the second-order derivatives appear to go to infinity at the transition point and it is
not meaningful to try to evaluate their difference. Ehrenfest’s expression for dP/dT is
then of little practical use. Of course, it can be used when one investigates a particular
model that gives definite values for second-order derivatives. In view of these complica-
tions, it is common to call all transitions with continuous first-order derivatives, second
order.

It should be emphasized that nothing really happens in a system when it passes a
second-order transition point. It does not really transform. The only difference is that
it starts behaving in a new way. The real changes in the system occur gradually as the
system moves away from the point of transition. In that sense, the second-order transition
is just the start of a gradual transformation. Figure 15.2 illustrates different possibilities
for a pure substance at constant pressure. The internal variable ξ is some measure of the
arrangements of the atoms or electrons. Curve (a) with its discontinuous jump represents
a first-order transition. Curve (b) shows a discontinuous jump but also a gradual change.
In curve (c) the jump has disappeared but the curve is horizontal at the break point. In
curve (d) the curve never turns horizontal.

The words transformation and transition are often used as synonyms. One word is
favoured by the experts in some fields and the other word in other fields. There is a need
for two words with different meanings. For our purposes, it would seem most natural
to use transition in much the same way as above but use transformation to describe the
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Figure 15.2 Different cases of transitions and transformations. (a) A first-order transition that
occurs with a sharp transformation. (b) A first-order transition where the transformation is
partly sharp, partly gradual. (c) and (d) Second-order transitions with completely gradual
transformations.

progress of the real changes occurring in a system. The break points in all the curves in
Fig. 15.2 would thus be regarded as the transition point and the transition is the change
occurring at the transition point, whether it is a real change or a change in behaviour
that will reveal itself as the system moves away from the transition point. In curve (a)
the first-order transition yields a sharp transformation if T, being a potential, is varied.
In curve (b) part of the transformation would be sharp and occur at the transition point,
and another part would be gradual and occur below the transition point. In curves (c)
and (d) the transformation would be completely gradual and start as the transition point
is crossed. Thus, a transition point yielding a transformation that is at least partly sharp,
would be of first order. Otherwise, it would be of second order. It should be emphasized,
however, that there are many cases where the concept of first- and second-order transition
does not appear to be very useful. This will be demonstrated in Section 15.4.

The strict difference between first-order and second-order transitions is of consider-
able theoretical interest but from a practical point of view it may sometimes be of less
importance whether there is a small discontinuous jump or no jump at all.

In the previous chapters, only the word transformation has been used. From now on,
an attempt will be made to apply both terms and with the definitions given here. In view
of the conclusion drawn in Section 12.2, a sharp transformation, which must always be
a first-order transition, will turn gradual when the variable is changed from a potential
to a molar quantity. From the theoretical point of view this is a trivial effect and should
not affect the classification of the transition. The theoretical study of phase transitions is
thus carried out without involving any molar quantity.

A phase transition is often caused by a tendency of an ordered arrangement to disorder.
Such transitions are called order–disorder transitions and the driving force comes
primarily from the increasing configurational entropy. In other cases, the cause may
be the lowering of the energy by deformation of the structure, e.g. by decreasing the
tetragonality, without changing the configurational entropy. Such transitions are called
displacive transitions. Of course, the characteristics of order–disorder and displacive
can be applied to the corresponding transformation, as well. In both cases, the progress
of the change can be expressed by some internal variable, e.g. the degree of long-range
order or the tetragonality. For simplicity, all such variables are sometimes called ‘order
parameters’ and, in principle, all internal variables could play this role.
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Another method of classifying phase transitions is based on what happens to the atoms
during the transition. A reconstructive transition involves a reorganization of the atomic
arrangement with the breaking of atomic bonds and the formation of new bonds. The
opposite case would be a displacive transition which involves only small adjustments of
the atomic positions without the atoms ever losing contact with their initial neighbours.
This classification thus depends on the nature of the interface migrating through the parent
crystal. If the two crystal structures are closely related, one could imagine an interface
so highly coherent that the atoms find their positions in the new crystal (phase) with only
small adjustments of their positions relative to each other. However, it is possible in the
same material that another interface is incoherent and one could not predict exactly where
an atom from the parent crystal will end up in the growing crystal. The transition would
then be regarded as reconstructive even if the structures of the two crystals (phases) are
identical. That is the case in ordinary grain growth where large crystals consume small
ones of the same phase and composition.

Furthermore, we may define a partitional transition as a transition in an alloy where
the new phase has a different composition and can grow only under long-range diffusion.
The solute atoms have partitioned between the parent phase and the new phase, which
requires diffusion and may be regarded as a diffusional transition. The opposite case is
a partitionless transition which would be the result if there is no diffusion. However, the
result could be partitionless even if there is some local diffusion during the transition. We
shall apply the term diffusionless only to cases where there is not even any short-range
diffusion. Evidently, a diffusional transition can at the same time be reconstructive or
displacive. It can even be an order–disorder transition.

Exercise 15.1

Derive an expression for dP/dT for a second-order transition by considering the variation
of S along the transition line.

Hint

A Maxwell relation can be used to transform the result into well-known parameters.

Solution

dS = (∂S/∂T )P dT + (∂S/∂ P)T dP = (CP/T )dT − V αdP since (∂S/∂ P)T =
−(∂V/∂T )P .

On the transition line, where �(dS) = 0, we get dP/dT = �CP/V T �α.

15.2 Order–disorder transitions

Let us consider an ordering phenomenon in a phase with a crystal symmetry such that the
properties can be expressed as even functions of the order parameter ξ . As demonstrated
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Figure 15.3 Molar Gibbs energy diagram illustrating the properties of a substance showing a
second-order transition. The dashed line in (b) represents unstable states, shown as points of
maximum in (a).

by Landau and Lifshitz [28] the simplest form of the Gibbs energy expansion in the
neighbourhood of the transition from disordered to ordered state would be

Gm = go + 1

2
gξξ ξ

2 + 1

24
gξξξξ ξ

4, (15.3)

where gξξ = ∂2Gm/∂ξ 2, etc., and go, gξξ and gξξξξ may vary with temperature and
composition although variations in composition will not be considered yet. In order to
place the minimum of Gm in the region close to ξ = 0, where the Gm expression is
supposed to hold, it is necessary to make gξξξξ > 0. In order to predict an ordered state
at low temperatures but not at high, it is necessary to assume that gξξ is negative at low
temperatures and positive at high. The equilibrium value ξe can be found from

dGm/dξ = gξξ ξ + 1

6
gξξξξ ξ

3 = 0. (15.4)

The disordered, high-temperature state is described by ξe = 0. At low temperature there
are two other solutions

ξe = ±(−6gξξ /gξξξξ )1/2. (15.5)

By symmetry these two solutions are physically equivalent. They only exist as long
as gξξ < 0 and they approach ξe = 0 as gξξ approaches 0. The transition point would
thus be given by gξξ = 0. Below the temperature where this occurs, the solution ξe = 0,
representing a disordered state, would give a Gm maximum and the disordered state
would thus be unstable here. Figure 15.3(a) demonstrates the shape of Gm at temperatures
above and below the transition point, Ttr. Figure 15.3(b) shows how ξe, obtained from
the minima, varies with temperature.

Let us now examine how we can calculate the limit of stability for the disordered state.
The condition would be simply(

∂2Gm

∂ξ 2

)
T,P,comp.,N1

= 0, (15.6)

since we have decided not to consider variations in composition yet. We get directly

gξξ + 1/2gξξξξ ξ
2 = 0, (15.7)
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but the stability condition can only be applied to states of equilibrium. Thus, we must
insert the equilibrium value, which is ξe = 0 for the disordered state, yielding the limit of
stability at gξξ = 0 for the disordered state when cooled from a high temperature. This
limit of stability thus falls on the transition point. When inserting the expression for ξe

in the ordered state we find

gξξ = −1/2gξξξξ ξ
2
e = 3gξξ . Thus, gξξ = 0. (15.8)

The limit of stability for the ordered state when heated from a low temperature also falls
on the transition point. That is typical of second-order transitions.

It is interesting to insert the equilibrium value ξe in Eq. (15.3) for Gm and thus to
obtain Gibbs energy expressions at equilibrium for ξ .

Gdis
m = go in disordered state (15.9)

Gord
m = go − 3

2
g2

ξξ /gξξξξξξ in ordered state. (15.10)

At the transition point Gdis
m = Gord

m and dGdis
m /dT = dGord

m /dT because gξξ = 0 there,
but the second-order derivatives are different, confirming that this transition is of second-
order.

In order to model a first-order transition one can either remove the symmetry by
introducing a ξ 3 term or one can keep the symmetry but introduce a ξ 6 term. With the
latter alternative we obtain

Gm = go + 1

2
gξξ ξ

2 + 1

24
gξξξξ ξ

4 + 1

720
gξξξξξξ ξ

6. (15.11)

In this case we must take gξξξξξξξ > 0 and gξξξξ < 0. Equilibrium requires that

dGm/dξ = gξξ ξ + 1

6
gξξξξ ξ

3 + 1

120
gξξξξξξ ξ

5 = 0. (15.12)

One solution is the disordered, high-temperature state, ξe = 0, but one also finds low-
temperature states

ξ 2
e = −10gξξξξ /gξξξξξξ ± [100(gξξξξ /gξξξξξξ )2 − 120gξξ /gξξξξξξ ]1/2. (15.13)

The ‘+’ sign gives a new minimum and the ‘–’ sign gives a maximum in between.
Figure 15.4 illustrates how Gm varies with ξ above and below a temperature of equilib-
rium between the two states, the transition temperature, Ttr, where the minima fall on the
same level.

It is evident that the low-temperature minimum exists only as long as

100(gξξξξ /gξξξξξξ )2 − 120gξξ /gξξξξξξ ≥ 0 (15.14)

gξξ ≤ g2
ξξξξ /1.2gξξξξξξ , (15.15)

and ξe does not approach zero at any temperature. Wherever the transition occurs, it must
occur with a discontinuous jump in ξ and will thus be of first order. The ordered state
can exist as a metastable state above the point of transition. The limit of stability for the
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Figure 15.4 Molar Gibbs energy diagram illustrating the properties of a substance showing a
first-order transition. The black dots in (b) represent the two limits of stability. Metastable
states (exhibiting a minimum with a higher Gm value than another minimum at the same
temperature) are represented by thin lines, and unstable states (shown as points of maximum) by
a dashed line.

ordered state is obtained from

d2Gm/dξ 2 = gξξ + 1

2
gξξξξ ξ

2 + 1

24
gξξξξξξ ξ

4 = 0. (15.16)

By inserting the equilibrium value ξe for the ordered state from Eq. (15.5) and solving
for gξξ we find the limit of stability at the temperature where

gξξ = g2
ξξξξ /1.2gξξξξξξ . (15.17)

As expected, the limit of stability occurs when the low-temperature minimum disap-
pears by merging with the maximum and forming a point of inflexion.

By inserting the equilibrium value of ξ for the disordered state, ξe = 0, we find another
limit

d2Gm/dξ 2 = gξξ = 0. (15.18)

The disordered state thus becomes unstable at the point where gξξ turns negative.
Between the two limits, gξξ = 0 and gξξ = g2

ξξξξ /1.2gξξξξξξ , one of the states is stable
and the other is metastable. The first-order transition between the states occurs where
they change roles. The exact position can be evaluated from the condition that Gm has
the same value for the two states, somewhere between T2 and T3 in Fig. 15.4. On the
other hand, in a system showing a second-order transition, a state is never metastable on
the wrong side of the transition point because that is also the limit of stability and there
is only one such limit.

It is worth emphasizing that for a second-order transition Landau’s approach is not
a special model because it only applies at small ξ values and it says nothing about the
temperature dependencies of the coefficients. Any analytical model can be represented
by a Taylor series expansion near the transition point and will thus predict the temperature
dependencies. If gξ = gξξξ = 0 and gξξξξ > 0 at all T, and if gξξ goes through zero at
some value of T, then the model predicts a second-order transition and all the results for
transition obtained from Landau’s approach apply. On the other hand, if gξξξξ < 0 then
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the model does not predict a second-order transition but maybe a first-order transition.
However, in that case the characteristics of the transition are not given completely by the
properties at low values of ξ . In order to examine an analytical model of this kind, it is not
enough to retain just one more term, ξ 6, in the series expansion and the result obtained
above does not apply in all its details. For a first-order transition, Landau’s approach with
the choice of only three terms, ξ 2, ξ 4 and ξ 6, represents a special model and should be
regarded just as a means of demonstrating schematically the characteristics of such a
transition.

Exercise 15.2

Use the mathematical description of the first-order transition and calculate exactly where
the transition point falls. Show that it falls between the two limits.

Hint

The two minima must have the same Gm value at the transition.

Solution

Equations (15.11) and (15.12) yield go = go + (1/2)gξξ ξ
2 + (1/24)gξξξξ ξ

4 +
(1/720)gξξξξξξ ξ

6 and gξξ ξ + (1/6)gξξξξ ξ
3 + (1/120)gξξξξξ ξ

5 = 0.
The most important variables are gξξ , which may go through zero, and ξ .
Elimination of gξξ between the two equations yields ξ 2 = −15gξξξξ /gξξξξξξ .
Insertion of ξe from Eq. (15.5) into Eq. (15.12) yields gξξ = (1/6)gξξξξ ·

(−15gξξξξ /gξξξξξξ ) + (1/120)gξξξξξξ · (−15gξξξξ /gξξξξξξ )2 = g2
ξξξξ /1.6gξξξξξξ .

This occurs at a temperature between those for the two limits of stability according to
Eqs (15.17) and (15.18).

Exercise 15.3

Try to describe a second-order transition with the asymmetric expression Gm = go +
(1/2)gξξ ξ

2 + (1/6)gξξξ ξ
3 + (1/24)gξξξξ ξ

4.

Hint

Calculate the equilibrium value of ξ for the ordered state and examine if it can approach
zero gradually.

Solution

The equilibrium value is obtained from dGm/dξ = gξξ ξ + (1/2)gξξξ ξ
2 +

(1/6)gξξξξ ξ
3 = 0.

For the ordered state we get ξe = −(3/2)gξξξ /gξξξξ ± [(9/4)(gξξξ /gξξξξ )2 −
6gξξ /gξξξξ ]1/2.
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It is evident that ξe cannot approach zero gradually unless gξξξ = 0 which would
make Gm symmetric. The asymmetric Gm expression can only describe a first-order
transition.

We can conclude that to describe a second-order transition we need a symmetric Gm

function. On the other hand, a symmetric Gm function can describe a second-order or a
first-order transition, as demonstrated above.

15.3 Miscibility gaps

It sometimes happens that a two-phase coexistence line in the T, P phase diagram ends
at a critical point and this always happens for the liquid–vapour line. Above the crit-
ical point one can move continuously from a high density, characteristic of a liquid,
to a low density, characteristic of a vapour (see Fig. 15.5). A similar phenomenon can
occur in binary systems under constant pressure (see Fig. 15.6). Such phase fields are
often called miscibility gaps and the top, which is a critical point, is called consolute
point.

In the binary case the condition for the stability limit would be (∂2Gm/∂x2
B)T,P ≡

gBB = 0. However, for most compositions this would give a point falling inside the mis-
cibility gap where the homogeneous state is not the most stable one. As explained
in Section 7.2, the stability condition here defines inflexion points and Fig. 15.7
gives Gm curves for a series of temperatures demonstrating that the two inflexion
points move together to a point at the top of the miscibility gap. The consolute point
can thus be found by combining the stability condition already given with a new
condition, (

∂3Gm

∂x3
B

)
T,P

= 0. (15.19)

We thus have two equations and can evaluate two unknowns, the temperature and
the composition of the consolute point. For the miscibility gap in a unary system the
top can be found in two ways because the limit of stability can be expressed in two
ways,

FV V = −
(

∂ P

∂V

)
T

= 1

V κT
= 0 and FVVV = 0 (15.20)

HSS = −
(

∂T

∂S

)
P

= T

CP
= 0 and HSSS = 0. (15.21)

The thin line in Fig. 15.6(b) is the locus of points representing the stability limit
and the diagram confirms that it touches the top of the miscibility gap. The consolute
point is thus the only point where the stability limit can be reached by a stable system.
It is regarded as a critical point because two coexisting states become identical there.
For all other compositions the homogeneous system turns metastable on cooling before
reaching the stability limit. It should be noted that the transition point for a second-order
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Figure 15.5 Phase diagram for a unary system showing the liquid + vapour miscibility gap.
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Figure 15.6 Phase diagram for a binary system at constant P, showing a solid miscibility gap.
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Figure 15.7 Gibbs energy curves at a series of temperatures through the fcc miscibility gap in the
Al–Zn system at constant P. The inflexion points are marked with black dots. They represent the
spinodal. Just below 625 K they coincide and form a critical point.

transition is not a critical point in this sense because the ordered and the disordered states
never coexist as two different phases if the transition is second-order.

The line representing the stability limit in a miscibility gap is called a spinodal curve
or simply a spinodal or a spinode because it falls on a sharp point (spine meaning
thorn) in property diagrams with potential axes. An example is shown in Fig. 15.8.
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Figure 15.8 Property diagram at constant T and P for a binary system with a miscibility gap, the
fcc phase in Al–Zn at 525 K.

In this connection it is common to call the phase boundary of the miscibility gap a
binodal.

The critical point on a miscibility gap extends into a line when a third compo-
nent is added, into a surface when a fourth component is added, etc. According to
Section 6.6 the limit of stability of a multicomponent system, i.e. the spinodal, is defined
by (

∂gc

∂xc

)
T,P,g2,...gc−1,N

= 0. (15.22)

The critical point is found by also applying the condition(
∂2gc

∂x2
c

)
T,P,g2,...,gc−1,N

= 0. (15.23)

It should be remembered that gc is the notation for (∂Gm/∂xc)x2x3...xc−1 . In Section 6.6
it was shown that the stability condition can be transformed into such quantities, using
the Jacobian method. For a ternary system the result can be written as∣∣∣∣g22 g23

g32 g33

∣∣∣∣ /g22 = g33 − (g23)2/g22 = 0. (15.24)

Using the same technique the condition for a critical point can be transformed, but the
result will be more complicated (see, for instance, [29]). In the ternary case it can be
written as

g33 − 3g233(g23/g22) + 3g223(g23/g22)2 − g222(g23/g22)3 = 0. (15.25)

Equation (15.25) can be modified in several ways using g33/g23 = g23/g22 which holds
on the spinodal. For the binary case the result is simply g222 = 0, which is just a nota-
tion for ∂3Gm/∂x3

2 = 0 when x3 is treated as the independent variable that is kept
constant.
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Figure 15.9 Progress of reaction in a miscibility gap for a series of compositions, demonstrating
that this is a gradual transformation for all compositions, but it is not a second-order transition.

The reason why one cannot find the critical point in a ternary case by applying g222 = 0
and g333 = 0 is that the most dangerous fluctuation may not be parallel to any of the
two composition axes. It should be noted that this is the reason why the condition for
the stability limit is primarily given under constant potentials, not extensive or molar
quantities.

For the binary miscibility gap it may be instructive to introduce an internal variable in
order to describe the progress of the reaction as a function of temperature in a system with
fixed composition. We can define an internal variable having the following equilibrium
value

ξe(T ) = [xβ(T ) − xo][xo − xα(T )], (15.26)

where xβ(T ) and xα(T ) are the equilibrium compositions on the two sides of the misci-
bility gap and xo is the average composition. In Fig. 15.9 this variable is plotted against
temperature for three values of the average composition, xo, equal to x1, x2 and x3,
respectively. Figure 15.9(b) can be compared with Figs 15.2(c) and 15.2(d). It is evident
that this will be a gradual transformation for all compositions.

Exercise 15.4

Consider a unary system with a liquid(l) + vapour(v) miscibility gap in the T, Vm phase
diagram. Within the gap there is a spinodal curve, representing the limit of stability.
Examine what happens to the spinodal in the diagram if P is introduced instead of Vm.
Furthermore, sketch a µA, P property diagram at constant T.

Hint

The spinodal, has two branches. Denote the stability limit of liquid by Sl and of vapour
Sv. Each one represents the end of a metastable range and should thus be situated on the
‘wrong’ side of the line of coexistence in the P, T diagram.

In the property diagram each phase is represented by a line and they intersect in such
a way that the stable phase always has the lowest µA value. They only extend to their
limits of stability.
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Figure 15.10 Solution to Exercise 15.4.

Solution

The solution is presented in Fig. 15.10.

Exercise 15.5

Transform the condition for a critical point in a ternary system, (∂2g3/∂x2
3 )g2 = 0, to the

variables x2 and x3 using Jacobians and confirm Eq. (15.25).

Hint

The derivative should first be expressed as

(
∂

∂x3

(
∂g3

∂x3

)
g2

)
g2

. Use a method similar to

the one applied when showing that

(
∂g3

∂x3

)
g2

=
∣∣∣∣g33 g23

g32 g22

∣∣∣∣ /g22 = g33 − (g23)2/g22 in

Exercise 6.6.

Solution

(
∂

∂x3

(
∂g3

∂x3

)
g2

)
g2

=

∣∣∣∣∣∣∣∣
∂(g33 − (g23)2/g22)

∂x3

∂(g33 − (g23)2/g22)

∂x2

∂g2

∂x3

∂g2

∂x2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂x3

∂x3

∂x3

∂x2
∂g2

∂x3

∂g2

∂x2

∣∣∣∣∣∣∣∣
= [g22g333 − g22 · 2g23g233/g22 + g22 · (g23)2g223/(g22)2 − g23g233 + g23 · 2g23g223/

g22 − g23 · (g23)2g222 / (g22)2] / g22 = g333 − 3g233(g23/g22) + 3g223(g23 / g22)2 −
g222(g23/g22)3 = 0.

15.4 Spinodal decomposition

Thermodynamically, a system inside the spinodal is unstable with respect to compo-
sitional fluctuations and one could expect the system to decompose to a mixture of
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regions with the two stable compositions, one on each side of the miscibility gap. This
process is called spinodal decomposition. However, a fluctuation will be surrounded
by a matrix of a different composition and the interfacial region where the composi-
tion varies will add some extra energy to the system. It is sometimes described as a
gradient energy. As a result, the driving force for the process will be diminished by
some amount and there may not even be a positive driving force if the fluctuation is
too localized. The interfacial area-to-volume ratio must not be too large. In order to
simplify the mathematics one may consider sinusoidal fluctuations in composition and
then one will find a critical wavelength above which the driving force is positive. The
rate of reaction will have its maximum somewhere above the critical wavelength but not
very much above because the longer the wavelength, the longer the diffusion distances
will be.

A mathematical treatment of this phenomenon is based on the condition for the stability
limit d2Gm/dx2 = 0. As demonstrated in Section 7.7, d2Gm/dx2 appears in the expression
for the diffusion coefficient. Thus, inside the spinodal, where d2Gm/dx2 is negative, the
diffusion should go in the wrong direction and small fluctuations should grow. This
is called up-hill diffusion. However, we should also include the contribution from the
gradient energy. For small fluctuations in composition one may use the following simple
approach,

Gm = Gm(x) + K · (dx/dy)2, (15.27)

where y is the length coordinate and dx/dy is the composition gradient. As shown by
Cahn [30], this yields the following expression to be inserted in Fick’s first law and a
related expression for the second law,

d2Gm

dx2
= d2Gm(x)

dx2
− 2K · d3x/dy3

dx/dy
. (15.28)

If the composition x varies proportional to sin(ky), the limit of stability would be found
where

d2Gm

dx2
= d2Gm(x)

dx2
− 2K · k2 = 0. (15.29)

A sinusoidal fluctuation could thus grow in amplitude if its wavelength λ(=2π/k) is
longer than a critical value

λcrit. = 8π2 K

/(
−d2Gm(x)

dx2

)
. (15.30)

Shorter wavelengths could not grow in amplitude but would shrink.
In reality, one should expect some random fluctuation in composition throughout the

whole system. It is possible to describe it with a spectrum of wavelengths. In view of
the above result, one could expect those that are longer than the critical wavelength to
grow in amplitude and one could guess that the fastest growth may occur at about twice
the critical wavelength. This value would then be what one could expect to find in early
observations of spinodal decomposition. At longer times, one could expect a continuous
coarsening.
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Figure 15.11 Stable (full lines) and unstable (dashed lines) equilibrium states with a periodic
variation in composition. T and P are constant and the average composition is inside the
spinodal.

Any sinusoidal fluctuation with a wavelength longer than the critical value would
spontaneously grow in amplitude and approach a stable state which would still be periodic
but no longer sinusoidal. The maxima and minima would be much flatter and could be
expected to fall close to the two equilibrium compositions of the miscibility gap. Hillert
[31] showed how such states of equilibrium can be calculated by applying the equilibrium
condition to each point in the system. If the gradient energy is included and only one
direction is considered, then one will find solutions represented by a periodic variation
of composition, characterized by a wavelength and an amplitude but not necessarily
sinusoidal. As an example, Fig. 15.11 illustrates schematically all the solutions for a
system inside the spinodal.

It may be noted that there is a critical value of the wavelength and the homogeneous
state is stable against fluctuations of a lower wavelength. Above the critical wavelength
two new solutions appear and the homogeneous state is not stable against such fluctua-
tions. The critical point is thus a typical bifurcation point. It may be mentioned that the
diagram is quite symmetric for the 50/50 alloy composition.

The critical wavelength will approach infinity as the average composition is chosen
closer and closer to the spinodal. Outside the spinodal the homogeneous system will
be metastable. All small fluctuations in composition will increase the Gibbs energy as
illustrated by the molar Gibbs energy diagram in Fig. 15.12. It is constructed without
considering the gradient energy that would increase the Gibbs energy of the fluctuations
even more.

Figure 15.13 illustrates schematically the effect of the gradient energy for the same
case. The inverse of the wavelength, 1/λ, is used here in order to include an infinite wave-
length (1/λ = 0) in the diagram. The end-points at infinite wavelength are particularly
interesting. The upper one is close to the binodal and represents the stable state where
all the surplus of the minor component is concentrated in a single, local enrichment sur-
rounded by a diffuse interface. It represents a system with a precipitated second-phase
particle. The other point falls on the line for unstable equilibria and represents a system
with a local critical fluctuation, termed a ‘critical nucleus’.

An additional factor of importance to spinodal decomposition in crystalline phases
should be mentioned. The lattice parameter of a crystalline structure usually varies with
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Figure 15.12 Illustration of the fact that small fluctuations in composition are not stable and
would disappear if the average composition, xo

B, is outside the spinodal (marked with black
dots). The diagram is easier to read when the tangent to xo

B is turned horizontal, as in the (lower)
�Gm versus xB diagram.
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Figure 15.13 Same as Fig. 15.11 but for an average composition outside the spinodal and plotted
versus the inverse wave-length.

composition. Fluctuations in composition will thus give rise to internal stresses (So-called
coherency stresses, see Section 16.10) and these will increase the energy of a fluctuation.
As long as the crystal is fully coherent, this effect is independent of the wavelength. The
effect will be denoted by a constant C and should be added to d2Gm/dx2 yielding

d2Gm

dx2
= d2Gm(x)

dx2
− 2K · k2 + C = 0, (15.31)

for the limit of stability. C is always positive and will thus act to stabilize the homogeneous
state. It will displace the spinodal to lower temperatures. In this connection one talks
about two spinodals, the coherent one, and the incoherent (or chemical) spinodal (see
Fig. 15.14). In practice, the region of metastability will thus be extended.
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Figure 15.14 A solid-phase miscibility gap showing two spinodals.

Exercise 15.6

Au and Ni both have the simple fcc structure. The Au–Ni system has a miscibility gap
in the fcc phase with a consolute point at 1083 K. A homogeneous alloy of the consolute
composition, cooled from 1150 to 900 K, will decompose by a microscopically sharp
eutectoid-like transformation fcc0 → fcc1 + fcc2 and not by spinodal decomposition.
Suggest an explanation.

Solution

The Au atoms are much larger than the Ni atoms. The molar volumes of pure Au and Ni
are 10.2 and 6.59 cm3/mol, respectively. Fluctuations in composition will thus give rise
to high coherency stresses. The coherent spinodal will be depressed to lower temperatures
by several hundred kelvin.

15.5 Tri-critical points

In the discussion of order–disorder transitions we only considered a single composition
but it is self-evident that one can represent the points for a second-order transition at all
compositions in a binary system by a line. For a second-order transition, which is known
to occur in one of the components, e.g. a magnetic transition, we would expect a diagram
like the one in Fig. 15.15(a). However, now we should also consider the possibility of
obtaining a miscibility gap by separation into regions of different compositions. In order
to explore this possibility we can use Landau’s simple mathematical model, discussed
in Section 15.2, where all the parameters may be functions of T and x. In the disordered
state Gm = go and we shall assume that go does not contain any factor favouring the
formation of a miscibility gap. Then there would be no spinodal inside the region for the
disordered state, i.e. above the transition line. In the ordered state we have from before

Gord
m = go − 3

2
(gξξ )2/gξξξξ , (15.32)

and we should consider the possibility of a spinodal reaching the transition line from
below. Remembering that gξξ = 0 on the transition line, we find there

∂2Gord
m /∂x2 = ∂2go/∂x2 − 3(gξξ x )2/gξξξξ . (15.33)
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Figure 15.15 The formation of a miscibility gap around the line for a second-order transition.

There would thus be a miscibility gap with its consolute point on the transition line if
this expression is zero which could very well happen. The temperature and composition
of the consolute point would be found by combination with gξξ = 0. The resulting phase
diagram would look like the diagram in Fig. 15.15(b). This consolute point is regarded
as a tri-critical point which is an unfortunate name. It may remind us of a triple point
between three phases in a T, µB diagram but it has that shape only in a T , x diagram. In
the T, µB diagram it would just be a point on a line.

It should be emphasized that we here have two internal variables or ‘order parameters’,
one describing the ordering and the other describing the separation into different com-
positions. We could thus test the stability with respect to variations in one or the other.
When testing for variations in ordering we found the transition line. However, the test
of the real stability limit must take into account simultaneous variations in both internal
variables. That would be the most severe test. We should look for the possibility that a
system encounters the real stability limit and transforms before reaching the transition
line. We could then find one spinodal on each side of the transition line but it would be
quite a different case from that illustrated in Fig. 15.2. That case concerned a first-order
transition where a system may cross the transition line and reach a limit of stability on
the other side.

Figure 15.15(b) shows a spinodal below the transition line and it applies to homo-
geneous, ordered states coming from lower temperatures. We should also look for a
spinodal above the transition line, applicable to the disordered state, cooled from a high
temperature. It should be given by

∂2Gdis
m

/
∂x2 = ∂2go/∂x2 = 0, (15.34)

because ξ = 0. As a consequence, our model which yields this relation cannot predict
such a spinodal unless go contains a factor promoting a miscibility gap. Otherwise,
∂2go/∂x2 > 0. That is why Fig. 15.15 was constructed without a disordered spinodal.
The transition line itself acts as the limit of stability for disordered systems coming
from higher temperatures. However, it is not the same type of spinodal as the lower one
because it does not represent the limit of stability against compositional fluctuations.
On the other hand, as soon as the system starts to order, it will find that it is above the
spinodal for ordered states and is no longer stable against compositional fluctuations. It
may thus be regarded as a conditional spinodal.
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Figure 15.16 Different types of interaction between an ordering transition and a usual miscibility
gap.

When looking for spinodals and trying to find the tri-critical point, we have here applied
the condition of stability limit to the function Gm(T, x) obtained with the equilibrium
value of ξ inserted in Gm(T, x, ξ ). We could instead have used Gm(T, x, ξ ) directly by
applying the stability condition from Section 6.7, reduced to two variables∣∣∣∣g11 g12

g21 g22

∣∣∣∣ = 0; g11g22 − (g12)2 = 0. (15.35)

Identify �x with variable 1 and ξ with variable 2. Then Gm from Eq. (15.3) gives(
∂2go/∂x2 + 1

2
gξξ xxξ

2 + 1

24
gξξξξ xxξ

4

) (
gξξ + 1

2
gξξξξ ξ

2

)
−

(
gξξ xξ + 1

6
gξξξξ xξ

3

)2

= 0.

(15.36)
This relation should be applied to the equilibrium value of ξ which is equal to
(−6gξξ /gξξξξ )1/2 in the ordered region according to Eq. (15.5). Neglecting the ξ 2 and
ξ 4 terms in comparison to ∂2go/∂x2, and gξξξξ xξ

2 in comparison to 6gξξ x close to the
transition line, we get

∂2go/∂x2 = (gξξ x )2

/ (
gξξ /ξ

2 + 1

2
gξξξξ

)
= 3(gξξ x )2/gξξξξ . (15.37)

in full agreement with the previous result.
In the disordered region the equilibrium value is ξe = 0 and we find

∂2go/∂x2 · gξξ = 0. (15.38)

Above the transition line gξξ > 0 and we would find a spinodal only if ∂2go/∂x2 turns
negative before the transition line is approached on cooling. That would yield a usual
miscibility gap, which would interact with the one formed due to the tendency of ordering.
This is illustrated in Fig. 15.16(a).

If the usual miscibility gap is larger, it may cover the other one, as illustrated in
Fig. 15.16(b). At the intersection with the transition line the phase boundary shows
an angle. The reason is that g22 appears in the denominator of the expression for
(dxα

2 /dT )coex, given in Section 11.4, and the phase boundary will thus be less steep
(smaller dT/dx) below the transition line because g22 (i.e. ∂2Gm/∂x2

2 ) is smaller in the
ordered region.
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In our first calculation of the tri-critical point we started with a function Gm(T, x, ξ )
where ξ is an internal variable. An expression for its equilibrium value was then inserted
and a function Gm(T, x) was obtained which had different expressions above and below
the transition line. They were then used in the calculation. Of course, one could just
as well have used the results of experimental measurements in such a calculation. As a
demonstration, let us suppose the contribution Gp

m to the Gibbs energy from an ordering
reaction has been measured across the transition line, including the effects of short- as
well as long-range order. Suppose further that this effect is found to be approximately the
same function of T – Ttr for all compositions and the transition temperature, Ttr, varies
linearly with composition. Then

∂Gp
m

∂x
= ∂Gp

m

∂Ttr
· dTtr

dx
= −∂Gp

m

∂T
· dTtr

dx
(15.39)

and

∂2Gp
m

∂x2
= ∂2Gp

m

∂T 2
·
(

dTtr

dx

)2

= −Cp
P

T
·
(

∂Ttr

∂x

)2

, (15.40)

where Cp
P is the effect of the ordering reaction on the heat capacity. Suppose the solution

is otherwise ideal, ∂2G ideal
m /∂x2 = RTtr/x(1 − x). The intersection of a spinodal with

the transition line is found where

∂2Gm

∂x2
= RTtr

x(1 − x)
− Cp

P

Ttr
·
(

∂Ttr

dx

)2

= 0 (15.41)

x(1 − x) = (
RT 2

tr

/
Cp

P

) ·
(

dx

dTtr

)2

. (15.42)

This would be a tri-critical point. It is thus demonstrated that the tri-critical point will
be closer to the T axis of the system, the larger the heat effect is. This is an expected result
but the direct role played by CP is very interesting in view of the many measurements
indicating that CP goes to very high values close to Ttr and theoretical models of ordering
predicting that CP actually should approach infinity at Ttr. The tri-critical point would
thus approach the T axis of the binary system but the miscibility gap would there be
extremely thin. It is also worth noting that CP may approach different values on the
two sides of Ttr. The spinodals on the two sides may thus intersect the transition line
at different points. The point of intersection for the upper spinodal could fall much
below the other one but would move up along the transition line if there is short-range
order in the disordered state above the transition line. However, it could not reach the
point of intersection for the lower spinodal because the heat effect of long-range order is
larger.

It is also interesting to note the role of the slope of the transition line, dTtr/dx. Its
effect is demonstrated in Fig. 15.17(a) which shows an ordering reaction that does
not occur in the pure components but has its ideal composition in the middle of the
system. Miscibility gaps with tri-critical points may appear on both sides where the
transition line is steep enough. It should be emphasized that this case is not related to
the case of a first-order transition which forms a complete two-phase field in a binary
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Figure 15.17 Two types of ordering miscibility gaps. (a) The ordering transition is of second
order and the dashed line is the transition line. The spinodals are drawn with thin lines. (b) The
transition is of first order and the thin lines represent stability limits calculated for a superheated
or supercooled homogeneous system and without considering compositional fluctuations.

transition line

Figure 15.18 See Exercise 15.7.

diagram (see Fig. 15.17(b)). This two-phase field can be regarded as two connected
miscibility gaps but there is no ordinary consolute point. Instead, the point of maxi-
mum is here a congruent point where the ordered phase can transform into the disor-
dered phase by a first-order transition as it would do if the two phases were not related
structurally.

The two points representing the limit of stability for an ordering reaction of first-
order, indicated in Fig. 15.4(b), also extend into lines and they also demonstrate that
the congruent point is not a critical point. The disordered state is metastable well below
and the ordered state is metastable well above the temperature where the ordered and
disordered states of the same composition have the same Gibbs energy. However, in
order to find the real limits of stability, the spinodals, one should also consider the
simultaneous variation in composition. That would make no difference when cooling
the disordered state because g12, which is defined as ∂2Gm/∂x∂ξ , is zero for ξ = 0. On
the other hand, when heating the ordered state, one may encounter a spinodal before the
limit of stability calculated without considering fluctuations in composition. This possi-
bility is not indicated in Fig. 15.17(b).
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Exercise 15.7

Figure 15.18 looks like a violation of the 180◦ rule. Try to find an explanation.

Hint

Compare with Fig. 15.16(b) and apply the same type of argument to the present case.

Solution

In the present case, the lower part of the binodal is situated above the transition line.
In both diagrams, the binodal is steeper above the transition lines than below and the
explanation is the same.
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16.1 Surface energy and surface stress

By cutting a piece of material in two one can create two fresh surfaces and it is evident
that they represent an increase of the energy of the system because bonds between atoms
or molecules have been broken. Admittedly, the energy may then decrease somewhat
by relaxation in the surface layer. The net effect can be defined as the surface energy
or rather surface free energy or surface Gibbs energy under the usual isobarothermal
conditions. We shall simply use the term surface energy and apply the same term to real
surfaces as well as interfaces. Specific surface energy, i.e. the energy per surface area,
will be denoted by σ .

However, the energy of the system may decrease further by minimizing the surface
area. Primarily, there would be a tendency of the two new pieces to minimize the surface
area by a shape change of the material and for an isotropic material the final shape
would be spherical. That could happen quickly if the material is liquid but it could be an
extremely slow process for a piece of solid material. The decrease of energy during the
shape change is easily calculated for an isotropic material because its specific surface
energy, σ , the energy per area, is constant.

Secondarily, the surface could contract further without a shape change by compressing
the material in the sphere. It will thus be put under an increased pressure, formally caused
by a stress in the surface. For a sphere one would get

�P = 2 f/r, (16.1)

where r is the radius and f is the surface stress. For a liquid phase it seems reasonable
to assume that the structure of the surface is reorganized as it contracts and is thus able
always to maintain the same structure and the same specific surface energy. The tendency
to contract would thus be directly connected to the energy decrease by the decrease of
surface area. The surface stress f would then be equal to the specific surface energy σ .

The situation is different for a crystalline material where the surface layer is coherent
with the material in the interior. Not only the area of the surface layer but also its structure
will contract in order to fit into the structure of the compressed material. It is not even
evident that the energy of the surface will decrease at all by such a contraction. In reality
one may expect some decrease because there was probably a tendency of relaxation in
the surface layer when first formed but it was prevented by the coherency. Some stress
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was thus built into the surface layer and probably a compressive stress because the atoms
or molecules in the surface layer may tend to attract each other more when losing their
neighbours outside the surface. Very little is known about the magnitude of surface stress
but it seems evident that it should be lower than the specific surface energy, f < σ .

What has here been said about surfaces applies as well to interfaces and it is then
important to distinguish interfaces between two fluids, for which f = σ , from those
where at least one of the phases is crystalline. For them f < σ .

Three materials can be in contact with each other along a line. In a section perpen-
dicular to that line one can measure three contact angles and they can be calculated
by minimizing the surface energy of the system. They are thus controlled by the three
specific surface energies and the result is the same as if they were regarded as three
balancing surface tensions. It is thus common to regard the specific surface energy as a
surface tension, which is equal to σ . It is important not to confuse surface tension with
surface stress, which is the quantity that gives rise to the increased pressure according
to Eq. (16.1). The term surface tension should be avoided as much as possible.

The effect of surface energy is particularly pronounced for liquids inside the thin holes
of capillaries and this whole field is often referred to as capillarity.

16.2 Phase equilibrium at curved interfaces

We shall start with a general method of finding equilibrium conditions by maximizing
the entropy under constant energy, volume and content of matter. It is based on the use
of Lagrange’s multipliers. We shall apply the method to a system with a spherical β

phase in an α matrix. We have V β = (4π/3)r3 and the surface energy will be 4πr2σ =
4πσ (3V β/4π )2/3.

For a completely closed (isolated) system with dNi = dV = dQ = 0, and thus dU =
0, the combined law yields, e.g., after rearranging the terms in Eq. (3.1),

dS = (1/T )dU + (P/T )dV −
∑

(µi/T )dNi + (D/T )dξ = (D/T )dξ . (16.2)

The condition of equilibrium is thus obtained from the maximum of S for the total system
but we must find that maximum under the constant values of U, V and Ni

Uα + Uβ = U (constant) (16.3)

V α + V β = V (constant) (16.4)

Nα
i + Nβ

i = Ni (constant). (16.5)

According to Lagrange’s method we should form a new function which must have its
maximum at the same time because the additional terms are always zero.

L = Sα + Sβ + λ[U − Uα − Uβ − 4πσ (3V β/4π )2/3]

+ ν(V − V α − V β) + �ηi

(
Ni − Nα

i − Nβ
i

)
. (16.6)
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Here, λ, ν and ηi are Lagrange multipliers and their values will be determined by maxi-
mizing L. When searching for the maximum, we get six conditions,

∂L/∂Uα = ∂Sα/∂Uα − λ = 0 (16.7)

∂L/∂Uβ = ∂Sβ/∂Uβ − λ = 0 (16.8)

∂L/∂V β = ∂Sβ/∂V β − λσ (32π/3V β)1/3 − ν = 0 (16.9)

∂L/∂V α = ∂Sα/∂V α − ν = 0 (16.10)

∂L/∂ Nα
i = ∂Sα/∂ Nα

i − ηi = 0 (16.11)

∂L/∂ Nβ
i = ∂S β/∂ Nβ

i − ηi = 0. (16.12)

All the derivatives of S are well known from the combined law applied to one phase at a
time. We obtain

1/T α = ∂Sα/∂Uα = λ = ∂Sβ/∂Uβ = 1/T β (16.13)

µα
i /T α = −∂Sα/∂ Nα

i = −ηi = −∂Sβ/∂ Nβ
i = µ

β
i /T β. (16.14)

We have thus derived the well-known conditions of equilibrium, T α = T β, and µα
i = µ

β
i .

The remaining two equations give

Pα/T α = ∂Sα/∂Sα = ν = ∂Sβ/∂V β − λσ (32π/3V β)1/3

= Pβ/T β − λσ (32π/3V β)1/3 (16.15)

Pβ − Pα = σ (32π/3V β)1/3 = 2σ/r (16.16)

This is a well-known expression for the pressure difference for fluid/fluid interfaces but
we have not been able to take into account the possibility that the pressure difference
should instead be given by Eq. (16.1) with f instead of σ if the β phase were a crystalline
substance. Furthermore, we found Pα �= Pβ and it is evident that the ordinary equi-
librium condition, Eq. (16.14) or µα

i = µ
β
i when T α = T β, here applies to two phases

under different pressures. For clarity it should thus be written

µα
i (Pα) = µ

β
i (Pβ). (16.17)

This is a famous relation derived by Gibbs [3]. It remains to be discussed whether this
relation applies to the local situation at any spherical piece of interface where r is the
radius of curvature or only when there is a full sphere. In the next section we shall thus
examine the problem in more detail.

16.3 Phase equilibrium at fluid/fluid interfaces

The effect of capillarity on the equilibrium between the two phases separated by an
interface can be treated with any characteristic state function and we shall now use
the Gibbs energy because its natural variables are those that are usually kept constant
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experimentally, P, T and content of matter. The total Gibbs energy of an α + β system
with an α/β interface can be given as

G = Gα + Gβ + Gσ. (16.18)

The α phase will be chosen as the matrix phase and it will be under the same pressure
as the surroundings, P. The β phase will be an inclusion under a higher pressure due
the surface stress, Pβ > P , and it will depend on the size of the β inclusion through
Eq. (16.1). The amounts of the various components in the β phase will be regarded as
internal variables because they can vary by exchanges with the α phase, which is part
of the system. We shall later study the effect on G of a transfer of a small amount of a
single component j to β from α, dNβ

j , but we shall first consider an exchange of balanced
amounts of all components, i.e., the composition of the β inclusion will be fixed and
given by xβ

i and thus dNβ
i = xβ

i dNβ. The independent variable will thus be Nβ, and Pβ

is a dependent variable through Eq. (16.1) because the radius r depends on Nβ.
According to Section 3.4 the Gibbs energy of β must be expressed in the following

way using the values of T and P in the surroundings,

Gβ = Nβ
[
Uβ

m(Pβ, T β) − T Sβ
m(Pβ, T β) + PV β

m (Pβ, T β)
]
. (16.19a)

The reason is that U, S and V are additive properties but G is not unless T and P have the
same values in all the subsystems. In the present case, which is isothermal we get

Gβ = Nβ
[
Uβ

m(Pβ) − T Sβ
m(Pβ) + PV β

m (Pβ)
]

= Gβ(Pβ) − (Pβ − P)V β(Pβ). (16.19b)

Gβ(Pβ) is a Gibbs energy function defined for a β phase in the hypothetical case where
the pressure of Pβ applies to the surroundings as well as the β phase itself. We shall
now take the derivative of Eq. (16.18) with respect to the only independent variable, Nβ,
whereas Pβ is a variable dependent on the size of the β particle through Eq. (16.1),
i.e. on Nβ. However, we would like to use the quantity Gβ

m(Pβ), which is defined as
(∂Gβ/∂ Nβ)Pβ where Pβ is treated as an independent variable. Then, we must also take
into account the partial derivative with respect to Pβ.

dG

dNβ
= dGα

dNβ
+

(
∂Gβ

∂ Nβ

)
Pβ

+
(

∂Gβ

∂ Pβ

)
Nβ

× dPβ

dNβ
− dPβ

dNβ
× V β(Pβ) − (Pβ − P) × dV β

dNβ
+ dGσ

dNβ
. (16.20)

The third and fourth terms on the right-hand side eliminate each other because ∂G/∂ P =
V and it is thus unnecessary to discuss the interpretation of dPβ/dNβ.

dG/dNβ = −
∑

xβ
i µα

i (P) + Gβ
m(Pβ) − (Pβ − P) × dV β/dNβ + dGσ/dNβ.

(16.21)
Equation (16.21) will now be applied to a spherical β particle in a fluid/fluid system.
The surface energy, Gσ, is equal to Aβ · σ and dAβ = 8πrdr = (2/r )dV β. The specific
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surface energy can be regarded as independent of size except for nano-sized particles,
yielding

dGσ/dNβ = σ × dAβ/dNβ = (2σ/r ) × dV β/dNβ (16.22)

According to Eq. (16.1) we can express Pβ − P as 2σ/r since f = σ for a fluid/fluid
system. The last two terms in Eq. (16.21) thus eliminate each other, leaving

dG/dNβ = −
∑

xβ
i µα

i (P) + Gβ
m(Pβ). (16.23)

At this time it is thus unnecessary to discuss the interpretation of dV β/dNβ as well as
dPβ/dNβ. At equilibrium with respect to growth of the β inclusion dG/dNβ must be
zero and we thus obtain the following equilibrium condition,∑

xβ
i µα

i (P) = Gβ
m

(
Pβ

e

)
. (16.24)

The subscript ‘e’ has been added in order to emphasize that this is the increased pressure
in β required for equilibrium with the α phase of its given composition. It is important
to notice that the properties of each phase must here be evaluated at its own pressure.
It is more convenient to compare them at the same pressure. We may thus like to intro-
duce Gβ

m(P). That can be done using the following relations obtained with a constant
compressibility κ of the liquid β phase,

V β
m (Pβ) = V β

m (P)(1 − κ(Pβ − P)) (16.25)

Gβ
m(Pβ) − Gβ

m(P) =
Pβ∫

P

V β
m (Pβ)dPβ = V β

m (P)
(
Pβ − P − 1

2κ(Pβ − P)2
)

= V β
m (P)(Pβ − P)(1 − κσ/r ). (16.26)

We can now introduce the driving force for precipitation of β from the α matrix and
using the equilibrium condition Eq. (16.24) we find,

− �Gm ≡
∑

xβ
i µα

i (P) − Gβ
m(P) = Gβ

m

(
Pβ

e

) − Gβ
m(P)

= V β
m (P)

(
Pβ

e − P
)
(1 − κσ/re).

(16.27)

(1 − κσ/re) can be regarded as a correction factor to the result for an incompressible β

phase. It is close to unity and is thus of minor importance.
Expressing Pβ

e − P as 2σ/re we can write the equilibrium condition, Eq. (16.24), as∑
xβ

i µα
i (P) − Gβ

m(P) = −�Gm = (2σ/re)V β
m (P)(1 − κσ/re). (16.28)

The equilibrium size of a spherical droplet is thus

re = 2σ (1 − κσ/re)
/( − �Gm/V β

m (P)
)
. (16.29)
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inert body, s

R rβ

σβ/s − σα/s

α
σα/β

Figure 16.1 The use of a cylindrical hole in an inert body to achieve a constant pressure Pβ in an
included phase.

Of course, −�Gm is a positive quantity if there is a tendency to form β from the α

phase.
For a gas bubble one has PVm = RT and obtains∫

V β
m dP = RT ln

(
Pβ

e /P
)

(16.30)

−�Gm =
∑

xβ
i µα

i (P) − Gβ
m(P) = RT ln

(
Pβ

e /P
)

(16.31)

Pβ
e = P exp(−�Gm/RT ) (16.32)

re = 2σ
/(

Pβ
e − P

) = 2σ/P [exp(−�Gm/RT ) − 1] . (16.33)

When the β particle grows, its internal pressure decreases and one may wonder if that fact
should not affect the equilibrium condition. It should thus be interesting also to consider
a case where Pβ does not vary with the size of the β phase. That could be realized with
the arrangement in Fig. 16.1. When β is growing, the spherical α/β interface moves
a distance dl without any change of shape. The change of surface energy will depend
on the changes of the interfaces to the wall of the container, (σβ/s − σα/s) × 2π Rdl.
However, that difference controls the contact angle of the α/β interface to the surface
of the container through an energy balance and thus its curvature. Figure 16.1 yields

dGσ = 2π R(σβ/s − σα/s)dl = π R2(2σα/β/r )dl. (16.34)

In the following we shall drop the superscript in σα/β. Introduction of the change of
volume, dV β = π R2dl, yields

dGσ = (2σ/r )dV β. (16.35)

This is the same result as for the spherical particle. We may conclude that the effect of
surface energy can be applied locally to any piece of a fluid/fluid interface. An explanation
why a possible change of Pβ during growth has no effect on the equilibrium conditions
is provided by the fact that the two terms containing the derivative dPβ/dNβ in Eq.
(16.20) eliminated each other. Furthermore, according to Eq. (16.22) there are two terms
in Eq. (16.21) with the derivative dV β/dNβ, which actually contains dPβ/dNβ, in the
same way as the full derivative dGβ/dNβ was represented by two terms in Eq. (16.20)
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containing dPβ/dNβ. They also eliminated each other. Finally, it may here be mentioned
without giving the proof that for a non-spherical interface one should replace 2/r by an
expression using the principal radii of curvature, 1/ρ1 + 1/ρ2.

Exercise 16.1

Evaluate the equilibrium size of a bubble if the supersaturation of the matrix, expressed
as −�Gm, is very low.

Hint

ln(1 + ε) ∼= ε

Solution

Equation (16.32) gives for small (Pβ − P)/P:−�Gm = RT ln(Pβ/P) = RT ln(1 +
(Pβ − P)/P) ∼= RT ((Pβ − P)/P) = (2σ/r )V β

m (P). In this limit there is full agreement
with an incompressible liquid according to Eq. (16.29).

16.4 Size stability for spherical inclusions

We have derived an equilibrium condition for a spherical particle in a fluid/fluid system
but should now examine if it is a stable or unstable equilibrium. According to Chapter 6 we
could examine the stability through the second derivative of G. We shall thus evaluate the
derivative of Eq. (16.23). The α phase gives no contribution since its chemical potentials
are not affected by the size and the stability is obtained as

d2G

d(Nβ)2
= dGβ

m

dPβ
· dPβ

dNβ
= V β

m · dPβ

dNβ
. (16.36)

This will be zero when Pβ is kept constant, as in Fig. 16.1. That can be compared to
the case in the left-hand part of Fig. 6.1 for a circular cross-section. All positions are
equivalent.

If the hole in Fig. 16.1 is slightly conical, r could either increase or decrease during
growth. If the hole is narrowing to the right, r will decrease and the pressure will increase
as the β phase grows. The stability will be positive and there is a stable situation at the
position where the equilibrium condition, Eq. (16.29), is satisfied. If it is widening to the
right, the stability will be negative and the situation will be unstable. The β phase would
either grow out of the hole or shrink.

It is evident that for a spherical particle the instability will be even larger. The pressure
will decrease during growth. There would be a critical size satisfying the equilibrium
condition, Eq. (16.29). If the β particle were just a little smaller, it would shrink and
disappear. If it were just a little larger, it would grow even larger. If the reservoir of α

phase were not infinite, the supersaturation would decrease gradually during growth and
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∆G

∆G*

N* N

Figure 16.2 The Gibbs energy increase as a function of the size of a spherical particle of a liquid
phase. N ∗ is the size of a critical nucleus and �G∗ is its activation energy.

the growth would eventually stop. If there were a large number of β particles, they would
be smaller when growth stops. On the other hand, not even such an ensemble would be
stable. A small fluctuation in size would make the slightly larger particles grow at the
expense of the smaller ones because the composition of the α matrix in local equilibrium
with a particle would differ depending on the size, according to the equilibrium condition
Eq. (16.28). There would thus be diffusion of material through the α matrix from the
smaller particles to the larger ones. This phenomenon is called Ostwald ripening.

16.5 Nucleation

For a system with a spherical β particle included in an α matrix we can formulate the
total Gibbs energy from Eq. (16.18), e.g. by inserting Eq. (16.19). The result will depend
on the size Nβ.

G(Nβ) =
∑ (

N o
i − Nβ

i

)
µα

i (P)
) + Gβ(Pβ) − (Pβ − P)V β(Pβ) + Aσ, (16.37)

where N o
i is the initial i content in the α matrix. For a spherical β particle the last term

can be expressed as 3σ V/r and we can express Pβ − P as 2 f/r according to Eq. (16.1).
The change of Gibbs energy from the initial homogeneous α matrix will be

�G(Nβ) = G(Nβ) − G(0)

= −
∑

Nβ
i µα

i (P) + Gβ(Pβ) − (2 f/r )V
β

(Pβ) + (3σ/r )V β(Pβ).

(16.38)

For a liquid β phase f = σ and Eq. (16.37) simplifies to

�G(Nβ) = Nβ
[
−

∑
xβ

i µα
i (P) + Gβ

m(Pβ) + (σ/r )V β
m (Pβ)

]
. (16.39)

Since r is proportional to (Nβ)1/3, the function will look as illustrated in Fig. 16.2. It
is evident that the formation of β cannot start spontaneously from a zero size. There is
a barrier of height �G∗, which must be overcome by some kind of activated process.
A β particle of a critical size N ∗ is in an unstable equilibrium. However, at both types
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of equilibrium the first two terms in Eq. (16.39) eliminate each other according to the
equilibrium condition in Eq. (16.24). Using Pβ

e − P = 2σ/re we obtain

�G∗ = N ∗ · (σ/re)V β
m

(
Pβ

e

) = 1

2
N ∗ × (

Pβ
e − P

)
V β

m

(
Pβ

e

) = 4

3
πσ (re)2

= 16πσ 3

3
(
Pβ

e − P
)2 . (16.40)

This is the energy, which must be supplied by some kind of activated process in order for
the β phase to form. It is regarded as the activation energy. A particle of this size can
either grow or shrink by a small fluctuation in size. It is regarded as a critical nucleus.
Equation (16.40) expresses the activation energy in the most general way but in order
to apply it to a particular case one must relate it to the driving force, −�Gm. It is then
necessary to define the compressibility of the β phase. For a compressible liquid one can
use Eq. (16.27), obtaining

�G∗ = 16πσ 3

3
(−�Gm/V β

m (P)
)2 (1 − κσ/re)2

∼= 16πσ 3

3
(−�Gm/V β

m (P)
)2 (1 − 2κσ/re). (16.41)

Equation (16.40) is still valid for a bubble of an ideal gas but one should insert
Eq. (16.32) instead of Eq. (16.27),

�G∗ = 16πσ 3

3P2[exp(−�Gm/RT ) − 1]2
. (16.42)

Finally, we should discuss the fact that a supersaturated solution can be unstable with
respect to two quite different kinds of fluctuations. Here we have considered a critical
nucleus being a fluctuation small in extent but large in composition (and structure). In
Chapter 15 we discussed spinodal decomposition, which can start spontaneously without
any activation barrier, i.e. without any critical nucleus. However, that treatment also
describes critical nuclei when the composition is moved outside the spinodal. Right on
the spinodal the critical nucleus is represented by a point at 1/λ = 0 and of composition
xo. In principle, it is thus an infinitely extended fluctuation with an infinitely small change
of composition. With an initial composition further outside the spinodal, the change
in composition grows and an arrow in Fig. 15.13 illustrates such a case. A detailed
calculation would show that the critical fluctuation, i.e. nucleus, becomes more localized
and starts to resemble the kind of critical nucleus described in the present chapter. The
explanation why the two treatments give different results is that a constant σ was used
here whereas it decreases with decreasing difference in composition between fluctuation
and matrix in the spinodal treatment. The use of a constant σ in the present case can be
justified by assuming that it mainly depends on the difference in structure between the
two phases. In the spinodal treatment there is only a difference in composition.
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Exercise 16.2

In textbooks one often finds the following simple treatment of nucleation. The increase of
the Gibbs energy of a system due to a nucleus is given as �G = (4π/3)r3(�Gm/Vm) +
4πr2σ which yields: ∂�G/∂r = 4πr2(�Gm/Vm) + 8πrσ = 0; r∗ = 2σ/(−�Gm

/Vm); �G∗ = (4π/3)r3(�Gm/Vm) + 2πr3(−�Gm/Vm) = (2π/3)r3(−�Gm/Vm)
= (16π/3)σ 3/(−�Gm/Vm)2. Compare this result with the correct result given by
Eq. (16.42) when applied to the nucleation of a gas bubble at a temperature above
the boiling point of a liquid composed of only one species.

Hint

Approximate the gas as ideal. The vapour pressure of the liquid matrix, corresponding to
Pβ in our treatment, must be larger than the pressure on the liquid from the surroundings,
P.

Solution

Equation (16.32) reduces to the textbook result for small −�Gm/RT : �G∗ ∼= (16π/3)
σ 3/[−�Gm P/RT ]2 = (16π/3)σ 3/(−�Gm/Vm)2. However, small −�Gm/RT means
small ln(Pβ/P). Large values of Pβ/P can easily be obtained by superheating of a liquid
or when the gas is dissolved in a liquid or solid. The textbook treatment holds strictly
for incompressible phases, only.

16.6 Phase equilibrium at crystal/fluid interface

If one of the phases is crystalline, the derivations will be more complicated because
f �= σ . There will be even more complications if the crystalline phase is the matrix
phase because it may build up internal stresses in the matrix during a growth process.
We shall thus limit the discussion to cases with a crystalline phase included in a fluid
matrix.

Equation (16.21) was derived without any particular requirement about the nature of
the interface but was then applied to a fluid/fluid interface. It will now be applied to a
crystalline/fluid interface. When expressing the pressure difference, we shall thus retain
the surface stress, f from Eq. (16.1). On the other hand, the specific surface energy, σ ,
should still appear when expressing the surface energy term, Gσ . However, there one
must notice an important difference. It has already been mentioned that a fluid/fluid
interface will reorganize its structure if expanded or contracted and the surface energy
is always proportional to the actual area, i.e., σ is constant in the expression Gσ = Aσ .
With full coherency to the interior, the surface of a crystalline phase will not change
its structure if the bulk is expanded or compressed. It may thus seem reasonable to
approximate the surface energy as APσP , evaluated at the pressure in the surroundings,
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P. Furthermore, in the case where the matrix is a condensed fluid, i.e. a liquid, one may
argue that the structure on that side of the interface should relax to some degree. However,
that possibility will be neglected whereas the consequences of the above approximation
will be examined.

The surface energy will be described with Gσ = APσP where σP is measured at a
planar interface and will be treated as independent of Pβ. Eq. (16.22) will give

dGσ

dNβ
= dAP

dNβ
· σP = 2σP

rP
· dV β(P)

dNβ
= 2σP

rP
· V β

m (P). (16.43)

The radius rP is also measured at the pressure P.
In analogy to the description of Gσ we may introduce fP/rP in Eq. (16.1) obtaining

dPβ = (−2 fP/r2
P )drP = (−2 fP/r2

P ) · rP dV β(P)/3V β(P)

= (−2 fP/3rP V β(P)
) · V β

m (P)dNβ, (16.44)

since 3dr/r = dV/V . This time we must study how to interpret dV β/dNβ in Eq. (16.21),
considering the dependent variable Pβ. Inserting (∂V β/∂ Pβ)Nβ from Eq. (16.25) and
dPβ/dNβ from Eq. (16.44) we obtain

dV β/dNβ = (∂V β/∂ Nβ)Pβ + (∂V β/∂ Pβ)Nβ · dPβ/dNβ

= V β
m (Pβ) − κV β(P) · (−2 fP V β

m (P)/3rP V β(P)
)

= V β
m (P)(1 − 2κ fP/rP + 2κ fP/3rP )

= V β
m (P)(1 − 4κ fP/3rP ). (16.45)

From Eq. (16.26) we find

Gβ
m(Pβ) = Gβ

m(P) + (Pβ − P)V β
m (P)(1 − κ fP/re). (16.46)

Inserting Eqs (16.45) and (16.46) and the definition of �Gm from Eq. (16.27) in Eq.
(16.21) we obtain

dG/dNβ = −
∑

xβ
i µα

i (P) + Gβ
m(P)

−(Pβ − P)dV β
m (1 − κ fP/rP − 1 + 4κ fP/3rP )

= �Gm + [(2 fP/rP )(κ fP/3rP ) + (2σP/rP )] V β
m (P). (16.47)

In Eq. (16.21) the third and fourth terms eliminated each other because f = σ . That is
not the case here and it was thus necessary this time to interpret dV β/dNβ and the result
depended on the compressibility, κ . It is interesting to note that for an incompressible
β phase the third term in Eq. (16.21) would be eliminated by a term appearing in Eq.
(16.46) when Gβ

m(P) was introduced. Only a correction term proportional to κ remained
when the compressibility was considered. In practice, Pβ would probably be unknown
because of lack of information on the surface stress, fP , and one would be dealing with
Gβ

m(P). It is evident that the surface stress is not of much practical importance and the
compressibility will cause only a small correction term.
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Putting dG/dNβ to zero in Eq. (16.47) we obtain the equilibrium condition for crys-
talline/fluid interfaces.

− �Gm = [
(2σP/rPe) + (2κ/3)( fP/rPe)2

]
V β

m (P) (16.48)

rPe = 2σP/
[−�Gm/V β

m (P) − (2κ/3)( fP/rPe)2
]
. (16.49)

It may be added that the actual radius at equilibrium is obtained as

re = rPe
(
1 − κ(Pβ − P)

)1/3 ∼= rPe
(
1 − 2

3κ fP/rPe
)
. (16.50)

The important conclusion to be drawn from Eq. (16.48) is that the effect of surface energy
is the same for solid and liquid inclusions. The Gibbs energy of both kinds of phases is
increased by 2σ Vm/r which is equal to Vm�P only for liquids. It is common to neglect
this fact and to express 2σ/r as �P also for solids, a procedure that does not cause any
erroneous results. There are several equations in the present textbook where Vm�P is
used without explicit mention that it should be interpreted as 2σ Vm/r for solids.

By modifying Eq. (16.38) for the present case we obtain for the increase of Gibbs
energy due to the precipitation of a β inclusion,

�G(Nβ) = Nβ
[
−

∑
xβ

i µα
i + Gβ

m(Pβ) − (Pβ − P)V β
m (Pβ) + (3σP/rP )V β

m (P)
]

= Nβ
[
�Gm + (Pβ − P)V β

m (P)(1 − κ fP/rP ) − (Pβ − P)V β
m (P)(1 − 2κ fP/rP )

+ (3σP/rP )V β
m (P)

]
= Nβ

[
�Gm + (2 fP/rP )V β

m (P)(κ fP/rP ) + (3σP/rP )V β
m (P)

]
.

(16.51)

Inserting �Gm from Eq. (16.48) we obtain for equilibrium of a spherical crystalline
inclusion

�G∗ = N ∗V β
m (P)

[−2σP/rPe−(2κ/3)( fP/rPe)2+2κ( fP/rPe)2+3σP/rPe
]

= 4
3πr3

Pe ·(σP/rPe)
(
1+4κ f 2

Pe/3σPrPe
) = 16πσ 3

P

(
1+4κ f 2

P/3σPrPe
)

3
[−�Gm/V β

m (P)−(2κ/3)( fP/rPe)2
] .

(16.52)

Again we find that the surface stress is of minor importance and enters only in corrections,
depending on the compressibility. For incompressible crystalline solids the result is
identical to the result for incompressible liquids obtained from Eq. (16.41).

Exercise 16.3

Consider two solid (β) spherical particles of a pure element, floating in a melt of the
same element. Derive an equation for the difference in temperature between them if they
have different radii, r1 and r2. Which one will grow as a result of the heat flow between
them?

Hint

Simplify the problem by assuming incompressibility. Two phases at an interface might
have the same T, yielding �Gm = �Hm − T �Sm. At the melting point To, �Gm = 0
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and we get �Gm = (To − T )�Sm. For solidification we define �Gm and �Sm as nega-
tive.

Solution

Equation (16.48) yields
(
2σ V β

m /r
) = −�Gm = (To − T )(−�Sm). Compare two parti-

cles: 2σ V β
m (1/r1 − 1/r2) = (T2 − T1)(−�Sm). Suppose r2 > r1. Then T2 > T1. Heat

will flow from the larger one and the heat of solidification can thus leave that region. The
larger particle will thus grow at the expense of the smaller one if the system is thermally
insulated. This is an example of Ostwald ripening.

16.7 Equilibrium at curved interfaces with regard to composition

So far we have only considered the equilibrium with respect to the transfer of balanced
amounts of the various components. Now we shall study the transfer of a single compo-
nent, dNβ

j , by again regarding only two variables, the independent variable Nβ
j and the

dependent variable Pβ. Instead of Eqs (16.20) and (16.21) we now obtain

dG

dNβ
j

= − µα
j (P) + µ

β
j (Pβ) +

(
∂Gβ

∂ Pβ

)
Nβ

dPβ

dNβ
j

− dPβ

dNβ
j

· V β(Pβ)

− (Pβ − P) · dV β

dNβ
j

+ dGσ

dNβ
j

= −µα
j (P) + µ

β
j (Pβ) − (2 f/r )dV β/dNβ

j

+ (2σ/r )dV β/dNβ
j . (16.53)

For a fluid/fluid interface we have f = σ and the last two terms eliminate each other. At
equilibrium dG/dNβ

j = 0 and the equilibrium condition would then be

µα
j (P) = µ

β
j (Pβ

e ). (16.54)

We have again derived Gibbs’ famous relation. However, he did not have to introduce the
limitation that σ is independent of composition because he considered a β phase with
only one component. His result is a special case of Eq. (16.24).

When replacing Pβ by P we must know how the partial molar volume, V β
j varies with

Pβ. For simplicity we shall assume that the same compressibility applies to the partial
volumes as to the integral volume. By integration we obtain similar to Eq. (16.26),∫

V β
j dP = V β

j (P)(Pβ − P)(1 − κσ/r ). (16.55)

We can thus write the equilibrium condition, Eq. (16.54), as

µα
j (P) = µ

β
j (P) + (2σ/re)V β

j (P)(1 − κσ/re). (16.56)

By summing this over all the components, we can recreate Eq. (16.28). Equation (16.56)
describes the equilibrium for all the components whereas Eq. (16.28) is a necessary but
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Figure 16.3 Molar Gibbs energy diagram for nucleation of β from a supersaturated α solution.

not sufficient condition. The equilibrium size, re, was then expressed in terms of �Gm in
Eq. (16.29). It can now be inserted into Eq. (16.56) yielding for the equilibrium condition

µα
j (P) = µ

β
j (P) − �Gm · V β

j /V β
m . (16.57)

From its definition in Eq. (16.27) one can evaluate the driving force, −�Gm, provided
that one knows the critical composition of the β phase. However, the driving force and
the composition can both be determined graphically for any given supersaturated α

matrix. One should draw the tangent to the α curve for the composition of the matrix
and then lower it until it becomes a tangent to the Gβ

m curve. That should be done by
a parallel displacement if all Vj = Vm and the magnitude of the displacement gives the
driving force, −�Gm. This means that one has made a parallel tangent construction.
If Vj �= Vm then Eq. (16.57) requires that one rotates the tangent slightly to make sure
that the displacements on the component axes are proportional to the Vj values. If all
Vj = Vm then one could instead lift the Gβ

m curve until it touches the α tangent. That
would be a common tangent construction. See Fig. 16.3.

For the critical nucleus, including the contribution from the surface energy, one can
give a point representing its Gibbs energy divided byN ∗. It is obtained by adding the
activation energy, �G∗, divided by N ∗ to the Gm value of β on the common tangent.
�G∗/N ∗ is obtained from the first part of Eq. (16.40) by inserting σ/re from Eq. (16.28).
We find �G∗/N ∗ = −�Gm/2, a value that applies even for a compressible β phase. In
Fig. 16.3 the whole Gβ

m curve has been lifted by −�Gm/2. However, tangents to that
curve do not have the usual properties because the curve is defined for a certain pressure,
which is given by the size. When adding some A or B atoms, one should move to a
curve for a slightly larger particle, i.e., for a slightly lower pressure. It is illustrated with
a thin curve in Fig. 16.4. The chemical potentials of A and B are thus obtained from
the intersection of the thin straight lines with the component axes and they will actually
coincide with the intersections of the common tangent.

The effect of a pressure difference on the composition of the two phases was examined
already in Section 7.6. We shall now base a derivation on Eq. (16.54) by first applying
the Gibbs–Duhem relation to each one of the phases. Starting from the equilibrium at a
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Figure 16.4 Enlarged detail of Fig. 16.3, illustrating that the critical nucleus has the correct
values of the chemical potentials.

planar interface and introducing a small curvature that will give rise to a small difference
in pressure, dPβ, we obtain ∑

xβ
i dµ

β
i = V β

m dP
β
. (16.58)

For the α phase there is no change of pressure and, whatever changes there will be in
composition, they also must obey the Gibbs–Duhem relation which now gives∑

xα
i dµα

i = 0. (16.59)

From Eq. (16.54) we can see that maintained equilibrium requires that dµ
β
i = dµα

i even
though the pressure inside β is increasing. We can thus reformulate Eq. (16.58),∑

xβ
i dµα

i = V β
m dPβ. (16.60)

Combination of Eqs (16.59) and (16.60) will yield a unique answer only for a binary
system, which yields, after eliminating dµα

A,(
xα

Axβ
B − xβ

Axα
B

)
dµα

B = xα
AV β

m dPβ (16.61)

dµα
B = xα

AV β
m

xβ
B − xα

B

· dPβ (16.62)

µα
B(r ) − µα

B(∞) ∼= xα
AV β

m

xβ
B − xα

B

· 2σ

r
. (16.63)

Any solution model can be applied to the α phase to evaluate its change in composition.
Using Eq. (16.54) we get for the β phase,

µα
B(r ) − µα

B(∞) = µ
β
B(r, Pβ) − µ

β
B(∞, Pβ) = µ

β
B(r ) +

∫
V β

B (r )dPβ

−µ
β
B(∞) −

∫
V β

B (∞)dPβ ∼= µ
β
B(r ) − µ

β
B(∞) ∼= xα

AV β
m

xβ
B − xα

B

· 2σ

r
.

(16.64)

The result is thus the same for both phases when expressed as the change in chemical
potential. It is interesting to note that this final result is independent of the partial molar
volume for the component although it appears in Eq. (16.57). It may be concluded that
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the partial molar volumes have a negligible effect on the composition as well as on the
activation energy of a critical nucleus.

Exercise 16.4

A liquid substance A in an inert atmosphere of 1 bar has an equilibrium vapour pressure
of Po

A. What would be the vapour pressure of a droplet of the same substance if its radius
is (a) 1 µm or (b) 1 nm and the surface energy is 1 J/m2? Suppose the molar volume is
5 × 10−6 m3 and the temperature is 25◦C and use the ideal gas law. First, assume that
the substance is incompressible. Would the pressure in case (b) be higher or lower if A
is compressible?

Solution

Equation (16.56) yields (a): µα
j (P) = µ

β
j (P) + (2σ/r )V β

j = µ
β
j (P) + (2 × 1/10−6) ×

5 × 10−6 = µ
β
j (P) + 10; PA(1 µm) = Po

A exp(10/8.3145 × 298) = 1.004Po
A and

(b): PA(1 nm) = Po
A exp[(2 × 1/10−9) × 5 × 10−6/8.3145 × 298] = 57Po

A. For a com-
pressible liquid the effect would be lower.

16.8 Equilibrium for crystalline inclusions with regard to composition

For a crystalline inclusion in a fluid matrix we shall start with Eq. (16.43), giving the
effect of the surface energy, and with a similar equation for the effect of surface stress.
When applying Eq. (16.53) we obtain

∂G

∂ Nβ
j

= −µα
j (P) + µ

β
j (Pβ) − (2 fP/rP )dV β/dNβ

j + (2σP/rP )dV β/dNβ
j .

(16.65)
We shall again assume that the same compressibility applies to the partial volumes as
the integral volume. We shall thus modify Eqs (16.45) and (16.46) to partial quantities.

dV β/dNβ
j = V β

j (P)(1 − 4κ fP/3rP ) (16.66)

µ
β
j (Pβ) = µ

β
j (P) + (Pβ − P)V β

m (P)(1 − κ fP/re) (16.67)

Introducing these results into Eq. (16.65) we obtain, similar to Eq. (16.48),

µα
j (P) = µ

β
j (P) + [

(2σP/rP ) + (2κ/3)( fP/rP )2
]

V β
j (P). (16.68)

When applying Eq. (16.53) to an interstitial component, k, we shall accept that it does not
affect the surface energy even if it increases the volume somewhat. On the other hand,
the effect of surface stress will be given by the same expression as for substitutional
components because it depends primarily on the effect on the volume. Instead of Eq.
(16.68) we thus obtain

µα
k (P) = µ

β
k (P) + (2κ/3)( fP/rP )2V β

k (P). (16.69)
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It is interesting to note that µ
β
k (P) could be approximated by µα

k (P) for an interstitial
component if its partial molar volume were negligible.

When now summing this over all the components we do not recreate Eq. (16.48). It
seems that, when accepting Eq. (16.69) for an interstitial component, we should introduce
a correction to the second term in Eq. (16.68) for the substitutional components.

µα
j (P) = µ

β
j (P) + (2σP/rP )

[
V β

j (P) + xk V β
k

/(
1 − xβ

k

)] + (2κ/3)( fP/rP )2V β
j (P).

(16.70)

The equilibrium conditions are obtained by inserting rPe instead of rP in Eqs (16.69)
and (16.70).

Finally, we shall evaluate the effect on the compositions from the Gibbs–Duhem
relation. Then we need a relation between dµα

i and dµ
β
i . For simplicity we shall limit

this discussion to incompressible β phases. Equations (16.67) and (16.70) yield

dµα
k (P) = dµ

β
k (Pβ) − V β

k (Pβ)dPβ (16.71)

dµα
j (P) = dµ

β
j (Pβ) − V β

j (Pβ)dPβ + [
V β

j (P) + xβ
k V β

k /
(
1 − xβ

k

)]
d(2σP/rP ).

(16.72)

Inserting this in Eq. (16.58) we obtain

V β
m dPβ =

∑
xβ

i dµ
β
i =

∑
xβ

i dµα
i +

∑
xβ

i V β
i dPβ −

∑
xβ

j

[
V β

j (P)

+xβ
k V β

k /
(
1 − xβ

k

)]
d(2σP/rP ) =

∑
xβ

i dµα
i +

∑
V β

m dPβ − d(2σP/rP )

(16.73)∑
xβ

i dµα
j = V β

m d(2σP/rP ). (16.74)

For a binary system we get instead of Eq. (16.62)

dµα
B = xα

AV β
m

xβ
B − xα

B

· d(2σP/rP ). (16.75)

The final result will be identical to Eq. (16.63) except for the slightly different interpre-
tation of σ and r. Equation (16.63) can thus be applied to all kinds of interfaces.

Exercise 16.5

Somebody has derived the following equilibrium condition for the case where the partial
molar volume of an interstitial component is small but not negligible, µα

i (P) = µ
β
i (P) +

(2 f/r )V β
j . Give a physical argument for or against this relation.

Hint

Even if we do not consider compressibility, Eq. (16.68) shows that it is wrong. It may
thus be easier to find an argument against it.
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Figure 16.5 The parallel tangent construction to find the interface composition.

Solution

For an incompressible phase it is not reasonable that the surface stress has any effect
because the phase is not affected. The last term should thus contain the compressibility
as a factor.

Exercise 16.6

The partial molar volume for an interstitial component is small and is sometimes approx-
imated as zero. Accepting that approximation, how should one formulate the equilibrium
for the interstitial component in a compressible β phase?

Solution

For V β
k = 0, Eq. (16.67) gives directly µα

k (P) = µ
β
k (P). The internal pressure has no

effect in this case.

16.9 Surface segregation

Another important aspect is segregation of the components to or from the surface or
interface. In order to describe this phenomenon we shall use a very crude model. It
applies to surfaces as well as interfaces and in the formulation of the model it will be
sufficient to consider the properties of one of the phases at an interface because it is
assumed that the whole system is in equilibrium. Suppose the interface can be approx-
imated as a thin layer of a homogeneous phase of constant thickness and with its own
Gibbs energy function. We shall also assume that the partial molar volumes of all the
phases, including the interfacial phase, are independent of composition. It is then easy to
see that the composition of the material in the interface can be found by a parallel tangent
construction when the volume of the interface is constant. Then we cannot consider the
addition of NA to the interface but the exchange of NA for NB. Thus, it is the slopes of the
tangents that must be equal, not their intersections with the component axes. Figure 16.5
shows a reasonable molar Gibbs energy diagram for a one-phase material with an inter-
face between two crystals, a so-called grain boundary. The distance between the two
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Figure 16.6 Derivation of Gibbs’ adsorption equation.

curves on the left-hand side is equal to σA · V i
m/t where σA is the specific interfacial

energy of pure A, V i
m is the molar volume of the interfacial phase and t is its thickness.

Now, suppose the material has the composition xo
B. The composition of the interface

material, xi
B, is obtained from the parallel tangent construction and the length of the

vertical arrow is equal to σA · V i
m/t because it is the energy required for the formation

of an interface of composition xi
B from an α reservoir of composition xo

B.
Let us now vary the composition of the material and, thus, its chemical potential for B

from µB to µB + dµB. By comparing triangles in Fig. 16.6 one can derive an equation,
called Gibbs’ adsorption equation,

− dσ = xi
B − xo

B

1 − xo
B

· t

V i
m

· dµB. (16.76)

Exercise 16.7

Apply the regular solution model and use the parallel tangent construction to calculate
the composition of a grain boundary. Examine what factor can give strong segregation.

Hint

The regular solution model gives Gα
m = xα

A
oGα

A + xα
B

oGα
B + RT (xα

A ln xα
A + xα

B ln xα
B)

+Lαxα
Axα

B. We should apply the same type of model to the interface. Remember
that oG i

A − oGα
A = σAV i

m/t and oG i
B − oGα

B = σBV i
m/t . The tangent construction gives

Gα
A − Gα

B = G i
A − G i

B.

Solution

dGm/xα
A = oGα

B − oGα
A + RT ln(xα

B/xα
A) + Lα(xα

A − xα
B) = oGi

B − oGi
A + RT ln(xi

B/xi
A)

+ Li (xi
A − xi

B); RT ln(xα
Axi

B/xα
B xi

A) = (σA − σB)V i
m/t + Lα(xα

B − xα
A) − Li (xi

B −
xi

A).
For ordinary metals σ ∼= 1J/m2, Vm

∼= 7 cm3/mol, t ∼= 10−7 cm.
At T = 1000 K the first term on the right-hand side will be less than RT even if

σB = 0. Strong segregation must be due to the L terms and, in particular, to a large
negative value of Li , i.e. to the tendency of A and B to mix in the interface. However,
the Li term will go to zero at xi

B = 0. Thus, the regular solution model predicts that
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xi
B < 0 even for the strongest segregation. The strongest segregation is thus predicted

to give not much more than what corresponds to a monolayer.

Exercise 16.8

Gibbs’ adsorption equation is usually written as −dσ = �B(A) · dµB where �B(A) is a
notation for �B − �Axo

B/(1 − xo
B) and �B and �A are the excess amounts of B and A per

unit area, due to segregation. Show that it gives the same result as the equation derived
graphically.

Hint

Remember that we assumed that the volume of the interfacial phase is constant. Thus,
−�A = �B.

Solution

−�A = �B = (xi
B − xo

B) · t/V i
m; �B(A) = (xi

B − xo
B)/(1 − xo

B) · t/V i
m in full agreement

with our result.

16.10 Coherency within a phase

The lattice parameter of a phase usually varies with the composition. The composition
differences in a surface layer obtained by diffusion through the surface may thus result in
internal stresses that could be partially relieved by the formation of dislocations. However,
if the composition gradient is very strong, the affected surface layer could be so thin that
it is difficult for dislocations to form. We shall now assume that no dislocations form
and the surface layer will then be stressed to the same lattice parameter as the bulk in the
planes parallel to the surface. Suppose the lattice parameter is a1 in a binary phase of
composition x1. In the unstressed condition the lattice parameter in a thin surface layer
of a slightly different composition would be a = a1 + (x − x1)da/dx . The stresses in
the plane parallel to the surface in an isotropic material would have to be

σ1 = σ2 = E

1 − ν

d ln a

dx
(x1 − x). (16.77)

They will allow the surface layer to be coherent with the bulk. E is the elastic modulus
and ν is Poisson’s ratio. The elastic energy per mole of the material in the thin layer
would be

W = EVm

1 − ν

(
d ln a

dx

)2

(x1 − x)2 = M(x1 − x)2. (16.78)

The coefficient M is introduced for convenience. The composition may vary gradually
with the distance from the surface but we shall apply Eq. (16.78) to the outermost layer and
x will thus be the composition of the surface. We shall now examine how the equilibrium
composition in a surrounding liquid solution will be affected by the coherency stresses.
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Figure 16.7 Equilibrium between a supersaturated liquid, initially xL
1 , and a crystalline α phase,

initially xα
1 . The composition of the surface layer, x coh, will not reach the equilibrium

composition because it is coherent with a bulk of a different composition.

Introducing the elastic energy in the Gibbs energy of a surface layer coherent with an α

layer of composition x1, we obtain

Gcoh
m (x) = Gα

m(x) + M(x1 − x)2. (16.79)

Fig. 16.7 illustrates the situation where the bulk of the α phase is within the α phase field
but the liquid has a composition within the α + L two-phase field and should thus have
a tendency to precipitate α. The diagram demonstrates that the coherent surface layer
will not reach the solubility limit, xα/L

eq , and the composition of the liquid in contact with
α will still be within the α + L two-phase field.

When a supersaturated solid solution precipitates a new phase, it happens that the new
phase grows together with a new grain of the parent phase and both phases are in contact
with the supersaturated solution. Such observations are made at fairly low temperatures
where volume diffusion is slow. The precipitated phase has received its alloy content
by boundary diffusion along the grain boundary between the new, growing grain of
the parent phase and the adjoining supersaturated parent grain. It was long a mystery
what force made the new grain grow into the supersaturated grain of the same phase.
Evidently, there is a force because the growing grain has been observed to be bowing
out and is thus growing against the action of surface energy. The explanation is given
by Fig. 16.8. In contact with the grain boundary the supersaturated α grain will be less
supersaturated because of loss by grain boundary diffusion. However, due to coherency
stresses the outermost surface layer will have a higher Gibbs energy than normal. See
the point marked on the curve for Gα

m + W . It can thus be in local equilibrium with a
growing grain but subject to an effect we shall represent by �P = 2σ/r . The common
tangent shows that there can still be a driving force for the precipitation of the new phase.

This phenomenon is usually called discontinuous precipitation because the supersatu-
ration drops discontinuously to a lower level represented by the new growing α grain. It
usually develops into a lamellar aggregate of the new phase mixed with a depleted grain
of the parent phase. Sometimes, the new phase develops as more massive particles and
the depleted grain of the parent phase bows out from the initial grain boundary to pick
up the alloying element and feed it to the particles. That is the normal case when the
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Figure 16.8 Illustration of grain boundary migration induced by grain boundary diffusion. In
discontinuous precipitation the new phase is usually a solid phase but could also be liquid. In
DIGM it is the atmosphere.

new phase is liquid. A related phenomenon has been observed where the alloy content
diffuses through the grain boundary and is disposed of into the atmosphere instead of a
new phase. It has been called DIGM for Diffusion Induced Grain boundary Migration.
Both phenomena should be described as ‘grain boundary migration induced by grain
boundary diffusion’. It should be mentioned that DIGM occurs also when the alloying
element diffuses into the grain boundary and could thus be a mechanism of alloying a
surface layer at a temperature where volume diffusion is too slow.

Exercise 16.9

When a liquid film of Cu has penetrated a grain boundary in pure Ni due to wetting, there
will be a tendency of Cu to dissolve in Ni. One has observed that this has resulted in one
of the Ni grains growing into the other one while the liquid film is migrating between
them. The new parts of the growing grain will be alloyed with Cu that comes from the
liquid reservoir but its Ni must come from the other grain. This is why that grain shrinks.
This phenomenon looks very similar to discontinuous precipitation and DIGM and is
called LFM for Liquid Film Migration. Explain why Ni should diffuse across the liquid
film.

Hint

Once a grain has started to grow, the alloyed layer is thick enough to be less affected by
the bulk. The shrinking grain will not have time to build up a thick surface layer alloyed
with Cu because it will constantly be dissolved. Its alloyed surface layer will thus be
more affected by coherency.

Solution

Figure 16.7 can be used to illustrate this case as well but the new phase, which may be
an atmosphere in the case of DIGM, must here be replaced by the liquid reservoir. The
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new Cu is provided by fresh liquid being sucked in between the Ni grains instead of by
grain boundary diffusion but that difference does not affect the diagram. The L phase in
the diagram is rich in Cu. It will thus have a higher Ni content in contact to the coherent
layer than to the growing grain. Ni will thus diffuse to that grain.

16.11 Coherency between two phases

When a new phase precipitates from a supersaturated solid solution, it is common that
many small particles form with such an orientation that they fit well into the parent
phase acting as a matrix. The two crystalline lattices are then coherent with each other
and structurally the phase interface is regarded as a coherent interface. This is favourable,
particularly during the nucleation stage, because the coherent interface has a lower surface
energy than an incoherent interface. As the new particles grow larger they may gradually
lose coherency by the formation of interface dislocations. However, we shall neglect
that possibility and examine the effect of coherency from the overall volume fractions
of the phases. To simplify the discussion we shall also neglect the ordinary surface
energy.

In general, the dimensions of the two lattices are not perfect for an exact fit to each other.
There will thus be coherency stresses. In the previous section we discussed coherency
stresses present in a thin surface layer when coherent with the bulk. In the present case
we shall assume that they will apply to the whole phase. We shall assume that each phase
is homogeneous with respect to composition as well as stresses. The coherency stresses
in a thin precipitated plate will deform it to fit into the matrix, which is deformed very
little. The elastic energy per mole of the new phase can depend on several factors. The
present discussion will be limited to cases where the misfit between the two lattices
is independent of composition and depends solely on the two crystal structures. M in
Eq. (16.78) will thus be constant. It is defined per mole of the deformed phase and the
energy increase, �Gm, will thus be f βW per mole of the material as a whole. f β is
the mole fraction of the new phase. However, a correction must be introduced to make the
elastic energy go to zero as f β goes to unity. The following equation seems reasonable
if the phases have the same mechanical properties.

�Gm = f α f βW. (16.80)

The Gibbs energy for a binary alloy can be written as

Gm = f αGα
m + f βGβ

m + �Gm( f β). (16.81)

The state of equilibrium for a material of average composition xo
B is found by minimizing

Gm with respect to the independent variables, which should be xα, xβ and xo. The phase
fractions are dependent variables through the mass balance

xo − f αxα − f βxβ = 0. (16.82)

We could thus eliminate the phase fractions but Liu and Ågren [32] have demonstrated
that the calculations can be simplified by keeping the phase fractions and use Eq. (16.82)
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Figure 16.9 Conditions for coherent α + β equilibrium. xαo and xβo are the ordinary equilibrium
compositions. xα and xβ represent a possible coherent equilibrium. The lever rule can be
applied to the xα − xβ tie-line using the average composition xo. The parabola between xα and
xβ represent the elastic energy caused by coherency. The tangents through xα and xβ are
parallel. The tangent through xo is at least approximately parallel to the other two.

as an auxiliary condition. Applying a Lagrange multiplier, λ, we shall thus minimize the
function

L = Gm + λ(xo − f αxα − f βxβ) (16.83)

∂L

∂xα
= f α dGα

m

dxα
+ λ(− f α) = 0 (16.84)

∂L

∂xβ
= f β dGβ

m

dxβ
+ λ(− f β) = 0 (16.85)

∂L

∂ f β
= −Gα

m(xα) + Gβ
m(xβ) + ∂�Gm

∂ f β
+ λ(xα − xβ) = 0. (16.86)

Equations (16.84) and (16.85) yield

dGα
m

dxα
= λ = dGβ

m

dxβ
. (16.87)

Graphically the compositions of the two phases are thus related by a parallel tan-
gent construction (see Fig. 16.9). ∂�Gm/∂ f β in Eq. (16.86) can be expressed as
∂�Gm/∂xo · ∂xo/∂ f β and Eq. (16.82) yields ∂xo/∂ f β = −xα + xo. We can thus write
∂�Gm/∂ f β as (xβ − xα)∂�Gm/∂xo where ∂�Gm/∂xo is the slope of the �Gm curve
at the composition xo. By further inserting the expression for λ from Eq. (16.87) into
Eq. (16.86) we obtain

Gα
m(xα) + (xβ − xα)

dGα
m

dxα
− Gβ

m(xβ) = (xβ − xα)
d�Gm

dxo
. (16.88)

The left-hand side represents the driving force for further formation of β from the
α reservoir. Equation (16.88) requires that it is equal to the right-hand side, which
represents the rate of increase of the elastic energy. Figure 16.9 demonstrates this relation.
That diagram is based on Gα

m(xα) and Gβ
m(xβ) having the same shape and the frame of

reference was chosen to make the common tangent horizontal. Both phases will thus have
the same Gm value when xα and xβ yield the same slope, which is required by Eq. (16.88).
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Figure 16.10 Binary phase diagram with coherent phase boundaries. The point where two
coherent phase boundaries and the To –line meet is a Williams point. The boundaries of the
coherent α + β two-phase field fall inside the ordinary α + β two-phase field. The lines
representing compositions of a new phase forming at a coherent phase boundary or the last
portion of the initial phase to disappear fall within the respective one-phase field.

In that case the tangent to the �Gm curve must also have the same slope. For any phase
fraction f β one knows the point on the �Gm curve. The slope of the three parallel
tangents is thus known and one can easily find xα, xβ and xo. When the Gm curves have
different shapes, the parallel tangent construction may still be used as an approximation.

For an analytical calculation one must give the exact shapes and for simplicity we shall
assume parabolic shapes, which is always good enough in a small range of composition
except for close to a pure component. Equation (16.81) will thus become

Gm = f αK α(xα − xαo)2 + f βK β(xβ − xβo)2 + f α f βW, (16.89)

where xαo and xβo are the equilibrium compositions of the two phases and Gm is given
relative to the state of equilibrium and the common tangent is used as a line of reference.
It was thus drawn horizontally in Fig. 16.9. Equations (16.86) and (16.87) yield

2K α(xα − xαo) = 2K β(xβ − xβo) (16.90)

K α(xα − xαo)2 + (xβ − xα) · 2K β(xβ − xβo) − K β(xβ − xβo)2

= (1 − 2 f β)W. (16.91)

Equations (16.82), (16.90) and (16.91) can be used for calculating xβ, xo and f β for a
series of xα values at a given set of xαo, xβo, K α, K β and W. These calculations will apply
to the coherent α + β equilibrium and intuitively one could expect it to extend between
the compositions where xo = xα and xo = xβ, i.e., between f β = 0 and f α = 0. This is
indeed so for the symmetric case where K α = K β = K and it is interesting to note that
the boundaries of the coherent α + β phase field fall within the ordinary α + β phase
field. The result varies with the W value as illustrated in Fig. 16.10, which would be a
classical T–x phase diagram if W/K varies linearly with T.
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The coherent α + β two-phase field coincides with the ordinary α + β field if W = 0
because there are no stresses although the phases are coherent with each other. They fit
together perfectly. As W/K is increased, the coherent α + β two-phase field will shrink
and the two phase boundaries will finally meet in a point. A coherent α + β mixture
cannot be stable above that point. The dashed line starting from that point is the well-
known equal Gibbs energy curve (To) where, in principle, α and β could transform into
each other without diffusion. Usually, such a transformation is difficult to study because
the system could easily start to transform by diffusion. It may now be concluded that
diffusional formation of coherent particles can be prevented if the coherency effect is
strong enough. The point where the To line meets the two coherent phase boundaries is
called Williams point after the person who first predicted such points [33]. The Williams
point may be an important feature of coherent phase diagrams. The physical factor
behind the Williams point is easy to understand. If the coherency effect is increased by
magnifying the �Gm curve in Fig. 16.9 until it finally intersects the point where the two
Gibbs energy curves cross. A coherent α + β mixture can be stable only when part of
the �Gm curve falls below both Gibbs energy curves.

It should be emphasized that the lever rule cannot be applied to the two boundaries of a
coherent α + β phase field because they do not represent the compositions of coexisting
phases. It is evident from Fig. 16.9 that the coexisting phases must be represented by
the two end-points of the parabolic �Gm curve because the elastic energy is evaluated
from them. Due to the parallel tangent construction xβ must fall inside the ordinary β

phase field if xα falls inside the ordinary α + β phase field. The compositions of minute
amounts of coherent α or β are represented by lines extending into the respective one-
phase field in Fig. 16.10. The lever rule can be applied to the tie-lines between the two
kinds of coherent boundaries. This is better demonstrated in Fig. 16.11 showing what
should happen if one could gradually increase the average alloy content of the system.
Starting from the lower left corner the system is in the α one-phase field and xα = xo. At
xo = 0.4 the ordinary solubility limit is reached and β should start to form if there were
no coherency effect. See the horizontal line at xα = 0.4 which is marked with 0. If there
is an effect of the strength 100 W /K = 1.2 then coherent precipitation of β could not
start until xo = 0.43. A minute amount of β with composition xβ = 0.63 could form.
As the average alloy content is rising further, the amount of β will grow and the alloy
content of both phases will decrease gradually. The composition of the α phase will cross
the ordinary phase boundary, xα = 0.4, when the β phase takes over the role of majority
phase above xo = 0.5 and most of the elastic energy will then be stored in the α phase.

If the coherency effect has the strength 100W/K = 4, the α one-phase state will
remain until the Williams point is reached at xo = 0.5. On passing that point α will be
fully transformed into β by a sharp transformation. However, it will occur gradually in
time because the first portion of β is stable only with the composition xβ = 0.7 and
the transformation will thus be rate controlled by diffusion. The alloy content of β can
decrease only as the α matrix decreases its alloy content.

The result will be different for an asymmetric system, K α �= K β. Figure 16.12 is part
of a diagram like Fig. 16.11 but calculated for K α = 2K β. The result is shown only for
100 W = 3K α. As the average composition xo is increased, minute amounts of β could
start forming at xo = 0.465. Due to precipitation of the solute-rich β phase, the solute
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Figure 16.12 Part of a diagram like Fig. 16.11 but for an asymmetric system. According to this
equilibrium diagram, the disappearance of the α phase should here be discontinuous and occur
along the dashed line. In reality it may be more probable that it will happen at the point where
the α + β curve turns back.

content of α will decrease as in Fig. 16.11. However, due to the asymmetry of the system,
the coherent α + β mixture will soon be less stable than pure β. Thermodynamically one
could expect a discontinuous change into pure β as indicated by the vertical dashed line.
The phase boundary in a coherent phase diagram should thus fall on the composition of
that line. Kinetically, one should expect the process to be impossible because it is difficult
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to imagine a continuous path between the two states without involving intermediate states
of higher energy. In practice, the system should rather follow the curve for coherent
α + β, which is getting steeper and finally even turns back. At higher alloy contents
there is no stable α + β mixture and it has been proposed that the discontinuous change
into pure β will occur spontaneously at the turning point of the α + β curve. Fig. 16.12
could as well be used to illustrate the process when one starts from pure β at the upper
right corner.

It has been emphasized that the present discussion of coherent phase equilibria is
based on a very simple model. Complications of large practical importance could be that
the mechanical properties are anisotropic and different in the two phases and the elastic
energy could depend on the composition difference. However, the existence of Williams
points and discontinuous changes of the phase fractions are probably typical of coherent
phase diagrams.

As another simple case one could assume that the elastic energy only depends on the
difference in composition as described by Eq. (16.78) and not on a structural difference.
However, then it would be logical to allow the interface to lower the elastic energy by
spreading out into a diffuse transition zone between the two phases. That is actually how
the theory of spinodal decomposition is constructed. As mentioned in Section 15.4 it
also results in the prediction that the coherent miscibility gap is more limited than the
ordinary one and the coherent spinodal thus falls inside the ordinary one.

Exercise 16.10

Sketch a diagram like Fig. 16.9 but showing the situation exactly when the coherent
phase boundary is reached.

Hint

The compositions xα and xo should then coincide.

Solution

Accepting the parallel tangent construction, the two tangents should coincide.
Figure 16.13 illustrates the only possibility for that.

16.12 Solute drag

In Section 16.9 we discussed the segregation of solute atoms to a stationary grain bound-
ary. If the boundary starts moving, there would be a tendency of the segregated atoms to
stay inside the boundary. They would thus have to diffuse with the migrating boundary
and that process would dissipate Gibbs energy and consume some of the driving force for
the grain boundary migration. The rate of migration would be lower than in a pure mate-
rial. An alternative approach would be to consider the force that makes the segregated
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Figure 16.13 Solution to Exercise 16.10.

atoms diffuse with the boundary. It could be concluded that those atoms exert an opposite
mechanical force on the grain boundary, a force that should be subtracted from the force
driving the boundary migration. That approach gave rise to the term ‘solute drag’ for
this phenomenon.

The driving force for grain boundary migration in so-called grain growth, by which
the average grain size increases, derives from the surface energy of the curved grain
boundary. It will thus be denoted Pσ and for a spherical boundary we havePσ = 2σ/r .
In a pure material this driving force will be balanced by friction connected to the grain
boundary migration and also in an alloy, where the solute drag will be added.

Pσ = P fric + P s.d.. (16.92)

In the thermodynamic approach to a β → α phase transformation one first evaluates
the chemical driving force acting over the interface under steady state conditions, which
means that the new phase grows with a constant composition, inherited from the initial
composition of the parent phase, xo

i . When the interface is passing by, material of that
composition will move to lower chemical potentials and the net effect on the interface
will be

Dchem =
∑

xo
i

(
µ

β/int
i − µ

α/int
i

)
, (16.93)

where µ
β/int
i and µ

α/int
i are the chemical potentials of component i in the two phases on

the sides of the interface. Together with the effect of surface energy of a curved interface,
the chemical driving force will pay for the dissipation of Gibbs energy caused by friction
and by diffusion of the segregated atoms. The balance of Gibbs energy will yield

Dchem + Pσ Vm = P fricVm + �Gdiff. (16.94)

Two of the pressures in Eq. (16.92) appear here but multiplied by Vm in order to express
the change of Gibbs energy per mole of material passed by the migrating interface.
Comparison of Eqs (16.91) and (16.93) shows that the two approaches would yield the
same result if

Dchem = �Gdiff − P s.d.Vm. (16.95)

There is no reason why both models should not apply to migration of grain boundaries
as well as phase interfaces. When modelling �Gdiff and P s.d. one should thus make sure
that Eq. (16.95) is satisfied.



16.12 Solute drag 373

When evaluating the dissipation by diffusion inside the interface we should integrate
over the width of the interface, say from z = 0 to δ. At each position, the segregated
amount of component i is defined as xi − xo

i and the driving force on them will be
−dµi/dz under isobarothermal conditions. The flux relative to the migrating interface
will be xi − xo

i per mole of material the interface is passing through. Equation (5.94)
will thus yield

�Gdiff = −
δ∫

0

∑ (
xi − xo

i

)dµi

dz
dz. (16.96)

When evaluating the solute drag we shall also integrate over the width of the interface
but we shall now consider the forces acting on all the atoms. The force on the atoms is
the same as before and the opposite force on the interface will have the same magnitude
but opposite direction. The solute drag will thus be

P s.d. = −1

Vm

δ∫
0

∑
xi

dµi

dz
dz. (16.97)

Inserting Eqs (16.96) and (16.97) into (16.95) we find

Dchem = �Gdiff − P s.d.Vm =
δ∫

0

∑
xo

i

dµi

dz
dz

=
∑

xo
i

δ∫
0

dµi =
∑

xo
i

(
µ

β/int
i − µ

α/int
i

) = Dchem. (16.98)

We may conclude that the two approaches are indeed equivalent. It may be argued that
the force on the interface should only include the part of µi which originates from how
the structure varies through the interface because that is what attracts atoms to remain
inside the interface. One should thus exclude from µi all parts that originate from the
variation of the composition. However, for those parts the Gibbs–Duhem relation yields∑

xi dµi = 0. The only contribution to the summation in Eq. (16.97) comes from factors
that depend on position and not composition. It is thus permitted and indeed convenient to
evaluate the solute drag by interpreting dµi/dz as the derivative of the energy of atoms
with respect to position without counting interactions from other atoms. In practice,
one must first calculate how the composition varies through the interface taking all
contributions to µi into account. It will not be very important how the solute drag is then
evaluated.

It may be informative to represent the equations with molar Gibbs energy dia-
grams. For the mechanical approach that is done by simply dividing Gm with Vm. See
Fig. 16.14(a), where the arrow representing Pσ points upwards because it is the force
driving the process. The Gibbs energy for the parent grain has been lifted a distance
Pσ Vm because it is under the influence of the surface energy as compared to the new
grain. The corresponding diagram for the thermodynamic approach is more complicated
(see Fig. 16.14(b)). The curves for the two grains are the same as before and their distance
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Figure 16.14 Illustration of the effect of diffusion inside a migrating grain boundary. (a) This is
based on the solute drag approach and considers mechanical forces. (b) This is based on
dissipation of Gibbs energy. It illustrates that a negative chemical driving force,Dchem, is acting
on the boundary. As the boundary migrates, the material of composition xo

B moves down the
vertical line, starting from the interior of the parent grain. It first moves through the spike and
then crosses the boundary.

is given by Pσ Vm. The dissipation by friction is also directly related to the correspond-
ing force, �Gfric = P fricVm, but the solute drag in Fig. 16.14(a) now corresponds to two
dissipations. According to Eq. (16.95), P s.d.Vm should correspond to �Gdiff − Dchem,
where Dchem is a driving force, not a dissipation. However, for grain growth there is
no chemical driving force for the process because the new grain has the same structure
as the parent grain and inherits its initial composition (see Fig. 16.14(b)). On the other
hand, if the solute atoms are attracted to the grain boundary during its migration, then
there must be a deficit of solute atoms just in front of the boundary, a negative spike.
Diffusion in that spike will dissipate Gibbs energy, �Gspike. The chemical potentials on
the forward side of the boundary, µ

β/int
i in Eq. (16.93), will have to be evaluated from

the local composition of the parent grain, i.e., from the bottom of the negative spike.
That will result in a negative driving force, Dchem. It can be shown that under steady
state conditions it will be equal to the dissipation in the spike. The driving force for the
migration, which is given by the left-hand side of Eq. (16.94), is thus lower than Pσ Vm

because Dchem is negative. We could write

Dchem + Pσ Vm = Deff = �Gfric + �Gdiff. (16.99)

The two diagrams give equivalent results but the thermodynamic one gives a more
complete picture of the process. The mechanical diagram neglects the existence of the
negative spike.

Figure 16.15(a) and (b) illustrate the two approaches applied to a β → α phase trans-
formation. Again the thermodynamic diagram gives the more complete picture. As for
grain growth in Figs 16.14(a) and (b), the new diagrams are constructed for a partitionless
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Figure 16.15 Illustration of the effect of diffusion inside a migrating phase interface. (a) This is
based on the solute drag approach and considers mechanical forces. It illustrates that the
so-called solute drag can act as a driving force because P s.d. points upwards here but downwards
in Fig. 16.14(a). (b) This is based on dissipation of Gibbs energy and shows that the chemical
driving force is here positive, pointing upwards. For grain growth in Fig. 16.14(b) it was
negative, pointing downwards.

reaction, i.e., the new phase inherits the initial composition of the parent phase. Again
there is dissipation in a spike but now there is a positive chemical driving force for the
whole reaction, Dtotal > 0, and it is more than sufficient to balance the dissipation in the
spike. There will thus be a positive chemical driving force on the interface, represented
by the arrow for Dchem pointing upwards in Fig. 16.15(b), in contrast to grain growth
where it was pointing downwards in Fig. 16.14(b). Now it is thus possible for the inter-
face to migrate against the action of a negative curvature. The growing α phase may
thus bow out into the parent β phase. To illustrate this possibility, the arrow representing
Pσ Vm is pointing downwards in Fig. 16.15(b).

When applying Eq. (16.99) to grain growth we found that Dchem was negative and
the effective driving force was thus less than Pσ Vm. For a phase transformation Pσ Vm

may be positive or negative depending on how the interface is curved. In any case, the
effective driving force must be equal to �Gfric + �Gdiff but how it is divided between
the two depends on the detailed model of the interface, which will not be discussed here.

When applying Eq. (16.92) to a partitionless phase transformation we could rearrange
the terms to make them all positive,

− P s.d. = P fric − Pσ . (16.100)

This is illustrated in Fig. 16.15(a) and it is particularly interesting that the definition of
the solute drag through Eq. (16.97) can make it negative. It has then become a driving
force instead of a drag. Of course, the tendency of segregated atoms to stay inside the
migrating interface will still act against the migration but how that is accomplished can
only be explained by the thermodynamic diagram in Fig. 16.15(b).
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The fact that the solute drag can turn negative and become a driving force for the
migration suggests a new possibility of providing a driving force for DIGM, which is a
kind of grain growth. DIGM was discussed in Section 16.10 and it was there explained
that it may be driven by coherency stresses.

For low rates of migration, the segregated solute atoms can diffuse with the interface
under a low dissipation of Gibbs energy. At very high rates of migration they may
not be able to keep pace with the interface and the amount of segregated atoms will
decrease and approach zero. After having reached a maximum at some intermediate
rate, the dissipation will thus decrease and almost vanish if the remaining resistance to
migration, mainly friction at high rates, is not too large. With increasing driving force,
whether by a decreasing initial grain size or an increasing supersaturation, there may be
a discontinuous jump from a region of low rates to a region of high rates on the other
side of the maximum.

All the derivations in this section have concerned interfaces migrating under steady
state conditions. The new grain or phase is thus assumed to inherit the initial composition
of the parent. However, since the interfaces are extremely thin, compared to ordinary
diffusion distances, the equations can also be applied to cases where there is long-range
diffusion in the grains or phases. Only one modification must be made. The composition
of the material passing through the interface may not be given by xo

i . In Section 17.5
it will be shown that it depends on the long-range diffusion. For such cases one should
substitute x tr

i from Eq. (17.56) for xo
i in Eqs (16.93), (16.96) and (16.98).

In summary, it may be concluded that, from a practical point of view, it is just a
matter of personal taste whether to prefer the mechanical, solute drag approach or the
thermodynamic, dissipative approach. On the other hand, from a physical point of view
the latter alternative is preferable. In Section 16.8 it was shown that the mechanical
driving force for grain growth, Pσ = 2σ/r , is not the pressure difference between the
two grains. It cannot be interpreted physically until it is multiplied with a partial molar
volume which is done in the dissipation approach.

Exercise 16.11

Apply Eq. (16.96) to a binary system and simplify the expression. Interpret the result
physically.

Hint

Use xA = 1 − xB

Solution

(xA − xo
A)dµA + (xB − xo

B)dµB = (xB − xo
B)d(µB − µA). Even though Eq. (16.96) con-

cerns individual diffusion, the net result for the dissipation is the same as for interdiffu-
sion.



17 Kinetics of transport processes

17.1 Thermal activation

Arrhenius noticed that the velocity of many reactions increases with temperature accord-
ing to a simple law

J = K exp(−Q/RT ). (17.1)

He proposed that the reactant molecules must be thermally activated in order to react
and Q represents the activation energy. According to Boltzmann statistics, the probability
of such an activation is proportional to exp(−Q/RT ). Eyring et al. [34] introduced a
frequency factor in order to predict an absolute reaction rate, kT/h, where k is Boltzmann’s
constant and h is Planck’s constant. The kinetic coefficient in Eq. (17.1) may thus contain
T as a factor. We shall accept this but shall trust experimental information for the estimate
of the absolute reaction rate by adding the factor RT to the K coefficient. In general we
shall consider a reaction between two states with the driving force D but with a barrier of
height Q in the middle between the two states. The driving force will affect the need of
activation energy and it will be Q − D/2 in the forward direction and Q + D/2 in the
reverse direction. The net rate of reaction will be the difference between two opposite
reactions, each one of which is described with Eq. (17.1). For low driving forces relative
to RT we get

J = KRT

[
exp − Q − D/2

RT
− exp − Q + D/2

RT

]
= KRT exp(−Q/RT ) · 2 sinh(D/2RT ) ∼= K exp(−Q/RT ) · D. (17.2)

K exp(−Q/RT ) is a kinetic coefficient and it is common to define it as the mobility M
in a linear kinetic equation,

J = M · D. (17.3)

The first line of Eq. (17.2) shows that without any driving force, the two reactions would
balance and the net flux would be zero. This is an example of the principle of detailed
balance, which is supposed to hold at equilibrium for each mechanism even if there is
more than one mechanism for a given reaction.

It should be emphasized that Eq. (17.2) became a linear kinetic law through the
approximation of sinh(D/2RT ) as D/2RT , which is allowed for low driving forces
compared to RT. Without that approximation the model can be applied outside the linear
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range. Since the driving force is expressed as D J/mol, the flux J must have the dimension
mol/s because the product J · D would then have the dimensions J/s, which is correct
for dissipation of Gibbs energy. The mobility, M, would have the dimensions mol2/J s.

Diffusionless migration of a grain boundary. As a first application we shall examine
the migration of a grain boundary in a one-component system, i.e. the interface between
two crystals of the same material but different orientations. Some kind of unit of the
material on one side of the grain boundary may be transferred to the other side by some
deformation and rotation or individual atoms may simply jump across the interface.
Those two mechanisms will be discussed further in Section 17.6. In any case, there
may be an energy barrier, Q, and a driving force, D, e.g. caused by the boundary being
curved. We can directly apply Eq. (17.3) with M = Mo exp(−Q/RT ) but in this case it
may be more convenient to express the driving force in Eq. (17.3) as D/Vm which has
the dimension J/m3, i.e. N/m2. If the flux J is expressed as the velocity υ in m/s, then
the rate of dissipation of Gibbs energy, obtained from the product of flux and driving
force, will have the dimensions J/s m2 and the rate of dissipation of Gibbs energy in J/s is
obtained by multiplying with the cross-section of the grain boundary, a m2. The mobility
M would then have the dimensions m4/J s.

J ≡ υ = M · (D/Vm). (17.4)

For the dissipation of Gibbs energy we get from Eq. (5.133), considering the cross-
section,

− Ġ = T σ = aυ(D/Vm) = a(1/M)υ2. (17.5)

Evidently, these equations can also be applied to the migration of a phase interface in a
pure element and in an alloy if the atoms do not move individually with respect to each
other, i.e. for so-called diffusionless transformations. However, it must be modified if
the new grain or phase has a different composition. See Section 17.5.

Interstitial diffusion. The next application will be diffusion of an interstitial solute
C, which can jump between the interstitial sites in a host lattice. During each jump a
C atom has to squeeze between the neighbouring host atoms and that gives rise to an
energy barrier. The kinetic equation will be very similar to the previous case but this
time the rate of the process must depend on how many C atoms take part in the process.
Presumably, they all take part but per mole of host atoms there is only a fraction yC of C
atoms. Furthermore, according to Section 5.7 the force for diffusion is −∇(µC/T ). As
T is now constant, we could consider the negative of the chemical potential gradient, −
∇µC, as the driving force. However, we now use a detailed model according to which
the atoms exchange positions with vacancies. Their chemical potential should also be
considered and also their fraction. We should thus write the kinetic equation for the
exchange of positions of an interstitial atom with a vacancy as

JC = −MC yC yVa · ∇(µC − µVa). (17.6)

In this case JC is a real flux expressed in the lattice-fixed frame and has the dimensions
mol/s m2. If −∇(µC − µVa) is accepted as the driving force with its dimensions J/mol m,
then the entropy production given by the product would have the dimensions J/s m3,
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which is correct for the dissipation of Gibbs energy per volume. The mobility would
then have the dimensions mol2/J s m.

Substitutional diffusion. Let us consider substitutional diffusion in a binary A–B solu-
tion and as a background to a more realistic case we shall now accept the less probable
mechanism where atoms diffuse by exchanging positions with each other. In that special
case there would be no difference between the lattice- and number-fixed frames. It seems
reasonable that the diffusion of A in exchange of B across a certain plane in the system
is proportional to the probability that an A and a B atom are in the correct positions on
opposite sides of the plane, i.e. proportional to xAxB. We shall now treat the problem of
activation and consider two opposite fluxes. By comparing with Eq. (17.2) it may seem
reasonable to write the net flux as

J = KRT

[
x ′

Ax ′′
B exp − Q − D/2

RT
− x ′′

Ax ′
B exp − Q + D/2

RT

]

= KRT exp
−Q

RT

[
x ′

Ax ′′
B exp

D

2RT
− x ′′

Ax ′
B exp − D

2RT

]
. (17.7)

The two sides are identified by (′) and (′′) and the driving force for the exchange of A
and B is D = −�(µA − µB). It looks as if the effects of the two opposite fluxes cannot
be combined into a sinh function due to the different pre-exponential factors. However,
it should be realized that the chemical potentials depend on the mole fractions of A and
B, which are also present in the pre-exponential factors. In order to avoid counting their
effects twice, one should not let the driving forces include the ideal entropy of mixing,
which is R ln(x ′′

Ax ′
B/x ′

Ax ′′
B) and R ln(x ′

Ax ′′
B/x ′′

Ax ′
B), respectively. We shall thus modify

Eq. (17.7),

J = KRT exp
−Q

RT

[
x ′

Ax ′′
B exp

D + RT ln(x ′′
Ax ′

B/x ′
Ax ′′

B)

2RT

− x ′′
Ax ′

B exp − D + RT ln(x ′
Ax ′′

B/x ′′
Ax ′

B)

2RT

]

= KRT exp(−Q/RT )
√

x ′
Ax ′′

Bx ′′
Ax ′

B · 2 sinh(D/2RT )

∼= −KRT exp(−Q/RT )xAxB · �(µA − µB). (17.8)

It is more convenient to express the difference �(µA − µB) between two neighbouring
sites by the gradient ∇(µA − µB) multiplied with the jump distance. Including the latter
in the mobility we write

J = −MABxAxB∇(µA − µB). (17.9)

We have here assumed that the difference in composition is very small. The flux and driv-
ing force again have the dimensions mol/s m2 and J/mol m, respectively, and their product
has the dimensions J/s m3, which is correct for dissipation of Gibbs energy per volume.
MABxAxB is the phenomenological coefficient and has the dimensions mol2/J s m.

Vacancy mechanism for diffusion. Finally, let us consider the more realistic vacancy
mechanism for diffusion in a substitutional solution. The diffusion of an element by
exchanging positions with vacancies or with atoms of a second element will be very
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similar. We can adopt Eq. (17.6) or (17.9) with very slight modifications. The driving force
will now be −�(µA − µVa) and the crucial question is what happens to the vacancies.
Contrary to vacancies in the interstitial sublattice and to atoms, vacancies in the host
lattice can be generated or absorbed at crystalline defects, mainly dislocations. The
frame of reference based on the lattice or on the number of atoms will thus make a
difference. We shall only discuss the simplest case and assume that the mechanisms of
regulating the local number of vacancies are so efficient that equilibrium is maintained
everywhere. The possible gradients of µVa may thus be neglected and the driving force
will simply be −�µA. The fraction of vacancies should be retained in Eq. (17.6) but
expressed by the ordinary mole fraction xVa instead of yVa, which was a site fraction
in the interstitial sublattice. In Eq. (17.9) it would replace xB. However, for practical
reasons the equilibrium fraction of vacancies may be incorporated in the M coefficient.
For small composition gradients the flux of element A can thus be approximated by

JA = −MA

√
x ′

Ax ′′
A · ∇µA

∼= −MAxA · ∇µA. (17.10)

This flux is given in the lattice-fixed frame and MA is regarded as the individual mobility
of A. Its activation energy, Q, would be the sum of activation for creating vacancies and for
atoms jumping into vacant sites. MAxA corresponds to the first diagonal coefficient in the
phenomenological equation for a lattice-fixed frame, LAA, and again has the dimensions
mol2/J s m. It is evident that no coupling effects were considered in the present modelling
of diffusion of A and B and it should be emphasized that correlation effects were also
neglected, i.e., the fact that a reverse jump is always more probable directly after a jump
because the atom and the vacancy are in the correct positions for an exchange in the
reverse direction.

Diffusion in number-fixed frame. If the net effect of diffusion by the vacancy mecha-
nism is expressed in the number-fixed frame, the net effect will be the same as if atoms
exchange positions with each other. It should thus be interesting to change the descrip-
tion of individual diffusion by the vacancy mechanism to the number-fixed frame and
compare with predictions based on interdiffusion, i.e. Eq. (17.9).

Equations (5.115) to (5.118) yield the kinetic coefficients after transformation to the
number-fixed frame by inserting the value 1 for all the a parameters. By again neglecting
cross coefficients in the lattice-fixed frame we obtain for the number-fixed frame in a
binary system,

L∗
11 = L11(1 − x1)2 + L22x2

1 = (
MAxAx2

B + MBxBx2
A

)/
Vm

= xAxB(xB MA + xA MB)
/

Vm. (17.11)

L11 and L22 were identified as MAxA and MBxB using Eq. (17.10). Comparison with
Eq. (17.9) shows that the results may indeed be formally identical and the requirement
is

MAB = xB MA + xA MB. (17.12)

For a formal description of interdiffusion one may thus use the number-fixed frame
and from experiments one may evaluate the MAB mobility without specifying or even
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knowing the particular diffusion mechanism. If the individual mobilities in the lattice-
fixed frame are known experimentally, then MAB can be calculated from Eq. (17.12).

Exercise 17.1

Estimate at what temperature the deviation from the linear law is 100% for solidification
of a pure metal.

Hint

This exercise concerns the approximation of sinh in Eq. (17.2). The entropy of melting
for ordinary metals can be approximated to �Sm = R. The enthalpy of melting can
be estimated from �Gm = �Hm − �(T Sm) = �Hm − T0�Sm = 0 at the melting
temperature T0.

Solution

Assuming that �Sm and �Hm are independent of temperature, the driving force for
solidification at T will be −�G = �Hm − T �Sm = RT0 − T R = R(T0 − T ).

When is 2 sinh[(T0 − T )/2T ] = 2(T0 − T )/T ? A table gives sinh 2.18 = 4.36 . We
find T = 0.19T0.

Exercise 17.2

Evaluate the Kirkendall velocity in the number-fixed frame from Eq. (5.109) for a binary
system in terms of the individual mobilities.

Hint

The Gibbs–Duhem relation yields xAdµA + xBdµB = 0 under isobarothermal condi-
tions.

Solution

J ∗
K = −JA − JB = (MAxA/Vm) · dµA/dz + (MBxB/Vm) · dµB/dz

= (MA/Vm) · xAdµA/dz + (MB/Vm) · xBdµB/dz = (1/Vm)(MA − MB) · xAdµA/dz.

17.2 Diffusion coefficients

In lattice-fixed frame. In experiments on diffusion one usually studies how the compo-
sition profiles change with time and from the composition one can in principle evaluate
the chemical potentials of the components and their gradients that drive the diffusion.
However, it is then necessary to know the thermodynamic properties of the system,
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which may not be available. It is thus more practical to regard the composition gradient
as the driving force for diffusion. In a binary system there will be only one independent
composition variable and only one such driving force, say dxA/dz, which is equal to
−dxB/dz. By not neglecting the cross terms in the basic phenomenological equations in
the lattice-fixed frame, we find by using the Gibbs–Duhem relation

JA = LAA XA + LAB XB = −LAA∇µA − LAB∇µB = − (LAA − LABxA/xB) ∇µA

= − (LAA − LABxA/xB)
dµA

dxA

dxA

dz
= −DA

Vm

dxA

dz
. (17.13)

This defines DA, the individual or intrinsic diffusion coefficient of component A. The
molar volume, Vm, was introduced in the equation in order to give DA the dimensions
m2/s, the same as in an equation based on the gradient of the concentration instead of
mole fraction. There is no cross coefficient in Eq. (17.13) in spite of the fact that there
are two diffusion coefficients, one each for A and B, the reason being that there is only
one driving force. Neglecting the cross coefficient LAB we can identify LAA with MAxA

in Eq. (17.10) and express the diffusion coefficient as

DA

Vm
= MAxA

dµA

dxA
= MA

dµA

d ln xA
, (17.14)

where dµA/d ln xA is called thermodynamic factor. For dilute and ideal solutions it is
equal to RT, yielding

DA = MAVm RT . (17.15)

It should be noticed that mobility has the dimensions mol2/J s m but it is more common
to include Vm in the mobility, which would then have the dimensions mol m2/J s.

Many diffusion experiments are made with radioactive isotopes. They may be used
as a method of following the diffusion of an element, usually at a very low content and
Eq. (17.15) then applies. It is more common to study how the radioactive atoms mix with
stable atoms of the same element that are distributed homogeneously in the system. That
phenomenon is regarded as self-diffusion and can also be described with Eq. (17.15)
because the mixture of isotopes of the same element is extremely close to ideal. This
is called a tracer diffusion experiment and the diffusion coefficient is usually denoted
by D∗

A.
Of course, the thermodynamic factor cannot be evaluated without information about

the thermodynamic properties and, if one likes to use such information in the analysis of
experimental data, it makes no difference in practice if one uses the diffusion coefficient
or the mobility. It should be emphasized that most diffusion studies only concern inter-
diffusion that will be discussed next. They are not sufficient for evaluating individual
diffusivities like DA.

In number- or volume-fixed frame. Considering the fact that there will be one inde-
pendent force less than the number of components due to the Gibbs–Duhem relation, it
may be interesting to define diffusion coefficients in the number- or volume-fixed frame
where the number of independent diffusional fluxes is also one less. In order to have two
independent diffusional fluxes in those frames we shall consider a ternary system with
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two independent composition variables, xA and xB with xC = 1 − xA − xB. The driving
force is given by Eq. (5.121) and for a ternary case we obtain

J ∗
A = L∗

AA∇ X∗
A + L∗

AB∇ X∗
B = −L∗

AA∇(µA − (aA/aC)µC) − L∗
AB∇(µB − (aB/aC)µC)

= −
[

L∗
AA

d(µA − (aA/aC)µC)

dxA
+ L∗

AB

d(µB − (aB/aC)µC)

dxA

]
dxA

dz

−
[

L∗
AA

d(µA − (aA/aC)µC)

dxB
+ L∗

AB

d(µB − (aB/aC)µC)

dxB

]
dxB

dz
. (17.16)

The L∗
i j coefficients are those given by Eq. (5.115) and the asterisk is used to indicate

a new set of processes. It should not be mistaken for the asterisk often used for tracer
diffusion. We would like to write Eq. (17.16) as

J ∗
A = −DAA

Vm

dxA

dz
− DAB

Vm

dxB

dz
(17.17)

and similarly for J ∗
B.DAA is regarded as the chemical, mutual or interdiffusion coefficient.

The value of DAB is given by the second expression in brackets in Eq. (17.16). A similar
expression is obtained for the cross coefficientDBA but they are not equal. This is another
demonstration that Onsager’s reciprocal relation applies only to a set of conjugate pairs
of flux and force.

For a system with n components we obtain

J ∗
i = −

n−1∑
j=1

n−1∑
k=1

L∗
ik

∂(µk − (ak/an)µn)

∂x j

dx j

dz
(17.18)

Di j

Vm
=

n−1∑
k=1

L∗
ik

∂(µk − (ak/an)µn)

∂x j
. (17.19)

It should be noticed that individual diffusion coefficients, DA, etc., always refer to the
lattice-fixed frame and interdiffusion coefficients, DAA, etc., always refer to the volume-
or number-fixed frame. Furthermore, in order to avoid confusion one could give the
dependent component as a superscript, e.g. DC

AA. For clarity it could also be given in the
subscript for the flux, e.g. JA−C because it gives the interdiffusion between A and C.

Exercise 17.3

For a binary A–B system, derive a relation between the interdiffusion coefficient in a
number-fixed frame, DAA, and the individual diffusion coefficients, DA and DB.

Hint

In the number-fixed frame all ai = 1. Use the Gibbs–Duhem relation to relate dµB and
d(µA − µB) to dµA.
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Solution

xBdµB = −xAdµA; d(µA − µB) = (1 + xA/xB)dµA = (1/xB)dµA. Equations (17.16)
and (17.17) yield for a binary system DAA = VmL∗

AAd(µA − µB)/dxA = (VmL∗
AA/xB)

dµA/dxA. Insert L∗
i i from Eq. (17.8) as L∗

AA, take DA from Eq. (17.14) and a similar
expression for DB: DAA = (xB MA + xA MB) · xAdµA/dxA = xB MAxAdµA/dxA +
xA MBxBdµB/dxB = xBDA + xADB.

Exercise 17.4

Express the result for the Kirkendall velocity in a binary system, given in Exercise 17.2,
in terms of the individual diffusion coefficients.

Solution

J ∗
K = (MA/Vm)xAdµA/dz + (MB/Vm)xBdµB/dz = (1/Vm)DAdxA/dz + (1/Vm)

DBdxB/dz = (1/Vm)(DA − DB)dxA/dz.

17.3 Stationary states for transport processes

A state of stationary flow through a system can be established if the system is subjected
to different but constant conditions at different parts of its contact with the surroundings.
We shall consider the simple case of a cylindrical system of length l where heat and some
substance or substances can enter and leave the system through the two flat ends. We
shall also assume that other substances cannot leave the system but can diffuse inside it.
The phenomenological equations for them must give zero flux in the stationary state and
for the other substances the fluxes must become constant but non-zero due to constant
actions from the outside. For the case of one substance of each kind we get,

J1 = (L11�X1 + L12�X2)/ l = C1 (17.20)

J2 = (L21�X1 + L22�X2)/ l = 0. (17.21)

The two �X are the potential differences between the ends. �X1 is controlled from
the outside and is assumed to be kept constant. �X2 varies with time but approaches a
certain value when the stationary state is being established and the J2 flux stops. �X2 is
given by Eq. (17.21).

�X2 = −�X1L21/L22. (17.22)

Combination with Eq. (17.20) yields

J1 = (L11/ l)(1 − L12L21/L11L22)�X1 (17.23)

Since L12 = L21 and L11 and L22 must be positive, we find that the internal process,
that is not directly affected by the external conditions, will decrease the flux of the other
process if there is a coupling between them.
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Prigogine [7] has proposed that in the stationary state of flow the diffusing substances
will distribute themselves in such a way that the flow produces least entropy. This prin-
ciple of minimum entropy production should apply to all transport processes, e.g. heat
conduction and diffusion and can be demonstrated as follows.

Consider the transport of several substances through a cylindrical system of length l.
For each substance there is a phenomenological equation

Jj =
∑

k

L jk∇ Xk . (17.24)

The total entropy production will be obtained by multiplying with the force and integra-
tion over the length of the system,

σ =
∫ ∑

j

J j∇ X j dz =
∫ ∑

j

∑
k

L jk∇ X j∇ Xkdz. (17.25)

The integration is carried out between the two sides of the system. According to Euler’s
equation, which is based on variation analysis, we can evaluate the distributions of all
the Xi potentials through the system for which σ has an extremum. The integrand will
be denoted by I and it contains the variables Xi , which are functions of z. However, in
our case they enter into the integrand only as their derivatives with respect to z. For that
case the Euler equation is simply

d

dz

(
dI

d∇ X j

)
= 0. (17.26)

From Eq. (17.25) we find if all the Li j coefficients are constant,

dI

d∇ X j
= 2L j j∇ X j +

∑
k

(L jk + Lkj )∇ Xk (17.27)

d

dz

(
dI

d∇ X j

)
= 2L j j

d2 X j

dz2
+

∑
k

(L jk + Lkj )
d2 Xk

dz2
=0. (17.28)

There is such an equation for each process and the solution to that system of equations
is

d2 Xi

dz2
= 0 (17.29)

dXi

dz
= Ki , (17.30)

where Ki is a constant for each process and it can be found by integrating over the whole
length of the system. Since Ki is constant we obtain

Ki = dXi

dz
= �Xi

l
. (17.31)

It is evident that this result is identical to the stationary state of flow through the system.
Prigogine thus concluded that the stationary state is a state of extremum in the entropy
production and, in fact, a minimum because the entropy production can never be negative.
It should thus be possible to find the stationary state distribution of the potentials in the
system by minimizing the entropy production if one has an analytical expression for the
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dissipation of Gibbs energy, which is equal to T σ . However, it should be noted that the
derivation was based on the assumption that all Li j are constant.

It should be emphasized that Prigogine’s extremum principle has no similarity with
Onsager’s, which was discussed in Section 5.9, except for the fact that they both involve
a search for an extremum. Onsager’s principle can be used to find how a system in a given
state will change, Prigogine’s principle concerns a final stationary state where there will
be no more changes. It is less interesting that they also differ by Onsager’s principle
dealing with a maximum and Prigogine’s with a minimum. The purpose of the principles
is not to give information on the entropy production itself but to predict the behaviour
of the system.

It has often been emphasized that Prigogine’s principle is limited to cases where
the phenomenological coefficients are constant. This condition is rarely fulfilled but it
has been proposed that his principle could nevertheless be applied if the difference in
potential over the system is small enough. This will now be tested with a simple case,
that of interstitial diffusion.

For a dilute interstitial solution one may disregard the variations in yVa and µVa and
simplify Eq. (17.6),

JC = −MC yC∇µC, (17.32)

where MC yC is the phenomenological coefficient and it may vary linearly with compo-
sition. However, it is common to introduce the composition gradient using the dilute
solution approximation,

∇µC ≡ dµC

dz
= RT d ln aC

dz
= RT

aC

daC

dz
∼= RT

yC

dyC

dz
. (17.33)

We thus obtain

JC = −DC
dyC

dz
, (17.34)

where the diffusion coefficient is equal to RT MC and may be treated as constant.
However, the rate of entropy production is based on the basic phenomenological equation,
Eq. (17.32) with its variable coefficient. We obtain for the dissipation

T σ =
∫

MC yC(∇µC)2dz =
∫

MC yC

(
RT

yC

)2 (
dyC

dz

)2

dz =
∫ DRT

yC

(
dyC

dz

)2

dz,

(17.35)

where D = MC RT . The integral will be transformed in order to apply Euler’s equation

σ =
∫

4DR

(
d
√

yC

dz

)2

dz =
∫

4DR
(∇√

yC
)2

dz (17.36)

dI

d(∇√
yC)

= 8DR∇√
yC (17.37)

d

dz

(
dI

d(∇√
yC)

)
= 8DR

d2√yC

dz2
= 0 (17.38)

d
√

yC

dz
= K = �

√
yC

l
. (17.39)
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From Eq. (17.36) we now obtain

σ min = 4DR

∫
K 2dz = 4DRK 2l =(4DR/ l)

(√
y′

C −
√

y′′
C

)2

. (17.40)

Since it has been proposed that the minimum principle can be applied if the difference
across the system is small enough, we shall start by representing the difference with

ε ≡ √
y′′

C/y′
C − 1 (17.41)

σ min = 4DRy′
C

l

(√
y′′

C/y′
C − 1

)2

= 4DRy′
C

l
ε2. (17.42)

The stationary state solution yields from Eqs. (17.33) and (17.34)

T σ ss = −
∫

JC∇µCdz = −JC

∫
RT

yC

dyC

dz
= DC

�yC

l
· RT ln

y′′
C

y′
C

(17.43)

σ ss = RDC y′
C

l

(
y′′

C

y′
C

− 1

)
· 2 ln(1 + ε) = 2RDC y′

C

l
((1 + ε)2 − 1)(ε − ε2/2 + ε3/3)

= 2RDC y′
C

l
(2ε2 + ε4/6) (17.44)

(σ min − σ ss)/σ ss = −ε2/12 (17.45)

The error in the entropy production will indeed be small if ε is small. However, to
keep ε small is a very severe restriction for diffusion. The error may be very large if a
low content is used at one end of the system.

As already stated, the minimum in entropy production itself is seldom of much interest.
It should be more interesting to examine how well the principle of minimum entropy
production can predict the stationary state of the system. Equation (17.34) shows that
yC should vary linearly through the system if DC = RT MC is constant but Eq. (17.39)
shows that the principle predicts that

√
yC should vary linearly. Furthermore, when

evaluating the flux one must use the gradient of yC and the principle would give different
results from the two ends of the system. If one could accept an average one could just
as well have made an estimate without studying the stationary state but using the two
constant boundary conditions directly. It thus seems difficult to use this simple example
for justifying the principle when the thermodynamic coefficients are not constant. On
the other hand, it may not be sufficient ground for ruling out the principle in more
complicated cases. Anyway, there is no justification for using it in cases that do not
concern stationary states, i.e., without constant boundary conditions.

Exercise 17.5

Carry out the variation analysis for heat conduction, accepting that the phenomenological
coefficient can be given as λT 2.
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Hint

Remember that the force for heat conduction is d(1/T )/dz. Introduce d ln T = (1/T )dT .

Solution

σ = ∫
L (d(1/T )/dz)2 dz = ∫

λT 2(1/T 4)(dT/dz)2dz = ∫
λ(d ln T/dz)2dz;

dI

d(d ln T/dz)
= 2λ

d ln T

dz
; 2λd2 ln T/dz2 = 0; d ln T/dz = K = ln(T2/T1)/ l;

σ min = λ(d ln T/dz)2 · l = (λ/ l) · (ln T2/T1)2 and the heat flux would then be JQ =
−λdT/dz = −λT d ln T/dz = −(λT/ l) ln(T2/T1).

17.4 Local volume change

In the following sections we shall examine what happens at the interface during a dif-
fusional phase transformation. The material leaving one phase at the interface must be
received by the other phase. The flux of component j transferred across the interface,
J tr

j , can thus be given in two ways:

Jα
j − xα

j υ
α/β

V α
m

= J tr
j = Jβ

j − xβ
j υ

β/α

V β
m

, (17.46)

where υα/β and υβ/α are the velocities of the lattices of the two phases relative to the
interface. They will generally be different because the phases may move relative to each
other. All υ and J are defined as positive in the same direction, the direction from α to
β. It should be emphasized that this equation is quite different from Eq. (5.110). Both
are material balances but in Eq. (5.110) υ is the velocity of Kirkendall markers (or of
any plane in the lattice) relative to the volume-fixed frame. Jj in Eq. (5.110) was given in
the lattice-fixed frame and so are Jα

j and Jβ
j in Eq. (17.46) but it should be emphasized

that they are given relative to the lattice of each phase.
The difference between the two velocities will have little practical consequences in a

planar case where the phases are free to move and maintain a stress free contact with each
other at the interface. The situation is quite different in a two- or three-dimensional system
where a maintained contact will cause stresses, which in turn will deform the material
and thus create the required local change of volume. Several deformation mechanisms
may be involved and result in very complex situations. They will not be further discussed
here but an early treatment of the growth of spherical particles may be mentioned where
elastic and plastic deformation was considered, including pressure-induced diffusion as
a possible creep mechanism [35]. Here we shall only examine how the processes of
ordinary diffusion will give rise to a requirement of local volume changes. Summation
of Eq. (17.46) over all the components yields

υβ/α
/

V β
m − υα/β

/
V α

m = � Jβ
i − � Jα

i . (17.47)
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By inserting this in Eq. (17.46) we find

Jα
j − Jβ

j = xα
j υ

α/β
/

V α
m − xβ

j υ
β/α/V β

m = (
xα

j − xβ
j

)
υα/β/V α

m − xβ
j

(
� Jβ

i − � Jα
i

)
(17.48)

υα/β
/

V α
m = [

Jα
j − Jβ

j − xβ
j

(
� Jα

i − � Jβ
i

)]/(
xα

j − xβ
j

)
(17.49)

υβ/α
/

V β
m = [

Jα
j − Jβ

j − xα
j

(
� Jα

i − � Jβ
i

)]/(
xα

j − xβ
j

)
(17.50)

�υ = υα/β − υβ/α = V α
m · υα/β/V α

m − V β
m · υβ/α

/
V β

m

= [(
V α

m − V β
m

)(
Jα

j − Jβ
j

) − (
V α

m xβ
j − V β

m xα
j

)(
� Jα

i − � Jβ
i

)]/(
xα

j − xβ
j

)
.

(17.51)

For a binary system the result will be

�υ = [(
V α

m xβ
B − V β

m xα
B

)(
Jα

A − Jβ
A

) − (
V α

m xβ
A − V β

m xα
A

)(
Jα

B − Jβ
B

)]/(
xα

A − xβ
A

)
.

(17.52)

�υ has the dimensions of a velocity (m/s) and should here be interpreted as the require-
ment of volume (m3/s) per area of the interface (m2) in order to provide room for the
concentration of material to the interface.

Exercise 17.6

Pure C as graphite may precipitate on small spherical inclusions in a solution of C in
bcc–Fe. Consider the thickening of the layer of graphite. You may approximate the mole
fractions of C in graphite and of Fe in bcc as 1.

Hint

Graphite will grow by a supersaturation of C in bcc diffusing to the growing particle.
Diffusion in graphite and of Fe in bcc may be neglected.

Solution

Equation (17.52) yields �υ = [(
V graphite

m · 1 − 0
)(

0 − J bcc
C

) − (
0 − 0

)(
0 − 1

)]/(
1 − 0

) = −J bcc
C V graphite

m which is positive because the flux of C towards the particle,
identified as α, is counted as negative. All the volume of the graphite has to come from
deformation of the bcc matrix. When the graphite layer is still very thin, it is almost as
a one-dimensional case and growth is easy. When it is much larger than the inclusion,
then the graphite is situated in a spherical hole in the bcc matrix that must have been
created by severe deformation of the matrix. A corresponding amount of material must
have moved far away from the hole either by plastic deformation or elastic compression.
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17.5 Composition of material crossing an interface

In order to evaluate the driving force for the migration of an interface through a material,
it is necessary to know the composition of the material crossing the interface as a result
of the migration. It can be evaluated from Eq. (17.46) as follows. Insert Eq. (17.49) in
the first part of Eq. (17.46),

J tr
j = Jα

j − xα
j υ

α/β
/

V α
m

= [(
xα

j − xβ
j

)
Jα

j − xα
j

(
Jα

j − Jβ
j

) + xα
j xβ

j

(
� Jα

i − � Jβ
j

)]/(
xα

j − xβ
j

)
= [

xα
j

(
Jβ

j − xβ
j � Jβ

i

) − xβ
j

(
Jα

j − xα
j � Jα

i

)]/(
xα

j − xβ
j

)
= (

xα
j Jβ∗

j − xβ
j Jα∗

j

)/(
xα

j − xβ
j

)
(17.53)

We have here introduced the fluxes in the number-fixed frame from Eq. (5.111) with
ai = 1,

J ∗
j = Jj − x j� Ji (17.54)

By instead inserting Eq. (17.49) in Eq. (17.46) after first summing over all the compo-
nents, we obtain,

� J tr
j = � Jα

j − υα/β
/

V α
m

= [(
xα

j − xβ
j

)
� Jα

j − (
Jα

j − Jβ
j

) + xβ
j

(
� Jα

i − � Jβ
j

)]/(
xα

j − xβ
j

)
= [(

Jβ
j − xβ

j � Jβ
i

) − (
Jα

j − xα
j � Jα

i

)]/(
xα

j − xβ
j

)
= (

Jβ∗
j − Jα∗

j

)/(
xα

j − xβ
j

)
. (17.55)

The mole fraction of component j in the transferred material is thus obtained as

x tr
j = J tr

j /� J tr
i = (

xα
j Jβ∗

j − xβ
j Jα∗

j

)/(
Jβ∗

j − Jα∗
j

)
. (17.56)

Alternatively, we should express the result in terms of the fluxes in the lattice-fixed frame,
Jj . For each phase in a binary system we should then insert a relation obtained from
Eq. (17.54),

J ∗
j = Jj − x j� Ji = xB JA − xA JB. (17.57)

It is interesting to note that it was here possible to simplify the expressions by introducing
the fluxes in the number-fixed frame, not those in the volume-fixed frame (unless all
Vi = Vm) although Eq. (17.46) was formulated to account for changes in volume. The
reason is that we have considered the flow of material across an interface with only one
composition for each phase being involved.
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Exercise 17.7

Examine the composition of the material crossing the liquid(α)/solid(β) interface in the
following two cases of melting. (1) The dissolution of a solid stoichiometric phase into
an undersaturated liquid. (2) The formation of a liquid from a solid, supersaturated with
respect to the liquid phase, i.e. superheated.

Solution

In case (1) there is no diffusion in the solid phase. Equation (17.56) yields x tr
j =

−x sol
j J liq∗

j /(−J liq∗
j ) = x sol

j .

In case (2) there is no diffusion in the liquid phase, x tr
j = x liq

j J sol∗
j /J sol∗

j = x liq
j .

Comment: These results are self-evident. Equation (17.56) is mainly useful for inter-
mediate cases with diffusion in both phases.

17.6 Mechanisms of interface migration

We shall now examine the role of various mechanisms of migration of a phase interface
in an α → β transformation under isothermal conditions. Fluxes in the direction α to
β will be regarded as positive. The deviation from equilibrium at the interface, which
provides the driving force for the interface migration, i.e., �µi over the interface, will
be defined as µ

β/α
i − µ

α/β
i and α will be the A rich phase. The basic idea is that the

flux of i atoms leaving one phase must enter the other one and is related to the fluxes
in the two phases. In that respect it is independent of the mechanism of transfer across
the interface. On the other hand, the fluxes across the interface must keep pace with the
fluxes in the phases, which can only be accomplished by an effect on �µi . That will also
have an effect on the fluxes in the two phases. There is thus strong coupling between the
fluxes. In order to understand this complex situation we have to consider the role of the
mechanisms of material transfer across the interface. In doing so, we shall first assume
that there are no cross terms in the phenomenological equations.

In principle, there are two limiting cases, individual diffusion of atoms and a coop-
erative mechanism, which may be regarded as diffusionless. In reality there may be
intermediate cases but we shall instead discuss a combination of the two if occurring
simultaneously. It should be noted that the net effect of the two mechanisms of transfer
must give the correct composition of the transferred material according to Eq. (17.56).

Let us start by considering individual diffusion of atoms across the interface. We can
apply Eq. (17.10) but not use the approximation of almost same composition, which
would be a natural approximation for diffusion inside a phase. For a phase interface
it would apply only to diffusionless transformations. Furthermore, we shall apply the
discontinuity in the chemical potentials, �µi . Including the thickness of the interface in
its mobility, we write Eq. (17.10) as

Jj = M j

√
xα/β

j xβ/α
j · (−�µ j ). (17.58)
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Figure 17.1 Molar Gibbs energy diagram for precipitation of β from α assuming that x tr
B is the

composition of the material transferred across the interface. The dissipation by diffusion of each
component, counted per mole of precipitated β, is obtained by multiplying its driving force with
the ratio of the fluxes, which must be equal to the mole fractions f j = Jj/� Ji = x tr

j . The sum
of the dissipations is equal to the total driving force, D.

For a binary system this diffusion-controlled process can be illustrated with a molar
Gibbs energy diagram. Figure 17.1 shows how α of composition xα/β

B precipitates β of
composition xβ/α

B and the driving forces for diffusion of A and B, DA = −�µA and
DB = −�µB, are given on the two sides of the diagram. The net composition of the
material transferred across the interface, x tr

B, depends on diffusion inside the phases as
given by Eq. (17.56). The fluxes per mole of transferred material are thus x tr

A and x tr
B and

the dissipation for each flux is obtained by multiplying with its driving force, x tr
i Di . The

total driving force per mole, evaluated for the actual fractions of A and B, is

D = x tr
A DA + x tr

B DB. (17.59)

It is evident that individual diffusion across an interface cannot describe a transfer of
atoms across an interface against their own driving force, a phenomenon that has been
observed and is called trapping. One way to describe that phenomenon would be to intro-
duce a cooperative mechanism by which atoms of different components are transformed
as a group. A negative driving force for some component could then be compensated by
a strong driving force for another component.

As an introduction to the cooperative mechanism it is instructive again to consider
the effects of individual diffusion but now expressed through a new set of processes
obtained after transforming the primary set of processes. One of the new processes
should be the transfer of atoms in the correct amount to equal the total transfer of
atoms, J ∗

2 = J tr
A + J tr

B . One may regard this process as diffusionless and the diffusion,
necessary for giving the correct composition to the transferred material, is achieved by
the other process, interdiffusion by the exchange of A and B atoms across the interface.
Its driving force could be defined as D∗

1 = DB − DA = −�µB + �µA or one could use
the opposite sign.
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This particular way of introducing two new processes was discussed by Eqs (5.35) to
(5.40), which contained an arbitrary parameter α11. Those equations were described for
thermodynamic forces and can be applied to driving forces under isothermal conditions.
From the definitions of forces and fluxes we now have −β11 = 1 = β12 and α21 = 1 =
α22 and Eqs (5.38) to (5.40) yield β22 = −α11 and α12 = 1 + α11 = β21. We may choose
to represent −α11 with a composition x∗

B. Comparison with Eqs (5.16) and (5.26), which
define the α and β coefficients, gives

J ∗
1 = α11 J tr

A + α12 J tr
B = −x∗

B J tr
A + (1 − x∗

B)J tr
B (17.60)

D∗
2 = β21 DA + β22 DB = (1 − x∗

B)DA + x∗
B DB = �x∗

i Di . (17.61)

For the dissipation by the interdiffusion process we thus get by using the definition of x tr
B

in Eq. (17.56)

J ∗
1 D∗

1 = ( − x∗
B J tr

A + x∗
A J tr

B

)(
DB − DA

) = ( − x∗
Bx tr

A + x∗
Ax tr

B

)(
J tr

A + J tr
B

)(
DB − DA

)
.

(17.62)
Per mole of transferred atoms, J tr

A + J tr
B = 1, this reduces to

J ∗
1 D∗

1 = (
x tr

B − x∗
B

)
(DB − DA). (17.63)

The dissipation by the diffusionless process will be

J ∗
2 D∗

2 = (
J tr

A + J tr
B

)
(x∗

A DA + x∗
B DB). (17.64)

Per mole of transferred atoms we thus get

J ∗
2 D∗

2 = x∗
A DA + x∗

B DB. (17.65)

This is illustrated in Fig. 17.2 where the composition of the diffusionless process, x∗
B,

has been chosen arbitrarily. With that choice D∗
2 is the driving force for the diffusionless

process and it is also its dissipation per mole of transferred material. The dissipation by
the interdiffusion process is the fraction f1 of its driving force D∗

1 where f1 = x tr
B − x∗

B.
As in Fig. 17.1 the dissipations of the two processes will together balance the total driving
force, D, but in a different way. It should again be emphasized that we are free to choose
any convenient value of x∗

B because α11 is an arbitrary parameter.
We may now examine the cooperative mechanism. It should be recognized that on

a microscale the transfer of atoms across the interface goes in both directions and the
net result is given by the difference. The problem is that it should seem natural to
expect from a cooperative mechanism that each phase should transfer material of its own
composition to the other phase. However, the consequence for a stationary interface with
no net transfer of atoms would be a net transfer of A atoms in one direction and B atoms
in the other. That would not be an acceptable model. It seems necessary to accept that
the two opposite fluxes carry material of the same composition. It will be denoted by
xco

A , xco
B and it will soon be discussed by what physical factors it may be determined. The

driving force for the cooperative mechanism should be given by the same expression as
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Figure 17.2 The same reaction as in Fig. 17.1 but described with a different set of processes,
based on the number-fixed frame. f1 = x tr

B − x∗
B.

for the diffusionless process introduced by transforming the set of individual diffusion
processes, Eq. (17.61). The flux would thus be

J co = (Mα/β/Vm)
∑

xco
i Di . (17.66)

The cooperative mechanism cannot be the only one unless the two phases have the same
composition. In general, it will thus be necessary also to consider interdiffusion. However,
it is difficult to imagine a true interdiffusion mechanism by direct exchange of A and
B atoms, especially over an interface. It seems more natural to consider interdiffusion
occurring by individual diffusion of atoms and those fluxes would hardly be of the
same magnitude. It seems that one should combine the cooperative mechanism with
individual diffusion mechanisms for A and B. For a binary system that would make three
independent mechanisms. That situation is illustrated in Fig. 17.3 and it is demonstrated
how the three dissipations add up and balance the total driving force.

In contrast to the diffusionless mechanism in Fig. 17.2, the dissipation by the coop-
erative mechanism will now be less than its driving force because only a fraction of the
atoms are transferred by that mechanism,

f co = J co/(J co + � Ji ). (17.67)

The overall process now has a mixed character and f co represents the importance of
the cooperative mechanism. It is evident that f co = 1 can only be achieved when xco

B

coincides with x tr
B.

One may replace the new set of two individual diffusion processes by interdiffusion
and diffusionless transformation as demonstrated in Fig. 17.2. The two mechanisms
would coincide in the diagram by choosing x∗

B for the new diffusionless mechanism,
which is an arbitrary parameter, as xco

B . It would then look much like Fig. 17.2 and,
formally, one could represent the interface migration as if there were only two processes
but the flux equation for the combined diffusionless and cooperative process would be
more complicated than Eq. (17.66).
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Figure 17.3 Precipitation of β from α by three processes, individual diffusion of A and B and a
cooperative mechanism. The dissipations per mole of transferred atoms are obtained from each
driving force multiplied by the fraction of its flux, f j = Jj/(J co + � Ji ).

An alternative way of reducing the net effect of the three processes to an effect of
two may be preferable. One would then divide the cooperative flux on the individual
components obtaining J co

j = xco
j J j . For the total flux of component j one would then

obtain

J total
j = Jj + xco

j J co =
√

xα/β
j xβ/α

j M j (−�µ j ) + xco
j (Mα:β/Vm)

∑
xco

i (−�µi )

(17.68)

Then one could determine the composition of the cooperative mechanism by inserting
Eq. (17.68) into Eq. (17.56), whose right-hand side is given by the fluxes inside the α

and β phases.
We can now see from Eq. (17.68) that by adding the cooperative mechanism to the

individual diffusion of the components we have actually entered cross terms into the
individual phenomenological equations. It may thus seem that one could have obtained
the same effect by taking cross terms into account directly without modelling any mech-
anism. However, there is a major difference. Through the presence of xco

j and xco
i

Eq. (17.68), which are related to the fluxes inside the phases through Eq. (17.56), it
is possible to make the cross coefficients change automatically as the growth conditions
vary during a process. Furthermore, through Eq. (17.68) the cross coefficients of various
components are related and the summation in Eq. (17.68) also contains a term for the
component under consideration, i.e. for i = j , and it will also change with the growth con-
ditions. Finally, it will also be easy to introduce a non-linear kinetic law for the cooperative
part of the phase transformation by making the mobility Mα:β depend on the velocity.

Exercise 17.8

Prove that the introduction of the processes defined by Eqs (17.60) to (17.63) actually
kept the rate of entropy production invariant.
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Hint

One can add

(
Jn − xn

n∑
k

Jk

)
(Dn − Dn) which is equal to zero.

Solution

n∑
i=1

J ∗
i D∗

i =
n−1∑
i=1

(
Ji − xi

n∑
k

Jk

)
(Di − Dn) +

n∑
i=1

Ji

n∑
k

xk Dk

=
n∑

i=1

[
Ji Di − Ji Dn − xi Di

n∑
k=1

Jk + xi Dn

n∑
k=1

Jk

]
+

n∑
k=1

Jk

n∑
i=1

xi Di

=
n∑

i=1

Ji Di − Dn

n∑
i=1

Ji −
n∑

k=1

Jk

n∑
i=1

xi Di

+ Dn

n∑
k=1

Jk

n∑
i=1

xi +
n∑

k=1

Jk

n∑
i=1

xi Di =
n∑

i=1

Ji Di .

17.7 Balance of forces and dissipation

We shall now examine how the driving forces and dissipations of Gibbs energy are
balanced in a simple case of diffusional phase transformation. The equation for diffusion
by the vacancy mechanism will be applied. A limited mobility of the interfaces will also
be considered. Svoboda et al. [36] has emphasized that this is a case where it may be an
advantage to apply Onsager’s extremum principle from Section 5.9 because one cannot
make any a priori assumption about the conditions at the migrating interfaces if there
is friction in them and those conditions are usually required as boundary conditions for
solving the diffusion equations inside the phases. We shall follow that procedure.

We shall consider a binary case where all phases have almost constant compositions
and a β phase is being formed from an initial interface between an A-rich α phase and
a B-rich γ phase. In α and γ there will be no diffusion. The system is shaped as a rod
with a constant cross-section of a and with the α:γ interface perpendicular to the length
coordinate. Because the β phase has an almost constant composition, the fluxes of A or
B can at each moment be approximated as constant through the whole length of β.

First we must find the rate of change of Gibbs energy of the whole system. Gibbs
energy per area a of the rod is

G/a = �lϕGϕ
m

/
V ϕ

m , (17.69)

where lϕ is the length of the respective phase. The velocities of the interfaces are obtained
from the time derivatives of lϕ and the rate of change of Gibbs energy will be

Ġ

a
=

∑
Gϕ

m

υϕ

V ϕ
m

= Gα
m

υα/β

V α
m

− Gβ
m

υβ/α

V β
m

+ Gβ
m

υβ/γ

V β
m

− Gγ
m

υγ/β

V γ
m

. (17.70)
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Figure 17.4 Molar Gibbs energy diagram for a system with three phases. A will diffuse from the
α/β interface to the β/γ interface and B in the other direction. β will grow into both α and γ.

By inserting the velocities from Eqs (17.49) and (17.50) we can evaluate two driving
forces for diffusion through the β phase, ∂Ġ/∂ Jβ

A and ∂Ġ/∂ Jβ
B .

1

a

∂Ġ

∂ Jβ
A

= −Gα
mxβ

B + Gβ
mxα

B

xα
A − xβ

A

+ Gβ
mxγ

B − Gγ
mxβ

B

xβ
A − xγ

A

. (17.71)

Figure 17.4 illustrates that this result can be expressed as �µA = µ
β/γ
A − µ

α/β
A , where

the chemical potentials are evaluated for full equilibrium between the phases across the
interface, as if there were no losses in the interface. The diagram shows that �µA is
negative and we have thus a positive driving force for diffusion of A in the direction
from α to γ. On the other hand, �µB will be positive and the driving force for B would
thus drive B in the opposite direction.

The rate of dissipation of Gibbs energy for a process is given by Eq. (5.133) if the
cross coefficients can be neglected,

φi = Xi Ji = (1/Lii )J 2
i . (17.72)

We shall first apply this to the two individual diffusion processes. As explained below
Eq. (17.6), for diffusion this is the dissipation per volume of the phase. We can easily
integrate over the whole length of the β phase because the fluxes can be treated as
constant, as already explained. The volume of the β phase is a · lβ and the diffusion
equation, Eq. (17.10), yields for diffusion of A,

φA = alβ J 2
A

/
LAA = alβ J 2

A

/
Mβ

A xβ
A. (17.73)

We shall soon need the derivative with respect to the diffusion fluxes, e.g.,

1

a

∂φA

∂ Jβ
A

= 2lβ JA

Mβ
A xβ

A

. (17.74)

The present problem would have been trivial if the two diffusion processes were the
only ones to consider. However, we shall also consider friction of the migrating interface
caused by a cooperative mechanism. For that process one would perhaps like to apply
Eq. (17.4) but there is a problem because, according to Section 17.5, there are two
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different velocities depending on what lattice is used as reference. The difference is
caused by the two elements having different diffusivities in the β phase. The velocity
relative to the lattice of the β phase is affected by the difference resulting in a net
transportation of vacancies to or from the interface. However, there is no diffusion in
the α phase and the velocity relative to that lattice is caused only by the atoms crossing
the interface. We shall thus use υα/β from Eq. (17.49). Furthermore, there is a factor
Vm on the right-hand side of Eq. (17.4) which may also be different for the two phases.
However, it was eliminated in Eq. (17.5) although the choice of Vm in Eq. (17.4) has
affected the value of the mobility M. The rate of dissipation of Gibbs energy due to the
friction in the interface is thus obtained as

T σα/β = φα/β = aυα/β
(−�Gm

/
V α

m

) = a
1

Mα/β
(υα/β)2 = a

(
V α

m

)2

Mα/β

(
υα/β

V α
m

)2

.

(17.75)

Comparison with Eq. (17.73) shows that the thickness of the interface has been included
in the mobility. Using Eq. (17.49) we can evaluate the derivatives with respect to the
fluxes,

1

a

∂φα/β

∂ Jβ
A

= 2
(
V α

m

)2

Mα/β

υα/β

V α
m

−xβ
B

xα
A − xβ

A

. (17.76)

We get similar equations for the β/γ interface. The complete dissipation function will
be

� = φA + φB + φα/β + φβ/γ. (17.77)

We can evaluate ∂�/∂ Jβ
A and ∂�/∂ Jβ

B and Onsager’s extremum principle, Eq. (5.141),
yields two kinetic equations,

− ∂Ġ

∂ Jβ
i

= 1

2

∂�

∂ Jβ
i

, (17.78)

where i is either A or B. In principle we can thus solve for Jβ
A and Jβ

B . We can insert
the right-hand side of Eq. (17.71), which is equal to �µA according to Fig. 17.4, and of
Eq. (17.74). By first omitting the effects of the friction in the interfaces we find

− �µA = lβ JA

Mβ
A xβ

A

; − �µB = lβ JB

Mβ
B xβ

B

(17.79)

JA = Mβ
A xβ

A

lβ
(−�µA); JB = − Mβ

B xβ
B

lβ
�µB. (17.80)

These are well-known equations obtainable by classical methods. However, the result
will be more complicated by including the effects from the interfaces given by Eq. (17.76).

− �µA = lβ Jβ
A

Mβ
A xβ

A

+
(
V α

m

)2

Mα/β

υα/β

V α
m

−xβ
B

xα
A − xβ

A

+
(
V γ

m

)2

Mβ/γ

υγ/β

V γ
m

xβ
B

xβ
A − xγ

A

. (17.81)

JA = Mβ
A xβ

A

lβ

(
−�µA +

(
V α

m

)2

Mα/β

υα/β

V α
m

xβ
B

xα
A − xβ

A

−
(
V γ

m

)2

Mβ/γ

υγ/β

V γ
m

xβ
B

xβ
A − xγ

A

)
. (17.82)
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In the present case where β grows into both α and γ, υα/β is negative and υγ/β is
positive. Equation (17.82) demonstrates that for weak effects of friction they may both
be regarded as negative corrections to the driving force, −�µA, caused by deviations
from local equilibrium at the interfaces. For stronger effects it may be more natural to
regard them as dissipations of Gibbs energy as in Eq. (17.81). There may be a numerical
problem because the contributions from the interfaces contain the velocities and they are
functions of the fluxes. However, with computerized methods there should be no great
problem.

With this example we have demonstrated that even in a case with several processes
that dissipate Gibbs energy it may be possible to formulate the kinetic equations directly.



18 Methods of modelling

18.1 General principles

By ‘modelling’ we shall understand the selection of some assumptions from which it is
possible to calculate the properties of a system. Sometimes it is possible to obtain a close
mathematical expression giving a property as a function of interesting variables. In this
chapter and the following ones we shall mainly concern ourselves with such models.
However, in many cases the model cannot be expressed in a closed mathematical form
but results can also be obtained by numerical calculations using some iterative method.
When the iteration in some way resembles the behaviour of a real physical system one
talks about ‘simulation’. Such methods are becoming increasingly more powerful thanks
to access to more and more powerful computers.

The purpose of modelling is two-fold. From a scientific point of view one likes to
learn how nature functions. One way of gaining knowledge is to define some hypothesis
resulting in a model and test it by comparing the predictions from the model with
experimental information. Then, it does not matter much if the predictions are made
by an analytical calculation or by some numerical method. From a more technological
point of view one likes to predict the properties of a particular system in order to put it to
efficient use in some practical construction or operation. Then it is often most convenient
to have a model which yields an analytical expression.

In the simplest case, modelling is just the selection of a mathematical form which has
proved useful, whether it is based on some physical model or not. However, experience
shows that a model is usually more powerful if it is based upon physically sound princi-
ples. With such a model one can hope to make predictions outside the tested range with
some confidence.

The first question to discuss is what thermodynamic function to model. That question
will be addressed in the next section.

Exercise 18.1

Figure 18.1 shows a P, V diagram for a pure substance at a high temperature where only
gas and liquid exist. Above the critical point c there is no sharp difference between the
two phases. It is thus tempting to try to apply a single mathematical model for both phases
but it would then give values also for one-phase states inside the two-phase field, i.e.,
below the thick line. Such states would be metastable or unstable. The thermodynamic
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Figure 18.1 See Exercise 18.1.

properties of unstable states may be questioned but it seems reasonable at least to obey
basic thermodynamic principles when constructing the model.

The thin line represents an isotherm. Show that the model must be constructed in such
a way that the two areas A1 and A2 are equal. Actually, this is a way of identifying the
equilibrium points, L1 and gas1, on the curve from a model that extends over the whole
range (sometimes called Maxwell’s construction).

Hint

Evaluate the change in Gibbs energy along the dashed line. It is an isothermal change and
thus dG = V dP − SdT = V dP . Then remember that the Gibbs energy of L1 and gas1

must be equal because they represent two states of the same substance in equilibrium
with each other at given values of P and T.

Solution

G(gas1) − G(L1) = ∫
V dP = A1 − A2. But G(gas1) = G(L1). Thus, A1 = A2. This

result demonstrates that satisfactory modelling is more than just choosing a mathematical
expression.

18.2 Choice of characteristic state function

From a practical point of view we are most interested in models giving the Gibbs energy
which has temperature and pressure as its natural variables. They are usually the most
convenient experimental variables. On the other hand, the physical model itself may
make a different choice more natural. An example is the effect of thermal vibrations of
the atoms. The frequencies depend upon the forces between atoms which in turn, depend
upon the atomic distances. In that case it is most straightforward to consider the effect
under a constant volume in spite of the fact that the vibrations themselves tend to expand
the system. It is thus natural to consider the Helmholtz energy. The formation of thermal
vacancies is a very different case. There the physical picture is that an atom is removed
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from the interior of a crystal and placed on the surface. The volume is thus increased by
one lattice site. If the atomic distances are to be kept constant, it is now necessary to let
the volume increase. It will thus be more straightforward to consider this process under
a constant pressure and to work with the Gibbs energy. It may be emphasized that one
should choose to model the internal energy only for a case where it is natural to consider
entropy and volume as constant and that may be very rare. On the other hand, there may
be cases where the internal energy and the volume are kept constant and one could then
model the entropy.

A different question is how to model the simultaneous effects of two different phe-
nomena. It is true that the law of additivity applies to all the extensive state functions as
far as contributions from different parts of the system are concerned. However, it must be
remembered that the internal energy, volume or entropy of the whole system is then the
sum of the values for the parts, whereas the variables T and P are often the same in all the
parts and in the whole system. If there are curved interfaces between different parts then
the parts may be under different pressures and it must be remembered that the variable
P in the Gibbs energy for the whole system refers to the externally applied pressure. It
may then be more straightforward to consider the Helmholtz energy but, even so, one
must take into account the effect of the actual pressure inside each part because it affects
the molar volume.

The situation is quite different if each one of two phenomena applies to the whole
system. Each phenomenon may contribute to the total pressure which may be regarded
as the sum of two partial pressures but only if the two phenomena do not interact with
each other. On the other hand, the two phenomena in this case refer to the same volume.

In the present chapter the discussion of modelling will simply be limited to the use of
Gibbs energy.

Exercise 18.2

What would be the most natural quantity to use in a model of evaporation of a solid?

Hint

Consider which state variables should be kept constant in order to leave the bulk of the
solid unaffected by the process of evaporation.

Solution

It is not convenient to require that the volume should stay constant because then one
must compress the solid to make room for the vapour. The bulk will be unaffected if the
pressure is kept constant. One should thus model the Gibbs energy.

18.3 Reference states

As an introduction to our discussion of the modelling of the Gibbs energy it is instructive
to examine some real cases. The Gibbs energy is always given relative to some reference.
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Figure 18.2 The Gibbs energy of various forms of iron, given relative to the fcc form at the same
temperature and a pressure of 1 bar.

As an example, if one inquires about the Gibbs energy for the various forms of pure solid
iron one may find information on all the other forms relative to the fcc form. Figure 18.2
shows how these Gibbs energy differences vary with temperature at 1 bar. It is a striking
feature that such curves are often rather straight but in some regions the curvature is
strong.

Since the negative slope of these curves is identical to the entropy difference between
the two phases, we may conclude that the entropy difference is often rather constant.
In regions of strong curvature there is a strong variation of the entropy difference and
this should in turn be due to some special physical effect. The strong curvature in
oGbcc

Fe − oGfcc
Fe above 1000 K is due to the magnetic transition in bcc–Fe with a Curie

temperature at 1043 K. It is evident that in order to model this curve one must include
a description of the magnetic contribution to the Gibbs energy. Furthermore, all the
curves start out parallel to the T axis at absolute zero in accordance with the third law
which states that all ordered forms of a substance should approach the same entropy
at absolute zero. On heating from absolute zero, a difference in entropy between the
various forms develops at fairly low temperatures resulting in strong curvatures. This is
due to differences in the vibration frequencies, a factor which evidently must be taken
into account in modelling these curves at low temperatures. These two physical factors
(magnetic and vibrational) will be discussed in some detail in Chapter 19. Except for
such specific physical phenomena the Gibbs energy difference is often described with
fairly simple mathematical expressions. The use of a power series in T will be described
in the next section.

Before discussing the use of a power series it is useful to examine a different way of
choosing the reference for the Gibbs energy. When representing the Gibbs energy for
a substance as a function of T, one can use as reference the same substance at some
constant T and P. As an example, Fig. 18.3 shows the Gibbs energy of graphite as a
function of T at 1 bar, and three different curves are presented because three different
references have been used.

It is evident that changing the choice of reference does not always displace the curve
vertically; the slope may also be affected. This is due to the fact that Gibbs energy may
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Figure 18.3 The Gibbs energy of graphite, given relative to various references. The pressure is
1 bar.

be regarded as composed of an enthalpy part and an entropy part and neither of these
quantities has a natural zero point. In reality, one must define references for both. This
can be done by choosing graphite of some temperature, e.g. 0 or 298.15 K. The quantities
plotted with these choices are

�oG ′
C = oGC(T ) − o HC(0) + T oSC(0) (18.1)

�oG ′′
C = oGC(T ) − o HC(298) + T oSC(298), (18.2)

where 298.15 K has been abbreviated as 298. The slope of the curves is obtained as

d�oG ′
C/dT = −oSC(T ) + oSC(0) (18.3)

d�oG ′′
C/dT = −oSC(T ) + oSC(298). (18.4)

These are both satisfactory results.
It is also possible to define the references for H and S using different states. A rather

popular choice is the following

�oGC = oGC(T ) − o HC(298) + T oSC(0). (18.5)

It is usually combined with the convention to set oSC(0) to zero. The last term is thus
omitted. Furthermore, o HC(298) is often chosen as the value for the element in its most
stable form at 298 K and 1 bar, a quantity which is sometimes denoted by H SER for stable
element reference. This is why the third curve in Fig. 18.3 is identified as oGC − H SER

C .
When no reference entropy is given, it means that one has in fact chosen oSi (0) and set
this quantity to zero. In any case, it is not necessary to decide on the choice of reference
until one wants to put in numerical values. In the present text we shall use the notation
H REF

i and it mainly serves the purpose of reminding us that for each element one should
normally decide on a particular choice and then stick to it. However, it is only after one
has started to put in numbers that one must not change the reference.
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Before leaving the discussion of reference states we should mention one more alter-
native. One sometimes uses G(298) as reference for G(T). However, G(298) is just a
number and could be interpreted as a reference for enthalpy chosen in such a way that
�oGC = 0 at 298 K when oSC(0) = 0 is the reference for entropy. This alternative may
lead to misunderstandings.

For compounds we shall use the weighted average of H REF for the components,

H REF = �νi H REF
i , (18.6)

and thus plot a quantity �Gm which is defined as Gm − H REF. The vi parameters are the
stoichiometric coefficients for the substance, i.e. the number of moles of each component
i in one mole of the substance.

Exercise 18.3

Show how one can calculate the change of Gibbs energy on heating a substance from
273 to 373 K under a constant pressure of 1 bar. Assume CP has a constant value.

Hint

Start by evaluating the changes in H and S separately.

Solution

H ′′ − H ′ = ∫
CP dT = 100CP ; S′′ − S′ = ∫

(CP/T )dT = CP ln(373.15/273.15) =
0.312CP ; G ′′−G ′ = H ′′−373.15S′′−H ′+273.15S′ = H ′′−H ′ − 373.15(S′′ − S′) −
100S′ = 100CP − 373.15 · 0.312CP − 100S′ = −16.4CP − 100S′.

We thus find that it is necessary to have a numerical value of S at some temperature.
It is not sufficient to be able to calculate the changes in H and S. The change in G also
depends upon the choice of reference for S.

18.4 Representation of Gibbs energy of formation

The molar Gibbs energy of formation of a stoichiometric compound θ from the pure
elements at any temperature and pressure is obtained by combining expressions for the
compound and the component elements, respectively, if they are available,

�o
f Gθ

m = oGθ
m − �νi

oGα
i . (18.7)

This quantity is usually regarded as the standard Gibbs energy of formation of θ and was
illustrated in Fig. 7.3. The pressure is chosen as 1 bar but any one temperature can be
chosen. Often one evaluates this quantity at the actual temperature of interest. oGθ

m for
the compound can be given for any type of formula unit. vi denotes the stoichiometric
coefficients of the compound according to the formula unit chosen and oGα

i usually
represents Gm for pure element i in the stable state at 1 bar and the temperature chosen.
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The quantity HREF which refers to a particular temperature and pressure does not enter
into the equation and one could thus describe experimental information on �o

f Gθ
m without

involving HREF. However, in order to evaluate oGθ
m from a tabulated value of �o

f Gθ
m we

must introduce H REF through the following modification of Eq. (18.7) by the use of
Eq. (18.6),

oGθ
m − H REF = �o

f Gθ
m + �νi

(
oGα

i − H REF
i

)
. (18.8)

The temperature dependence of oGα
i − H REF

i may be known for all the components
through mathematical expressions, e.g. power series in T, and stored in that way in a
data bank. For the θ compound one may thus store �o

f Gθ
m and the set of vi values,

or one may store an expression for the temperature dependence of the whole right-
hand side of the equation, i.e. of oGθ

m − H REF. A drawback with the first method is
that one must also store information on the particular state α for each element that
�o

f Gθ
m refers to. Furthermore, �o

f Gθ
m will contain all the peculiarities of the states of the

component elements and may thus require a complicated mathematical representation.
The second method may thus be more convenient. It may be argued that for many
compounds the properties are only known in a narrow range of temperatures and could
thus be adequately represented by �o

f Gθ
m using a few parameters. On the other hand,

the representation of oGθ
m − H REF provides a better means of extrapolation because it

only involves the temperature dependence of the compound itself. It thus seems that
this second method should be recommended for general use although the first method
may occasionally be used, especially if the experimental information is meagre. One
may then use the Neumann–Kopp rule stating that the heat capacity of a substance can
be estimated as an average of the values of the components. This leads to the simple
expression

�o
f Gθ

m = A + BT . (18.9)

In the field of oxides it is common to talk about the Gibbs energy of formation of a
complex oxide from its component oxides and apply the same type of expression

�o
f Gcomplexoxide

m = oGcomplexoxide
m − �νi

oGcomponentoxide
i . (18.10)

What has here been said about compounds also applies to various states of a pure element.
Using a different notation for this case we can write the equation as,

oGβ
i − H REF

i = �o
f Gβ/α

i + oGα
i − H REF

i . (18.11)

The quantity �o
f Gβ/α

i is the Gibbs energy of formation of β from α and is often called
lattice stability because it represents the stability of the element in a kind of lattice
compared to a reference. In view of the discussion above it is recommended that oGβ

i −
H REF

i be stored rather than �o
f Gβ/α

i = oGβ
i (T ) −o Gα

i (T ).
Solution phases differ from stoichiometric phases by having variable composition

instead of the constant stoichiometric coefficients vi. As a consequence, it is not practical
to store the properties of solution phases as Gm − H REF. It is more convenient first to
compare with the reference states chosen for the components at the same T and P.
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Usually one chooses the pure components in the same structure as the solution, the
so-called end-members, and the quantity thus defined for the solution is the Gibbs energy
of mixing

MGα
m(xi ) = Gα

m(xi ) − �xi
oGα

m (18.12)

Gα
m(xi ) − H REF = MGα

m(xi ) + �xi

(
oGα

m − H REF
i

)
. (18.13)

Exercise 18.4

From a database using HSER as reference, we get the following Gibbs energy values in
J/mole of atoms at 1000 K: For bcc–Cr – 36 694, for C as graphite – 12 659, for Cr7C3 –
47 633. Calculate the standard Gibbs energy of formation of Cr7C3 at 1000 K.

Hint

We must trust that a database is self-consistent and always uses the same references,
whether H SER or another kind. We can thus forget what references this particular database
uses.

Solution

�o
f GCr7C3

m = oGCr7C3
m − 0.7H SER

Cr − 0.3H SER
C − 0.7oGbcc

m + 0.7H SER
Cr − 0.3oGgraphite

C +
0.3H SER

C = oGCr7C3
m − 0.7oGbcc

m − 0.3oGgraphite
C = −18150 J/mol.

18.5 Use of power series in T

Before discussing more sophisticated models for various types of substances, it may be
useful to consider the use of a power series in T and P. Let us start with terms in T. Using
an ordinary power series we get

Gm − H REF = a + bT + dT 2 + · · · (18.14)

CP = −T ∂2Gm/∂T 2 = −2dT + · · · . (18.15)

Comparison with experimental data shows that this expression for CP is not very sat-
isfactory and the addition of higher-power terms like T 3 to Gm does not improve the
situation much. There are strong experimental indications that one should first of all add a
constant term in CP in order to describe information from well above room temperature.
That can be done by adding a term in T ln T to Gm:

Gm − H REF = a + bT + cT ln T + dT 2 (18.16)

Sm = b − c − c ln T − 2dT (18.17)

Hm − H REF = a − cT − dT 2 (18.18)

CP = −c − 2dT . (18.19)
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It could be suggested that we should have written the new term as cT ln(T/T0) in order
to make the argument dimensionless. However, it is generally agreed to express T and
T0 in kelvin and to include − cT ln T0 in the bT term.

We may conclude that in the expression for a quantity, representing a contribution
to the Gibbs energy, one should normally use cT ln T as the first term after a and bT.
This may simply be regarded as a mathematical model for Gibbs energy which has
proved itself useful. It may also be possible to justify the T lnT term by a physical model
predicting that the leading term in the heat capacity should be a constant under some
conditions.

When higher-power terms are needed it may seem natural to continue with a T 2 term,
possibly followed by even higher powers. However, the coefficients are usually fitted to
information from room temperature and up and sometimes one likes to extrapolate to
temperatures above the experimental range. Terms in T 2 and T 3 may then give difficulties
because they increase rapidly with temperature. For this reason, it is often preferred to use
T −2 instead of T 2. Of course, T −2 will give the same kind of difficulty in extrapolations
below room temperature. However, the power series is already quite inadequate at low
temperatures because of the T lnT term. It is thus necessary to use at least two different
mathematical descriptions, one for low temperatures and one for high. The description
for low temperatures will be discussed in Chapter 19. For practical reasons, it would
often be advantageous to choose 298 K as the break point. It must be noticed that special
care must be taken to make Hm, Sm and CP continuous at the break point.

18.6 Representation of pressure dependence

Let us now define a mathematical model for the pressure dependence by adding terms
in P to the power series representation of the Gibbs energy of a substance

Gm − H REF = a + bT + cT ln T + dT 2 + . . . + eP + f T P + g P2 + . . . .

(18.20)

It yields the following expressions for other quantities, if the power series is truncated.

CP = −c − 2dT (18.21)

Vm = e + f T + 2g P (18.22)

Sm = −b − c − c ln T − 2dT − f P (18.23)

Hm − H REF = a − cT − dT 2 + eP + g P2 (18.24)

Fm − H REF = a + bT + cT ln T + dT 2 − g P2 (18.25)

Um − H REF = a − cT − dT 2 − f T P − g P2 (18.26)

α = f/Vm = f

e + f T + 2g P
(18.27)

κT = −2g/Vm = −2g

e + f T + 2g P
. (18.28)

If we only use Gm terms up to P2, we can invert Vm(P) to P(Vm) and thus replace
the variable P and express the Helmholtz energy, Fm, as a function of its natural
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variables:

Fm − H REF = a + bT + cT ln T + dT 2 − (e + f T − Vm)2/4g. (18.29)

On the other hand, we cannot replace T by an expression in terms of Sm if we use terms
higher than bT. In general, it is thus impossible to get a closed mathematical expression
for Hm or Um as functions of their natural variables, which are (Sm, P) and (Sm, Vm),
respectively.

From Fm we get

CV = −T (∂2 F/∂T 2)V = −c − 2dT + f 2T/2g. (18.30)

The term gP2 in Gm causes severe difficulties at high P. From the expression for Vm it
is evident that g must be negative and Vm will go through zero at some high P, a result
which is non-physical. Like the power series in T, a power series in P can thus be used
only in a limited range.

As an example of the many alternative models suggested for the representation of
the P dependence up to very high P, the following expression may be mentioned for a
special reason

Gm − H REF = a + bT + cT ln T + dT 2 + A[(1 + n P K )1−1/n − 1]

× exp(α0T + 0.5α1T 2)/K (n − 1). (18.31)

It yields the following expression for the molar volume, which is a form of an equation
named after Murnaghan [37].

Vm(T, P) = A(1 + n P K )−1/n exp(α0T + 0.5α1T 2). (18.32)

It is evident that the parameter A is formally equal to the molar volume at zero T and P.
Furthermore, it can be shown that K is equal to the isothermal compressibility at zero
pressure and α0 + α1T can be used to represent the thermal expansivity. This model cor-
rectly predicts that the volume should decrease monotonously with increasing pressure
but the volume is predicted to approach zero at infinitely high P, which is not realistic.
To compensate for this one may add a constant V0 to the expression for Vm(T, P), which
means that one should add a term V0 P to the Gm expression:

Gm − H REF = a + bT + cT ln T + dT 2 + V0 P + [(1 + n P K )1−1/n − 1]

× exp(α0T + 0.5α1T 2)/K (n − 1). (18.33)

The interesting property of Murnaghan’s expression for Vm(T, P) is that it can be ana-
lytically solved for P(T, Vm),

P(T, Vm) = {An(Vm − V0)−n exp[n(α0T + 0.5α1T 2)] − 1}/nK . (18.34)

This is thus a rare case where Fm(T, Vm) can be derived analytically from Gm(T, P),

Fm(T, Vm) = Gm − PVm = H SER + a + bT + cT ln T + dT 2

+ An(Vm − V0)1−n

K n(n − 1)
· exp[n(α0T + 0.5α1T 2)]

− A

K (n − 1)
· exp(α0T + 0.5α1T 2) + Vm − V0

K n
. (18.35)
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Many models for the effect of P are formulated as an equation for P as a function of
Vm. Integration yields an expression for the Helmholtz energy. If the equation can give
the same P value for two different values of Vm, then it is, in principle, impossible to
invert the equation to get Vm(T, P) and to get the Gibbs energy by integration. There
are substances which can thus be modelled by the use of the Helmholtz energy but not
by using the Gibbs energy which will always give a unique Vm for each P. The critical
phenomenon at the gas–liquid transition is a case which cannot be modelled by the use
of a Gibbs energy expression.

Exercise 18.5

Show that K in Murnaghan’s equation is equal to the isothermal compressibility at
zero P.

Hint

Equation (2.37) gives κT = −(∂V/∂ P)T/V which is equal to −(∂Vm/∂ P)T/Vm or
−(∂ ln Vm/∂ P)T .

Solution

In Vm = ln A − (1/n) ln(1 + n P K ) + α0T + 0.5α1T 2; κT = (1/n) · 1/(1 + n P K ) ·
nK = K/(1 + n P K ); κT → K when P → 0. However, this is no longer true if we
add a constant V0 to Vm.

18.7 Application of physical models

When a particular physical effect can be identified, it could be better described with
some special mathematical expression than with a power series. The power series could
still be retained for the purpose of describing other effects occurring simultaneously. We
may thus divide the molar Gibbs energy into two parts, one due to the special physical
effect, Gp

m, and one describing a hypothetical state without that effect, Gh
m,

Gm = Gp
m + Gh

m (18.36)

Gm − H REF = Gh
m − H REF + Gp

m. (18.37)

We may apply some special expression for Gp
m and a power series for Gh

m − H REF and
adjust the values of a, b, c, etc., to give a satisfactory representation of the experimental
information on Gm − H REF.

In the following chapters we shall examine a large number of different substances or
phases and discuss mathematical models based upon some information on their physical
or structural properties. The superscript ‘p’ in Gp

m will sometimes be replaced by letters
referring to the particular effect under consideration.
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18.8 Ideal gas

In order to demonstrate the principles of modelling, we shall now consider gases. The
simplest model of a gaseous element A is defined by the following expression,

Gm = oGA(T, P0) + RT ln(P/P0). (18.38)

This expression is defined for one mole of gas molecules. oGA(T, P0) is the value of Gm at
any temperature but at a reference pressure usually chosen as P0 = 1 bar = 100 000 Pa.
oGA(T, 1 bar) is usually expressed as a power series K(T), including the term −RT ln P0

which is equal to −RT ln 105 if one uses the SI unit, pascal (Pa).

Gm − H REF = K (T ) + RT ln P. (18.39)

It should be remembered that one must express P in the term RT ln P in the same unit
that was used in evaluating K(T).

Using the standard procedures we find that this mathematical model yields

Vm = RT/P (18.40)

Sm = −K ′(T ) − R ln P (18.41)

Fm − H REF = K (T ) + RT ln P − PVm = K (T ) − RT + RT ln P (18.42)

Um − H REF = K (T ) − RT + RT ln P + T Sm = K (T ) − RT

+ RT ln P − T K ′(T ) − T R ln P = K (T ) − RT − T K ′(T ), (18.43)

where K ′ = dK/dT . This is a very useful model because it has been found that many
gases have an internal energy which is a function of T but varies very little with P or V
under constant T, and they also satisfy the expression for Vm very well. In fact it seems
that all gases approach this model at low enough pressures.

This model is regarded as the model for an ideal gas and PVm = RT is called
the ideal gas law. It is usually written for N moles of gas molecules (not N moles of
atoms),

PV = N RT, (18.44)

We can easily express the Helmholtz energy as a function of its natural variables

Fm − H SER = K (T ) − RT + RT ln(RT/Vm). (18.45)

It is sometimes convenient to express K(T) as a power series in T and from Section 18.5
we remember that it should include a T ln T term. We may thus write the model for an
ideal gas as

Gm − H REF = a + bT + cT ln T + dT 2 + eT 3 + · · · + RT ln P. (18.46)

and by standard procedures we obtain

Sm = −b − c − c ln T − 2dT − · · · − R ln P (18.47)

Vm = RT/P (18.48)
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Fm − H REF = a + (b − R)T + cT ln T + dT 2 + eT 3 + · · · + RT ln P (18.49)

Hm − H REF = a − cT − dT 2 − 2eT 3 − · · · (18.50)

CP = −c − 2dT − 6eT 2 − · · · (18.51)

Um − H REF = a − (c + R)T − dT 2 − 2eT 3 − · · · (18.52)

CV = −c − R − 2dT − 6eT 2 − · · · = CP − R. (18.53)

Sometimes one defines an ideal classical gas by further requiring that CV should be
independent of T, which means that d, e and all higher coefficients must be zero.

For monatomic gases the ‘ideal classical value’ of CV is 1.5R and for diatomic gases
it is 2.5R. Values found experimentally for diatomic gases confirm that they can often
be approximated as ideal but not as ideal classical.

Exercise 18.6

A thermally insulated container has two compartments of volumes V1 and V2. A gas is
contained in V1 but V2 is empty. Suddenly, the wall between the two compartments is
removed. Calculate the change in T of the gas when it has come to rest in the whole
volume. Assume that the gas is ideal.

Hint

There is no exchange of heat or work with the surroundings.

Solution

The internal energy has not changed because there was no interaction with the surround-
ings. Since the internal energy is only a function of T and not of P, we realize that T has
not changed.

18.9 Real gases

The properties of a real gas can sometimes be approximated by a model obtained by
adding a power series in P to the ideal gas model in Eq. (18.39),

Gm − H REF = K (T ) + RT ln P + L P + M P2 + N P3 + · · · (18.54)

where L, M, N etc., may depend on T. By standard procedures we obtain

Vm = RT/P + L + 2M P + 3N P2 · · · (18.55)

Fm − H REF = Gm − H REF − PVm = K (T ) + RT ln P − RT − M P2

− 2N P3 − · · · . (18.56)
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It is evident that the Vm expression cannot be inverted to P(Vm) and it is thus
impossible to derive an analytical expression for Fm(T, Vm). However, by using only
the LP term from the power series one obtains an expression for Vm which can be
inverted

P = RT/(Vm − L). (18.57)

We could then express Fm in its natural variables,

Fm − H REF = K (T ) − RT + RT ln
RT

Vm − L
. (18.58)

A gas obeying this model is sometimes called a slightly imperfect gas.
It is sometimes convenient to treat real gases by introducing a new quantity f, called

fugacity, through the expression

Gm − H SER = K f (T ) + RT ln f, (18.59)

where K f(T) has been chosen in such a way that f approaches P for low P. Using this
concept one can temporarily treat any gas as if it were ideal and postpone the introduction
of its real properties until later. Sometimes one introduces the fugacity coefficient, f/P,
and it is evident that it approaches the value 1 at low P. However, if this approach is
applied to a gas with molecules, e.g. O2, it should be realized that there may be some
dissociation into atoms O2 → 2O which would increase the pressure. This effect would
be more pronounced at low pressures. The concept of fugacity should thus be applied
to each gas species separately but it must then be combined with a calculation of the
equilibrium contents of the species.

So far we have based the modelling of gases on the Gibbs energy, using T and
P as the variables. However, it is sometimes more convenient to use T and Vm as
the variables and thus to define the model using the Helmholtz energy. One may for
instance define a model with the following expression where K(T) is not the same as
before,

Fm − H REF = K (T ) + RT
[ − ln Vm + B2/Vm + B3/2V 2

m + · · · ], (18.60)

which gives

P = RT [1/Vm + B2/V 2
m + B3/V 3

m + · · ·], (18.61)

where B2, B3, etc., are called virial coefficients. There is no exact relation between these
coefficients and those introduced through the Gm expression, but in order to compare
them we can write the expressions in the following forms

PVm = RT + L P + 2M P2 + 3N P3 + · · · . (18.62)

PVm = RT + RT B2/Vm + RT B3/V 2
m + · · · . (18.63)

For small values of the coefficients, we may first approximate 1/Vm by P/RT . By
introducing this in the second term in Eq. (18.63) and dropping the last term we get

PVm = RT + RT B2 P/RT = RT + B2 P. (18.64)
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We can use

1/Vm = 1/(RT/P + B2) = (P/RT )/(1 + B2 P/RT ) ∼= P/RT − B2(P/RT )2.

(18.65)
as a better approximation. By introducing this we get

PVm = RT + B2 P + (B3 − B2
2 )P2/RT, (18.66)

when omitting higher-order terms. Comparing with Eq. (18.62) we may thus approximate
L as B2 and M as (B3 − B2

2 )/2RT .
Another model based on Fm(T, Vm) is the following

Fm − H REF = K (T ) − a/Vm − RT ln(Vm − b). (18.67)

It gives

P = −a/V 2
m + RT/(Vm − b), (18.68)

which can be rearranged into(
P + a

/
V 2

m

)
(Vm − b) = RT . (18.69)

This expression was proposed by van der Waals. The terms a/V 2
m and −b may be

regarded as corrections to the ideal gas law. This expression correctly predicts that there
is a critical point below which a system decomposes into a liquid and a gas. However,
it does not describe real systems with any accuracy. Many improvements of the van der
Waals equation have been suggested but they will not be discussed here.

Exercise 18.7

Derive an expression for the fugacity of a gas obeying the van der Waals equation of
state. Then calculate the fugacity coefficient, f/P.

Hint

Gm − H REF = Fm − H REF + PVm = K (T ) − a/Vm − RT ln(Vm − b) −
a/Vm + RT Vm/(Vm − b) should be compared with Gm − H REF = K f (T ) + RT ln f .

At small P, and thus large Vm, the two expressions should be equal if f is replaced by P.
For large Vm we find that Gm − H REF goes towards K (T ) − RT ln RT + RT ln P +

RT . We should thus identify Kf(T) with K (T ) − RT ln RT + RT .

Solution

For any P we can write K (T ) − RT ln RT + RT + RT ln f = K (T )2a/Vm − RT
ln(Vm − b) + RT Vm/(Vm − b) and get RT ln f = −RT ln[(Vm − b)/RT ] + RT b/

(Vm − b) − 2a/Vm.
This yields f = RT/(Vm − b) · exp[b/(Vm − b) − 2a/RT Vm]. By dividing with

P = −a/V 2
m + RT/(Vm − b) we finally find f/P = [1 − a(Vm − b)/RT V 2

m]−1 ·
exp[b/(Vm − b) − 2a/RT Vm].
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18.10 Mixtures of gas species

Gases dissolve in each other so readily and with so little interaction that the resulting
phase is regarded as a mixture of the component species (free atoms, molecules and
ions). In principle, it may also be regarded as a solution. We shall first discuss a mixture
of several species, each one of which forms an ideal gas when pure. Let yk be the fraction
of species k and thus

∑
yk = 1. Let us consider a mixture of one mole of species. Each

gas will fill the complete volume V, but in line with the ideal gas concept we shall assume
that there is no interaction between them. We shall thus assume that the ideal gas law
applies to the mixture, PVm = RT , and that the chemical potential of a component k, µk ,
has the same value it would have, had it been alone in the same volume V. The pressure
of that component would then be Pk = yk RT/V = yk P where P is the pressure of the
mixture

µk = Gm(k) = oGk(T, P0) + RT ln Pk

= H REF
k + Kk(T ) + RT ln Pk = H REF + Kk(T ) + RT ln yk + RT ln P,

(18.70)

and we get for the mixture

Gm = �yiµi = �yo
i Gi (T, P0) + RT �yi ln Pi

= H REF + �yi Ki (T ) + RT �yi ln yi + RT ln P (18.71)

Gm − H REF = �yi Ki (T ) + RT ln P + RT �yi ln yi . (18.72)

The last term may be regarded as the contribution from the mixing of different molecules.
It is proportional to T and is thus of pure entropy character. −R�yi ln yi may be regarded
as the ideal entropy of mixing.

For a mixture of ideal gases it can be imagined that gas k actually has the pressure Pk

in the gas mixture and that the total pressure of the mixture is the sum of the pressures
of the individual gases. We have thus used

�Pi = �yi P = P. (18.73)

Pk is regarded as the partial pressure of gas k in the mixture. It is interesting to note
that the expression for ideal entropy of mixing appears in Eq. (18.72) as a direct result
of the model. For real gases it is no longer possible to define the partial pressure in
a strict sense but it is common to use this concept and the relation Pi = yi P even
in such cases. As a first attempt to model Gm for a mixture of real gases, one could
add the terms for slightly imperfect gases in the form �yi Li Pi which can be written
as �y2

i Li P The second power of yi indicates that these terms describe the interaction
of molecules with other molecules of the same kind. It would be natural also to add
terms representing interactions between different kinds of molecules, ��yi y j Li j P .
We thus get

Gm − H REF = �yi Ki (T ) + RT ln P + RT �yi ln yi + P��yi y j Li j (18.74)
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It is interesting to calculate what pressure, P ′, the same amount of gas k would have if
it were alone in the same volume. For pure k we get

◦Gk − H REF
k = Kk(T ) + RT ln P ′ + P ′Lkk . (18.75)

The molar volume would be RT/P ′ + Lkk and the volume of the actual amount yk would
be

V = yk(RT/P ′ + Lkk). (18.76)

However, this is supposed to be equal to the molar volume of the mixture,

yk(RT/P ′ + Lkk) = RT/P + ��yi y j Li j . (18.77)

We thus find

1/P ′ = 1/yk P + (
��yi y j Li j − yk Lkk

)
/RT yk

= 1/Pk + (
��yi y j Li j − yk Lkk

)
/RT yk . (18.78)

We have here expressed ykP through the partial pressure and it is evident that it is no
longer equal to the pressure of the same amount of pure k, unless all the interactions are
zero. The concept of partial pressure is thus less useful for real gas mixtures than for
ideal ones. The concept of fugacity is more useful. For a component k in a mixture it is
defined from

µk − H REF = Kk(T ) + RT ln fk, (18.79)

where Kk(T) is formulated in such a way that fk approaches ykP for low P. In order to
evaluate the fugacity from a particular model one must first derive an expression for µk

from the model. From Eq. (18.74) we get

µk − H REF = Kk(T ) + RT ln(yk P) + P
(
2yk�Lkj − ��yi y j Li j

)
, (18.80)

and for the fugacity coefficient we obtain

fk/Pk = fk/yk P = exp[P(2yk�Lkj − ��yi y j Li j )/RT ]. (18.81)

For an ideal gas mixture we get

fk/Pk = fk/yk P = 1. (18.82)

A similar model based upon the Helmholtz energy is generally written as

P = RT
[
1/Vm + (

�y2
i Bii + ��yi y j Bi j

)/
V 2

m

]
= RT

[
1/Vm + (

�yi Bii + ��yi y j

(
Bi j − (

Bii + B j j )
/

2
))/

V 2
m

]
(18.83)

and it is often found that Bi j − (Bii + B j j )/2 is small.

Exercise 18.8

Examine a slightly imperfect gas with two kinds of molecules, A and B. Is there any rela-
tion between the L coefficients which would make the fugacity coefficients independent
of the composition?



18.11 Black-body radiation 417

Hint

Use Eq. (18.81). For a binary system only one composition variable is independent,
say yB.

Solution

ln( fA/PA) = (P/RT ) · (2yALAA + 2yBLAB − y2
ALAA − 2yA yBLAB − y2

BLBB) =
(P/RT ) · [LAA − (LAA + LBB − 2LAB)y2

B]. We thus find that LAA + LBB − 2LAB = 0
makes fA/PA independent of composition. For symmetry reasons, it also makes fB/PB

independent of composition.

18.11 Black-body radiation

It is illustrative to compare the ideal gas behaviour with the properties of black-body
radiation and with an electron gas. For the former we may start from a result from
quantum mechanics saying that the energy of black-body radiation is proportional to the
volume and T 4. The constant of proportionality, a, is called the Stefan constant and it
has a value of 8π5k4/15c3h3 = 7.57 · 10−16 J/m3K4, where k is Boltzmann’s constant,
c is the speed of light and h is Planck’s constant.

U = aT 4V . (18.84)

However, in order to derive other quantities we need U(S, V). By simple manipulations
we obtain

CV =
(

∂U

∂T

)
V

= 4aT 3V (18.85)

S =
T∫

0

CV

T
dT = 4

3
aT 3V ; T 3 = 3S/4aV (18.86)

U (S, V ) = a(3S/4aV )4/3V = (3S/4)4/3/(aV )1/3. (18.87)

We have thus derived a characteristic state function for black-body radiation and can
now calculate any thermodynamic quantity.

F = U − ST = −1

3
aT 4V (18.88)

P = −
(

∂U

∂V

)
S

= −(3S/4)3/4 · −1

3
(aV )−4/3 = 1

3
(3S/4aV )4/3 = 1

3
aT 4 (18.89)

PV = 1

3
aT 4V (18.90)

G = U + PV − T S = aT 4V + 1

3
aT 4V − 4

3
aT 4V = 0. (18.91)
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The last result may seem surprising but is natural because P and T are not indepen-
dent variables in the particular case of black-body radiation. Consider a container con-
taining no matter and with its walls kept at a certain temperature T and an external
pressure P is applied, then the container will collapse if P > aT 4/3 and all the radi-
ation will vanish. If P < aT 4/3 then the container will expand indefinitely and new
radiation will be created with no limitation as long as the walls are kept at the same
temterature.

Exercise 18.9

Derive an expression for the isothermal compressibility of black-body radiation.

Hint

It may be easier to derive (∂ P/∂V )T than (∂V/∂ P)T .

Solution

We get κT = −(1/Vm) · (∂Vm/∂ P)T = −(1/V ) · (∂V/∂ P)T from the definition. From
P = aT 4/3 we get (∂ P/∂V )T = 0 and (∂V/∂ P)T = ∞ and κT = ∞. This is in com-
plete agreement with the last two sentences in the text.

18.12 Electron gas

The heat capacity for the electron gas in a metal is often given as

CV = γeT . (18.92)

In real metals, the coefficient γe has different values at low and high T and a single
expression cannot be used for the whole range of T. The low-T value is often about
1.4 times the high-T value. However, γe is independent of T in a free electron gas. We
shall now examine the properties of such a gas. Its γe value depends upon the density
which can be expressed through Vm. According to the electron theory, γe is actually
proportional to V 2/3

m . For one mole of electrons we obtain

Um =
T∫

0

CV dT = Um(0K) + γeT 2/2 (18.93)

Sm =
T∫

0

CV

T
dT = γeT (18.94)

Fm = Um − T Sm = Um(0K) − γeT 2/2. (18.95)
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In order to derive an expression for Gm we must calculate P from Fm as a function of T,
Vm. Then we must remember that the electron theory predicts that γe is proportional to
V 2/3

m and we should treat γe/V 2/3
m as a constant

Fm = Um(0K) − (
γe/V 2/3

m

) · V 2/3
m T 2/2 (18.96)

P = −
(

∂ Fm

∂Vm

)
T

= 1

2

γeT 2

V 2/3
m

· 2

3
V −1/3

m = 1

3
γeT 2/Vm (18.97)

Gm = Fm + PVm = Um(0K) − γeT 2/2 + γeT 2/3 = Um(0K) − γeT 2/6. (18.98)

We have neglected to discuss the possible dependence of Um(0 K) on Vm but that could
only contribute a T-independent term in Gm.

If we want to apply the treatment of an electron gas to a metal we should realize
that there is a strong interaction between the electrons and the ionized atoms which
more or less eliminates the pressure of the electron gas. It is thus common to give their
contribution to Gm as −γeT 2/2.

It should be realized that published values of γe for metals refer to one mole of
atoms, and not electrons. The values of γe are relatively small and its contribution to
CV only grows proportional to T. Even though it predominates at very low T it will
soon be negligible in comparison with the contribution from thermal vibrations of the
atoms which initially increases proportional to T 3. However, at very high T the latter
contribution levels off at the value of 3R and the electronic contribution again becomes
important.

Exercise 18.10

Estimate the ratio of the electronic contribution to CV of pure Ni and the contribution
from thermal vibrations at the melting point, 1728 K, if γe = 54.4 · 10−4 J/mol K2.

Hint

Suppose the temperature is so high that the vibrational contribution can be approximated
as 3R and the γe value may be taken as the tabulated value divided by 1.4.

Solution

(54.5 · 10−4/1.4)1728/3 · 8.3145 = 0.27.
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19.1 Introduction

In this chapter we shall model the thermodynamic effect of some physical phenomena.
In each case we shall start by defining an internal variable representing the extent of the
physical phenomenon to be discussed. We shall proceed by deriving an expression for
one of the characteristic state functions in terms of the internal variable together with a
set of external variables. The choice of characteristic state function depends upon what
set of external variables is most convenient. Then we shall calculate the equilibrium
value of the internal variable by putting the driving force for its change equal to zero.
Finally, we shall try to eliminate the internal variable by inserting the expression for its
equilibrium value in the characteristic state function.

Our derivation of an expression for the characteristic state function will usually be
based upon two separate evaluations, one concerned with the entropy due to the disorder
created by the physical phenomenon and the other concerned with what may be called
the non-configurational contribution. The entropy will be evaluated from Boltzmann’s
relation which is here preferred because it is felt that it gives a better physical insight
than the more general and elegant method of statistical thermodynamics based upon the
use of partition functions. The purpose of statistical thermodynamics is to model the
thermodynamic properties of various types of systems from statistical considerations
on the atomic level. The relation proposed by Boltzmann can be derived from such
considerations.

19.2 Thermal vacancies in a crystal

We shall start by considering vacancies in a crystal of a pure element. A convenient
internal variable would be the number of vacancies, NVa, in a crystal with N atoms. This
internal variable is sufficient for defining the contribution of the vacancies to the internal
energy if it is assumed that the interaction between the vacancies can be neglected. This
may be a reasonable approximation for low contents of vacancies and we shall construct
a model from this approximation.

The state with NVa vacancies can be realized in a number of ways by placing
the vacancies in different arrangements on the lattice sites. The number of different
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arrangements is

W = (N + NVa)!

N !NVa!
, (19.1)

since there must be N + NVa lattice sites and we cannot distinguish between two atoms,
nor between two vacancies. From Boltzmann’s relation we can now calculate the contri-
bution to the entropy from the vacancies and we can use the following approximation if
we consider a system where N and NVa are both large numbers,

�S/k = ln W = ln(N + NVa)! − ln N ! − ln NVa!

∼= (N + NVa) ln(N + NVa) − N ln N − NVa ln NVa

= −N ln
N

N + NVa
− NVa ln

NVa

N + NVa

= −N

(
ln(1 − yVa) + yVa

1 − yVa
ln yVa

)
, (19.2)

where yVa = NVa/(N + NVa), the fraction of sites that are vacant.
When choosing a characteristic state function we should realize that it is very awkward

to treat the energy of a vacancy, u, as a function of Sm and Vm or of T and Vm because Vm

is usually defined for one mole of atoms, not lattice sites. Thus Vm will naturally increase,
or the lattice must be compressed, when a vacancy is introduced by the creation of a new
lattice site. It is most convenient to treat u as a function of T and P and we should thus
choose G as our characteristic state function. In order to be rigorous in the derivation to
follow, we should actually introduce a Gibbs energy of formation of a vacancy, g, instead
of the energy, u, and obtain for the contribution due to NVa vacancies, when added to N
atoms,

�G = NVag + k N T

(
ln

N

N + NVa
+ NVa

N
ln

NVa

N + NVa

)
. (19.3)

The quantity g may be regarded as the non-configurational Gibbs energy per vacancy. We
have thus achieved our first goal. It is worth emphasizing that we managed to derive an
expression for �G without introducing any further internal variable. Before proceeding
it is important to realize that NVa is in fact an internal variable because we do not need
an external reservoir from which to take vacancies. Alternatively, we may imagine that
we have an external reservoir of vacancies with a chemical potential equal to zero. We
may thus regard g as the non-configurational Gibbs energy of formation of a vacancy or
of dissolution of a vacancy from an external reservoir.

We have found an expression for the contribution to the Gibbs energy from a given
number of vacancies, NVa. It can be used to evaluate the equilibrium number of vacancies
under constant T and P. If there is a mechanism, or ‘reaction’, by which vacancies can
form, then there should be a spontaneous change as long as the driving force for change
is positive. Assuming that g is independent of NVa under constant T, P and N, we obtain
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by expressing the extent of reaction with NVa,

− D = (∂G/∂ξ )T,P,N ≡ (∂G/∂ NVa)T,P,N

= g + k N T

( −1

N + NVa
+ 1

N
ln

NVa

N + NVa
+ NVa

N
· 1

NVa
− NVa

N
ln

NVa

N + NVa

)

= g + kT ln
NVa

N + NVa
= g + kT ln yVa. (19.4)

By putting this equal to zero we obtain, for the equilibrium number of vacancies,

yeq
Va = exp(−g/kT ). (19.5)

This is an expression characteristic of so-called Boltzmann statistics. It reveals how the
fraction of vacant sites varies with temperature. The higher the temperature, the larger
the fraction is. This is why such vacancies are often called thermal vacancies.

If we instead focus our interest upon the number of vacancies per mole of atoms we
obtain, for its equilibrium value,

yeq
Va

1 − yeq
Va

= N eq
Va

N
= 1

exp(g/kT ) − 1
. (19.6)

This kind of expression is usually connected with the so-called Bose–Einstein statistics.
In the present case it will be possible to eliminate the internal variable at equilibrium

and obtain the contribution of thermal vacancies to the Gibbs energy,

�G = NVag + kT N ln
(
1 − yeq

Va

) + kT NVa ln yeq
Va

= NVag + kT N ln
(
1 − yeq

Va

) + kT NVa(−g/kT )

= kT N ln
(
1 − yeq

Va

) ∼= −kT N yeq
Va. (19.7)

For a system containing one mole of atoms, i.e. with N equal to Avogadro’s number, we
obtain �Gm

∼= −RT yeq
Va, a value that is negligible in most contexts.

For a typical metal we can estimate the value of g from Eq. (19.5) using the information
that the fraction of vacant sites is between 10−3 and 10−4 close to the melting temperature,
Tm.p.. We thus obtain g/kTm.p. = 2.3 · (3 to 4) ∼= 8.

The result of Eq. (19.7) is surprisingly simple. It gives the complete information on �G
at equilibrium as function of T and, if one is only interested in thermodynamic properties
at equilibrium, this expression will be sufficient. On the other hand, the number of
vacancies may itself be of importance because of effects on other properties like volume
or diffusivity. The model can even be applied for evaluating �G when the number of
vacancies differs from the equilibrium number. In such cases one must use the basic
equation of �G as a function of T and NVa. One may, for instance, be interested in the
process by which the number of vacancies could approach the equilibrium value. There
are many possible mechanisms. If the actual number of vacancies is much higher than
the equilibrium value, then the driving force could be large enough for the nucleation
of a pore. If it is lower, mechanisms involving condensation on dislocations could still
operate. For such considerations it is essential to know the driving force. Eliminating g
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between Eqs (19.4) and (19.5) we obtain

D = kT ln yeq
Va − kT ln yVa = −kT ln

(
yVa/yeq

Va

)
(19.8)

This is the driving force for the formation of a new vacancy. The driving force per mole
of disappeared vacancies is obtained as

D = RT ln
(
yVa/yeq

Va

)
(19.9)

Exercise 19.1

Consider a pure metal A with an equilibrium amount of vacancies. Derive an expression
for the chemical potential of vacancies.

Hint

We need an expression for the total G and should then start from pure A without any
vacancies. That G is proportional to N, say NgA.

Solution

G = NgA + NVagVa + k N T {ln[N/(N + NVa)] + (NVa/N ) ln[NVa/(N + NVa)]}; µVa

= ∂G/∂ NVa = gVa + k N T {−1/(N + NVa) + (1/N ) ln[NVa/(N + NVa)] + (NVa/N )
(1/NVa) − (NVa/N )[1/(N + NVa)]} = gVa + kT ln[NVa/(N + NVa)] = gVa + kT ln yVa.
At equilibrium we get from Eq. (19.5): µVa = gVa − gVa = 0.

19.3 Topological disorder

Even though the structure of a melt may intuitively be imagined as completely disordered,
in reality the short-range arrangement of the atoms in a liquid metal is rather similar to
that in the crystalline state. It may thus be useful to describe the liquid as a crystalline
phase with so much disorder that all the long-range order has been destroyed. In this
connection one talks about topological disorder. A very simple and crude model of
the topological disorder in a liquid metal is based upon the assumption that the amount
of thermal vacancies increases discontinuously during melting. This model can be sup-
ported by many semi-quantitative considerations involving such properties as density,
compressibility, thermal expansion and diffusivity. X-ray measurements have indicated
that the coordination number in liquid metals is about 11, as compared to 12 for the
close-packed fcc and hcp structures. This result immediately suggests that the vacancy
concentration would be about 1/12, i.e. 8%.

This value compares favourably with a value we obtain by evaluating how many
vacancies can form when the heat of melting is added to the solid. According to Richards’
rule the entropy of melting is approximately R and the heat of melting is RTm.p.. With
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the approximate value of 8 for g/kTm.p. given above, we get

NVa = RTm.p./g = RTm.p./8kTm.p. = N/8 (19.10)

yVa = NVa

N + NVa
= 1

9
∼= 11%. (19.11)

It does not compare so nicely with a value obtained from the entropy of melting

�S/k = −N ln
N

N + NVa
− NVa ln

NVa

N + NVa
= R/k = N (19.12)

ln(1 − yVa) + yVa

1 − yVa
ln yVa = −1. (19.13)

By solving this equation numerically one finds approximately yVa = 1/3 or 35%. It is
evident that this simple model is too crude to give a quantitative description of melting.

At the melting point of a metal, CP is often larger in the melt than in the solid. This
difference grows for the undercooled melt and the difference in entropy between the two
phases will thus decrease with decreasing temperature. Extrapolations have indicated
that one may approach a temperature below which the undercooled melt would have
lower entropy than the crystalline solid. This is regarded as impossible and is called
Kauzmann’s paradox [38]. It has instead been suggested that the liquid has turned amor-
phous on cooling to the temperature where the difference in entropy disappears. Below
that critical point the amorphous solid is assumed to have almost the same entropy as
the crystalline solid. Experimentally one has observed a so-called glass transition where
the liquid turns extremely viscous and it has been related to the temperature defined by
equal entropy. According to this picture, the topological disorder in the amorphous solid
should be very limited. It is not sufficient to make the phase liquid and it has rather low
entropy. On heating above the glass transition temperature a large amount of defects are
created. They make the amorphous phase more liquid and contribute to the entropy and
heat capacity. An increasing amount of defects are created as the temperature is raised
towards the melting point. From the thermodynamic point of view, the melting of the
amorphous solid is thus a gradual process which continues to or even continues above
the melting point. Figure 19.1 illustrates this behaviour schematically.

Exercise 19.2

Estimate the difference in H at 0 K between the amorphous and crystalline states of a
metal from the following simplifying assumptions. The two states have the same entropy
at 0 K. Up to Tglass the two states have the same CP . Tglass falls at Tm.p./3 and above
Tm.p./3 the difference in CP is linear in T. Let �CP = 0 at Tm.p..

Hint

Estimate the difference in enthalpy and entropy at Tm.p. from Richards’ rule,
�Hm/Tm.p. = �Sm

∼= R. The assumptions give �Sm = 0. at Tm.p./3.
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Figure 19.1 Schematic diagram comparing the heat capacities of a crystallized metal and its
amorphous state.

Solution

�CP = a + bT where a + bTm.p. = 0. A second relation between a and b is obtained
by integrating for the entropy between Tm.p./3 and Tm.p.: R = ∫

(�CP/T )dT =
a ln 3 + (2/3)bTm.p.; a = R/(ln 3 − 2/3) = 2.3R; b = −2.3R/Tm.p.. �Hm changes
between Tm.p./3 and Tm.p. by

∫
�CP dT = a(Tm.p. − Tm.p./3) + 0.5b(T 2

m.p. − T 2
m.p./9)

= 2.3RTm.p.(2/3 − 4/9) = 0.51RTm.p..

Thus we get, at Tm.p./3 as well as at 0 K, �Hm = RTm.p. − 0.51RTm.p. = 0.49RTm.p..

19.4 Heat capacity due to thermal vibrations

According to quantum mechanics, the energy of heating can be added only as quanta.
For an harmonic oscillator of frequency v, the magnitude of the quanta is hν where h
is Planck’s constant. Einstein constructed a simple model of a crystal by assuming that
each atom vibrates independent of all the others and has three directions of movement.
A crystal with N atoms could thus be regarded as consisting of 3N linear oscillators,
all of them with a frequency ν. The question, how many quanta such a crystal should
have at equilibrium, is closely related to our previous question how many vacancies a
crystal should have at equilibrium. If there are n quanta, the energy increase is �U = nhν

compared to the conditions at absolute zero. In order to evaluate the entropy contribution
we must find in how many ways n quanta can distribute themselves on 3N oscillators. By
numbering the oscillators a1 a2 a3 . . . a3N and the quanta k1 k2 k3 . . . kn we can describe
a particular distribution by first giving the number of a certain oscillator and then the
quanta which are placed there, e.g. a4 k3 k5 a6 k2 a1 k7 k9 a7 a2 . . . . If all the permutations
of these elements represent possible distributions there should be (3N + n)! different
distributions. However, we must start with an oscillator and the first factor should thus
be 3N instead of 3N + n. Furthermore, it would be impossible to distinguish between
many of the distributions since all the oscillators are identical and so are all the quanta.
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The number of distinguishable distributions is thus

W = 3N

3N + n

(3N + n)!

(3N )!n!
. (19.14)

This is almost identical to the result for thermal vacancies except for the first factor,
which is of no importance for large N and n when we take the logarithm, and except
for the fact that N has been replaced by 3N . We can thus use the final result from the
previous derivation but this time we shall apply it to the Helmholtz energy because the
frequency, and thus the energy hν, will vary with the distance between the atoms, i.e.
the volume. Thus we should like to keep the volume constant. We obtain

�F = nhν + 3k N T

(
ln

3N

3N + n
+ n

3N
ln

n

3N + n

)
. (19.15)

The equilibrium number of quanta under constant T and V is obtained from ∂�F/∂n = 0,

n

3N + n
= exp(−hν/kT ). (19.16)

Again it will be possible to eliminate the internal variable at equilibrium and we find

�F = 3RT ln[1 − exp(−hν/kT )]. (19.17)

By standard methods we can calculate the heat capacity due to thermal vibrations,

CV = −T (∂2�F/∂T 2)V = 3R

(
hν

kT

)2

· exp(hν/kT )

[exp(hν/kT ) − 1]2
. (19.18)

The only parameter characteristic of the particular material under consideration is the
frequency, v. It always appears in the dimensionless combination hν/kT . The combina-
tion of constants hν/k is of the dimension temperature and we can thus introduce a new
material constant instead of the frequency, the Einstein temperature � = hν/k.

CV = 3R(�/T )2. exp(�/T )[exp(�/T ) − 1]2. (19.19)

There have been many attempts to improve Einstein’s model by removing the assumption
that the atoms vibrate independent of each other. An elegant method was proposed by
Debye. If the atoms cooperate when they vibrate, it means that the vibrating units are
larger and the frequency should be lower. For each possible frequency, one should be
able to apply Einstein’s model and by a summation over all the frequencies one may
obtain the proper result. Debye considered a whole spectrum of oscillators down to the
mechanical vibrations of the crystal. His spectrum thus extends all the way from the high
frequency of individual atoms and down to the acoustic range. He further assumed that
the number of oscillators is still 3N and that they distribute themselves over the range of
frequencies proportional to ν2. From Debye’s model one does not get CV as an analytical
expression of T but CV is now available in tables using the parameter x = �/T where
� is equal to hνmax/k and νmax is the maximum frequency, i.e. the vibrational frequency
of an atom. One often tabulates not only CV but also S and U. Debye’s model agrees
fairly well with measurements for many materials. � is evaluated as a material constant
to give the best agreement between model and experiment.
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Figure 19.2 Comparison between the Einstein and Debye theories of CV made at temperatures
given relative to the characteristic temperature �, as defined in each theory. In addition, the thin
line is for Einstein’s theory plotted versus 0.77T/�.

We can calculate CP from CV by means of the Grüneisen constant. With the approx-
imate value γ = 2 we would get from Eq. (2.38)

CP = CV (1 + 2αT ). (19.20)

S as a function of T at constant volume is obtained by integrating CV /T . On the other
hand, if one should like to have S as a function of T at constant pressure it could be
obtained by integrating CP/T which yields

S = S(x) + 2αU (x), (19.21)

if α is a constant. Furthermore, after some manipulations one obtains approximately

H = U (x) + (5/2)RαT 2 + (9/8)R� + Ho. (19.22)

Notice that Ho is obtained as an unknown constant of integration, and it represents the
cohesive energy. The term (9/8)R� comes from quantum mechanics which says that a
linear oscillator of frequency v has a zero point energy of hν/2.

A comparison between Einstein’s and Debye’s models is given in Fig. 19.2. Both
models predict a CV value of 3R at very high temperatures but the diagram seems
to indicate that the theories give quite different results up to fairly high temperatures.
However, if � is regarded as an empirical constant, to be evaluated from experimental
information, then the two models would work with different � values. These empirical
constants are called Einstein’s and Debye’s temperatures. Reasonably good agreement can
thus be obtained from high down to fairly low temperatures and for many applications it is
reasonable to use the equations derived by Einstein. The value of the Einstein temperature
can be estimated from tabulated values of the Debye temperature by multiplication with a
factor. The factor is slightly different depending on which quantity one is most interested
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in. For heat capacity, internal energy, entropy and Helmholtz energy one should use the
values 0.77, 0.73, 0.71 and 0.72, respectively. The thin line in Fig. 19.2 shows how well
Einstein’s theory agrees with Debye’s if the same temperature scale is used but different
� values. The difference is negligible above 0.3�D.

The fact that CV approaches the same value of 3R at high temperatures, independent
of the material constant �, does not mean that all crystalline substances would have the
same stability at high temperatures. For a given element with two possible structures,
the structure with the highest S value will increase its relative stability towards high
temperatures more than the other one. The S value is the result of integration over CV /T
from absolute zero. S will thus be larger, the faster CV approaches the asymptotic value
of 3R, i.e. the lower � is. A difference in CV between two structures at low temperatures
will be very important at high temperatures because T appears in the denominator of the
integrand. A structure with a low � will thus have high stability at high temperature.
The fact that the S term dominates over the U term in F at high temperatures can be
demonstrated by a calculation for some temperature T1.

F = U − T1S = U0 +
∫ T1

0
CdT − T1

∫ T1

0
(C/T )dT

= U0 −
∫ T1

0
[C(T1 − T )/T ]dT . (19.23)

The integrand is always positive since C and T1 − T are both positive. We can make a
similar calculation for G and obtain a similar result.

At low temperatures where T � � one would obtain, according to Einstein

CV = 3R

(
�

T

)2

· exp

(
−�

T

)
. (19.24)

This would imply that CV decreases rapidly as one approaches the absolute zero. Exper-
iments showed a slower decrease and that was the reason why one wanted to improve
Einstein’s theory. Debye’s theory instead yields the following expression at low tempera-
ture, and it agrees fairly well with experiments if the electronic contribution is subtracted
for metallic conductors.

CV = 234R(T/�)3. (19.25)

Exercise 19.3

From Debye’s theory, derive the term in H originating from the zero-point energy.

Hint

First neglect the difference between U and H. According to Einstein, the zero-point energy
for all oscillators is the same, yielding �U = 3N (hν/2) = 3Nk · �/2 = (3/2)R�.
However, according to Debye there is a distribution of frequencies z(v) = Kν2 and
3N = ∫ z(ν)dν = ∫ Kν2dν = Kν3

max/3 and thus K = 9N/ν3
max.
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Figure 19.3 Schematic diagram showing the variation of the saturation magnetization as a
function of temperature.

Solution

�H ∼= �U = ∫(hν/2) · z(ν)dν = ∫(hν/2) · (9N/ν3
max) · ν2dν = (9N/ν3

max) ·
(hν4

max/8) = (9/8) · Nk(hνmax/k) = (9/8) · R�Debye.

19.5 Magnetic contribution to thermodynamic properties

The atoms in a ferromagnetic substance contain unpaired electron spins which give each
atom a certain magnetic moment. It can have different directions and will thus give rise
to magnetic disorder. According to the localized spin model of magnetism, a disordered
arrangement gives a contribution to the entropy which can be evaluated from Boltzmann’s
relation. Due to its simplicity we shall only use this model. W is the number of different
arrangements for the whole system. Let w be the number of possible directions for each
atom. If the direction of each atom in the disordered state is independent of all the others,
we can write W = w N for one mole of the substance. Thus

S = k ln W = k ln w N = k N ln w = R ln w . (19.26)

According to quantum mechanics,

w = β + 1 = 2s + 1, (19.27)

where β is the number of unpaired electron spins and s is the resulting spin. For a free
electron s = 1/2.

There is a critical temperature, the Curie temperature TC, below which the spins will
position themselves parallel to each other in a ferromagnetic substance. For a perfectly
ordered state, the above contribution to the entropy should disappear completely but, in
practice, there will be some disorder left. However, it will disappear as one approaches
absolute zero and the saturation magnetization will thus increase (see Fig. 19.3). The
degree of magnetic order can be measured by measuring the saturation magnetization.
Note that an externally applied magnetic field usually does not change the ordering
appreciably. It simply makes the magnetization of the various magnetic domains align
along one direction. From the saturation magnetization at low temperatures, one can
get direct information on the magnetic moment of the atoms, i.e. the values of s and β.



430 Modelling of disorder

5000 1000 1500
0

30

40

50

60

70

80

K

real bcc 

non-magnetic
bcc

20

10
TC

C
P

  J
/m

o
l

Figure 19.4 Heat capacity (CP ) of bcc-Fe. Notice that a considerable part of the magnetic effect
occurs above TC.

The magnetic moment per atom is usually given in units of Bohr magnetons which is
identical to 2s, i.e. to β according to our simple model. Such measurements indicate that
β is seldom an integer. This casts some doubt on the localized spin model and one may
wonder if the entropy of magnetic disorder can be evaluated as shown above. Despite
this, the method is often used and may be regarded as a convenient approximation.

The disordered state above the Curie temperature is called paramagnetic. It is evident
that it has a high entropy and should thus grow even more stable at higher temperatures.
The reason why the ferromagnetic state becomes stable below a critical temperature must
be a lower energy for that state. When the disorder increases as the temperature is raised,
energy must thus be added and the magnetic transformation is revealed in the curve for
the heat capacity (see Fig. 19.4).

The curve shows that the transformation occurs gradually up to TC but a small part
of the order still exists at TC. It does not disappear until well above TC and it thus yields
a contribution to the heat capacity above TC. We can evaluate the magnetic enthalpy
by integrating the abnormal contribution to the curve. As always, the transformation
temperature is determined by the balance between enthalpy and entropy. This is best
demonstrated by approximating the magnetic transformation (which is actually a second-
order transition (see Section 15.1)) with a sharp transformation. For such a transformation
we have

�G = �H − T �S. (19.28)

With �G = 0 we find a transformation temperature T 1 = �H/�S. The larger the
energy gain is at the magnetic ordering, the higher the transformation temperature will
be.

Figure 19.5 illustrates the difference in the Gibbs energy between the most stable
state at each temperature, Geq, and the completely disordered state. The slope of the
curve at low temperature gives the entropy decrease due to complete order of the spins.
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Figure 19.5 The effect of magnetic ordering on the Gibbs energy of bcc-Fe. The reference state is
the completely disordered state at each temperature.

The thin line gives the difference between the completely ordered and the completely
disordered states at each temperature. The intersection with the abscissa gives the tem-
perature, T 1, for the hypothetical, sharp transformation. In reality, the ferromagnetic state
is stable to a higher temperature, TC, because it lowers its Gibbs energy by disordering
gradually.

Exercise 19.4

Evaluate β for bcc–Fe from an estimate of the magnetic entropy of bcc–Fe using
Fig. 18.2.

Hint

The sharp bend in the curve for oGbcc
Fe − oGfcc

Fe is due to the magnetic entropy of bcc–Fe
and is not influenced by the magnetic entropy of fcc–Fe which changes at much lower
temperatures.

Solution

The slopes for the paramagnetic and ferromagnetic states can be estimated where the
curve is reasonably flat. We obtain �S = −d(oGparam.bcc

Fe − oGfcc
Fe )/dT + d(oGferrom.bcc

Fe −
oGfcc

Fe )/dT = 2.4 + 9.1 = 11.5 = 1.4R = R ln(β + 1); β ∼= 3.

19.6 A simple physical model for the magnetic contribution

The magnetic disorder remaining below the Curie temperature can be treated in about
the same way as we treated vacancies. We have already discussed the contribution to the
entropy. In order to develop a complete model for the magnetic transformation we must
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also formulate the contribution to the enthalpy. The calculations will be especially simple
if the magnetic moment of the atoms is 1/2 since this value gives two possible orientations
with a spin difference of 1, according to the requirements of quantum mechanics. Let us
suppose that n atoms in a system of totally N atoms have their spins directed opposite
to the majority which consists of N − n atoms. We may guess that the extra energy
connected with the misorientation of the n atoms can be represented by the following
simple expression,

�H = K1n(N − n) = K1x(1 − x)N 2, (19.29)

where x represents the fraction of atoms with the wrong orientation, x = n/N . This
expression gives �H a maximum at x = 1/2, i.e. for the disordered, demagnetized state.
Since x = 0 represents the fully magnetized state, we can write

�H = x(1 − x) · 4�H dis, (19.30)

where �H dis is the enthalpy increase on complete disordering.
Let us now turn to the configurational entropy. The two types of atoms can mix with

each other in a number of ways,

W = N !

n!(N − n)!
. (19.31)

Boltzmann’s relation will thus yield

�S/k = ln N ! − ln n! − ln(N − n)! ∼= N ln N − n ln n − (N − n) ln(N − n)

= −n ln
n

N
− (N − n) ln

N − n

N
(19.32)

�S/R = − n

N
ln

n

N
− N − n

N
ln

N − n

N
= −x ln x − (1 − x) ln(1 − x). (19.33)

By combination of �H and �S we obtain for the Gibbs energy of disordering

�G = x(1 − x) · 4�H dis + RT [x ln x + (1 − x) ln(1 − x)]. (19.34)

We want to determine the equilibrium value of x under constant T and P and shall thus
consider a process by which x is increased. By identifying x with an internal variable ξ

we obtain, at equilibrium,

− D =
(

∂G

∂ξ

)
T,P

= d�G

dx
= (1 − 2x) · 4�H dis

+RT

(
ln x + x

x
− ln(1 − x) − 1 − x

1 − x

)
= 0 (19.35)

ln
x

1 − x
= −(1 − 2x) · 4�H dis/RT . (19.36)

The solutions of Eq. (19.36) are plotted against temperature in Fig. 19.6. Below a
critical temperature there are two identical states, x2 = 1 − x1. They represent ordered
states but the degree of order varies from perfect at absolute zero (x = 0 or 1) and
decreases gradually as the temperature is raised. Finally it disappears completely at
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Figure 19.6 Magnetic ordering as a function of temperature according to a simple model. x = 0.5
represents the disordered state. The dashed line represents unstable equilibria.

the critical temperature where x = 0.5. The states above the critical temperature are
disordered because x = 0.5. The value of the critical temperature is obtained by inserting
the value of x = 0.5, which primarily yields 0/0. The limiting value is obtained as

TC = 4�H dis

R
· 2x − 1

ln[x/(1 − x)]
= 4�H dis

R
· 2

1/x + 1/(1 − x)

= 4�H dis

R
· 2x(1 − x) = 2�H dis/R. (19.37)

Above the critical temperature there is only one solution showing that the disordered
state (x = 0.5) is the stable state. The equation also has the solution x = 0.5 below the
critical temperature but there it represents an unstable state. That is why it was there
drawn with a dashed line. The fact that the disordered state is unstable there, can be
tested with a stability condition from Eq. (6.54). We obtain negative values for x = 0.5
and T < TC = 2�H dis R,

B =
(

∂2Gm

∂x2

)
T,P

= −2 · 4�H dis + RT [1/x + 1/(1 − x)]

= −8�H dis + 4RT < 0. (19.38)

Let us now assume incorrectly that the magnetic transformation is a sharp one and that
a completely disordered state becomes completely ordered at T1. The entropy of the
completely disordered state is �Sdis = R ln 2 and for a sharp transformation we should
thus have expected the following transition temperature,

T 1 = �H dis/�Sdis = �H dis/R ln 2 = 1.44�H dis/R = 0.72TC. (19.39)

The fact that TC is higher than T1 was illustrated in Fig. 19.5. That result demonstrates
that the possibility for some of the atoms to disorder within the ordered state increases
the stability of the ordered state and raises the transformation temperature from the value
predicted for a sharp transformation. On the other hand, it should also be pointed out
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that the stability of the disordered state is increased by the existence of some short-range
order which has not been considered in our model. This is the factor that produces the tail
above the CP maximum which was shown in Fig. 19.4. It makes the difference between
TC and T1 smaller than indicated by the above model.

The model we have used here for the magnetic order–disorder transformation is based
upon the assumption that each individual atom has its own magnetic moment. This is
called the localized spin model and is regarded as a rather crude approximation. Mag-
netism can be treated in a more satisfactory way by the electron band theory. However,
it is much more complicated and thus difficult to apply, in particular at high temperature
and in alloys.

Exercise 19.5

Use the CP curve in Fig. 19.4 to evaluate the enthalpy of magnetic disordering. Then
estimate the number of unpaired electrons in bcc-Fe.

Hint

The number of unpaired electrons could be estimated from the magnetic entropy which, in
turn, could be evaluated from the enthalpy and the estimated transformation temperature
for a sharp transformation.

Solution

A rough graphical integration yields H dis = 7000 J/mol. We know TC = 1043 K and
accepting the result of the simple model we can estimate T 1 = 0.72TC, and thus we get
�Sdis = �H dis/T 1 = 7000/(0.72 · 1043) = 9.3; ln(β + 1) = �S/R = 1.12;
β = 2.1.

19.7 Random mixture of atoms

Before leaving the discussion of models of disordering phenomena we should mention
disorder in solution phases. Actually, most substances can have a variable composition
and we shall call such substances solution phases. On the atomic scale they consist of a
mixture of different species, in the simplest case atoms. In a crystal the atomic sites are
arranged in a regular pattern, a lattice, but the distribution of different kinds of atoms
on the sites is generally determined by chance to some extent. This situation is often
described as chemical disorder or configurational disorder. For a complete description
of such a case one needs a model with an internal variable representing the degree of
order. Such a model will be further discussed in the Chapters 21 and 22. In order to
prepare for that discussion it is convenient now to discuss the entropy of solution phases
with the maximum chemical disorder, so called random mixtures. The degree of order
can be used as an internal variable but will not be introduced until later.
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Figure 19.7 (a) Gibbs energy of mixing for an ideal, binary solution. (b) Variation of a chemical
potential in the same solution. In both cases the values have been normalized by dividing
with RT.

Let us consider a substance where all the sites are equivalent. Since all the various
atoms dissolved in the substance can substitute for each other, such a substance is called
a substitutional solution. The number of different ways in which NA atoms of A, NB

atoms of B, NC atoms of C, etc., can be arranged is

W = N !

NA!NB!NC ! . . .
. (19.40)

This randomness will give the following contribution to the entropy of the system accord-
ing to Boltzmann’s relation,

�S/k = ln W = ln N ! − � ln Ni !

∼= N ln N − �Ni ln Ni = −N�(Ni/N ) ln(Ni/N ) = −N�xi ln xi ,

(19.41)

since N is equal to �Ni and xi = Ni/N .
We may construct a model for an ideal substitutional solution by requiring that there

is no energy change on mixing the atoms. The only effect on the Gibbs energy would
come from the configurational disorder,

�G = −T �S = NkT �xi ln xi , (19.42)

where N is the number of moles of atoms. Let us consider an ideal system with one mole
of atoms. Using Eq. (4.6) we obtain

�Gm = −T �S = N AkT �xi ln xi = RT �xi ln xi (19.43)

�µ j = �Gm + ∂�Gm

∂x j
− �xi

∂�Gm

∂xi
= RT ln x j . (19.44)

Figure 19.7 gives �Gm and �µB for an ideal, binary A–B system. It is worth emphasizing
that �µB goes to −∞ as xB goes to 0. As a consequence the �Gm curve should be vertical
at its end-points. However, this tendency starts to develop so close to the end-points that
it is hardly discernible.
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In the model for an ideal solution there is no internal variable because the situation
has been completely fixed by the assumption of random mixing. The situation will be
different if all the arrangements do not have the same energy. The disorder will then be
incomplete and one can introduce internal variables describing short- and long-range
order. This phenomenon will be described in Section 22.6. However, there is a class of
solution phases where all the sites are not equivalent and they may be, at the same time,
close to random in one sense and well ordered in another. They will be discussed in the
next sections.

Exercise 19.6

An A–B–C alloy is prepared by mixing xC moles of pure C with 1 – xC moles of an
A–B alloy. Calculate (a) the entropy of mixing in 1 – xC moles of the initial A–B alloy,
(b) the entropy due to the mixing of C into the A–B alloy and (c) the sum of the two
contributions.

Hint

The A content of the initial alloy can be expressed as xA/(xA + xB) if xA and xB refer to
the final, ternary alloy. The effect of mixing C with a mixture of A + B is the same as the
effect of mixing C with a single element which could very well consist of two isotopes.
Remember that xA + xB = 1 − xC.

Solution

�S(a) = (1 − xC) · {xA/(xA + xB) · ln[xA/(xA + xB)] + xB/(xA + xB) · ln[xB/(xA +
xB)]} = xA ln xA + xB ln xB − (xA + xB) ln(xA + xB); �S(b) = xC ln xC + (1 − xC)
ln(1 − xC) = xC ln xC + (xA + xB) ln(xA + xB); �S(c) = xA ln xA + xB ln xB +
xC ln xC.

19.8 Restricted random mixture

Many crystalline phases have more than one family of sites. It is convenient to describe
such phases with the use of sublattices and the state may be defined by giving the site
fractions (see Section 4.8).

yt
j = N t

j/N t . (19.45)

If the atoms in one sublattice are mixed with each other at random, they give the following
contribution to the entropy

�St = −k N
∑

i

N t
i

N t
ln

N t
i

N t
= −R

∑
i

yt
i ln yt

i . (19.46)
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Since entropy is an extensive property which obeys the law of additivity, one could add
the contributions from the individual sublattices,

�Sm = ��St = −R
∑

s

as
∑

i

ys
i ln ys

i . (19.47)

This expression holds for one mole of atoms if there are no vacant sites. as is then defined
as N s/N , the fraction of all sites belonging to the s sublattice, and �as is unity. One
may instead like to consider one mole of formula units where the formula is written with
integers for all as . Then �as is the number of atoms per formula unit.

This may be regarded as an ideal solution model for the particular type of crystalline
structure. If all the elements can go into all the sublattices with the same probability, this
model reduces to the previous ideal solution model because ys

i is then identical to xi.

Exercise 19.7

Consider a so-called Laves phase with two components each on two sublattices, (A, B)1

(C, D)2. Calculate the entropy of mixing assuming random mixing within each sublattice
for equal amounts of A and B and also for C and D. Compare with the ideal entropy of
mixing when all four components are mixed randomly with each other.

Hint

Consider 3 moles of atoms, 0.5 of A, 0.5 of B, 1 of C and 1 of D.

Solution

�S/R = −1 · (0.5 ln 0.5 + 0.5 ln 0.5) − 2 · (0.5 ln 0.5 + 0.5 ln 0.5) = +3 ln 2 = 2.08.
For an ideal solution we get

�S/R = 3[(1/6) ln(1/6) + (1/6) ln(1/6) + (2/6) ln(2/6) + (2/6) ln(2/6)] = 3.99.

19.9 Crystals with stoichiometric vacancies

A binary crystal can vary in composition even if each component is restricted to its own
sublattice. An example is wüstite which has separate sublattices for Fe and O. The Fe
sublattice can have vacant sites and we should thus write the formula as (Fe,Va)1O1. We
shall call such vacancies stoichiometric vacancies because in the simplest case, their
number is fixed by the stoichiometric imbalance between the amounts of the elements.
The entropy of disorder in a crystal with any kind of vacancies is given by the expression
already discussed, if the vacancies are distributed at random on a sublattice. The vacancies
are then treated as the atoms of any element and one must define their site fraction, ys

Va.
On the other hand, the vacancies are not included in the mole fractions xi which give
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the composition of the crystal. Consequently, when evaluating x from y, one should not
include the vacancies in the summation. We can give the equation as

x j =
∑

s

as ys
j

/(∑
s

as −
∑

s

as ys
Va

)
. (19.48)

On the other hand, it is not always possible to calculate the y values from the overall
composition given by the set of x values. If each element is dissolved in one sublattice
only, then we can still evaluate the site fractions from the composition of the crystal
provided that there is at least one sublattice without vacancies. First we can identify that
sublattice as the one having the largest value of �xs

i /as . Let us denote that sublattice by
r. The site fractions in any sublattice t are then given by

yt
j = x j a

r/at
∑

i

xr
i . (19.49)

If �yt
j in any sublattice is less than unity then the difference from unity gives the site

fraction of vacancies

yt
Va = 1 −

∑
i

yt
i . (19.50)

This relation illustrates why they are called stoichiometric vacancies. The amount of
stoichiometric vacancies does not change directly with the temperature but there may
be an indirect effect if the phase is in equilibrium with another phase. The composition
may then vary by an exchange of atoms between the phases. The amount of vacancies
can also vary if the composition of the other phase varies by an action from the outside.
A typical example is an oxide in equilibrium with an atmosphere of variable PO2 .

Exercise 19.8

We know the composition of an oxide by chemical analysis as xU = 0.252, xPu = 0.094
and xO = 0.654. Calculate the site fractions under the assumption that the oxide is a
so-called stoichiometric phase with only a small deviation from stoichiometry.

Hint

Suppose that U and Pu occupy one sublattice and O another. The number of sites can
then be estimated from the number of atoms supposing there are no vacancies. Vacancies
can then be assumed on one sublattice for stoichiometric reasons.

Solution

xU + xPu = 0.346; xO/(xU + xPu) = 0.654/0.346 = 1.89. This is close to 2. We may
thus assume that the formula is (U,Pu)1(O,Va)2 and we find yO = 0.654 · 1/2 · 0.346 =
0.945; yVa = 0.055.
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19.10 Interstitial solutions

Phases with two or more sublattices are often called compounds or intermediary phases,
or intermetallic phases when appropriate. Such compounds may be strictly stoichiometric
or may show a deviation from stoichiometry, caused by defects. One such defect is the
vacancy. A related case is the interstitial solution where some solute atoms dissolve in
a crystalline solvent by going into interstitial sites that are initially empty. These sites
form a sublattice. An example is the solution of carbon in the bcc modification of iron,
so-called ferrite or α-Fe. The formula can be written as Fe1(Va,C)3. The entropy of
interstitial solutions can be treated with the method discussed in the preceding sections.
A more complicated case occurs when an element goes mainly into ordinary lattice sites
but some of its atoms go into interstitial sites.

In Section 4.8 we found that it was possible to derive an expression for the chemical
potential of a compound in a stoichiometric phase but not for the chemical potential of an
element. The situation is different for a phase with vacancies. For the interstitial solution
of C in α–Fe we can by standard methods derive expressions for µFeC3 and µFeVa3 . We
can thus evaluate µC from

1

3
(µFeC3 − µFeVA3

) = 1

3
µFe + µC − 1

3
µFe − µVa = µC − µVa = µC. (19.51)

because we can usually assume that the chemical potential of vacancies is zero. Assuming
random mixing of carbon atoms and vacancies we obtain the following contributions to
the entropy of mixing, the Gibbs energy of mixing and the chemical potential of carbon

�Sm = −3R(yVa ln yVa + yC ln yC) (19.52)

�Gm = 3RT (yVa ln yVa + yC ln yC) (19.53)

�µC = �µC − �µVa = 1

3

(
�Gm + ∂�Gm

∂yC
−

∑
yi

∂�Gm

∂yi
− �Gm

− ∂�Gm

∂yVa
+

∑
yi

∂�Gm

∂yi

)
= 1

3

(
∂�Gm

∂yC
− ∂�Gm

∂yVa

)

= 1

3
· 3RT ln

yC

yVa
= RT ln

yC

1 − yC
. (19.54)

Interstitial solutions will be further discussed in Section 21.2.
It is important to notice that the deviation from stoichiometry of a compound may also

be caused by some atoms going into sites of the ‘wrong’ sublattice (in that connection
called anti-sites) or into interstitial sites.

Exercise 19.9

The interstitial solution of carbon in fcc- and bcc-iron can be represented with the formula
(Fe)1(Va,C)1 and (Fe)1(Va,C)3, respectively. The martensitic transformation from fcc to
bcc is very rapid and carbon is not able to take advantage of the additional interstitial
sites. Estimate how much larger the driving force for the martensitic transformation
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would have been if carbon could be distributed among all the sites available in bcc-Fe.
Make a numerical calculation for an Fe-C alloy with a molar content of 0.02 C.

Hint

For simplicity, suppose that the redistribution of carbon atoms has an effect on the Gibbs
energy through the ideal entropy term only. Consider a system with one mole of Fe atoms
and thus zC = 0.02/0.98 = 0.0204 moles of C atoms.

Solution

�G = 3RT [(zC/3) ln(zC/3) + (1 − zC/3) ln(1 − zC/3)] − RT [zC ln zC + (1 − zC)
ln(1 − zC)] = RT (− 0.1219 + 0.0996) = − 0.223RT . The driving force would inc-
rease with 0.223RT.



20 Mathematical modelling of
solution phases

20.1 Ideal solution

The thermodynamic properties of some solutions were illustrated graphically in
Section 7.1 and some mathematical expressions were also given. We shall now give
a more thorough discussion. In Section 18.7 we mentioned the possibility of modelling
a special physical effect, p, in a substance and defining the remaining part of the Gibbs
energy as the property of a hypothetical state, h, which does not have that physical effect,

Gm = Gh
m + Gp

m. (20.1)

This approach can also be applied to solution phases. The most important application
is the treatment of the thermodynamic effects of mixing the atoms in a solution. The
hypothetical state would then be a so-called mechanical mixture of the pure components
at the same temperature and pressure,

Gh
m = �xi

oGi . (20.2)

The physical effect, Gp
m would here be the contribution due to the intimate mixing of the

atoms in a solution. It is usually denoted by MGm, which is thus defined by

Gm = �xi
oGi + MGm. (20.3)

The mechanical mixture may be regarded as a reference for the properties of a solution
and MGm gives the solution behaviour. It is called Gibbs energy of mixing but a better
name would have been ‘Gibbs energy of solution’ because it represents the effect of
forming a solution from a mechanical mixture. For a binary system the reference is a
straight line in the molar Gibbs energy diagram, in a ternary system it is a plane, etc.
Earlier, in Fig. 7.1, it was demonstrated that one can use this straight line in a binary
system as the line of reference in a molar Gibbs energy diagram and the concept of Gibbs
energy of mixing was introduced.

The simplest model for the intimate mixing of atoms in a solution is based on the
assumption of random mixing and no particular interactions between atoms of different
kinds. For that case we have

Gm = �xi
oGi − T · MSideal

m , (20.4)



442 Mathematical modelling of solution phases

A B BA

C
Gm

(a) (b)

Figure 20.1 Characteristic shapes of the molar Gibbs energy curves in (a) binary and (b) ternary
systems, caused by the entropy of mixing.

and expressions for the ideal entropy of mixing in phases with different structures were
derived in Sections 19.7 to 19.10. A solution obeying such an equation may be called an
ideal solution. For an ideal substitutional solution we have

MSideal
m = −R�xi ln xi (20.5)

Gm = �xi
oGi + RT �xi ln xi , (20.6)

and we may also define a partial ideal entropy of mixing for component I,

MSideal
i = −R ln xi (20.7)

Sometimes one explicitly requires that the molar volume of an ideal solution should be
equal to a weighted average of the values for the pure components. It is easy to see that
Eq. (20.4) satisfies this requirement because the derivative with respect to P yields

Vm = ∂Gm/∂ P = �xi∂
oGm/∂ P = �xo

i Vi . (20.8)

The term −T · MSideal
m is important even in real, non-ideal solutions and it gives the Gibbs

energy its characteristic shape of a hanging rope for a binary system and a canopy for a
ternary. This has already been illustrated in a number of diagrams in Sections 7.1 and
7.10 and is again shown in Fig. 20.1.

Exercise 20.1

Suppose one knows that a binary solution is not ideal because the molar volume obeys
the relation: Vm = xA

oVA + xB
oVB + xAxB · |oVA − oVB|. Examine the effect on Gm if

oVA −o VB = 2 · 10−6 m3 mol.

Hint

Represent Gm with xA
oGA + xB

oGB − T · MSideal
m + xAxBL and evaluate the effect

on L.
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Solution

Compare with Vm = ∂Gm ∂ P = xA
oVA + xB

oVB + xAxB∂L/∂ P . Thus, ∂L/∂ P =
(oVA − oVB) and, neglecting the pressure dependence of oVA − oVB, we find L = Lo +
P · ∑

(oVA − oVB). At 1 bar (105 Pa) this effect would increase L by 105 · 2 · 10−6 =
0.2 J mol. This is negligible in most cases.

20.2 Mixing quantities

It is convenient to compare the value of any molar quantity in a solution with the weighted
average of the values for the pure components and define a molar quantity of mixing,
M Am,

Am = �xo
i Ai + MAm. (20.9)

The additional requirement for an ideal solution, mentioned in the preceding sec-
tion, may thus be formulated by stating that the volume of mixing, MVm, must be
zero.

Partial quantities of mixing can be defined relative to the value for the pure
component,

M Ai = Ai − o Ai . (20.10)

It is evident that all relations derived for Am and Ai in Section 4.2 also apply to MAm

and M Ai because the references o Ai will drop out from all such relations. We get, for
instance,

M Am = Am − �xi
oAi = �xi Ai − �xi

oAi = �xi (Ai − oAi ) = �xM
i Ai . (20.11)

We find, as for Am in Section 4.1,

MA j = MAm + ∂MAm

∂x j
−

∑
xi

∂MAm

∂xi
. (20.12)

Exercise 20.2

Show that the partial enthalpy of mixing can be calculated from M Hj = ∂(MG j/T )/
∂(1/T ).

Hint

We know Hj = ∂(G j/T )/∂(1/T ). Use M Hj = Hj − o Hj and MG j = G j − oG j .

Solution

∂(MG j/T )∂(1/T ) = ∂(G j/T )/∂(1/T ) − ∂(oG j/T )/∂(1/T ) = Hj − o Hj = M Hj .
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20.3 Excess quantities

The various mixing quantities were defined relative to the mechanical mixture of the
components. In the same way one may define excess quantities relative to an ideal
solution, e.g.

Gm =
∑

xi
oGi − T · MSideal

m + EGm. (20.13)

The excess quantities represent the deviation from ideal behaviour and are thus subject
to direct study and modelling. In this chapter we shall examine mathematical models
of the excess Gibbs energy and in the next chapter we shall discuss some very simple
physical models.

From the excess Gibbs energy one may define partial excess Gibbs energies and obtain,
by standard procedures,

EG j = EGm + ∂EGm/∂x j − �xi∂
EGm/∂xi (20.14)

EGi = Gi − oGi + T · MSideal
i (20.15)

EGm = �xi
EGi (20.16)

ESi = Si − oSi − MSideal
i (20.17)

E Hi = Hi − o Hi = M Hi . (20.18)

We note that it is not necessary to introduce the concept of excess enthalpy because
all enthalpy of mixing is in excess of the ideal solution behaviour. For a substitutional
solution we get

EG j = Gi − oGi − RT ln xi . (20.19)
E Si = Si − o Si − R ln xi (20.20)

Exercise 20.3

Using a Maxwell relation at constant T and P we get ∂Gi/∂ N j = ∂2G/∂ Ni∂ N j =
∂2G/∂ N j∂ Ni = ∂G/∂ Ni . Using this relation, show that ∂EGi/∂ N j = ∂ E G j/∂ Ni .

Hint

Gi = oGi + RT ln xi + EGi ; ∂xi/∂ N j = −xi/N ; ∂x j/∂ Ni = −x j/N .

Solution

∂Gi/∂ N j = RT (1/xi )·(−xi/N ) + ∂EGi/∂ N j = −RT/N +∂EGi/∂ N j ; ∂G j/∂ Ni =
−RT/N + ∂EG j/∂ Ni . If the two left-hand sides are equal, we obtain ∂EGi/∂ N j =
∂EG j/∂ Ni .
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Figure 20.2 Properties of Redlich–Kister terms.

20.4 Empirical approach to substitutional solutions

We shall now discuss an empirical approach to the modelling of the excess Gibbs energy
of solution phases. We have already seen that the difference between the properties of
a real solution and an ideal solution may be represented by a quantity called the excess
Gibbs energy, EGm. For a substitutional solution we can immediately see that it must go
to zero for the pure components and a convenient way of representing its composition
dependence in a binary system is to introduce the factor xAxB which goes to zero for
pure A as well as pure B. We shall thus express EGm as xAxBI. We shall allow I to
be a function of composition. It may for instance be represented by a power series,
often called Redlich–Kister polynomial [39]. Figure 20.2 illustrates the properties of the
various terms in EGm.

I = 0L + 1L(xA − xB) + 2L(xA − xB)2 + · · · (20.21)

EGm = xAxB

n∑
k=0

k L(xA − xB)k . (20.22)

The parameter I may be regarded as a representation of the interaction between the
two components. It is convenient to give the two components as an index to I and write
it as IAB for an A–B solution. When I is a constant, independent of composition as well
as temperature, one talks about a regular solution and 0L may thus be called the regular
solution parameter. When it appears alone, it is usually denoted by L. 1L may be called
the subregular solution parameter and 2L the subsubregular solution parameter. However,
it should be mentioned that a regular solution is sometimes defined as a solution where
EGm is independent of temperature but may have any composition dependence. On the
other hand, in recent years there is a tendency to call a solution regular as soon as I is
independent of composition, whether or not I is independent of temperature.

Positive values of the regular solution parameter result in a tendency of demixing. If
not interrupted by other reactions a miscibility gap will form when the temperature is
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lowered. It is easy to calculate its spinodal from the condition for the stability limit. For
a constant I we get

gB = dGm/dxB = (xA − xB)0L + RT (xB/xB + ln xB − xA/xA − ln xA) (20.23)

gBB = d2Gm
/

dx2
B = (−1 − 1)0L + RT (1/xB + 1/xA) = 0 (20.24)

Tsp = xAxB · 20L/R (20.25)

xAxB = RTsp/20L . (20.26)

The spinodal will thus be a parabola in this simple case and its maximum will fall at
xA = xB = 0.5 and be a consolute point.

Tcons = 0L/2R and xAxB = Tsp/4Tcons. (20.27)

A second equation is required in order to calculate the consolute point if I is not a constant
and it is obtained through the condition of a critical point,

d3Gm
/

dx3
B = 0. (20.28)

For further reference it is convenient here to derive expressions for the partial
Gibbs energies from the Redlich–Kister polynomial. Using the standard method pre-
sented in Section 4.1, we can evaluate the last two terms in the following general
expression

Gl = oGl − T · MSideal
l + EGl . (20.29)

With the power series representation of EGm we first obtain a general expression for the
effect of an interaction between two components, l and i,

EGl = 0Lli xi (1 − xl) +
n∑

k=1

k Lli xi (xl − xi )
k−1[(k + 1)(1 − xl)(xl − xi ) + kxi ].

(20.30)
For a binary A–B system we can replace 1 − xA by xB and 1 − xB by xA and obtain

EGA = x2
B

{
0LAB +

n∑
k=1

k LAB(xA − xB)k−1[(2k + 1)xA − xB]

}
(20.31)

EGB = x2
A

{
0LAB +

n∑
k=1

k LAB(xA − xB)k−1[xA − (2k + 1)xB]

}
. (20.32)

It should be noticed that in our notation the sign of k LAB changes for odd k if the order
between A and B is reversed. It is also interesting to note that the expression for the partial
excess Gibbs energy of one component contains the square of the molar content of the
other. The partial excess Gibbs energy of a component will thus go to zero asymptotically
as the pure component is approached. In this respect the very dilute solutions are ideal,
a result which is usually formulated in Raoult’s law. It will be discussed in the next
section.

For a solution with more than two components we should consider interactions within
each combination of two components and possibly also interactions between more than
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two components, so-called ternary, quaternary, etc., interactions. By limiting the present
discussion to binary interactions we obtain

Gm =
∑

xi
oGi + RT

∑
xi ln xi +

∑
i

∑
j>i

xi x j Ii j , (20.33)

and EGl will be the sum of contributions from all Ili but also from other Iij. We obtain

EGl =
∑
i �=l

{
0Lli xi (1 − xl) +

n∑
k=1

k Lli xi (xl − xi )
k−1[(k + 1)

×(1 − xl)(xl − xi ) + kxi ]

}

−
∑
i �=l

∑
j �=l,>i

xi x j

[
0Li j +

n∑
k=1

k Li j (xi − x j )
k(k + 1)

]
. (20.34)

For a ternary system with constant interaction energies (i.e. for the regular solution
model) we can write the result as follows by omitting the superscript 0 in 0L,

GA = oGA + RT ln xA + xB(xB + xC)LAB − xBxCLBC + xC(xC + xB)LCA

(20.35)

GB = oGB + RT ln xB + xA(xA + xC)LAB + xC(xC + xA)LBC − xCxALCA

(20.36)

GC = oGC + RT ln xC − xAxBLAB + xB(xB + xA)LAB + xA(xA + xB)LCA.

(20.37)

Exercise 20.4

Apply the expressions for EGA and EGB, given by Eqs (20.31) and (20.32), to a binary
system and show that Gm = �xi Gi .

Hint

We know that for an ideal solution Gm = �xi Gi . Now it is thus sufficient to show that
EGm = �xE

i Gi .

Solution

�xi
EGi = xAx2

B

{
0LAB + �k LAB(xA − xB)k−1[(2k + 1)xA − xB]

}
+ xBx2

A

{
0LAB + �k LAB(xA − xB)k−1[xA − (2k + 1)xB]

}
= xAxB

{
0LAB(xA + xB) + �k LAB(xA − xB)k−1

× [xB(2k + 1)xA − x2
B + x2

A − xA(2k + 1)xB]
}

= xAxB
[

0LAB + �k LAB(xA − xB)k
]
.
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Exercise 20.5

Mo has the same structure as α–Fe(bcc) and it is thus possible to combine them into
the same model, covering the whole range of composition of bcc in the Fe–Mo phase
diagram. Determine the Gm expression for this model from the mutual solubilities at
1300◦C which are 0.16 Mo in Fe and 0.075 Fe in Mo.

Hint

Since two pieces of information are given, we can determine two parameters. The excess
term will thus be written as xFexMo[0L + 1L(xFe − xMo)] where 0L and 1L will be consid-
ered as independent of T. At equilibrium GFe − 0GFe, i.e. RT ln xFe + EGFe would have
the same value in both phases and so would RT ln xMo + EGMo. For a binary solution
we find EGA = x2

B[0L + 1L(3xA − xB)] and EGB = x2
B[0L + 1L(3xA − xB)].

Solution

RT ln xFe + EGFe = RT ln 0.84 + (0.16)2[0L +1 L(3 · 0.84 − 0.16)] = RT ln 0.075 +
(0.925)2[0L + 1L(3 · 0.075 − 0.925)]; RT ln xMo + E GMo = RT ln 0.16 + (0.84)2

[0L + 1L(0.84 − 3 · 0.16)] = RT ln 0.925 + (0.075)2[0L + 1L(0.075 − 3 · 0.925)].
The numerical result is 0L = 34 500 and 1L = −4500 J/mol.

20.5 Real solutions

As discussed already in Section 7.1, one often represents the properties of real solutions
with the activity ai and activity coefficient fi , defined through

µi = µREF
i + RT ln ai = µREF

i + RT ln xi + RT ln fi . (20.38)

It is common to choose as reference the state of pure i at the same temperature and
pressure as the state under consideration, usually denoted oGi or oµi .

The activity coefficient is often intended for use in dilute solutions only. It is interesting
to examine its variation with composition by applying the regular solution model for a
binary substitutional solution. Figure 20.3 shows three curves for the activity obtained
with 0L/RT = 2, 0 or − 2. For high B contents xA is small and the regular solution
model yields

aB = xB exp
(

0Lx2
A/RT

) ∼= xB; fB
∼= 1. (20.39)

As a consequence, all the curves approach asymptotically the diagonal in the diagram.
This is Raoult’s law and its validity is very general. We have already seen that EGB has
the factor x2

A independent of what power series has been chosen. This factor originates
from the factor xAxB, introduced in order to make EGm go to zero for pure B and for pure
A. For low B contents where xA may be approximated by 1 we obtain

aB = xB exp
(

0Lx2
A/RT

) ∼= xB exp(0L/RT ); fB
∼= exp(0L/RT ). (20.40)
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Figure 20.3 The properties of a binary solution according to the regular solution model with three
different values of the regular solution parameter.

This gives the slope of the tangent to the curve at the origin. It is self-evident that at low
B contents the alloys fall close to this tangent. This is often formulated as Henry’s law.
It must be emphasized that this law says nothing about the slope of the tangent, contrary
to Raoult’s law. It is interesting to mention that Raoult’s law for component A can be
derived by applying Henry’s law to component B.

A convenient method of studying the properties of a binary solution is based upon the
presence of the factor x2

A in the expression for the partial excess Gibbs energy of B in
the empirical model. We obtain

0LAB +
n∑

k=1

k LAB(xA − xB)k−1[xA − (2k + 1)xB] = EGB/x2
A

= RT ln (aB/xB)/x2
A = RT ln fB/x2

A. (20.41)

If a plot of experimental values of RT ln fB/x2
A versus xB can be represented by a straight

line then the properties can be represented by two parameters, 0LAB and 1LAB. If exper-
imental data are available for both components, then the two-parameter representation
requires that one finds two straight lines, one for each component and such that they
yield the same set of 0L and 1L values. An example for liquid Fe–Ni at 1852 K is given in
Fig. 20.4. In Fig. 20.4(b) the two lines have the same slope, representing 1LFe,Ni, and
the same value at xNi = 0.25 for the Ni line and xFe = 0.25 for the Fe line, representing
0LFe,Ni. The experimental scatter is considerable in Fig. 20.4(b), especially at low Ni
contents for Fe and at low Fe contents for Ni because of the very small values then taken
by the factors x2

Ni and x2
Fe in the denominators.

It should be emphasized that there are many binary systems where the power series
representation is not very convenient. Figure 20.5 shows an example from liquid Bi–Mg
at 973 K where a very large number of power terms would be needed for a satisfactory
representation of the data. It is evident that some particular physical effect occurs at
the centre of the system and it would be difficult to represent such data mathematically
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Figure 20.4 The properties of liquid Fe–Ni solutions at 1852 K according to direct measurements
and a subregular solution model with 0 LFe,Ni = −10 and 1 LFe,Ni = 5 kJ/mol.
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Figure 20.5 Experimental data from liquid Bi–Mg alloys at 973 K. This behaviour cannot be well
represented with a power series.

without identifying that effect and representing it with an adequate model. Such models
will be described later on.

Exercise 20.6

Consider the gaseous mixture (solution) of H2 and O2 at 1 bar and a temperature high
enough for the reaction 2H2 + O2 → 2H2O to go to equilibrium but still low enough to
make the formation of H2O practically complete. Examine how the activity of O2 would
vary across the binary H2–O2 system as a function of xO2 .

Hint

The binary system has two components and it is evident that they are defined as H2 and
O2 and that xO2 is thus defined with no regard for the formation of H2O. Suppose that the
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Figure 20.6 Solution to Exercise 20.6.

gas is actually an ideal gas mixture of H2, O2 and H2O. At constant T and P we then have
RT ln xO2 = µO2 − oµO2 = RT ln yO2 where the definition of yO2 takes into account the
presence of H2O.

Solution

Between xO2 = 0 and 1/3 there are practically no molecules of O2. All oxygen goes into
H2O. Between xO2 = 1/3 and 1 there are, for the same reason, practically no H2 molecules
and yH2O + yO2 = 1 and xO2 = (yO2 + 0.5yH2O)/(yO2 + 1.5yH2O) and thus aO2 = yO2 =
(3xO2 − 1)/(xO2 + 1). It is evident that it is impossible to describe the deviation of this
solution from the ordinary ideal solution with a power series. Any reasonable model
must recognize that the interaction between the two components is here so strong that
large quantities of a new kind of molecule form (Fig. 20.6).

Exercise 20.7

It is common to define the activity of a component i in a solution with reference to pure
i at the same temperature. The chemical potential of i in the solution is then written as
µi = oGi (T ) + RT ln ai . Suppose that one would instead like to define an activity by
referring to pure i at absolute zero as reference. Derive a relation between the two kinds
of activity, aT

i and a0
i .

Hint

The chemical potential of i in the solution, µi , is a well defined quantity even though its
value can be given only relative to a reference, i.e., as µi − oGi .

Solution

µi is the same quantity in the two equations: µi = oGi (T ) + RT ln aT
i and

µi = oGi (0) + RT ln a0
i . Let us take the difference: 0 = oGi (T ) − oGi (0) +
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RT ln(aT
i /a0

i ); a0
i = aT

i exp[(oGi (T ) − oGi (0))/RT ]. Thus a0
i < aT

i since oGi (0) >
oGi (T ).

20.6 Applications of the Gibbs–Duhem relation

At constant T and P the Gibbs–Duhem relation, Eq. (3.34), reduces to

�xi dGi = 0 or �xi d ln ai = 0. (20.42)

We have here chosen the notation Gi instead of µi since we shall consider a single solution
phase. By introducing partial excess Gibbs energies or activity coefficients through

Gi = oGi + RT ln xi + EGi = oGi + RT ln xi + RT ln fi , (20.43)

we get

�xi d
EGi = 0 or �xi d ln fi = 0, (20.44)

because

�xi d ln xi = �xi dxi/xi = �dxi = 0. (20.45)

In a binary system it is thus possible to evaluate f1 from measurements of f2 by integration
from pure 1.

ln f1 = −
x2∫

0

x2

x1
· d ln f2

dx2
dx2. (20.46)

For graphical or numerical integration Wagner [40] suggested that this equation should
first be transformed by integration by parts, yielding

ln f1 =
x2∫

0

ln f2

x2
1

dx2 − x2 ln f2

x1
. (20.47)

One can also evaluate EGm from the information on f2. The last equation gives

x1 ln f1 + x2 ln f2 = x1

x2∫
0

ln f2

x2
1

dx2, (20.48)

and this is identical to EGm/RT .
As an introduction to a discussion of ternary systems, it may be useful to repeat the last

derivation by starting from the well-known expression for a binary system in Section 7.1,
when x1 is regarded as a dependent variable.

EG2 = EGm + (1 − x2)dEGm/dx2. (20.49)

This can be rearranged into

EG2 = (1 − x2)2d
[

EGm/(1 − x2)
]
/dx2. (20.50)
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Integration from x2 = 0 where EGm = 0, yields

EGm = (1 − x2)


EGm(x2 = 0) + (1 − x2)

x2∫
0

[
EG2/(1 − x2)2

]
dx2




= (1 − x2)

x2∫
0

[
EG2/(1 − x2)2

]
dx2, (20.51)

which is actually identical to the result of Eq. (20.48).
For a ternary system one may derive the same equations if the ratio x1/x3 is regarded

as the second independent variable. However, when integrating from x2 = 0 one now
starts from a binary 1–3 alloy and its EGm is not zero. We should thus write the
result as

EGm = (1 − x2)


EGm(x2 = 0) +

x2∫
0

[
EG2/(1 − x2)2

]
dx2




x1/x3

. (20.52)

This equation can be useful if one has measured EG2 (i.e. RT ln f2) in sections of constant
x1/x3.

Exercise 20.8

Show that G2 = Gm + (1 − x2) · (∂Gm/∂x2)x1/x3 in a ternary system by starting from
G = N Gm(x2, x1/x3).

Hint

Since x1/x3 = N1/N3 we find (∂(x1/x3)/∂ N2)N1,N3 = 0.

Solution

x2 = N2/(N1 + N2 + N3); (∂x2/∂ N2)N1,N3 = (N − N2)/N 2 = (1 − x2)/N ; G2 ≡
(∂G/∂ N2)N1,N3 = Gm + N · (∂Gm/∂x2)x1/x3 · (∂x2/∂ N2)N1,N3 + N · (∂Gm/∂(x1/x3))x2·
(∂(x1/x3)/∂ N2)N1,N3 =Gm+N · (∂Gm/∂x2)x1/x3 · (1 − x2)/N + N · (∂Gm/∂(x1/x3))x2·
0 = Gm + (1 − x2) · (∂Gm/∂x2)x1,x3

Exercise 20.9

By studying the ratio of vapour pressures over A–B alloys one can measure how the ratio
of activities aA/aB varies with composition. Show how one can evaluate aA and aB from
such information.
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Hint

Use the Gibbs–Duhem relation in the form xAd ln aA + xBd ln aB = 0. Replace ln aB by
ln(aB/aA) + ln aA.

Solution

0 = xAd ln aA + xBd ln(aB/aA) + xBd ln aA = (xA + xB)d ln aA + xBd ln(aB/aA) =
d ln aA + xBd ln(aB/aA); ln aA = − ∫

xBd ln(aB/aA)

20.7 Dilute solution approximations

When discussing dilute solutions Wagner [40] suggested that one should consider the
composition dependence of the activity coefficient. For a dilute solution of B in A he
wrote

(GB − oGB)/RT = ln aB = ln fB + ln xB = ln o fB + ln xB + εBxB (20.53)

This may be compared with the expression we obtained for the regular solution model,
i.e., Eq. (20.32) with a constant parameter.

GB = oGB + RT ln xB + (
1 − 2xB + x2

B

)
LAB (20.54)

The two formalisms are identical if the second-order term can be neglected, i.e. for dilute
solutions. We identify parameters as follows if the same reference is used in both cases.

ln ofB = LAB/RT (20.55)

εB = −2LAB/RT (20.56)

However, a different reference state is often used in the ε formalism. As an example,
the infinite-dilution reference state is defined in such a way that it makes ln ofB = 0 and
gives the relation

oG inf.dil.
B = oGB + LAB (20.57)

GB = o G inf.dil.
B + RT ln xB + (−2xB + x2

B

)
LAB (20.58)

For a ternary system, where small amounts of B and C are dissolved in A, Wagner
introduced an interaction coefficient between the two solutes, εC

B = εB
C, and gave the

expressions

(GB − oGB) /RT = ln aB = ln fB + ln xB = ln o fB + ln xB + εB
B xB + εC

B xC (20.59)

(GC − oGC)/RT = ln aC = ln fC + ln xC = ln o fC + ln xC + εB
C xB + εC

C xC. (20.60)

This may be compared with the regular solution model yielding Eqs (20.35) to (20.37)
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after replacing xA with 1 − xB − xC,

GA = oGA + RT ln xA + (
x2

B + xBxC
)

LAB + (
xBxC + x2

C

)
LAC − xBxCLBC

(20.61)

GB = oGB + RT ln xB + (
1 − 2xB + x2

B − xC + xBxC
)

LAB

+ (−xC + xBxC + x2
C

)
LAC + (xC − xBxC)LBC (20.62)

GC = oGC + RT ln xC + (−xB + x2
B + xBxC

)
LAB

+ (
1 − xB + xBxC − 2xC + x2

C

)
LAC + (xB − xBxC)LBC. (20.63)

The two formalisms are again identical if the second-order terms are neglected and the
following relations are obtained by comparing Eqs (20.59) and (20.60) with Eqs (20.62)
and (20.63).

εB
B = −2LAB/RT (20.64)

εC
B = (LBC − LAB − LAC)/RT = εB

C (20.65)

εC
C = −2LAC/RT . (20.66)

Equation (20.55) is still valid. We note that εC
B and εB

C must be equal in order to make
the two formalisms identical.

Equation (20.61) demonstrated that one needs second-order terms in order to model
any deviation from Raoult’s law for the solvent, A. There are no such terms in the ε

formalism and a related feature is that the expressions for GA, GB and GC obtained from
the ε formalism do not satisfy the Gibbs–Duhem relation. Pelton and Bale [41] showed
that it can be satisfied by adding a particular term, K, to the expressions for all three GA,
GB and GC. Inspection of Eqs (20.62) and (20.63) reveals that the set of second-order
terms is the same in all cases and it actually represents the K term,

K RT = (
x2

B + xBxC
)

LAB + (
x2

C + xBxC
)

LAC − xBxCLBC. (20.67)

Using the relations (20.64) to (20.66) it could as well be expressed in the form proposed
by Pelton and Bale.

− K = 1/2ε
B
B x2

B + εC
B xBxC + 1/2ε

C
C x2

C. (20.68)

Darken [42] noticed that the regular solution model for binary solutions is often very
inadequate and showed that it sometimes works well in the A-rich part by using a hypo-
thetical state of reference for the solute. This is called the quadratic formalism and simply
means that one substitutes oGB + MB for oGB, which represents the real Gibbs energy
of pure B in the same phase. This can be done directly in Eq. (20.62) and similarly
for pure C in Eq. (20.63). The values of MA and MB are given by a comparison of
Eqs (20.59) and (20.60).

ln o fB = (MB + LAB)/RT = MB/RT − 0.5εB
B (20.69)

ln o fC = (MC + LAC)/RT = MC/RT − 0.5εC
C. (20.70)
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The corrected ε formalism is completely equivalent to the quadratic formalism and thus
offers a convenient way of evaluating the M and L coefficients to fit the experimental
information.

Exercise 20.10

Derive the expression for K in Eq. (20.70).

Hint

Apply the Gibbs–Duhem relation in the xB direction and in the xC direction, respectively,
in a ternary system, after first expressing xA in terms of xB and xC.

Solution

0 = xAd ln aA + xBd ln aB + xCd ln aC = xAd(ln xA + K ) + xBd(ln xB + εB
B xB + εC

B xC+
K ) + xCd(ln xC + εB

C xB + εC
C xC + K ). ∂/∂xB of this gives since xA = 1 − xB

− xC : 0 = xA(−1/xA + ∂K/∂xB) + xB(1/xB + εB
B + ∂K/∂xB) + xC(εB

C + ∂K/∂xB);
∂K/∂xB = −xBεB

B − xCεB
C. In the same way we find ∂K/∂xC = −xBεC

B − xCεC
C. These

conditions are satisfied with K = −(εB
B x2

B + 2εC
B xBxC + εC

C x2
C)/2.

20.8 Predictions for solutions in higher-order systems

Taking all binary interactions into account we obtain the following expression for the
excess Gibbs energy in a multicomponent solution phase.

EGm =
∑

i

∑
j>i

xi x j Ii j . (20.71)

If this model applies, all the Ii j coefficients can be determined experimentally on the
respective binary systems and the properties of the higher-order system can be predicted
by combination. On the other hand, if a composition-dependent I is required in order
to represent the experimental information on a binary system, then there is no simple
physical model predicting the properties of the higher-order system. It may be stated
that a composition-dependent I implies that the interaction energy is not determined
completely by the pair-wise interaction of atoms. If I in a binary system is equal to
0L + (xA − xB)1L , then the excess Gibbs energy is described by

EGm = xAx0
BL + xAxAx1

BL − xAxBx1
BL . (20.72)

The last two terms seem to originate from interactions within groups of three atoms. If
that is the case, one should expect similar effects in the higher-order system, for instance
an interaction between an A, a B and a C atom given by xAxBxC IABC. Of course, there
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is no way by which this interaction can be predicted from the binary systems where that
group of atoms does not occur.

When the binary interaction energies depend upon the composition, it should be
advisable to introduce IABC in the description of the ternary system. However, it must
be realized that there is no unique way of defining such a parameter because there is
no unique way of predicting how the properties of a binary system contribute to the
properties of the higher-order system unless IAB is a constant. For variable IAB several
expressions are used

IAB = 0Lx2
A + 1LxAxB + 2Lx2

B (20.73)

IAB = 0L + 1LxB + 2Lx2
B (20.74)

IAB = 0L + 1L(2xB − 1) + 2L
(
6x2

B − 6xB + 1
)

(20.75)

IAB = 0L + 1L(xA − xB) + 2L
(
x2

A − 4xAxB + x2
B

)
(20.76)

IAB = 0L + 1L(xA − xB) + 2L(xA − xB)2. (20.77)

These expressions are quite equivalent when applied to a binary system because they
can be transformed into each other by the use of xA + xB = 1. When applied to a higher-
order system the expressions give different results because xA + xB is no longer unity.
For practical reasons it may be important to select a particular expression and at present
there is a strong preference for the last one. It was first suggested by Redlich and Kister
[39] that this particular form, initially intended for binary systems, should be used for
representing the binary contributions in a multicomponent system.

The same kind of problem appears when one wants to predict the properties of a
quaternary solution from the four ternaries. A general method may be based upon the
observation that all the expressions, listed for the binary interaction energy IAB, become
identical if xA is replaced by xA + (1 − xA − xB)/2 and xB by xB + (1 − xA − xB)/2. In
fact, with this method all second-order expressions can be transformed into expressions
identical to the Redlich–Kister polynomial. Generalizing this method we find that xA

should be replaced by xA + (1 − xA − xB − xC)/3, xB by xB + (1 − xA − xB − xC)/3
and xC by xC + (1 − xA − xB − xC)/3 in the ternary interaction energy IABC. This
method can easily be extended to higher-order terms [43].

Exercise 20.11

Show that Eqs (20.74) and (20.77) become identical for a binary system if xB is replaced
by xB + (1 − xA − xB)/2. Show how the second set of L parameters can be evaluated
from the first one.

Hint

The expression by which we shall replace xB is equal to 1/2 − (xA − xB)/2.
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Figure 20.7 Selection of binary alloys (black points) according to three symmetric methods of
predicting ternary properties.

Solution

IAB(in Eq. (20.74)) = 0L + 1L/2 − 1L/2 · (xA − xB) + 2L/4 + 2L/4(xA − xB)2 −
2 2L/4 · (xA − xB).

Comparison shows that: 0L (in Eq. (20.77)) = 0L + 1L/2 + 2L/4; 1L(in Eq. (20.77))
= −(1L + 2L)/2; 2L(in Eq. (20.77)) = 2L/4.

20.9 Numerical methods of predictions for higher-order solutions

As an alternative to the analytical methods described in the preceding section, several
numerical methods have been suggested. They allow the properties of a ternary solution
phase to be estimated from binary solutions without first assessing all the information
available in the binary systems. However, it should be emphasized that they are never-
theless based upon some assumptions regarding the properties. The expression for the
Gibbs energy of a ternary alloy of the composition xA, xB, xC must contain the terms
xA

oGA + xB
oGB + xC

oGC and it is common also to include the ideal entropy of mixing.
This leaves only the excess Gibbs energy and the following three symmetric methods
have been proposed.

Kohler [44] : EGm =
∑

i

∑
j>i

(xi + x j )
2 · EGi j

m

(
xi

xi + x j
;

x j

xi + x j

)
. (20.78)

Colinet [45] : EGm =
∑

i

∑
j>i

[
x j/2

1 − xi
· EGi j

m(xi ; 1 − xi ) + xi/2

1 − x j
· EGi j

m(1 − x j ; x j )

]
.

(20.79)

Muggianu [46] : EGm =
∑

i

∑
j>i

4xi x j

(1 + xi − x j )(1 + x j − xi )

× EGi j
m((1 + xi − x j )/2; (1 + x j − xi )/2). (20.80)

All the weighting factors have been selected in such a way that the methods correctly
reproduce the term xi x j

0Li j . Colinet and Muggianu also reproduce the terms xi x j ·
lLi j (xi − x j ). In addition, Muggianu reproduces all the higher-power terms if they are
written in the form xi x j · kLi j (xi − x j )k . As a consequence, the numerical method by
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Muggianu and the analytical method based upon the Redlich–Kister polynomial give the
same result and may be recommended for general use.

These numerical methods were initially defined geometrically as illustrated in
Fig. 20.7. It explains how one selected the binary alloys, the Gibbs energies of which
were used to estimate the ternary properties. It should be emphasized that these methods
only apply to integral excess quantities.

Exercise 20.12

Refer to Fig. 20.7 and show that the binary A–B alloy used in Muggianu’s method has
an A content of (1 + xA − xB)/2.

Hint

Draw lines through the ternary alloy, parallel to sides A–C and B–C. The intercepts on
the A–B side have lengths equal to xB, xC and xA.

Solution

The distance of the binary alloy from the B corner is xC/2 + xA. Using the relation
xC = 1 − xA − xB one can transform this expression into 1/2 + xA/2 − xB/2.
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21.1 Sublattice solution phases

In the substitutional solutions discussed in Section 20.4 all lattice sites were equivalent
and a solution was formed from a pure substance by substituting new kinds of atoms
for the initial one. However, relatively few crystalline phases belong to this class. The
great majority have different kinds of lattice sites and can be described by using two
or more sublattices. Examples of such phases will be discussed in this chapter. It will
be demonstrated that a great variety of such phases can be modelled in a very direct
way using an approach often called the compound energy model or formalism. It is a
crude model in the sense that it assumes random mixing within each sublattice. The
expression for the entropy of such phases is simple and was presented in Section 19.8,
‘Restricted random mixtures’, but the excess Gibbs energy can easily become very
complicated. However, it should be realized that actual calculations of equilibria, and even
of whole phase diagrams, can now be carried out with sophisticated computer programs
which only require that the expression for the molar Gibbs energy of each phase is
defined.

Section 19.8 gave the expression for the entropy assuming random mixing of all the
components present in each sublattice. The result was expressed in terms of the site
fraction variable, yi, and in Section 19.10 it was then applied to interstitial solutions,
which are a special case of solution phases with sublattices. We shall first consider the
rather simple case where there is only one component, M, in one sublattice, and a number
of components, i, j, . . . , in another sublattice. It is then convenient to consider a formula
unit with one mole of atoms in the second sublattice (M)b(i, j, . . .)1. For 1 mole of such
formula units we get

Sideal
m = −R�yi ln yi . (21.1)

The deviation from ideal solution behaviour may be represented by the interactions
between the components in the second sublattice. Using the Redlich–Kister type of
power series we have, for the interaction between components i and j, when the first
sublattice is filled with M,

EGm = yi y j

n∑
k=0

k LM
i j (yi − y j )

k . (21.2)
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For yi = 1 the phase is identical to a compound Mbi and the whole expression of the
molar Gibbs energy for 1 mole of formula units will be

Gm =
∑

i

yi
oGMbi + RT

∑
i

yi ln yi +
∑

i

∑
j>i

yi y j

n∑
k=0

k LM
i j (yi − y j )

k . (21.3)

It should be noticed that yj is at the same time the site fraction of j in the second sublattice
and the mole fraction of the compound Mbj among all Mbi compounds. From Gm we
may thus derive expressions for the partial Gibbs energies of the compounds, using
Eq. (4.6) but replacing x fractions with y fractions.

GMbl = oGMbl + RT ln yl +
∑
i �=l

{
0LM

li yi (1 − yl) +
n∑

k=1

k LM
li yi (yl − yi )

k−1

· [(k + 1)(1 − yl)(yl − yi ) + kyi ]

}

−
∑
i �=l

∑
j �=l,>i

yi y j

{
0LM

i j +
n∑

k=1

k LM
i j (yi − y j )

k(k + 1)

}
. (21.4)

The expression is thus analogous to the one for a substitutional solution in Eq. (20.34). A
ternary phase of this type would behave as a binary, substitutional phase. It is sometimes
called a quasi-binary or pseudo-binary solution. For the same reason one may call a
quaternary phase of this type a quasi-ternary phase.

As already shown in Eq. (4.56) one can generalize Eq. (4.6) to a solution phase with
several sublattices, t, u and υ, and with several constituents on the sublattices, e.g.,

GAaBbCc = Gm + ∂Gm/∂yt
A + ∂Gm/∂yu

B + ∂Gm/∂yυ
C − ��ys

i ∂Gm/∂ys
i . (21.5)

The last term is a summation over all the constituents, i, in all the sublattices, s. Further-
more,

GAaBbCc ≡ µAaBbCc = aµA + bµB + cµC. (21.6)

Exercise 21.1

High-temperature measurements have shown complete miscibility in the solid phase of
Al2O3 − Cr2O3. Information from lower temperatures is less certain but there is some
report of a miscibility gap with a maximum at about Tcrit = 2000 K. Model this solution
phase.

Hint

Introduce a constant regular solution parameter. Express the ideal entropy contribution
with regard to the size of the formula unit chosen.
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Solution

Define the unit as M1O1.5. Then we get Gm = yAl
oGAlO1.5 + yCr

oGCrO1.5 + RT (yAl ln yAl +
yCr ln yCr) + yAl yCrL . Because we have chosen a symmetric description, the miscibil-
ity gap will be modelled as symmetric. Its maximum will be found at yAl = yCr =
0.5 which yields 0 = d2Gm/dy2

Cr = RT/yAl yCr − 2L; L = 2RTcrit = 2R · 2000 =
33 000 J/mol.

21.2 Interstitial solutions

In Section 19.10 we discussed the ideal entropy of mixing in an interstitial solution. In
fact, it may be regarded as the special case of a solution with two sublattices obtained by
allowing vacant sites on one of the sublattices. For 1 mole of sites in that sublattice we
can write the formula as (M)b(Va, i, j, ...)1. All the equations derived for the phase with
two sublattices in the preceding section can be applied if the vacancies are included as
a component. For a binary M–C system we write the interstitial solution as Mb(Va, C)1

and Eq. (21.3) yields,

Gm = yC
oGMbC + yVa

oGMbVa + RT (yC ln yC + yVa ln yVa)

+ yC yVa

n∑
k=0

k LCVa(yC − yVa)k (21.7)

GMbC = oGMbC + RT ln yC

+ y2
Va

{
0LCVa +

n∑
k=1

k LCVa(yC − yVa)k−1[(2k + 1)yC − yVa]

}
(21.8)

GMbVa = oGMbVa + RT ln yVa

+ y2
C

{
0LCVa +

n∑
k=1

k LCVa(yC − yVa)k−1[yC − (2k + 1)yVa]

}
. (21.9)

Since all the sites in the second sublattice are vacant in the compound MbVa, it is identical
to b moles of pure M. GM is thus obtained by dividing the last equation by b. GC can be
obtained by taking the difference between the two equations because

GMbC − GMbVa = bGM + GC − bGM − GVa = GC − GVa, (21.10)

and it may be assumed that the chemical potential of vacancies is zero at equilibrium.
We thus obtain

GC = GMbC − GMbVa = oGMbC − boGM + RT ln(yC/yVa) + 0LCVa(yVa − yC)

+
n∑

k=1

k LCVa(yC − yVa)k−1[2kyC yVa − (yC − yVa)2]. (21.11)
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Figure 21.1 Variation of different activities in an ideal interstitial solution of C in M with the
formula M1/3(Va, C)1.

Actually, we could have obtained GMbC − GMbVa and thus GC directly from Gm using
Eq. (4.8),

GC = GMbC − GMbVa = ∂Gm

∂yC
− ∂Gm

∂yVa
(21.12)

It is important to notice that pure C cannot exist in the interstitial sublattice without M
in the other sublattice. As a consequence, the reference state for C must be chosen using
another phase. If pure C in a form α is chosen and yVa is replaced by 1 − yC, then we
obtain

RT ln aC = GC − oGα
C = oGMbC − oGMbVa − oGα

C + RT ln[yC/(1 − yC)]

+ 0LCVa · (1 − 2yC) + 1LCVa · (−1 + 6yC − 6y2
C

)
+ 2LCVa · (

1 − 10yC + 24y2
C − 16y3

C

) + · · · . (21.13)

One formula unit of MbVa is identical to b mole of M. The activity coefficient for very
dilute solutions would be given by

o fC = exp
[
(oGMbC − boGM −oGα

C +0LCVa −1LCVa +2LCVa − · · ·)/RT
]
. (21.14)

The deviation from Henry’s law for less dilute solutions depends strongly upon the
choice of composition variable. In order to get a constant activity coefficient for C over
the whole system, when all the L parameters are zero, one must use yC/(1 − yC) as the
composition variable. If yC is used one will find that aC goes to infinity at yC = 1. This
is demonstrated in Fig. 21.1. On the other hand, in this type of diagram the activities of
MbVa and MbC show an ideal behaviour when all the parameters are zero. The diagram
was drawn for b = 1/3 and all L parameters equal to zero.
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Exercise 21.2

In the plot of aM versus yC for an interstitial solution of C in M it may seem surprising
in view of Raoult’s law that the curve for aM does not approach the diagonal close to
yC = 0. Find the reason and calculate the initial slope according to Raoult’s law.

Hint

Raoult’s law says that aM should approach xM, i.e.1 − xC, not 1 − yC. Evaluate xM from
yC using the formula Mb(Va, C)1 with b = 1/3 (the value for bcc).

Solution

For a binary interstitial solution we have xM = b/(b + yC) = 1/(1 + yC/b) ∼= 1 −
yC/b = 1 − 3yC. The initial slope should be –3 and not –1.

21.3 Reciprocal solution phases

With a stoichiometric phase one usually means a phase with a constant composition. This
may, for instance, be caused by a crystalline structure which is composed of different
sublattices, one for each component. An example is cementite, Fe3C. Such a phase is
also described as a compound. When a further component is added, it may go into one
of the existing sublattices, an example being manganese-alloyed cementite, (Fe,Mn)3C.
The composition of such a phase may thus vary along a line in the ternary phase diagram
and it is sometimes described as a quasi-binary phase. Such phases were described
in Section 21.1. If still another component is added, two alternatives result, examples
being (Fe,Mn,Cr)3C and (Fe,Mn)3(C,N)1. The latter type of phase is sometimes called a
reciprocal solution phase because the central alloy can be regarded as a solution between
either Fe3C and Mn3N or Fe3N and Mn3C. Both kinds of phases have the restriction
to the variation in composition which we have called stoichiometric constraint. The
composition of a reciprocal solution phase is represented by two sets of site fractions,
one set for each sublattice, yA + yB = 1 and yC + yD = 1.

Accepting the stoichiometric constraint it is logical to consider the binary compounds
as the components of the system. They were introduced in Section 4.8 and are called
component compounds. Let us discuss the reciprocal case represented by (A,B)b(C,D)c.
This is a quaternary phase but its composition can only be varied with two degrees of
freedom instead of three due to the stoichiometric constraint. All possible compositions
can thus be represented on a plane just like a ternary system. As shown in Fig. 13.12, a
square diagram is now the natural shape and each corner is an end-member and represents
a component compound. Perpendicular to that plane we may plot the Gibbs energy (see
Fig. 21.2).

The diagram demonstrates that it is, in general, impossible to place a plane through
the four points representing the Gibbs energy values of the four component compounds.
The question is then what surface of reference one should use when giving the Gibbs
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Figure 21.2 Surface of reference for a reciprocal phase.

energy value for a composition inside the system. The most natural choice seems to
be the curved surface shown in the diagram and for a simple case that choice may be
supported by the random mixing version of the nearest-neighbour bond energy model
to be described in the next chapter. This surface of reference is accepted as the basis for
the compound energy formalism [47] and it yields the following expression for the
Gibbs energy.

Gm = yA yC
oGAbCc + yA yD

oGAbDc + yB yC
oGBbCc + yB yD

oGBbDc

+ RT [byA ln yA + byB ln yB + cyC ln yC + cyD ln yD] + E Gm. (21.15)

This expression may be regarded merely as a definition of the excess term EGm but it
becomes very important if one, as a first approximation, neglects the excess term. Gm

refers to 1 mole of formula units MbNc. The simplest type of power series representation
of the excess term makes use of the remaining two second-power terms, yAyB and yCyD.
However, in order to allow different behaviour on two opposite sides of the composition
square we shall not use them but go directly to third-power terms,

EGm = yA yB yC IAB:C + yA yB yD IAB:D + yA yC yD IA:CD + yB yC yD IB:CD. (21.16)

The colon in the subscript is used to separate sublattices. For any side of the system this
expression reduces to the expression discussed in the preceding section and all these
interaction energies can thus be evaluated from the properties of the side systems. As an
example, for the AbCc–BbCc side of the system we have yD = 0, yC = 1 and the excess
Gibbs energy expression reduces to yA yB IAB:C.

For more complicated cases one may express each one of the parameters IAB:C, etc.,
with a power series of the Redlich–Kister type using site fractions. We have already done
this for the simple case of a phase with sublattices considered previously. In this way we
can introduce a large number of higher-power terms but it should be noticed that for each
such term all the yi except for one come from one sublattice and all those coefficients
can be evaluated from the side systems. In order to adjust a description to information
from inside the composition square we need a term like yA yB yC yD IAB:CD.
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In our discussion on constituents in Section 4.8 we saw that the chemical potentials
of the compounds can be evaluated from Eq. (4.56) which here yields

GAbCc = bGA + cGC = Gm + ∂Gm/∂A + ∂Gm/∂C − �yi∂Gm/∂yi (21.17)

We thus obtain, for instance,

GAbCc = oGAbCc + yB yD · �oGAD+BC + bRT ln yA + cRT ln yC + EGAbCc (21.18)

GBbCc = oGBbCc − yA yD · �oGAD+BC + bRT ln yB + cRT ln yC + EGBbCc . (21.19)

where the quantity

�oGAD+BC ≡ oGAbDc + oGBbCc − oGAbCc − oGBbDc , (21.20)

is the Gibbs energy for the reciprocal reaction, AbCc + BbDc → AbDc + BbCc. For
constant interaction energies, to be denoted by L, we find

EGAbCc = yB(yD yA + yB yC)LAB:C + yD(yD yA + yB yC)LA:CD

+ yB yD(yD − yC)LB:CD + yB yD(yB − yA)LAB:D (21.21)
EGBbCc = yA(yD yA + yB yC)LAB:C + yD(yD yB + yA yC)LB:CD

+ yA yD(yD − yC)LA:CD + yA yD(yA − yB)LAB:D. (21.22)

It should be noticed that the quantity �oGAD+BC is evaluated from information on the
four pure component compounds and does not even concern the quasi-binary sides. It
often has a dominating influence on the properties of alloys inside the quaternary system.
One may regard �oGAD+BC as a representation of the difference in interaction between
nearest neighbours, i.e. usually between atoms in different sublattices. The L values, on
the other hand, which enter in the excess Gibbs energy and control the behaviour of the
quasi-binary sides, represent the interactions between atoms in the same sublattice, i.e.
next-nearest neighbours in most cases, and may thus be of secondary importance.

It is worth noting that the partial Gibbs energies of the four component compounds
are not independent of each other. From Eq. (4.49) it is evident that

GAbDc + GBbCc − GAbCc − GBbDc = bGA + cGD + bGB + cGC

−bGA − cGC − bGB − cGD = 0. (21.23)

If one, for some reason, wants to consider the partial Gibbs energies of the elements,
then it can be done relative to the value of one of them, e.g. GA,

cGC = GAbCc − bGA (21.24)

cGD = GAbDc − bGA (21.25)

bGB = GBbCc − GAbCc + bGA = GBbDc − GAbDc + bGA. (21.26)

However, GA is indeterminate unless a second phase is present. The same phenomenon
is illustrated for binary and ternary systems in Figs. 7.8 and 7.9 but it cannot be easily
illustrated for a phase with four components.

One can introduce Redlich–Kister polynomials to describe the composition depen-
dence of the interaction energies. When calculating EGMbic we must then evaluate several



21.3 Reciprocal solution phases 467

kinds of contributions if there are many components. We find contributions of the fol-
lowing forms from interactions on the second sublattice

�1
EGMbic = 0LM:i j y j (yi + yM − 2yi yM) +

n∑
k=1

k LM:i j (yi − y j )
k−1 y j {(yi − y j )

× [yM(1 + k)(1 − yi ) + yi − yM yi ] + kyM y j }
(21.27)

�2
EGMbic = 0LN:i j yN y j (1 − 2yi ) +

n∑
k=1

k LN:i j (yi − y j )
k−1 yN y j {(yi − y j )

× [(1 + k)(1 − yi ) − yi ] + ky j } (21.28)

�3
EGMbic = 0LM:l j yl y j (1 − 2yM) +

n∑
k=1

k LM:l j (yl − y j )
k yl y j (1 − 2yM − kyM)

(21.29)

�4
EGMbic = 0LN:l j yN yl y j (−2) +

n∑
k=1

k LN:l j (yl − y j )
k yN yl y j (−2 − k).

(21.30)

Equivalent terms would come from the interactions on the first sublattice, LMN:i ,

LMN: j , LKN:i and LKN: j .
The model for reciprocal phases, which has been discussed here, can be generalized

to several sublattices and several components on each one. For three sublattices we find

Gm = ���y1
i y2

j y3
l

oGia jblc + RT (a�yi ln yi + b�y j ln y j + c�yl ln yl) + EGm

(21.31)

It should be repeated that one can make computer calculations by simply defining
the Gm expression. The complicated expressions for partial excess quantities given here
are seldom needed.

Exercise 21.3

Examine how GBbDc varies along the AbCc − BbDc diagonal if all the L parameters are
zero. Compare with a binary substitutional solution A–B.

Hint

On the diagonal yB = yD and yA = yC.

Solution

The model gives GBbDc = oGBbDc + yA yC�oG + bRT ln yB + cRT ln yD = oGBbDc +
y2

A�oG + (b + c)RT ln yB. This holds for one mole of atoms if b + c = 1 and it then
resembles the regular solution model if 0L = �oG ≡ oGAbDc + oGBbCc − oGAbCc −
oGBbDc .
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21.4 Combination of interstitial and substitutional solution

The compound energy model, used to describe a reciprocal phase, can also be used for
the case where there are two substitutionally mixed elements and one interstitial element.
If we use C to represent the interstitial element then D represents the vacant interstitial
sites. A and B represent the two substitutional elements. The compound AbDc will thus
simply represent b atoms of A and BbDc represents b atoms of B. The difference between
AbCc and AbDc or the difference between BbCc and BbDc can be used to represent c
atoms of C. By the methods used in our preceding discussion on interstitial solutions we
now obtain

GA = oGA − yB yC�oGAD+BC/b + RT ln yA + (c/b)RT ln(1 − yC) + EGA

(21.32)

GB = oGB + yA yC�oGAD+BC/b + RT ln yB + (c/b)RT ln(1 − yC) + EGB

(21.33)

GC = yA
(

oGAbCc − oGAbDc

)
/c + yB

(
oGBbCc − oGBbDc

)
/c

+ RT ln[yC/(1 − yC)] + EGC, (21.34)

where

bEGA = yB yC(LAB:D − LAB:C − LB:CD + LA:CD) + y2
BLAB:D + y2

CLA:CD

+ 2y2
B yC(LAB:C − LAB:D) + 2yB y2

C(LB:CD − LA:CD) (21.35)

bEGB = yA yC(LAB:D − LAB:C + LB:CD − LA:CD) + y2
ALAB:D + y2

CLB:CD

+ 2y2
A yC(LAB:C − LAB:D) + 2yA y2

C(LA:CD − LB:CD) (21.36)

cEGC = yA yB(LAB:C − LAB:D) + (1 − 2yC)(yALA:CD − yBLB:CD). (21.37)

The expression for GC has been made symmetric for A and B. Alternatively, we can
modify the expression by considering A as the base metal.

Exercise 21.4

By considering the Fe–Mn–S melt as a reciprocal solution (Fe,Mn)1(Va,S)1, estimate the
εMn

S parameter at 1900 K from the following binary information, ◦GMnS − ◦GMn − ◦GS =
−139.4 kJ/mol and ◦GFeS − ◦GFe − ◦GS = −62.4 kJ/mol.

Hint

The model is actually the combination of a substitutional and interstitial model. Neglect-
ing binary interaction energies we obtain for S, which in the model plays the role of
an interstitial element, GS = ◦GFeS −◦ GFe + RT ln[yS/(1 − yS)] + yMn�

◦G. The εMn
S

parameter is defined from Eq. (20.6): (GS − oGS)/RT = ln o fS + ln xS + εMn
S xMn +

εS
S xS but for low Mn and in particular low S contents we may approximate x by y

and neglect the last term.
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Solution

By comparing the two expressions we find RT εMn
S

∼= �oG ≡ oGMnS − oGMn − oGFeS +
oGFe = −139.4 + 62.4 = −77.0 kJ/mol; εMn

S = −77000/1900R = −4.9.

21.5 Phases with variable order

So far we have discussed reciprocal phases where each element can go into one sublattice,
only. However, there are many cases where an element can go into two or more sublattices
although it energetically prefers a particular one. The distribution on various sublattices
will then vary with temperature, with the highest degree of order found at the lowest
temperature at which the atoms are still able to move. To illustrate the case we shall
consider a phase with the formula (A,B)b(B,A)c where A prefers the first sublattice
and B the second one. For simplicity we shall choose b + c = 1. The four component
compounds will be AbBc, AbAc, BbBc and BbAc. We can apply all the equations already
derived for a reciprocal phase but now the site fractions are not fixed by the composition.
However, there is a relation between composition and site fractions and we can write it
in two different ways,

xA = by′
A + cy′′

A = y′
A y′′

A + by′
A y′′

B + cy′
B y′′

A (21.38)

xB = by′
B + cy′′

B = y′
B y′′

B + by′
B y′′

A + cy′
A y′′

B. (21.39)

These relations can be used to simplify the Gm expression obtained by applying Eq.
(21.15) to the present case.

Gm = y′
A y′′

A
oGAbAc + y′

A y′′
B

oGAbBc + y′
B y′′

A
oGBbAc + y′

B y′′
B

oGBbBc

+ RT (by′
A ln y′

A + by′
B ln y′

B + cy′′
A ln y′′

A + cy′′
B ln y′′

B)

= xA
oGAbAc + xB

oGBbBc + y′
A y′′

B(oGAbBc − boGAbAc −coGBbBc )

+ y′
B y′′

A(oGBbAc − boGBbBc − coGAbAc )

+ RT (by′
A ln y′

A + by′
B ln y′

B + cy′′
A ln y′′

A + cy′′
B ln y′′

B), (21.40)

where oGAbAc and oGBbBc are the Gibbs energy of 1 mole of A or B in this structure and
may be denoted by oGA and oGB. We can introduce the following two quantities, which
represent the Gibbs energy of formation of the compounds AbBc and BbAc.

�oGAbBc = oGAbBc − boGAbAc − coGBbBc = oGAbBc − boGA − coGB (21.41)

�oGBbAc = oGBbAc − boGBbBc − coGAbAc = oGBbAc − boGB − coGA. (21.42)

The sum of the two quantities is identical to the Gibbs energy of the reciprocal reaction
introduced in Section 21.3,

�oGAbBc + �oGBbAc = oGAbBc + oGBbAc − oGBbBc − oGAbAc ≡ �oGAB+BA.

(21.43)
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We now obtain

Gm = xA
oGA + xB

oGB + y′
A y′′

B�oGAbBc + y′
B y′′

A�oGBbAc

+ RT (by′
A ln y′

A + by′
B ln y′

B + cy′′
A ln y′′

A + cy′′
B ln y′′

B). (21.44)

There are only two independent yi parameters and after fixing the composition there will
be only one independent parameter, e.g. y′

A yielding dy′
B = −dy′

A and dy′′
B = −dy′′

A =
(b/c)dy′

A. The equilibrium value of y′
A under constant composition and any T is obtained

by minimizing Gm.

c · ∂Gm/∂y′
A = (cy′′

B + by′
A)�oGAbBc − (cy′′

A + by′
B)�oGBbAc

+ bc · RT (1 + ln y′
A − 1 − ln y′

B − 1 − ln y′′
A + 1 + ln y′′

B) = 0.

(21.45)

It is easiest to solve for T at any chosen value of y′
A,

bcRT = (cy′′
A + by′

B)�oGBbAc − (cy′′
B + by′

A)�oGAbBc

ln(y′
A y′′

B/y′
B y′′

A)
. (21.46)

When the two sublattices are equivalent, b = c = 0.5 and

�oGAbBc = �oGBbAc = 0.5�oGAB+BA. (21.47)

and the equilibrium condition is

RT

−�oGAB+BA
= y′

A − y′
B − y′′

A + y′′
B

ln(y′
A y′′

B/y′
B y′′

A)
, (21.48)

where �oGAB+BA is defined by Eq. (21.20). This may be called the symmetric case.
The disordered state, y′′

A = y′
A = xA, is a solution to the equation at all temperatures and

compositions but in order to examine where it is a stable or unstable equilibrium, we
must study the second-order derivative,

c · ∂2Gm/∂y′2
A

= (b + b + b + b) · 0.5�oGAB+BA + bRT (c/y′
A + c/y′

B + b/y′′
A + b/y′′

B)

= 2b�oGAB+BA + bRT/xAxB. (21.49)

For positive values of �oGAB+BA the second derivative is always positive and the disor-
dered state is always the stable state. There is no ordering tendency. For negative values
of �oGAB+BA it is positive at higher temperatures and negative at lower and there is
a transition temperature where it is zero, corresponding to the criterion gξξ = 0 in Eq.
(15.18). We find

RTtr

−�oGAB+BA
= 2xAxB. (21.50)

The disordered state is thus a state of stable equilibrium above this critical temperature
but an unstable equilibrium below. Two new solutions to the equation appear there,
representing stable ordered states. This is demonstrated for a composition of xA = 0.6
in Fig. 21.3(b) and the dashed line represents the unstable, disordered state below the
transition point. The phase diagram is shown in Fig. 21.3(a). The whole curve is there
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Figure 21.3 Second-order transition in a binary system. (a) Phase diagram. (b) Variation of
degree of order with temperature for xA = 0.6.

drawn as a dashed line because it is not a phase boundary but a transition line, the
transition being of second order. The site fraction y′

A approaches the xA value without
any jump, as demonstrated in Fig. 21.3(b). We have thus managed again to model the
second-order type of ordering transition but this time we have used a model containing
parameters of some physical significance. In Section 15.2 we followed Landau’s approach
and simply worked with coefficients in a power series expansion.

When �oGAbBc and �oGBbAc are not equal, the result will be quite different. This
is demonstrated in Fig. 21.4(a) for b = c = 0.5, xA = 0.5, and �oGAbBc − �oGBbAc =
−0.1�oGAB+BA. This may be called the asymmetric case. As soon as the two compound
energies differ, the completely disordered state will never be stable and the ordered region
in the phase diagram does not show an order–disorder transition. The variation of order
with composition is shown at three temperatures in Fig. 21.4(b). The results for xA = 0.5
can be read on the diagonal between the upper left and lower right corners.

Exercise 21.5

Where in Fig. 21.4(a) would a line for �oGAbBc − �oGBbAc = +0.1�oGAB+BA fall?

Hint

Do not try to solve this problem by looking at the equations. The answer should be based
upon a more basic consideration.

Solution

A change of sign of �◦GAB+BA means that the other sublattice will be preferred by the
A atoms but otherwise the effects will be the same as before. The effect of �◦GAB+BA

is to accentuate the order, independent of what sublattice the A atoms prefer. We will
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Figure 21.4 Model calculation of an ordered phase without a transition to a completely
disordered state at any temperature. (a) Result for xA = 0.5 compared with the result for a
symmetric case showing a transition (dashed line). (b) Variation with composition.

thus get the same shape of curve as in Fig. 21.4(a) but starting from y′
A = 0 at T = 0

and approaching y′
A = 0.5 from the left.

21.6 Ionic solid solutions

In this chapter we have modelled various types of phases with sublattices without actually
discussing the nature of the atoms (or ‘species’ to be more general). The compound
energy model also applies to ionic substances but there are some complications due to
the requirement of electroneutrality which should now be discussed.

Let us first consider solid solutions between NaCl, KCl, NaBr and KBr which all
have the same crystalline structure. All the elements are ionized and we could give the
formula as (Na+1, K+1)1(Cl−1, Br−1)1. One can vary the composition freely within the
composition square because all the ions are univalent and the condition of electroneu-
trality is automatically fulfilled over the whole square by the fact that the two sublattices
have the same number of sites. The compound energy formalism can be applied with no
additional complications in this case.

Let us next consider the solution of CaCl2 in NaCl. A complication is then caused by Ca
being divalent and in order to compensate for this some of the cation sites will be vacant.
The formula would thus be (Na+1, Ca+2, Va0)1(Cl−1)1. This seems to resemble a ternary
system with Na1Cl1, Ca1Cl1 and Va1Cl1 as the components. However, electroneutrality
requires that yCa = yVa and one can only vary the composition along a straight line in the
composition triangle. In order to model the properties of solutions on this line we shall
apply the ordinary expression for the compound energy model but with the additional
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condition of electroneutrality. For 1 mole of formula units we get by neglecting the excess
Gibbs energy,

Gm = yNa
oGNaCl + yCa

oGCaCl + yVa
oGVaCl + RT

∑
yi ln yi . (21.51)

Here we have two quantities which cannot be studied experimentally, oGCaCl and oGVaCl,
because they are defined for charged compounds. However, due to the auxiliary condi-
tion yCa = yVa, they always appear in the neutral combination, (oGCaCl + oGVaCl). The
properties of this combination can be studied by studying neutral solutions. Instead of
introducing this combination in the equation, it may be recommended to keep the original
form and apply the condition of electroneutrality in the final expression one wants to
use. When listing the parameter values for an ionic system one could select one of the
charged compounds and give all the other charged compounds relative to that one. As
an example, one may like to express the chemical potential of CaCl2 in the solution. It
is obtained as

µCaCl2 ≡ GCaCl + GVaCl = oGCaCl + RT ln yCa + oGVaCl + RT ln yVa

= oGCaCl + oGVaCl + 2RT ln yCa, (21.52)

since yCa = yVa. The neutral combination (oGCaCl + oGVaCl) can be given a numerical
value.

Let us now consider the opposite case, the solution of NaCl in CaCl2. Electroneu-
trality may there be satisfied by the formation of vacant sites on the anion sublat-
tice, (Ca+2, Na+1)1(Cl−1, Va0)2, and the condition of electroneutrality is now 1 · yNa =
2 · yVa. This is a reciprocal system and the compound energy formalism yields

Gm = yCa yCl
oGCaCl2 + yCa yVa

oGCaVa2 + yNa yCl
oGNaCl2

+ yNa yVa
oGNaVa2 + RT �yi ln yi + EGm. (21.53)

The chemical potential of NaCl is obtained by applying Eq. (21.19)

2µNaCl = GNaCl2 + GNaVa2 = oGNaCl2 − yCa yVa�
oG + RT ln yNa

+ 2RT ln yCl + EGNaCl2 + oGNaVa2 + yCa yCl�
oG

+ RT ln yNa + 2RT ln yVa + EGNaVa2 = oGNaCl2 + oGNaVa2 + (1 − yNa)2�oG

+ 2RT ln
[
0.5y2

Na(1 − 0.5yNa)
] + EGNaCl2 + EGNaVa2 , (21.54)

where oGNaCl2 + oGNaVa2 and �◦G (which is identical to oGCaCl2 + oGNaVa2 − oGCaVa2 −
oGNaCl2 and may be written as �oGCaCl + NaVa) represent neutral combinations and can
be given numerical values. Figure 21.5 illustrates the neutral line in the two cases.
How the model may describe the properties outside these lines is of no practical
consequence.

Many ionic compounds are non-stoichiometric, an example being CeO2. It may be
modelled by assuming that some of the Ce ions are only trivalent, yielding the formula
(Ce+4, Ce+3)1(O−2, Va0)2.

Gm = yCe+4 yO
oGCe+4O2

+ yCe+4 yVa
oGCe+4Va2

+ yCe+3 yO
oGCe+3O2

+ yCe+3 yVa
oGCe+3Va2

+ RT �2yi ln yi + EGm. (21.55)
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VaCI

NaCI CaCI
CaCI2 NaCI2

NaVa2CaVa2

Figure 21.5 Neutral lines for two cases of ionic solutions, the solution of CaCl2 in NaCl and of
NaCl in CaCl2.

The deviation from the stoichiometric composition depends upon the oxygen potential
in the surroundings. In order to derive an expression for the oxygen potential one must
find a reaction formula for the formation of oxygen which balances atoms as well as
charges.

4Ce+4 + 2O−2 → 4Ce+3 + O2. (21.56)

Then the reaction formula must be expressed in terms of the component compounds in
the model. Instead of 2O−2 we thus write Ce+4O2–Ce+4Va2. With all charges shown we
write the reaction as

5(Ce+4)1(O−2)2 → (Ce+4)1(Va0)2 + 4(Ce+3)1(O−2)2 + O2. (21.57)

Applying Eq. (3.19) we thus obtain

2µO = µO2 = 5GCe+4O2
− GCe+4Va2

− 4GCe+3O2

= 5oGCe+4O2
+ 5yCe+3 yVa�

oGCe+4Va+Ce+3O

+ 5RT ln yCe+4 + 10RT ln yO + 5EGCe+4O2
− oGCe+4Va2

+ yCe+3 yO�oGCe+4Va+Ce+3O − RT ln yCe+4

− 2RT ln yVa − EGCe+4Va2
− 4oGCe+3O2

+ 4yCe+4 yVa�
oGCe+4Va+Ce+3O

− 4RT ln yCe+3 − 8RT ln yO − 4EGCe+3O2
= 5oGCe+4O2

− oGCe+4Va2

− 4oGCe+3O2
+ RT ln

(
y4

Ce+4 y2
O/y4

Ce+3 y2
Va

)
+ (yCe+3 + 4yVa)�oGCe+4Va+Ce+3O + 5EGCe+4O2

− 4EGCe+3O2
− EGCe+4Va2

, (21.58)

where the factor yCe+3 + 4yVa can be written as 8yVa because the condition of electroneu-
trality for (Ce+4, Ce+3)1(O−2, Va0)2 is

1 · [4(1 − yCe+3 ) + 3yCe+3 ] = 2 · 2(1 − yVa) or yCe+3 = 4yVa. (21.59)
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For low deviations from stoichiometry, yCe+4 ∼= 1 and yO
∼= 1, we may neglect all excess

terms, so that

RT ln PO2 ≡ µO2 − oµO2

= 5oGCe+4O2
− 4oGCe+3O2

− oGCe+4Va2
− oµO2 − RT ln

(
256y6

Va

)
. (21.60)

This model will thus predict that the vacancy content is proportional to P−1/6
O2

. Experi-
mental data indicate that the true value may rather be – 1/5 at low values of yVa. The model
may thus require some modification. One possibility is to introduce a strong association
between a vacancy and a cation with abnormal valency, in this case Ce+3.

It may again be emphasized that a computer calculation only requires that the Gm

expression is defined. On the other hand, the complicated expressions derived in this
section are needed for the kind of analytical examination of the model presented here.

Exercise 21.6

It is possible to dissolve Al and O in Si3N4. Show in a composition square
Si3N4 − SiO2 − Al2O3 − AlN where you would expect to find such a solid solution
phase.

Hint

Since these materials are strongly covalent, the vacancy concentration is likely to be low.
As a first approximation we may thus neglect vacancies. On the other hand, the ordinary
condition of electroneutrality may be applied.

Solution

The general formula would be (Si+4, Al+3)3(N−3, O−2)4. The requirement of electroneu-
trality gives 3[4(1 − yA1) + 3yAl] = 4[3(1 − yO) + 2yO] and thus 3yAl = 4yO.

For the highest Al content, yAl = 1, we find yO = 0.75. The solution phase thus falls
on the join Si3N4 − Al3N1O3.

How close to Al3N1O3 one can actually get experimentally depends on the competition
with other phases.
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22.1 Concept of nearest-neighbour bond energies

The modelling of solution phases described in Chapters 20 and 21 was based on the
proper expression for the ideal entropy of mixing assuming random mixing within each
sublattice. The rest of the modelling was purely mathematical and was not related directly
to any physical effects. The present chapter is devoted to models based on more physical
considerations. In particular, the interaction energies between atoms will be considered.
A very simple and useful way of modelling the thermodynamic properties of a binary
solution is based upon the assumption that the energy of the whole system is the sum of
the bond energies between neighbouring atoms. In the simplest case one only considers
the energies of pairs of nearest neighbours. The formation of the solution from the pure
components can then be regarded as a chemical reaction between different kinds of
bonds, similar to a reaction between molecules

A − A + B − B ↔ A − B + B − A. (22.1)

We have here chosen to distinguish between an A–B bond and a B–A bond although
they are of course quite equivalent if all the lattice sites are equivalent.

The reaction gives a change of energy which we may denote by 2v and regard as an
exchange energy. Since our aim is to construct an expression for the Gibbs energy of
the solution we shall consider the Gibbs energies of the bonds rather than the internal
energies. This actually means that we take into account not only the bond energies but
also their temperature dependence.

2ν = gAB + gBA − gAA − gBB. (22.2)

In some cases gAB and gBA may be different and it may thus be useful to define two
different quantities from the beginning,

vAB = gAB − gAA/2 − gBB/2 (22.3)

vBA = gBA − gAA/2 − gBB/2, (22.4)

where vAB + vBA = 2v . All bonds of each kind are assumed to have the same energy inde-
pendent of the local composition. The Gibbs energy contribution from the bond energies
can thus be evaluated by counting the number of bonds, NAA, NBB, NAB and NBA.

�G =
∑

i

∑
j

Ni j gi j . (22.5)
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This is the mathematical definition of the nearest-neighbour bond energy model. In
the next section we shall evaluate Ni j and add the contribution due to the entropy of
configurational disorder.

The counting of the number of bonds of each kind can be done with different degrees
of ambition. In the simplest treatment, which is called the Bragg–Williams model, one
assumes that the atoms are placed at random on the sites in the crystal and it leads to
an expression which is identical to the so-called regular solution model. It may thus be
used to justify the regular solution model. In more ambitious treatments one tries to
calculate how the v value influences the number of bonds. A positive v value indicates
that the A and B atoms do not like to mix with each other and, if they have been mixed
with each other in a solution, they should at least try to arrange themselves in such a
way that there are less A–B bonds than in a random arrangement. A negative v value,
on the other hand, would favour arrangements where the A atoms are surrounded by
more B atoms than in a random arrangement. Such effects will be considered later in
this chapter using an approximation called the quasi-chemical approach. It is primarily
based on a random mixture of the nearest neighbour bonds. In Kikuchi’s cluster variation
method one considers the random mixture of larger clusters. In principle, one should
get an exact description of the configurational entropy by going to clusters of infinite
size but that is not practically possible, nor is it necessary. A sufficiently good result is
probably obtained by including just a few cluster sizes. It is interesting to note that in
the cluster variation method one estimates the energy of a cluster as a sum of its bond
energies (also called pair energies), assuming that each kind of pair energy is a constant,
independent of the local and global composition.

The concept of nearest neighbour bond energies is closely related to the concept of
molecules with a Gibbs energy of formation for each kind of molecule but it is much
more difficult to justify. In a substance with molecules the atoms are actually present as
groups of atoms bound together tightly and it is often a good approximation to neglect
interactions between atoms in different molecules. However, the splitting up of the total
energy of a crystal into a large number of bond energies is quite arbitrary and one may,
for instance, choose to consider or neglect next-nearest neighbour bonds and to consider
bond energies related to pairs of atoms or to larger groups of atoms, i.e. clusters. Even if
one decides to consider only pairs of atoms or larger groups of atoms, the energy of the
different kinds of bonds is rather arbitrary unless one has information relating to different
types of ordering. This being so, it is doubtful whether a rather random distribution of
atoms can be described with cluster energies evaluated from ordered arrangements. A
very crude but useful way of improving the pair energy model would be to assume that
only part of the excess Gibbs energy in a disordered state is of such short-range character
that it can affect short- and long-range order. That approach would give an additional
adjustable parameter to be used in the description of thermodynamic and configurational
information.

The justification of the nearest-neighbour bond energy model has to come from its suc-
cess in representing experimental facts. It has been found very useful in giving qualitative
explanations of many phenomena in alloy systems but less successful in accounting for
experimental data in detail. There are many modifications of the basic treatment but we
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shall first consider the simplest possible approach, the random mixing model of Bragg
and Williams.

Exercise 22.1

Suppose one has found experimentally that v is a constant across a binary system. This
result may be interpreted by assuming that all the bond energies are independent of
composition. However, suppose one has some theoretical reason to expect that gAA and
gBB should vary linearly across the system. Would it then be possible to explain the same
experimental result?

Hint

Let gAA = go
AA + axB and gBB = go

BB + bxB.

Solution

2ν = gAB + gBA − go
AA − axB − go

BB − bxB. Yes, it is possible to eliminate xB if gAB +
gBA − axB − bxB = 0 but there are no good reasons to expect such a relation.

22.2 Random mixing model for a substitutional solution

A solid phase where atoms of different components can substitute for each other, i.e.
occupy the same kind of lattice sites, is called a substitutional solution. The composition
of such a solution is conveniently described with the molar contents of the atoms, xA and
xB in a binary solution. In order to describe the arrangement of the atoms relative to each
other, it may be convenient to introduce the fractions of bonds, pAA, pAB, pBA and pBB.
The notation p is chosen because the fraction of a certain kind of bond is equal to the
probability of finding that kind of bond. Of course, �pi j = 1. The fractions are also
related through the composition and for the simple case where all the atoms have the
same number of bonds this condition can be written in two ways

xA = pAA + (pAB + pBA)/2 (22.6)

xB = pBB + (pAB + pBA)/2. (22.7)

In the case of random mixing we get

pAA = x2
A (22.8)

pAB = xAxB = pBA (22.9)

pBB = x2
B. (22.10)

Let us assume that all atoms have the same number of nearest neighbours. We can
thus introduce a single z value as the coordination number. The total number of bonds
in a system containing one mole of atoms is thus zN A/2 since each bond is shared
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between two atoms. N A is Avogadro’s number. One will thus obtain, for instance, NAA =
pAA · zN A/2 and for one mole of pure A we obtain

◦GA = gAA · 1 · zN A/2. (22.11)

The Gibbs energy contribution from all the bond energies is

�Gm =
∑

i

∑
j

Ni j gi j = (pAAgAA + pABgAB + pBAgBA + pBBgBB) · zN A/2.

(22.12)
By inserting vAB and vBA we obtain

�Gm = [pABvAB + pBAvBA + gAA(pAA + pAB/2 + pBA/2)

+ gBB(pBB + pAB/2 + pBA/2)] · zN A/2

= xA
◦GA + xB

◦GB + [pABvAB + pBAvBA] · zN A/2. (22.13)

We shall now add the contribution due to the entropy of mixing by considering random
mixing of atoms. We get by substituting xAxB for pAB and pBA and inserting 2v = vAB +
vBA,

Gm = xA
◦GA + xB

◦GB + vzN AxAxB + RT (xA ln xA + ln xB). (22.14)

Exercise 22.2

Compare the final Gm expression for this random mixing model with the corresponding
expression according to the regular solution model.

Hint

According to Section 20.4, the regular solution model gives EGm = xAxB
0L .

Solution

The random bond energy model yields EGm = vzN AxAxB. The two models are exactly
related to each other by 0L = vzN A.

22.3 Deviation from random distribution

In order to describe non-random solutions we shall make extensive use of the bond
probabilities, pi j . In order to describe both long- and short-range order we need two
independent internal variables and they can be defined in many ways. A convenient
choice is the following,

K = (pAB + pBA)/2 (22.15)

L = (pAB − pBA)/2, (22.16)
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and it yields

pAB = K + L; dpAB = dK + dL (22.17)

pBA = K − L; dpBA = dK − dL (22.18)

pAA = xA − (pAB + pBA)/2 = xA − K ; dpAA = dxA − dK (22.19)

pBB = xB − (pAB + pBA)/2 = xB − K ; dpBB = −dxA − dK . (22.20)

Long-range order can only be described with the use of two or more sublattices. The
situation in an ordered alloy with two sublattices can be described with the site fractions
which, in turn, can be expressed through the bond probabilities. Assuming that all the
bonds go between atoms in two different sublattices we find

y′
A = pAA + pAB = xA + L; dy′

A = dxA + dL (22.21)

y′
B = pBB + pBA = xB − L; dy′

B = −dxA − dL (22.22)

y′′
A = pAA + pBA = xA − L; dy′′

A = dxA − dL (22.23)

y′′
B = pBB + pAB = xB + L; dy′′

B = −dxA + dL . (22.24)

Long-range order means that element A prefers one sublattice and B the other. It is
conveniently defined as

l.r.o. = y′
A − y′′

A = pAA + pAB − pAA − pBA = 2L . (22.25)

Short-range order means that the atoms with given site fractions do not arrange them-
selves at random within each sublattice. Random distribution would yield the following
probabilities of finding various bonds between the two sublattices and we shall still
assume that there are no bonds within a sublattice.

pAA = y′
A y′′

A (22.26)

pAB = y′
A y′′

B (22.27)

pBA = y′
B y′′

A (22.28)

pBB = y′
B y′′

B. (22.29)

Short-range order may be defined as the deviation from this arrangement

s.r.o. = [pAB − y′
A y′′

B + pBA − y′
B y′′

A]/2

= [2K − (xA + L)(xB + L) − (xB − L)(xA − L)]/2

= K − L2 − xAxB. (22.30)

We know from Section 19.8 that a random distribution within each sublattice would yield
the following configurational entropy for 1 mole of atoms,

Sm/R = −(y′
A ln y′

A + y′
B ln y′

B + y′′
A ln y′′

A + y′′
B ln y′′

B). (22.31)

This does not account for short-range order. In an attempt to treat that case, one could
start by considering a random distribution of the bonds,

Sm/R = −(z/2)(pAA ln pAA + pAB ln pAB + pBA ln pBA + pBB ln pBB). (22.32)
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However, this does not reduce to the previous expression when the random values for
the four pi j are inserted. That condition can be satisfied if we divide each pi j under
an ln sign by its random value, which will make the whole expression go to zero for a
random case, and then add the previous expression, which should be the correct one for
the random case and a good approximation for small deviations from randomness.

− Sm/R = (z/2)[pAA ln(pAA/y′
A y′′

A) + pAB ln(pAB/y′
A y′′

B)

+ pBA ln(pBA/y′
B y′′

A) + pBB ln(pBB/y′
B y′′

B)]

+ [y′
A ln y′

A + y′
B ln y′

B + y′′
A ln y′′

A + y′′
B ln y′′

B]/2. (22.33)

The contribution from the bond energies was given by Eq. (22.13). The complete expres-
sion will thus be

Gm = xA
oGA + xB

oGB + [pABνAB + pBAνBA] · zN A/2

+RT (z/2)[(pAA ln(pAA/y′
A y′′

A) + pAB ln(pAB/y′
A y′′

B)

+pBA ln(pBA/y′
B y′′

A) + pBB ln(pBB/y′
B y′′

B)]

+RT [y′
A ln y′

A + y′
B ln y′

B + y′′
A ln y′′

A + y′′
B ln y′′

B]/2. (22.34)

We shall now apply this general expression to several special cases. However, it should
be remembered that the expression is valid only under the assumption that there are two
sublattices, that they contain the same number of bonds and that all bonds go between
atoms in different sublattices. The simple bcc structure (A2) can order in this way,
yielding B2.

Exercise 22.3

Demonstrate that the general equation for ordering reduces to the model for random
mixing in a substitutional solution without short-range order.

Hint

In a substitutional solution without long-range order and thus y′
A = y′′

A = xA and y′
B =

y′′
B = xB and without short-range order pi j = y′

i y′′
j = xAxB. Furthermore, vAB and vBA

must be equal in order to prevent long-range order.

Solution

The first part of the entropy contribution in Eq. (22.34) reduces to zero and the second
one to RT (xA ln xA + xB ln xB). In the energy part pABvAB + pBAvBA reduces to 2xAxBv .
Thus, �Gm = xA

oGA + xB
oGB + zN AxAxB + RT (xA ln xA + xB ln xB).
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22.4 Short-range order

At a high enough temperature long-range order will disappear if vAB = vBA = v and
only short-range order remains. For this case, y′

A = y′′
A = xAand y′

B = y′′
B = xB would

yield L = 0 and pAB = pBA. We obtain from Eq. (22.34)

Gm = xA
oGA + xB

oGB + νzN A pAB + RT (z/2)
[

pAA ln
(

pAA
/

x2
A

)
+ 2pAB ln

(
pAB

/
xAxB

) + pBB ln
(

pBB
/

x2
B

)]
+ RT [xA ln xA + xB ln xB]. (22.35)

We have only one internal variable K = (pAB + pBA)/2 = pAB. Its equilibrium value
under constant composition is obtained from

(∂Gm/∂K )L ,xA = νzN A + RT (z/2)[ − ln
(

pAA
/

x2
A

) − pAA/pAA + 2 ln(pAB/xAxB)

+ 2pAB/pAB − ln
(

pBB/x2
B

) − pBB
/

pBB]

= νzN A + RT (z/2) ln
(

p2
AB/pAA pBB

) = 0 (22.36)

p2
AB

pAA pBB
= exp(−2ν/kT ). (22.37)

This resembles the law of mass action for a chemical reaction between molecules and this
method of correcting the entropy expression is thus called the quasi-chemical method. It
should be emphasized that pAB is here defined as half the number of AB bonds because
the other half is counted as pBA.

It is worth noting that the quasi-chemical method of correcting the entropy expression
is valid only for small deviations from randomness, i.e. for low values of v/kT. It is
immediately evident that very large values of v/kT will produce unreasonable results.
An infinite value of v/kT will make pAB = pBA = 0 and thus pAA = xA and pBB = xB.
This implies a separation of the system into two parts, one containing all the A atoms
and the other all the B atoms. The configurational entropy should thus be zero but the
entropy part of Eq. (22.35) would yield

Sm = −R(z/2)[xA ln(1/xA) + 0 + xB ln(1/xB)] − R[xA ln xA + xB ln xB]

= (z/2 − 1)R[xA + xB ln xB]. (22.38)

This yields the correct value (zero) for z = 2, which applies when all the atoms are
arranged in a string (the Ising model). For all realistic z values (e.g. z = 8 for bcc and
z = 12 for fcc) the entropy expression yields large negative values. This result emphasizes
that the quasi-chemical method should be used only for low values of v/kT, i.e. for
low deviations from the ideal entropy. There one can simplify the expression by series
expansions,

exp ε = 1 + ε + ε2/2 (22.39)
√

1 + ε = 1 + ε/2 − ε2/8 + ε3/16, (22.40)
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yielding

pAB = pBA = xAxB[1 − 2xAxBv/kT − 2xAxB(xA − xB)2(v/kT )2]. (22.41)

Gm = xA
oGA + xB

oGB + RT (xA ln xA + xB ln xB) + vzN AxAxB[1 − xAxBv/kT

− (2/3)xAxB(xA − xB)2(v/kT )2]. (22.42)

It is self-evident that the Gibbs energy will decrease due to short-range order, otherwise
it would not form. The presence of short-range order will thus stabilize the disordered
state and depress the temperature for the transition to a state with long-range order.
This conclusion holds independent of the sign of v. Positive v will result in a miscibility
gap at low temperatures if that reaction is not prevented by other reactions. Already
above the miscibility gap a positive v will favour A–A bonds and B–B bonds and result
in clusters. This tendency grows very strong as the consolute point is approached on
cooling of a system with the correct composition. The tendency to actually separate
into two phases will thus decrease and the consolute point of the miscibility gap will
be depressed to lower temperatures. Also, the consolute point will be flatter than cal-
culated from the regular solution model because the effect will be strongest close to
the consolute point. This effect is quite noticeable in the liquid state where the pres-
ence of clusters may give rise to opalescence close to the consolute point. In the solid
case the effect is counteracted by coherency stresses due to the difference in atomic
sizes.

In order to treat this effect properly it is not enough to consider nearest neigh-
bours. It is not even enough to extend the consideration to larger clusters. It has to
be treated with a mathematical technique called the renormalization group approach.
The resulting shape of the miscibility gap is non-analytical, especially close to the
maximum.

Exercise 22.4

In the next section we shall find that long-range order is predicted to occur below Ttr =
2xAxB(−vz/k) if the effect of short-range order is neglected. Evaluate the short-range
order in a 50/50 bcc alloy at this temperature in order to test if the neglect of short-range
order is serious.

Solution

pAA pBB = (pAB)2 exp(2v/kTtr) = (pAB)2 exp[2v/2xAxB(−vz)] = (pAB)2 exp(−4/z);
Insert pAA and pBB from Eqs (22.6) and (22.7): (0.5 − pAB)2 = 0.606(pAB)2; pAB =
0.2811; s.r.o. = K − L2 − xAxB = 0.2811 − 0 − 0.25 = 0.0311. This is not
negligible. The value of Ttr given above may be regarded as a rough estimate but
short-range order makes the disordered state more stable and it should depress Ttr.



484 Physical solution models

22.5 Long-range order

Let us again consider negative exchange energies. There is always a tendency for short-
range order but as an introduction to the more general case it may be illustrative first
to consider long-range order and neglect short-range order which is done by taking all
pi j = y′

i y′′
j . The general equation then only contains yi variables. The first part of the

entropy contribution reduces to zero and with vAB + vBA = 2v we find

Gm = xA
oGA + xB

oGB + (y′
A y′′

B + y′
B y′′

A) · νzN A/2

+RT [y′
A ln y′

A + y′
B ln y′

B + y′′
A ln y′′

A + y′′
B ln y′′

B]/2. (22.43)

With a fixed composition there is only one independent internal variable and we may
choose any one of the four yi or the long-range order parameter L. Using the relations
between L and the y variables in Eqs (22.19) to (22.24) we thus find the equilibrium from

(∂Gm/∂L)xA = (y′′
B + y′

A − y′′
A − y′

B) · νzN A/2 + RT [y′
A/y′

A + ln y′
A

−y′
B/y′

B − ln y′
B − y′′

A/y′′
A − ln y′′

A + y′′
B/y′′

B + ln y′′
B]/2 = 0 (22.44)

kT

−νz
= y′

A + y′′
B − y′′

A − y′
B

ln(y′
A y′′

B/y′′
A y′

B)
. (22.45)

using R = k N A. It is evident that y′
A = y′′

A = xA (and thus y′
B = y′′

B = xB) is a solution
for all T values and it represents a completely random distribution. However, below a
particular T value another kind of solution appears and it represents long-range order.
That temperature has to be calculated as the limiting value of T where y′

Aand y′′
A of the

new kind of solution approach xA since the numerator and denominator are both zero. It
is obtained by taking the ratio of their derivatives,

kTtr

−νz
= 1 + 1 + 1 + 1

1/y′
A + 1/y′′

B + 1/y′′
A + 1/y′

B

= 4

2/xA + 2/xB
= 2xAxB. (22.46)

This relation defines the transition line, i.e. the boundary of the ordering region in the
T, xB phase diagram, see Fig. 21.3(a). It has a parabolic shape just as the spinodal curve
for positive v values. Its maximum is found at xA = xB = 0.5 and T max

tr = −νz/2k. The
present result is identical to the result of the compound energy formalism in Section 21.5
and the two models are related by �oGAB+BA = vzN A. The Bragg–Williams model thus
provides a physical interpretation of the model parameter in this simple application of
the compound energy formalism.

Above the ordering region the present model predicts complete disorder and the expres-
sion for Gm degenerates to

Gm = xA
oGA + xB

oGB + vzN AxAxB + RT (xA ln xA + xB ln xB), (22.47)

because y′
A = y′′

A = xA and y′
B = y′′

B = xB. This expression was derived in Section 22.2
and it was then emphasized that vzN A is identical to the regular solution parameter 0L.
Within the limitations of the nearest-neighbour bond energy model it would thus be
possible to predict the ordering behaviour of a binary solution at low temperatures from
the value of the regular solution parameter at high temperatures. However, as mentioned
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in Section 22.1, it should be realized that part of the energy may be of a more long-
range character then nearest-neighbour interactions. It is thus possible that the ordering
tendency should be represented by a v value which is not quite equal to 0L/zN A.

Exercise 22.5

We have derived an expression for the transition line for ordering in a binary system,
taking into account a gradual increase of long-range order with decreasing temperature.
Now, formulate a more primitive theory by considering only two possible states, complete
order and complete disorder. Calculate the transition temperature and compare with the
result just obtained for the critical temperature. Limit the calculation to a 50/50 alloy.

Hint

One can directly calculate the Gibbs energy contributions from configurational entropy
and bond energies for the two states. Do not introduce the exchange energy v until the
two states are compared.

Solution

In the disordered state the configurational entropy for 1 mole of atoms is
Rln2 and the energy due to bonds is (x2

AgAA + 2xAxBgAB + x2
BgBB) · zN A/2 =

(gAA + 2gAB + gBB) · zN A/8 for xA = xB = 0.5. In the ordered state there is no
configurational entropy and the bonds give an energy of gABzN A/2. At equilibrium:
−RT ln 2 + (gAA + 2gAB + gBB)zN A/8 = gABzN A/2; RT ln 2 = (gAA − 2gAB +
gBB)zN A/8 = −vzN A/4; T = −vz/4k ln 2. This should be compared with Ttr =
−vz/2k. The ratio is T/Ttr = 1/2 ln 2 = 0.72.

Exercise 22.6

Apply the condition of stability limit and verify that the transition temperature falls at
the limit of stability as it should for a second-order transition.

Hint

The stability condition, Eq. (6.54), can here be written as (∂2Gm/∂L2)xA = 0. We have
already an expression for (∂Gm/∂L)xA .

Solution

(∂2Gm/∂L2)xA = (1 + 1 + 1 + 1)νzN A/2 + RT [1/y′
A + 1/y′

B + 1/y′′
A + 1/y′′

B]/2. For
the disordered state, y′

A = y′′
A = xA, we get (∂2Gm/∂L2)xA = 2vzN A + RT (1/xA +

1/xB) = 2vzN A + RT/xAxB = 0 yielding Tlimit = −2vzxAxB/k in agreement with the
expression for Ttr.
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22.6 Long- and short-range order

In the general case there will be both long- and short-range order and the situation will
be described with two independent internal variables. We shall use K and L and with the
relations of the various y and p quantities to L and K, given by Eqs (22.17) to (22.24),
we obtain for equilibrium,

(∂Gm/∂K )L = (νAB + νBA) · zN A/2 + RT (z/2)[− ln(pAA/y′
A y′′

A) − 1

+ ln(pAB/y′
A y′′

B) + 1 + ln(pBA/y′
B y′′

A) + 1 − ln(pBB/y′
B y′′

B) − 1] = 0

(22.48)

pAB pBA

pAA pBB
= exp[−(νAB + νBA) · z/kT ] (22.49)

(∂Gm/∂L)K = (νAB − νBA) · zN A/2 + RT (z/2)[−pAA/y′
A + pAA/y′′

A

+ ln(pAB/y′
A y′′

B) + 1 − pAB/y′
A − pAB/y′′

B − ln(pBA/y′
B y′′

A)

−1 + pBA/y′
B + pBA/y′′

A + pBB/y′
B − pBB/y′′

B]

+RT [ln y′
A + 1 − ln y′

B − 1 − ln y′′
A − 1 + ln y′′

B + 1]/2

= (z RT/2) ln(pAB/pBA) + (z R/2k)(νAB − νBA) − (z − 1)

×(RT/2) ln(y′
A y′′

B/y′
B y′′

A) = 0. (22.50)

This equation was simplified using pAA = y′
A − pAB = y′′

A − pBA and pBB = y′
B −

pBA = y′′
B − pAB from Eqs (22.21) to (22.24). It is easy to make numerical calculations

from Eqs (22.49) and (22.50).
In this chapter we have so far discussed ordering of different kinds of atoms. This

phenomenon is often called chemical ordering or configurational ordering. A com-
pletely different kind of ordering occurs when a liquid solidifies and the atoms arrange
themselves in a regular pattern, the crystalline structure. In this connection the liquid is
said to be topologically disordered. The solid → liquid reaction can thus be regarded as
an order–disorder transition and, evidently, it is a first-order transition. In the first-order
transition, illustrated in Fig. 15.4, the superheated, ordered state reaches a stability limit
at some high temperature and the undercooled, disordered state reaches a stability limit
at some low temperature. The question whether such limits of stability exist for the
solid–liquid transition has attracted some attention. The very simple and crude model
described in Section 19.3 may be used to model a continuous transition from solid to
liquid and it would predict limits of stability. On the other hand, cooling experiments
with liquid alloys have revealed that the high entropy of the liquid state, as compared to
the solid, disappears on cooling, and extrapolation of the high-temperature data seems
to indicate that it approaches the entropy of the solid at some low temperature. In the
same range of temperature the viscosity increases drastically and the liquid transforms
into a viscous, amorphous state, which has an entropy similar to the solid. It seems that
the amorphous state has only a low topological disorder although it is enough to prevent
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the topological long-range order found in crystalline solids. It seems that the topological
disorder in the amorphous-liquid phase increases gradually with temperature and never
shows a transition point. This is somewhat similar to the behaviour of the asymmetric
case of chemical ordering illustrated in Fig. 21.4. From the mechanical point of view,
one defines the drastic increase of the viscosity as a glass transition. Thermodynamically,
one could define a related point where extrapolated data predict that the entropy of liquid
and solid should be equal. However, one should not really expect that the entropy of
the liquid reaches that of the crystal and then suddenly starts to follow the value of the
crystal. Most probably, there is no sharp thermodynamic transition point between the
liquid and the amorphous states.

Due to the topological disorder in a liquid, it would not be possible to observe chemical
long-range order in liquid alloys. Nevertheless, there are many cases with very strong
chemical ordering in liquids, the most typical case is a molten salt where the electric
charges make the cations tend to surround themselves with anions and vice versa. A
rather realistic model of a molten salt is thus based on the assumption of two sublattices,
one for cations and one for anions. That would be to assume complete long-range order
and the effect of short-range order could then be added to the model. A problem with such
a model is that the coefficients in the chemical formula (the stoichiometric coefficients)
will vary with composition if there are cations of different valencies or anions of different
valencies.

Another difficulty appears when one wants to model the change in chemical order in a
liquid from a high value at a low temperature and to a low value at a high temperature. As
demonstrated in Section 22.4 the quasi-chemical approach to short-range order becomes
unrealistic at large degrees of short-range order. It has been proposed that this difficulty
can be overcome by using z = 2, for which the quasi-chemical approach does not break
down at high degrees of short-range order. However, that would make the model less
physical. Another possibility would be to use a two-sublattice model of the asymmetric
type illustrated in Fig. 21.4(a). It can predict a gradual change from very low to very
high degrees of order and without a transition point. A further possibility is to mimic
the chemical ordering in a liquid by the formation of molecular-like clusters of atoms,
so-called associates. Finally, in an attempt to develop the two-sublattice model to a model
applicable to many different types of systems and to intermediate cases, the two-sublattice
model with complete long-range order has been manipulated in such a way that it can
describe high as well as low degrees of ordering.

Exercise 22.7

Calculate the degree of short-range order when the disordered state is just becoming
unstable in a second-order transition.

Hint

There are two internal degrees of freedom, K and L. The limit of stability is thus obtained
as gKK · gLL − gKL · gLK = 0 according to Eq. (6.53). However, L is still zero at that point,
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y′
A = y′′

A = xA and pAB = pBA. Then it is easily shown that gKL = gLK = 0 and gKK > 0.
The condition is thus gLL = 0.

Solution

From Eq. (22.50) we get, using the relations of dL to dpi j and ys
i from Eqs

(22.17) to (22.24): gL L = (∂2Gm/∂L2)K = (z RT/2)(1/pAB + 1/pBA) − (z − 1)
(RT/2)(1/y′

A + 1/y′′
B + 1/y′′

A + 1/y′
B) = 0; pAB = xAxBz/(z − 1) = pBA = K and

s.r.o. = K − L2 − xAxB = xAxB[z/(z − 1) − 1] = xAxB/(z − 1) since L = 0.

22.7 The compound energy formalism with short-range order

In Section 22.2 it was assumed that all atoms have the same z value. In Section 22.3 it
was further assumed that all bonds go between atoms in two different sublattices. These
assumptions were carried over to the treatment of order in Sections 22.3 to 22.6. However,
the treatment can be generalized to cases with different coordination numbers, z′ and z′′,
if it is still assumed that all bonds go between atoms in two different sublattices but that
requires that the number of sites, b and c, are related by bz′ = cz′′. The total number of
bonds in a system containing one mole of atoms is bz′N A = cz′′N A if the sum of b and
c is made equal to unity. Thus NAA = pAA · bz′N A and ◦GA = gAA · bz′N A and

xA = pAA + bpAB + cpBA; pAA = xA − bpAB − cpBA (22.51)

xB = pBB + bpBA + cpAB; pBB = xB − bpBA − cpAB. (22.52)

Using these expressions for pAA and pBB we obtain, for the Gibbs energy contribution
from all the bond energies,

�Gm =
∑

i

∑
j

Ni j gi j = [pAAgAA + pABgAB + pBAgBA + pBBgBB] · bz′N A

= [xAgAA + xBgBB + pAB(gAB − bgAA − cgBB)

+pBA(gBA − bgBB − cgAA)] · z′bN A/2. (22.53)

We find, by generalizing the definitions of the v quantities,

vAB = gAB − bgAA − cgBB (22.54)

vBA = gBA − bgBB − cgAA (22.55)

�Gm = xA
oGA + xB

oGB + bz′N A · [pABvAB + pBAvBA]. (22.56)

The expression for the configurational entropy in Eq. (22.33) will also be modified by
replacing z/2 by bz′ or cz′′ and 1/2 by b or c, yielding for the total Gibbs energy instead
of Eq. (22.34),

Gm = xA
oGA + xB

oGB + bz′N A · [pABνAB + pBAνBA] + RT bz′ [pAA ln(pAA/y′
A y′′

A)

+ pAB ln(pAB/y′
A y′′

B) + pBA ln(pBA/y′
B y′′

A) + pBB ln(pBB/y′
B y′′

BB)]

+ RT [by′
A ln y′

A + by′
B ln y′

B + cy′′
A ln y′′

A + cy′′
B ln y′′

B]. (22.57)
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This may be regarded as a generalization of Eq. (22.34). However, the definitions of
vAB and vBA cannot be reconciled with the simple concept of bond energies presented
in Section 22.1. The new definition is closely related to the definition of �oGAbBc and
�oGBaAc in the compound energy formalism in Section 21.5, the only difference being
the numerical factor bz′N A. However, the compound energy formalism goes one step
further. It postulates that phases, with some bonds between atoms in the same sublattice,
can be treated with the same formalism. That may not be correct but may be remedied
by the use of the I parameters in the excess terms in Section 21.3.

Using Eq. (22.57) one can formally account for the effect of short-range order with
the compound energy formalism. The Gm expression in Eq. (21.40) would be modified
to

Gm = xA
oGA + xB

oGB + pAB�oGAbBc + pBA�oGBbAc

+RT bz′ · [pAA ln(pAA/y′
A y′′

A) + pAB ln(pAB/y′
A y′′

B)

+pBA ln(pBA/y′
B y′′

A) + pBB ln(pBB/y′
B y′′

B)]

+RT [by′
A ln y′

A + by′
B ln y′

B + cy′′
A ln y′′

A + cy′′
B ln y′′

B]. (22.58)

For a reciprocal solution, i.e., a quaternary phase where each sublattice dissolves only
two of the four elements, we would obtain per mole of formula unit

Gm = xA
oGA + xB

oGB + xC
oGC + xD

oGD + pAC�oGAbCc

+pAD�oGAbDc + pBC�oGBbCc + pBD�oGBbDc

+RT bz′ · [pAC ln(pAC/y′
A y′′

C) + pAD ln(pAD/y′
A y′′

D)

+pBC ln(pBC/y′
B y′′

C) + pBD ln(pBD/y′
B y′′

D)]

+RT [by′
A ln y′

A + by′
B ln y′

B + cy′′
C ln y′′

C + cy′′
D ln y′′

D]. (22.59)

This would be a case of short-range order at complete long-range order. Again we
have four pij related by �pi j = 1 but their relation to the composition now yields two
independent equations instead of one given by Eqs (22.6) or (22.7). In this case it is most
convenient to use the yi variables which are here fixed by the composition,

pAC + pAD = y′
A (22.60)

pAC + pBC = y′′
C. (22.61)

Consequently, now there is just one independent internal variable, one of the four pij,
instead of two, and it represents short-range order because the long-range order is here
perfect. It may be convenient to define the short-range order in a way similar to Eq.
(22.30). However, since each kind of bond can now go in one direction, only, we shall
define

s.r.o. = pAC − y′
A y′′

C. (22.62)

We shall denote this variable by s and by combination with the relations of pij to the
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composition we find

pAC = y′
A y′′

C + s; dpAC = ds (22.63)
pAD = y′

A y′′
D − s; dpAD = −ds (22.64)

pBC = y′
B y′′

C − s; dpBC = −ds (22.65)
pBD = y′

B y′′
D + s; dpBD = ds. (22.66)

The equilibrium value of s is obtained from

(∂Gm/∂s)y′
A,y′′

C
= �oGAbCc − �oGAbDc − �oGBbCc + �oGBbDc

+ RT bz′ · [1 + ln(pAC/y′
A y′′

C) − 1 − ln(pAD/y′
A y′′

D)

− 1 − ln(pBC/y′
B y′′

C) + 1 + ln(pBD/y′
B y′′

D)]

= �oGAC+BD + RT bz′ · ln(pAC pBD/pAD pBC) = 0 (22.67)

pAC pBD

pAD pBC
= exp(−�oGAC+BD/RT bz′). (22.68)

This is a result characteristic of the quasi-chemical approach. The notation �oGAC+BD

was introduced in Eq. (21.20) and then used in Section 21.5.

Exercise 22.8

Consider a solution phase defined by the formula (A, B)b(C, D)c with NA = NB and
NC = ND. Apply the compound energy formalism and estimate how much the short-
range order decreases the Gibbs energy if changes in the configurational entropy are
neglected. Suppose z′ = 8, b = c = 0.5 and �oGAC+BD = 8RT .

Hint

According to the instruction, we should study: pAC�oGAbCc + pAD�oGAbDc +
pBC�oGBbCc + pBD�oGBbDc which can be changed to y′

A y′′
C�oGAbCc +

y′
A y′′

D�oGAbDc + y′
B y′′

C�oGBbCc + y′
B y′′

D�oGBbDc +s(�oGAbCc −�oGAbDc +�oGBbCc −
�oGBbDc ). All site fractions are fixed ( = 0.5). The change is thus given by the last term
and it can be written as s · �oGAC+BD.

Solution

�oGAC+BD/RT bz′ = 2. Inserting Eqs (22.63) to (22.66) in the quasi-chemical
equation, Eq. (22.68), yields (1/4 + s)2/(1/4 − s)2 = exp(−2); s = −0.1155; s ·
�oGAC+BD = −0.1155 · 8RT = −0.92RT . This is an appreciable part of �oGAC+BD.

22.8 Interstitial ordering

Interstitial solutions can also show ordering. Two effects may be recognized. The first
effect is a tendency for the interstitial atoms to avoid occupying sites which are nearest
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Figure 22.1 The activity coefficient of C in fcc-Fe at 1400 K as function of the C content.

neighbours to each other. In the extreme case, all the sites which are nearest neighbours to
an interstitial atom will be excluded from occupancy. ‘Excluded-sites’ models have been
developed for this case. As an example, we may consider fcc-Fe where the interstitial
sites form their own fcc sublattice. Each interstitial site is surrounded by 12 nearest-
neighbour interstitial sites. According to the model, each interstitial atom in a dilute
solution excludes its own site and 12 neighbouring interstitial sites from being occupied
by other atoms. For dilute solutions the lattice would thus behave as if it should be
completely filled at a value of yC = 1/13 where C represents the interstitial component.
The partial entropy of C would thus be

SC = −R ln
yC

1 − 13yC

∼= −R(ln yC + 13yC). (22.69)

In the ideal case, i.e. neglecting all other interactions, this model will predict a very
strong positive deviation from Henry’s law. Experimental information on the carbon
activity in fcc-Fe–C does show a strong positive deviation but not enough to satisfy
the excluded-sites model. This is demonstrated by Fig. 22.1 where ln(aC/xC) has been
plotted versus xC. The slope is about 8 but should have been 14 according to the excluded-
sites model because yC/(1 − 13yC) is equal to xC/(1 − 14xC) when a = 1 for both
sublattices.

In order to obtain better agreement for carbon in fcc-Fe one has to relax the condi-
tion of absolute exclusion to one in which a neighbouring site can be occupied at the
expense of a certain energy v. Such models are sometimes called statistical models.
A treatment can also be based upon the quasi-chemical approach which will formally
apply to interactions between atoms in the interstitial sublattice just as well as to the
ordinary lattice in a substitutional solution. By substituting y for x in Eq. (22.42) we
obtain

Gm = yC
oGMbC + yVa

oGMbVa + RT (yC ln yC + yVa ln yVa)

+νzN A yC yVa[1 − yC yVaν/kT − (2/3)yC yVa(yC − yVa)2(ν/kT )2]. (22.70)
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With the rule of calculation given for GC in Eq. (21.12) we obtain, for composition-
independent v,

RT ln aC = GC − oGC = oGMbC − boGM − oGα
C

+RT ln[yC/(1 − yC)] + νzN A(yVa − yC)[1 − 2yC yVaν/kT

+8yC yVa(yC yVa − 1/6)(ν/kT )2]. (22.71)

For small yC the last term can be approximated by vzN A{1 − 2yC[1 + v/kT +
(2/3)(v/kT )2]}. By comparing with the power series treatment of a random intersti-
tial solution in Section 21.2 we see that vzNA corresponds to 0LCVa if v is independent
of composition. For v/kT = 0 we thus have complete agreement with that expression.
For small v/kT there will be a difference of −2yCvzN A · [v/kT + (2/3)(v/kT )2]. This
difference is initially negative for positive as well as negative v which is natural because
the random mixing model always results in higher Gibbs energies than a model which
allows the arrangement of the atoms to be adjusted to minimize the Gibbs energy. For
a given value of v, or 0L, the quasi-chemical model will thus predict a slightly weaker
deviation from Henry’s law.

At high enough values of the interstitial content and of −v/kT there will be long-
range order, an example being the γ ′ phase in the Fe–N system. It has a nitrogen content
corresponding to Fe4N and the Fe atoms have the same arrangement as in fcc-Fe. It may
be regarded as an ordered interstitial solution of N in fcc-Fe. It is interesting to note
that no N atoms occupy nearest neighbour sites. This phase is thus a perfect example
of the excluded-sites principle. The high N content, compared to the limiting value of
yC = 1/13 given previously, is due to the fact that each excluded site is now nearest
neighbour to not only one interstitial atom but four which does not happen in a dilute
solution.

In the Fe–N system there is a two-phase field between the disordered solution of N
in fcc-Fe and the ordered Fe4N phase. That reveals that there is a first-order ordering
transition. The situation is different for interstitial solutions in hcp metals where one can
sometimes observe that the change from the disordered, dilute solution to an ordered M2I
phase is gradual, i.e., without any kind of transition. The explanation is that the distance
between the interstitial sites is shortest in the hexagonal c direction. They are thus
arranged in strings and, as mentioned in Section 22.4, the number of nearest neighbors
is thus z = 2. This is a rare case where the quasi-chemical model is not limited to dilute
solutions but applies all the way to a maximum content of M2I.

Exercise 22.9

What value of 0LCVa in the random mixing model or v/kT in the quasi-chemical model
is required in order to explain the slope of 8 in the plot of ln(aC/xC) versus xC for carbon
in fcc-Fe?
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Figure 22.2 The effect of magnetic ordering on the heat capacity and entropy of bcc-Fe.

Hint

The entropy contribution to GC in Eq. (21.11) gives ln[yC/(1 − yC)] = ln[xC/(1 −
2xC)] ∼= ln xC + 2xC. Remember z = 12.

Solution

The random mixing model for an interstitial solution gives RT ln(aC/xC) ∼=
const + 2RT xC − 0L · 2yC

∼= const + (2RT − 20L)xC, yielding a slope of
2RT − 20L = 8RT ; 0L/RT = −3. The quasi-chemical model gives, for small yC,

RT ln(aC/xC)∼=const+2RT xC−zv N A(−2yC)[1 + (v/kT ) + (2/3)(v/kT )2 + · · ·] ∼=
const + {2RT − 2zv N A[1 + (v/kT ) + (2/3)(v/kT )2]} · xC, yielding a slope of 2RT −
2zv N A[1 + (v/kT ) + (2/3)(v/kT )2] = 8RT ; −24(v/kT )[1 + (v/kT ) +
(2/3)(v/kT )2]= 8 − 2; v/kT = −0.339, corresponding to 0L/RT = zv/kT = 12 ·
(−0.342) = −4.07.

22.9 Composition dependence of physical effects

In Section 18.7 it was suggested that one should sometimes model the effect of a special
physical phenomenon separately. A typical example would be the effect of magnetic
ordering in a ferromagnetic material. That effect will now be used to demonstrate how
the composition dependence of such an effect can be taken into account.

Figure 22.2 shows (a) the magnetic contribution to the heat capacity and (b) the
decrease of the magnetic entropy from a disordered state of bcc-Fe at very high tem-
perature. The peak temperature for the heat capacity and the inflexion point for the
magnetic entropy represent the Curie temperature, TC, i.e. the transition point between
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Figure 22.3 Solution to Exercise 22.11.

the high-temperature paramagnetic state which has only magnetic short-range order and
the low-temperature state with long-range magnetic order.

A very simple model of magnetic ordering was presented in Section 19.6. It takes
into account only long-range order. It would be possible also to include short-range
order with a quasi-chemical type of approach. However, it would still be a very primitive
model. For reasonably accurate modelling it seems necessary to rely on experimental
measurements and some simple assumption of the dependence on composition. There
have been several suggestions of mathematical expressions to be used. The first was
made by Inden [48] and it is still the most widely used model. He described the heat
capacity with a logarithmic expression but in order to derive an analytical expression
for the contribution to the Gibbs energy it was later found necessary to use a series
expansion. With truncation after the third term it yields the following expressions above
and below the Curie temperature.

Gmo
m = −RT ln(β + 1)

(
τ−5

10
+ τ−15

315
+ τ−25

1500

) / [
518

1125
+ 11692

15975

(
1

p
− 1

)]
for τ > 1

(22.72)

Gmo
m = RT ln(β + 1)

{
1 −

[
79τ−1

140p
+ 474

497

(
1

p
− 1

) (
τ 3

6
+ τ 9

135
+ τ 15

600

)]} /
[

518

1125
+ 11692

15975

(
1

p
− 1

)]
for τ < 1, (22.73)

where p is a constant defined as the fraction of the total disordering enthalpy which is
absorbed above the critical temperature. It was given as 0.28 for fcc metals and 0.40 for
bcc metals. τ is a normalized temperature defined as T/TC. The superscript ‘mo’ refers to
magnetic order. The equations contain two material constants, the Curie temperature TC

and the Bohr magneton number β. The equations could hopefully be applied to solutions
by inserting experimental or estimated expressions for their composition dependence.

The two diagrams in Fig. 22.2 were calculated from these equations after an assessment
of the magnetic properties of bcc-Fe. However, experimental measurements indicate that
CP goes to infinity at TC from both sides (see Fig. 19.4) and that result was originally
modelled by Inden. It was abandoned for practical reasons when a Gibbs energy expres-
sion was derived by integration. This approximation may seem as a bad one from a
theoretical point of view but for the calculation of phase equilibria it seems to have a
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comparatively small effect. An exception may be the position of the tri-critical point in
a binary diagram like Fig. 15.15. According to the crude treatment of the effect of C p

P ,
presented in Section 15.5, the tri-critical point should approach the side of the binary
system if the magnetic CP goes to infinity at TC.

In order to extend the magnetic model to alloys it is necessary to make the model param-
eters composition-dependent. So far, investigators have studied the effect of composition-
dependent β and TC but kept the p parameter constant.

Exercise 22.10

Use the CP curve in Fig. 22.2(a) for an estimate of p, the fraction of the total disordering
enthalpy which has not yet been absorbed on heating to TC because of the remaining
short-range order.

Hint

Divide the area between the solid and dashed curves into two, one above and one below
TC, and make a crude graphical integration of these two areas.

Solution

The two areas are proportional to the two parts of �H . Thus p = A1/(A1 + A2) =
1(1 + A2/A1) ∼= 1/(1 + 1.5) = 0.4.

Exercise 22.11

Show schematically how the solubility of phosphorus (P) in bcc-Fe can be expected to
vary with temperature around the intersection with the magnetic transition line, the Curie
line. Consider three different conditions: (a) no magnetic effect; (b) a magnetic effect but
no separation into regions of different composition; (c) a magnetic effect and separation
into regions of different composition, resulting in a miscibility gap with a tri-critical
point.

Hint

Consult Section 15.5 and, in particular, Fig. 15.16 and Exercise 15.7.

Solution

(a) Without a magnetic effect we expect that ln(x p) should vary linearly with 1/T (see
Exercise 11.4). (b). The slope should be smaller where CP is larger due to the magnetic
effect. (c) See Fig. 22.3.
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ε formalism 455
γ loop 248
(Fe,Cr)3O4 250
(Na,K)(Cl,Br) 472
180◦ rule 343

absolute reaction rate 377
absolute temperature 14
absolute value of U 6
absolute zero 14, 27
activated process 351
activation energy 147, 352, 377, 380
activation, thermal 377
activity coefficient 128
additivity 3, 402
additivity, law of 138, 139
adiabatic compression 11
adiabatic condition 35
adiabatic expansion 11
adiabatic model 306
adiabatic phase transformation 303
adiabatic process 11
adiabatic, true 303, 310
affinity 19
Ag2O 281
Ag–Pb phase diagram 248
Ågren 366
Al2Cu, precipitation of 285
Al2O3–Cr2O3, miscibility gap 461
Al–Cu–Si, eutectic in 286
allotropic modification 234
allotropic phase boundary 137, 235
allotropic phase transformation 236
allotropic transformation 262
alloy element, partitioning of 320
alloy system 2
Al–O–Si, compositional degeneracy of 299
Al–Zn phase diagram 246
Al–Zn, Gibbs energy curves 331
Al–Zn, property diagram 332
amorphous 424
amorphous state 486
anti-site 439

Aristotle 262
assemblage, phase 285
associates 487
atomic size 483
Au–Ni, miscibility gap 338
Avogadro’s number 46, 422
axes, selection of 223
azeotropic 228
azeotropic transformation 257

balance of force and dissipation 396
Bale 455
Balluffi 61
bcc-Fe, magnetic properties 494
BeO 276
bifurcation 336
Bi–Mg, liquid 449, 450
binary system 170
binodal 332
black-body radiation 417
Boltzmann statistics 377, 422
Boltzmann’s constant 27, 377, 417
Boltzmann’s relation 27, 421, 429, 432, 435
bond energy 476, 477
bond probability 478, 479
Bose–Einstein statistics 422
boundary condition for diffusion 145
Bragg–Williams model 477, 478, 484
bubble, equilibrium for 349

C in fcc-Fe 491
C in α-Fe 439
CaCl2 in NaCl 472, 474
CaCO3 280
Cahn 61, 335
calculation of equilibrium 54
caloric equation 33
Ca–Mg–O–Si, degeneracy 301
canonical ensemble 50
CaO 280
CaO–MgO–SiO2, reaction coefficients 301
capillarity 345
carbon, phase diagram of 163
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carburization of steel 240
Carnot 11
Carnot’s cycle 11
Celsius scale 15
cementite 319
centre of gravity 70
CeO2 473
Ce–O–S, phase diagram 174
Ce–O–S, potential diagram 175
CH4 279
change of composition 45
change of variables 41
characteristic state function 21, 24, 30, 48, 114, 401
characteristic state function, new 291
charged compound 473
chemical activity 128
chemical capacitance 120
chemical diffusion coefficient 383
chemical disorder 434
chemical driving force 61, 372
chemical equilibrium, partial 311
chemical ordering 486
chemical potential 45, 49, 74, 92, 126

in two-phase field 238
kept constant 294
of compound 75
of species 75
of vacancy 462

chemical reaction 58
chemical species 1
chemical substance 156
Clapeyron’s equation 163
class I, II, III 264, 283
classification 262
closed system 2, 279
cluster 487
cluster variation model 477
coarsening 61
coexistence line 160, 170, 322
coexisting states 330
coherency between phases 366
coherency of surface layer 364
coherency stress 337, 483
coherency within a phase 363, 365
coherent interface 325
coherent miscibility gap 371
coherent phase equilibrium 371
coherent precipitation 366
coherent spinodal 371
coherent two-phase field 369
coincidence 215
coincidence theorem 219
Colinet 458
combined law 21, 45, 52, 346
common tangent 135, 357, 367
common tangent plane 149

competing reactions 258
complete molar phase diagram 195
complete potential phase diagram 168
component 2, 45
component compound 78, 464
component element 405
component oxide 406
component

composition of 92
dependent 92
independent 92
set of 74, 92

composition 2, 67
composition determinant 180, 181
composition gradient 381
composition matrix 295, 297, 300, 301
composition of component 92
composition of transferred material 390
composition spike 103, 317
composition square 465
composition triangle 97
composition, change of 45
composition, fluctuation of 117
compositional degeneracy 296, 298, 300
compositional fluctuation 339
compositional space 74
compound 439
compound energy formalism 460, 465, 484, 489
compound energy model 460, 468
compound, charged 473
compressibility 348, 354
compressibility of partial volume 356
compression work 6
conditional spinodal 339
configurational 421
configurational disorder 434, 477
configurational entropy 324, 420, 432, 480
configurational ordering 486
congruent 228
congruent melting 244
congruent transformation 230, 244
conjugate pair 53, 84, 111
conjugate potential 49
conjugate processes 86
conjugate variable 21
conjugated quantities 81
conode 71
conservation of energy 5
conserved quantity 89
consolute point 330, 339, 446, 483
constituent 76
constitution 75
constraint, stoichiometric 464
content of matter 1, 7, 46
content scheme 53
cooperative growth 263, 287
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cooperative mechanism of migration 391
coordination number 423, 478, 488
correlation effect 380
coupled reactions 84
coupling effect 380
coupling process 88
Cr3O4 250
critical composition 357
critical line 332
critical nucleus 352, 357
critical point 330, 414
critical size 350, 351
critical temperature 433
critical temperature for ordering 470
critical wavelength 335
cross coefficient 81, 84, 97
cross coefficient in diffusion 383
cross term 87, 94
crystal/fluid interface 353
Cu–O–S 210
Cu–O–S, potential diagram 175, 210
Curie temperature 429, 493
cyclic process 80

damping 12
Darken 455
Darken’s quadratic formalism 455
De Donder 19
Debye 426
Debye temperature 427
decomposition, spinodal 335
degeneracy, compositional 296, 298
degenerate 216
degree of freedom 149, 156
dependent component 92
dependent potential 155, 189
dependent variable 2, 4
detailed balance, principle of 377
determinant, notation 178
deviation from Henry’s law 491
deviation from randomness 479
deviation from Raoult’s law 455
deviation from stoichiometry 439
diagonal coefficient 82, 380
diamond 163
diatomic gas 412
diffusion 101

cross coefficient in 383
driving force of 287
exchange mechanism of 379
grain boundary 364
individual 380
interstitial 378
pressure induced 388
substitutional 101, 379
vacancy mechanism 379

diffusion coefficient 381
diffusion coefficient, chemical 383
diffusion coefficient, mutual 383
diffusion control 60
diffusion in lattice-fixed frame 380
diffusion in number-fixed frame 380
diffusion in ternary system 382
diffusion-induced grain boundary migration 365
diffusion potential 64, 78, 103, 119
diffusional phase transformation 103, 388
diffusional transition 325
diffusionless migration 378
diffusionless process 393
diffusionless transformation 309, 378
diffusionless transition 325
DIGM 61, 365
dilute solution 454
dimensionality 188
dimensionality of diagram 155
dimensionality of phase diagram 209
dimensionality of phase field 164, 208, 221
direction of phase boundary 238
direction of phase fields 177
discontinuous precipitation 364
discontinuous system 90, 95
disorder 420

chemical 434
configurational 434
magnetic 429
topological 423

displacive transition 324
dissipation 91
dissipation by diffusion 372
dissipation by friction 372
dissipation function 104, 398
dissipation of Gibbs energy 372
dissipation of Gibbs energy, rate of 397
distribution coefficient 233
divariant equilibrium 179
doubly singular 229, 230, 268
driving force 19, 90
driving force for precipitation 142
driving force of diffusion 287
driving force of grain boundary 372
driving force on atoms 373
driving force, at fixed chemical potential 291
driving force, chemical 372
driving force, evaluation of 56
driving force, integrated 57, 59, 142, 288
driving force, negative 392
droplet, solidification of 304
Duhem’s theorem 220

effective driving force 61
efficiency 3, 12
Ehrenfest 322
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Einstein 425
Einstein temperature 426, 427
elastic energy 366
electrical potential 22
electrical work 22
electron band theory 434
electron gas 418
electron theory 418
electroneutrality 472
electronic contribution 428
electrons, unpaired 434
Ellingham diagram 172
emf 212
empirical approach for solutions 445
end-member 126
endothermic process 35
energy barrier 378
energy of reaction 35
energy scheme 28
enthalpy 7, 25
enthalpy flow 99
enthalpy of reaction 35
enthalpy spike 306
enthalpy, transport of 96
entropy 13, 26
entropy of mixing 127
entropy production 15, 83, 88, 104
entropy scheme 28, 53
equation of state 33, 46
equilibrium condition 23
equilibrium constant 58
equilibrium reaction 20
equilibrium

metastable 110
para- 311
partial 302
partial chemical 311
quasi-para- 314, 315
singular 226, 229, 231, 296
stable 108
unstable 108, 470

equipotential 35
equipotential section 168, 195
Euler’s equation 385
eutectic 262
eutectoid 317
eutectoid microstructure 276
eutectoid reaction 288
eutectoid transformation 262, 289
evaporation 402
excess enthalpy 444
excess Gibbs energy 128
excess quantity 444
exchange energy 476
exchange mechanism of diffusion 379
excluded sites model 491

exergy 52
exothermic process 35
experimental conditions 34, 253
extensive quantity 21
extensive variable 3
extent of process 80
extent of reaction 93
external variable 3
extremum 230
extremum in pressure 181
extremum in temperature 181
extremum principle 106
extremum principle, Onsager’s 386
extremum principle, Prigogine’s 386

Faraday constant 22
Fcc–Fe–C, C activity in 491
Fcc–Fe–N, ordering in 492
Fe, Gibbs energy of 403
Fe, heat capacity 430
Fe, magnetic effects 493
Fe, magnetic order 431
Fe, phase diagram 164, 223
Fe, potential diagram 165
Fe, T,Sm diagram 223
Fe.Cr–C 224
Fe3C 130, 239, 240, 283
Fe–C 440
Fe–C, Hm,aC diagram 224
Fe–C, phase diagram 171, 225
Fe–Cr–C, diagram 152
Fe–Cr–C, phase diagram 224, 225
Fe–Cr–C, zCr,xC diagram 153
Fe–Cr–C–N, at constant potentials 208, 214
Fe–Cr–N, phase diagram 228
Fe–Mn, carburizing of 293
Fe–Mn–C 293
Fe–Mn–C melt 468
Fe–Mo 448
Fe–Mo–C, carburization 277
Fe–Ni, carburization of 319
Fe–Ni, liquid 449, 450
Fe–Ni–C phase diagram 318
FeO 210
Fe–O, phase diagram 248
Fe–O, potential diagram 173
Fe–O–S 209
Fe–O–S, potential diagram 209, 210
ferromagnetic 429
Fe–Si–C, phase diagram 320
Fe–W–C, phase diagram 202
Fick’s law 335
first law 6, 7
first-order transition 322
five-phase equilibrium 217
flow of enthalpy 99
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flow of heat 248, 253
fluctuation 108
fluctuation in composition 117, 147, 335
fluctuation in internal variable 121
fluctuation, compositional 339
flux 80
force 81
formula unit 48, 76, 99, 460
Fourier’s law 99
four-phase equilibrium 168, 188
four-phase transformation 264
frame of reference 101
frame, lattice-fixed 101
free energy 52
freezing-in conditions 9
freezing-point depression 245
friction 105
friction of migrating interface 397
friction, grain boundary 372
frozen-in 4, 9, 90, 93
frozen-in state 22
frozen-in variables 4
fugacity 413, 416
fundamental equation 30, 31
fundamental property diagram 158

gas bubble, equilibrium for 349
gas mixture 415
gas thermometer 14
gas

electron 418
ideal 410, 411
ideal classical 412
real 412
slightly imperfect 413

gas–liquid transition 410
general conditions of equilibrium 23
geometrical element 166
geometrical model 459
Gibbs 346
Gibbs adsorption equation 362
Gibbs–Duhem relation 114
Gibbs energy 25, 49
Gibbs energy diagram 126
Gibbs energy diagram for diffusion 392
Gibbs energy dissipation 61, 105
Gibbs energy for Fe 403
Gibbs energy of formation 405, 421
Gibbs energy of graphite 403
Gibbs energy of mixing 126, 441
Gibbs energy surface 149
Gibbs energy, dissipation of 91
Gibbs energy, in modelling 402
Gibbs free energy 52
Gibbs’ phase rule 156, 220
Gibbs’ relation for curved interfaces 356

Gibbs triangle 67
Gibbs–Duhem integration 452
Gibbs–Duhem relation 49, 66, 103, 132, 155, 357,

452
Gibbs–Duhem relation of molar quantities 241
Gibbs–Thomson equation 139
glass transition 424, 487
global composition 477
gradient effects 89
gradient energy 335
gradual transformation 255, 272, 285
grain boundary, driving force of 372
grain boundary, friction in 372
grain growth, solute drag in 372
grand partition function 50
grand potential 50, 55
graphite 163
graphite, Gibbs energy of 403, 404
graphite, growth of inclusion 389
gravitational potential 13
Grüneisen’s constant 40, 112, 427
Gupta 203
Guthrie 262

H2–O2 450
harmonic oscillator 425
heat capacity 9, 20, 36, 38, 99, 425
heat conduction 99
heat content 99
heat engine 13
heat flow 5
heat of reaction 35
heat of solution 242, 245
heat of three-phase reaction 179
heat pump 12
heat reservoir 11
heat transport 95
Helmholtz energy 4, 25, 50
Helmholtz energy, in modelling 401
Helmholtz free energy 52
Henry’s law 129, 449, 463
heterogeneous reaction 303
higher-order invariant equilibrium 217
higher-order system 456, 457
Hillert 336
homogeneous process 91
homogeneous reaction 303
homogeneous system 7, 90
hydrostatic pressure 6, 138
hypervolume 167

ideal classical gas 8, 12, 14, 412
ideal gas 410, 411
ideal interstitial solution 463
ideal solution 127, 442
ideal substitutional solution 442
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imaginary wall 47, 66
impermeable to matter 3
inclusion 51
incoherent interface 325
incompressible 348
Inden 494
independent components 1, 45, 74, 92
independent equations 86
independent potential 153
independent process 102
independent reactions 45, 92, 156
independent state variable 155
independent variables 3
indifferent state 257
individual diffusion 380, 382
individual mechanism of migration 391
instability of binary solution 131
instability, region of 116
insulated 3
integral quantity 48
integrated driving force 57, 59, 142, 288
intensive variable 3, 46
interaction coefficient 456
interaction coefficient, Wagner’s 454
interaction energy 457, 476
interaction of molecules 415
interaction parameter, Wagner’s 250
interactions, mechanical 1
interactions, thermal 1
interdiffusion 380
interdiffusion coefficient 383
interface 344

coherent 325
composition 362
crystal/fluid 353
curved 345
fluid/fluid 346
incoherent 325
migrating 302, 306
migration, mechanism of 391
non-spherical 350
segregation 361

interfaces, curved in alloys 356
interfacial energy, in pearlite formation 291
intermediate phase 439
intermetallic phase 439
internal energy 6
internal entropy production 15
internal equilibrium 17, 31
internal process 9, 15, 17, 19
internal variable 3, 31
interstitial 101

component 359
diffusion 378
ordering 490
solute 254

solution 439, 462
sublattice 463

invariant equilibrium 164
ionic substances 472
iron, Gibbs energy of 403
irreversible 80
irreversible process 12, 15
irreversible thermodynamics 80
isenthalpic 35
isentropic 35
Ising model 482
isoactivity line 316
isobaric 35
isobarothermal 35, 36, 93
isochoric 35
isoenergetic 35
isolated system 3
isomorphic 133
isopleth 195
isoplethal 35
isoplethal section 195
isothermal 35
isothermal compressibility 36, 39
isothermal compression 11
isothermal expansion 11
isothermal process 11

Jacobian 41, 117, 332

Kauzmann’s paradox 424
Kellogg diagram 174
Kelvin 15
Kikuchi 477
kinetic coefficient 80, 94
kinetics of processes 80
Kirchhoff’s law 282
Kirkendall marker 101, 388
Kirkendall migration 103
Kirkendall shift 101, 103
Kirkendall velocity 381
Kohler 458
Konovalov 296
Konovalov’s rule 181, 226, 239, 240
Kopp–Neumann rule 406
Kronecker symbol 102

L coefficient 85, 105
Lagrange multiplier 345, 367
Landau 194, 326, 328, 338
Landau’s approach 471
lattice 101
lattice stability 406
lattice-fixed frame 101, 378, 380
Laves phase 437
law of additivity 3, 6, 70, 138, 139
law of mass action 58, 482
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Le Chatelier 124
Le Chatelier modification 124
Le Chatelier principle 124
Legendre transformation 25
LE-partitionless transformation 307, 309
lever rule 70, 369
LFM 365
Lifshitz 326
limit of stability 116, 118
line of coexistence 160, 170
liquid film migration 365
liquid metal, model of 423
liquidus 194
Liu 366
local equilibrium 60, 144, 309
local equilibrium, deviation from 302, 306
localized spin 429
logarithmic phase diagram 153
long- and short-range order 486
long-range order 479, 483
loss of work 17, 57

M2C 278
M6C 278
magnetic disorder 32, 429, 431
magnetic domain 429
magnetic enthalpy 430
magnetic entropy 431
magnetic moment 429, 431
magnetic order 493
martensitic transformation 310
Masing 194
mass action, law of 482
massive transformation 310
matrix 281, 295
matrix, notation 301
Maxwell relation 43, 116, 123, 198, 444
Maxwell’s construction 401
mechanical energy 11
mechanical mixture 441
mechanical work 6
melting, congruent 244
metastable 110
metatectic 262
microcanonical ensemble 50
microscopic fluctuations 82
microscopic reversibility 82
microstructurally gradual 259, 261
microstructurally sharp 259
microstructure 259
migrating interface 306
migration mechanism of boundaries 378
migration, induced by diffusion 365
minimum entropy production 385
miscibility gap 330, 333, 335, 338, 342,

445

miscibility gap, coherent 371
mixed character of variable 76
mixed phase diagram 205
mixing quantity 443
mixture, mechanical 441
mixture, random 434
mixture, restricted random 436
Mn–O–S 210
Mn–O–S, potential diagram 210
mobile component 291, 294
mobility of grain boundary 378
mobility of interface 146
mobility, individual 380
model, mathematical 400
model, physical 400
modelling 400
molar content 47
molar diagram 185
molar diagram, topology of 194
molar enthalpy 7
molar entropy 15
molar Gibbs energy 47
molar Gibbs energy diagram 72, 126
molar phase diagram 185
molar phase diagram, complete 195
molar phase diagram, topology of 188
molar quantity 47
molar quantity of mixing 443
molar variable 189
mole fraction 47
molecular reactions 58
molten salt model 487
Mo–N, diagram 192
monatomic gas 412
monolayer 61
monotectic 262
monovariant, see univariant
Morral 203
MPL boundary rule 221
MPL rule 194
Muggianu 458
multicomponent solution 456
multinary system 166
Murnaghan’s equation 409
mutual diffusion coefficient 383

NaCl in CaCl2 473, 474
Na–K–Cl–Br, composition space for 297
natural variable 6, 21, 30
natural zero point 27, 404
nearest neighbour 476
Nernst’s heat theorem 27
Neumann–Kopp rule 406
neutral combination 473
neutral line 473, 474
next-nearest neighbour 466
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Ni–O–Be 276
non-configurational 420, 421, 432
non-equilibrium 3
non-equilibrium state 3
non-hydrostatic stress 6
non-random solution 479
non-spherical interface 350
non-stoichiometric 282
notation 63

for derivative of Gm 119
for determinant 178
for matrix 301
for partial quantity 63
for univariant equilibrium 205

Nowotny 203
nucleation 351
nucleation of pore 422
nucleus, critical 357
number-fixed frame 101, 380

off-diagonal 121
Onsager 82, 95, 104
Onsager’s extremum principle 386, 396, 398
Onsager’s reciprocal relation 383
opalescence 483
open system 2, 7
order parameter, generalized 339
order, variable 469
order–disorder transformation, magnetic 434
order–disorder transition 324, 471
ordering, in interstitial solution 490
oscillator 425
Ostwald ripening 61, 351
overall composition 438
overlapping 185, 213
overlapping gradual transformation 257
overlapping phase fields 304
overlapping sharp transformations 257

pair energy 477
pair of conjugate variables 21, 28
pair-wise interaction 456
Palatnik 194
Pan 61
paraequilibrium 311
parallel tangent construction 357, 367
paramagnetic 430
partial chemical equilibrium 311
partial derivative 63
partial derivative, notation for 37
partial equilibrium 302
partial excess Gibbs energy 446
partial ideal entropy 442
partial molar Gibbs energy 126
partial molar volume 71, 101
partial pressure 415

partial quantities, relations of 65
partial quantity 63
partial quantity of mixing 443
partial volume, role for inclusion 356
partition coefficient 233
partition function 50, 420
partitional transition 325
partitioning of alloy element 320
partitionless phase transformation 375
partitionless reaction 374
partitionless transformation 144, 302, 308
partitionless transition 325
Pb–Sn, phase diagram 200, 224
Pb–Sn, solid solution 141
pearlite 275, 283, 287, 317, 319
pearlite, formation of 291
Pelton 455
peritectic 262
peritectoid transformation 262
perpetuum mobile 13
phase 76
phase assemblage 285
phase boundaries, direction of 233, 234
phase boundary 193

allotropic 235
direction of 240
retrograde 248
slope of 249
vertical 248

phase diagram 2
phase diagram, dimensionality of 209
phase diagram, true 224
phase equilibrium, at interface 346
phase equilibrium, coherent 371
phase field 163
phase field rule 169, 208, 220
phase field rule, at fixed composition 279
phase field, dimensionality of 164, 208
phase transformation in alloys 261
phase transformation

adiabatic 303
allotropic 236
character of 257
class I, II, III 264, 283

phases with variable order 469
phenomenological coefficient 100, 379, 386
phenomenological equation 81, 102, 104
physical model 408, 410, 411
pile-up 145
Planck constant 377, 417, 425
point of reference 27
positive definite 82
potential 3, 21, 47
potential difference 253
potential phase diagram 155, 162
potential phase diagram, complete 168
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potential phase diagram, section of 168
potential, dependent 189
power series 407
precipitation, coherent 366
precipitation, discontinuous 364
precipitation, proeutectoid 268, 319
pressure dependence 408
pressure difference 251, 346
pressure difference, effect on composition 357
pressure extremum 181
pressure gradient 100
pressure, negative 164
pressure, power series of 407
pressure-induced diffusion 388
Prigogine 84, 385
Prigogine’s extremum principle 386
principle of detailed balance 377
principle of minimum entropy production

385
probability 27
process, independent 102
process, spontaneous 108
processes, conjugate 86
processes, set of 85, 102
product 282
proeutectoid 268, 319
projected diagram 212
projected phase diagram 205
projected surface 215
projection 217
property diagram 2, 4, 157
pseudo-binary 461
pure compound 151

quadratic formalism 455
quantum mechanics 425
quasi-adiabatic transformation 305
quasi-binary 297, 461
quasi-binary phase 464
quasi-binary side 466
quasi-chemical approach 477, 490
quasi-chemical method 482
quasi-chemical model for interstitials 491
quasi-diffusionless transformation 309
quasi-paraequilibrium 314, 315
quasi-ternary 297, 461
quaternary 167, 211
quinary 167

R coefficient 85, 105
radioactive isotope 382
random mixture 434
Raoult’s law 129, 446, 448
rate of entropy production 81, 91, 105
reactant 282
reaction coefficient 92, 280, 281, 283, 285

reaction coefficient, at fixed chemical potential
294

reaction diagram 270
reaction formula 92
reaction path 57, 160
reaction rate, absolute 377
reaction, extent of 93
reaction, heterogeneous 303
reaction, homogeneous 303
reaction, independent 92
reactions, competing 258
real gas 412
real solution 448
reciprocal reaction 95
reciprocal relation 82, 84, 97
reciprocal relation, in diffusion 383
reciprocal solution phase 464
reciprocal system 298
reconstructive transition 325
Redlich 445
Redlich–Kister polynomial 445
reference for element 404
reference state 128, 402
refrigerator 12
regular solution 445, 477
regular solution parameter 484
relative amounts 67
relative composition 266
relaxation of surface layer 344
renormalization group 483
restricted random mixture 436
retrograde phase boundary 248
reversible 10
reversible change 22
reversible conditions 20, 442
reversible process 15
reversible reaction 36
Richard’s rule 247, 423
ripening 61

saturation magnetization 429
Scheil 270
Scheil reaction diagram 270
scheme

content 53
energy 28
entropy 28, 53
volume 53

Schreinemakers 197
Schreinemakers’ projection 205, 212, 231, 266
Schreinemakers’ rule 197, 250
second law 6, 13, 15, 81, 104
second-order transition 322, 327, 471
section of potential phase diagram 168
sectioned molar diagram 201
sectioned molar diagram, topology of 201
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segregation to grain boundary 372
segregation to interface 371
segregation to surface 361
SER, stable element reference 404
set

of components 92
of conjugate pairs 52, 224
of processes 85
of stability conditions 114, 116

sharp transformation 255, 262, 280
sharp transformation, classification of 262
sharp transformation, driving force of 287
shear stress 6
short-range order 479, 482, 488
short-range order, magnetic 434
Si3N4 475
Sialon 475
side system 465
simulation 400
simultaneous processes 81
singular curve 226, 268
singular equilibrium 226, 229, 231, 296
singular point 226
singular, doubly 229, 230, 268
Si–O–N, phase diagram 175
site fraction 76, 460
six-phase equilibrium 218
size of system 69, 189
slightly imperfect gas 413
solidification of droplet 304
solidification, quasi-adiabatic
solidus 194
solubility product 152
solute drag 372
solute drag in grain growth 372
solute traping 392
solution phase 406, 434
solution phase with sublattices 460
solution

ideal 127, 442
ideal substitutional 442
interstitial 439, 462
interstitial and substitutional 468
real 448
regular 445
subregular 445

solvus 194
species 76, 472
specific quantity 48
specific surface energy 344
spherical particle, stability of 350
spike

composition 317
enthalpy 306
of composition 374
temperature 306

spin, localized 429
spinel 250
spinodal 331

decomposition 89, 335, 352
calculation of 446
coherent 371
conditional 339

spinode 331
spontaneous process 15, 19, 108
stability 108
stability condition 111, 113
stability condition, molar variable in 189
stability condition, set of 114
stability function 119
stability limit 330
stability limit for solid/liquid 486
stability of spherical particle 350
stability, limit of 116, 326
stable element reference 404
stable equilibrium 108
standard Gibbs energy of formation 129
state diagram 2, 155
state equation 33
state function, characteristic 401
state functions 1
state of equilibrium 1
state variables 1
stationary flow 384
statistical thermodynamics 27, 420
steady-state 145, 307
Stefan constant 417
stereographic pair 205
stoichiometric coefficient 92
stoichiometric compound 77, 132
stoichiometric constraint 77, 297, 464
stoichiometric phase 439, 464
stoichiometric vacancy 437
stoichiometry, deviation from 439
sublattice 76, 460
subregular solution 445
substitutional 101
substitutional diffusion 101, 379
substitutional solution 435
subsystem 23
surface energy 344
surface energy, effect on composition 359
surface energy, specific 344
surface free energy 344
surface Gibbs energy 344
surface layer, coherent 344, 364
surface of reference 464
surface segregation 361
surface stress 344, 353, 354, 359
surface tension 345
surroundings 1
Svoboda 396
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swallowtail 224
syntectic 262
system 1
system, discontinuous 95

tangent construction, parallel 357
tangent plane 72, 149
tangent, common 357, 367
tangent, parallel 367
temperature extremum 181
temperature spike 306
temperature, power series of 407
terminal solution 152
ternary phase diagram 233, 234
ternary system 72, 149, 173
ternary system, diffusion in 382
thermal activation 377
thermal energy 11
thermal equation of state 33
thermal equilibrium 10
thermal expansivity 39
thermal potential 13
thermal vacancy 422
thermal vibrations 419, 425
thermochemistry 1
thermodynamic factor for diffusion 382
thermodynamic force 80, 91, 96, 99,

102
thermodynamics 1
thermophysical properties 1
third law 27
tie-line 71
tie-line rule 71
tie-triangle 185
Ti–O–Cl, phase diagram 174
Ti–O–Cl, potential diagram 173
topological disorder 423, 486
topology 162, 212, 217
topology of molar diagram 194
topology of molar phase diagram 188
topology of sectioned molar diagram

201
tracer diffusion 382
transferred material, composition of 390
transformation of set of processes 83
transformation

allotropic 137
azeotropic 257
congruent 244
diffusionless 309
eutectic 262
eutectoid 262
four-phase 264
gradual 255, 272, 285
in steel 315
LE-partitionless 307, 309

martensitic 310
massive 310
overlapping gradual 257
overlapping sharp 257
partitionless 308
peritectoid 262
quasi-diffusionless 309
sharp 255, 262
true diffusionless 309

transient 306
transient stage of growth 316
transition line 339, 484
transition of second order 471
transition point 324, 326
transition temperature 341
transition

diffusional 325
diffusionless 325
displacive 324
first-order 322
order–disorder 324
partitional 325
partitionless 325
reconstructive 325
second-order 322, 323

transport of enthalpy 96
transport of heat 95
transport process 90, 384
transportation process 96
trapping of solute atoms 392
tri-critical point 339, 495
triple point 163, 185
true diffusionless transformation 309
true phase diagram 224
Truesdell 82
truncated power series 408
two-phase equilibrium 135, 138, 139
two-phase field, coherent 369
two-sublattice model 487

unary system 158
uncompensated heat 17
undercooled melt 424
univariant equilibrium 179
univariant equilibrium, notation for

205
unstable equilibrium 17, 108, 470
up-hill diffusion 335

vacancies in diffusion 378
vacancy 17, 101, 420

chemical potential of 78, 462
driving force of disappearance

423
mechanism of diffusion 379, 380
stoichiometric 437
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Van der Waals 414
vapour pressure 353, 359
variable, change of 45
variables for composition 67
variance 156
variation analysis 385
velocity, extremely high 306
vertical phase boundary 248
vibration frequency 403
virial coefficient 413
viscous state 486
volume change, local 388
volume scheme 53
volume-fixed frame 101
Von Alkemade 296
Von Alkemade’s rule 181, 230

Wagner 250
Wagner integration 452
Wagner’s dilute solution model 454
wavelength 335
W–C, phase diagram 170
W–C, potential diagram 170
Williams point 369
work 5
wüstite 248, 253

zero point 6
zero point energy 427
zero point, natural 404
zero-dimensional phase field 164
zero-phase-fraction 222
zero-phase-fraction line 203
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