The N-Ti-V System (Nitrogen-Titanium-Vanadium)

M. Enomoto Ibaraki University

Introduction

Only a few studies of the phase constitution in the N-Ti-V system are available. [66Str] and [72Kie] reported the mutual solubility of TiN and VN and the lattice parameters of these compounds. For the purpose of strengthening vanadium alloys, [71Shu] and [74Bar] studied the solubility of group IV A metal nitrides in V and the phase relationships near the V corner. In these studies, electrolytic vanadium was first melted under a mixture of argon and high purity N. The alloys were prepared under argon by arc melting the nitrified vanadium alloys and iodide titanium. The phase constitution was studied by metallography, x-ray diffractometry, differential thermal analysis (DTA), and hardness testing in the temperature range 1200 to 1800 °C.

Binary Systems

The binary Ti-V phase diagram (Fig. 1) is from [87Mur]. At high temperatures, the (β Ti) and (V) phases form a continuous

series of bcc solid solution. Below 850 °C, a miscibility gap is present in the β phase giving rise to a monotectoid reaction, (β Ti, V) \leftrightarrow (α Ti) + (V). In previous assessments [Hansen, Elliott, Shunk, 81Mur], no miscibility gap with its associated monotectic reaction was shown, but [87Mur] used data of [80Nak] to construct the diagram of Fig. 1. A recent study [89Wei] showed that the reported miscibility gap in the (β Ti, V) phase was possibly due to oxygen impurity and that neither a miscibility gap nor a stable monotectoid was likely to occur in the pure binary Ti-V system, which is consistent with the former assessments. Thus the presence or absence of the miscibility gap is still inconclusive.

The N-Ti phase diagram (Fig. 2), from [87Wri], is characterized for up to 50 at.% N. Two terminal solid solutions, (αTi) and (βTi) , and three titanium nitrides, Ti_2N , δ' , and TiN (also designated as δTiN_{1-x}), are the solid phases reported for this system. The δ' phase is also called $Ti_2N(\alpha)$. The solubility of N in (αTi) and the homogeneity range of TiN are quite large. More than half of the phase boundaries are not well established.

Table 1	N-Ti-V	Crystal	Structure	Data	of Eq	uilibrium	Phases
---------	--------	---------	-----------	------	-------	-----------	--------

Phase	Composition, at. %	Pearson symbol	Space group	Strukturbericht designation	Prototype
Terminal solid solution phases					· · · · · · · · · · · · · · · · · · ·
(αΤί)	0 to ~3V, 0 to 23N	hP2	P63/mmc	A3	Mg
(βΤί)	0 to 100V, 0 to 6.2N	c/2	Im3m	A2	w
(V)(a)	0 to 100Ti, 0 to 17N	c/2	Im3m	A2	w
Intermediate phases					
Ті2N(b)	33N	tP6	P4 ₂ /mnm	<i>C</i> 4	Rutile
δTiN _{1-x} , δ(Ti, V)N	30 to 55N, 0 to 100V	cF8	Fm3m	<i>B</i> 1	NaCl
δVN _{1-x} (c)~	33 to 50N, 0 to 100Ti	cF8	Fm3m	<i>B</i> 1	NaCl
δ'Ti2N	38N	<i>tl</i> 12	14,1/amd	C_{c}	Si ₂ Th
BV ₂ N _{1-y} (b)	29 to 31N	hP9	$P3_1m$		εFe ₂ N
δ′VN _{1-x} (b)	~43 to 46N	tetragonal (ordered)	P4 ₂ /nmc		

(a) (V) forms a continuous bcc solid solution with (β Ti). (b) No data on the solubility of Ti. (c) Isomorphous to TiC. From [66Str].

The N-V phase diagram (Fig. 3), from [89Car], is characterized for up to 50 at.% N. There is only one solid solution, (V), and three vanadium nitrides, $\beta V_2 N_{1-y}$, $\delta' V_{32} N_{26}$, and $\delta V N_{1-x}$. The $\delta' V_{32} N_{26}$ phase is considered to be a nitrogen-ordered form of $V N_{1-x}$ and has been reported at several other stoichiometric compositions. However, most of these compositions are believed to be metastable. The solubility of N in (V) and the homogeneity range of VN are also large. As in the N-Ti system, the majority of the phase boundaries are not well established.

Ternary System

Solid Phases

Table 1 provides the crystal structure data for the solid phases of the N-Ti-V system. (β Ti) and (V) form a continuous bcc

 Table 2
 Lattice Parameter Data of N-Ti-V Intermediate Compounds

Lattice parameters, nm									
Phase	a	Ь	с	Comment	Reference				
	0.4943	•••	0.3036		[87Wri]				
TiN	0.4241 ± 0.0002			••••	[87Wri]				
	0.419			~45 mol% VN	[66Str]				
	0.417			~60 mol% VN	[66Str]				
	0.4163			75 mol% VN	[72Kie]				
	0.4192			50 mol% VN	[72Kie]				
	0.4216	•••		25 mol% VN	[72Kie]				
δVN _{1-x}	0.4182	•••			[89Car]				
δ'Ti ₂ N	0.4198	•••	0.8591	•••	[87Wri]				
βV2N1-v	0.4920		0.4542		[89Car]				
δ'VN _{1-x}	~0.8190		•••		[89Car]				

solid solution. The solubility of nitrogen in the three terminal solid solution phases is large compared to that of carbon. The B1-type δTiN_{1-x} and δVN_{1-x} compounds are completely miscible [66Str]. No true ternary phases have been reported.

Table 2 lists the lattice parameter data of the N-Ti-V phases. The lattice parameter of δTiN_{1-x} decreases almost linearly with the increase of the mole percentage of VN.

Isothermal Sections

A possible isothermal section at 1200 °C was constructed and illustrated in Fig. 4. Phase relationships near the V-N side are based on [71Shu] and the accepted binary phase diagram. [74Bar] determined the solubility of TiN in (V) at 1200, 1500, and 1800 °C. Using the thermodynamic relationship, [74Bar] derived Eq 1:

$$\ln X_{\rm N} + \ln X_{\rm Ti} = -\frac{309\,988}{RT} + \frac{100.52}{R} \tag{Eq 1}$$

where T is the absolute temperature and R, the gas constant, is $8.314 \text{ J/K} \cdot \text{mol.}$ The curves calculated from Eq 1 (Fig. 5) show that the solubility of TiN in (V) is very small at 1200 °C (see the V corner in Fig. 4). The phase boundaries near the N-Ti side are highly speculative.

Pseudobinary Systems

Figure 6 is an isopleth through TiN-V based on [71Shu]. From metallographic observation and DTA, [71Shu] concluded that a ternary eutectic reaction (the eutectic temperature is 1870 °C) exists as in the Zr-V-N and Hf-V-N systems. A few modifications were made in Fig. 6, for example, the melting temperatures of TiN and V and the $(V)/[\delta(Ti, N) + (V)]$ phase boundary. The latter should coincide with the solubility curve reported by [74Bar], namely,

$$\log \left[X_{\text{TiN}} \right] = -\frac{8106}{T} + 2.629 \tag{Eq 2}$$

Cited References

- 66Str: L.V. Strashinskaya and N.V. Mironova, "Contact Interaction of TiN, Ti, Zr, and V in Vacuum," *Izv. Akad. Nauk SSSR, Met.*, (4), 143-146 (1966). (Experimental)
- *71Shu: A.K. Shurin and O.M. Barabash, "Phase Equilibria in Alloys of V with Ti, Zr, and Hf Nitrides," *Akad. Nauk Ukr. SSR, Metallofiz.*, (45), 84-87 (1971). (Experimental; #)
- 72Kie: R. Kieffer, H. Nowotny, P. Ettmayer, and G. Dufek, "Miscibility of the Nitrides and Carbides of Transition Metals," *Metall*, 26, 701-708 (1972). (Experimental)
- 74Bar: O.M. Barabash and A.K. Shurin, "Solubility of TiN, ZrN, and HfN in V," *Izv. Akad. Nauk SSSR, Met.*, (4), 194-197 (1974).
- 80Nak: O. Nakano, H. Sasano, T. Suzuki, and H. Kimura, "Phase Separation in TiV Alloys," *Titanium '80 Proceedings 4th International Conference on Titanium* (Kyoto, Japan), Vol. 2, H. Kimura and O. Izumi, Ed., TMS-AIME, 2889-2895 (1980). (Experimental)

- 81Mur: J.L. Murray, "The Ti-V System," Bull. Alloy Phase Diagrams, 2(1), 48-55 (1981). (Review)
- 87Mur: J.L. Murray, "The Ti-V System," Phase Diagrams of Binary Titanium Alloys, J.L. Murray, Ed., ASM International, Metals Park, OH, 319-327 (1987). (Review)
- 87Wri: H.A. Wriedt and J.L. Murray, "The N-Ti System," *Phase Diagrams of Binary Titanium Alloys*, J.L. Murray, Ed., ASM International, Metals Park, OH, 176-186 (1987). (Review)

89Car: O.N. Carlson, J.F. Smith, and R.H. Nafziger, "The N-V System," *Phase Diagrams of Binary Vanadium Alloys*, "J.F. Smith, Ed., ASM International, Materials Park, OH, 148-158 (1989). (Review)
89Wei: F. Wei and H.M. Flower, "Phase Separation Reactions in Ti-50V

Alloys," Mater. Sci. Technol., 5, 1172-1177 (1989). (Experimental)

*Indicates key paper. #Indicates presence of a phase diagram.

N-Ti-V evaluation contributed by **M. Enomoto**, Department of Materials Science, Faculty of Engineering, Ibaraki University. Literature searched through 1989. Dr. Enomoto is the Alloy Phase Diagram Program Co-Category Editor for ternary titanium alloys.