Aluminium – Magnesium – Nickel

Elena L. Semenova

Literature Data

The Al-Mg-Ni system has been examined first in 1924. From the results of thermal analysis and metallography [1924Fus] concluded that the Mg_2Al_3 -NiAl_3 section is a quasibinary one. In [1934Fus] Fuss presented a projection of the liquidus surface in the Al-Mg_2Al_3-NiAl area showing the lines of double saturation on it. An essential conclusion was that a ternary eutectic equilibrium does not exist in the shown part of the phase diagram. However, [1943Mon, 1944Cha, 1952Han] reported that the invariant eutectic equilibrium exists and is reached independently of the heat treatment and the compositions of the phases, except of solid solution of magnesium in aluminium. These conclusions were based on experimental data obtained on as-cast, annealed and rapidly quenched alloys; their liquidus projection is essentially different from the one without the eutectic invariant reaction proposed by [1934Fus].

[1968Var] studied the structure of the Al-Mg-Ni alloys containing 1 at.% Ni in as-cast conditions. The intermetallic phases were separated by high temperature centrifuging and identified by X-ray analysis. As a result, the AlNi₃ and Al₃Ni₂ phases were found to coexist in the alloy 1Ni-15Mg-Al (at.%).

The assessment by [1993Pri] took into account the works published up to 1991 and deals with the Al-rich part of the Al-Mg-Ni ternary system Al-Mg₂Al₃-Ni₂Al₃.

Later experimental investigations of the ternary system were mainly motivated by the search for new hydrogen storage materials [1998Ori, 2000Yua, 2000Aiz, 2001Gua]. From these studies information on new ternary phases was obtained. [1998Ori] examined the crystallization processes of Al_x -Mg_{1-x}-Ni alloys which were mechanically alloyed under an argon atmosphere by planetary ball milling for 4800 min at ambient temperature and 400 rpm. A phase with CsCl type crystal structure was found in alloys with x = 0.3-0.5 and an amorphous phase formed in alloys with x < 0.2.

[2000Yua] synthesized Al_x-Mg_{2-x}-Ni (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) samples by a diffusion method. Mixtures of pure Al, Mg and Ni powders were grounded and pressed into pellets under a pressure of 30 MPa. The pellets were annealed at 540-550°C for 4 h and then cooled to room temperature. X-ray diffraction and SEM were applied to investigate their structure. A new phase of cubic crystal structure of Ti₂Ni type was observed in the alloys, so that with x = 0.5 only this phase and a trace of magnesium were detected.

[2001Gua] studied by X-ray diffraction the Ni₂Mg₃Al ternary alloy prepared from components of purities better than 99.95 % by compacting their mixtures at 30 MPa and annealing them at 540-550°C for 4 h under 0.5 MPa argon atmosphere. The composition of the alloy prepared coincided actually with the composition of a new ternary phase found in the investigation by [2000Yua]. [2001Gua] confirmed the existence of the new ternary phase with the composition Ni₂Mg₃Al and studied its crystal structure using more advanced X-ray techniques. As a result, the crystal structure of Ni₂Mg₃Al is established and described in more detail than by [2000Yua].

[1991Han] addressed some thermodynamic aspects on the effect that aluminium has on magnesium-nickel melts in presence of $3.8-8.6\cdot10^{-4}$ mass% O. [2000Aiz] studied the effect that the substitution of aluminium by magnesium has on hydrogen absorption by a material based on Mg₂Ni.

Binary Systems

The Al-Mg and Al-Ni binary phase diagrams are accepted from [2003Luk], [2003Sal], respectively. The Mg-Ni phase diagram is accepted from [1998Jac]. [1998Jac] made a thermodynamic assessment of the Mg-Ni binary system using the experimental characteristics of the Mg-Ni phase diagram from [1934Hau, 1978Bag, 1996Mic]. The calculated phase diagram is in a good agreement with the data from the experimental works.

Solid Phases

The data on the relevant binary phases and ternary phases are listed in Table 1. [2001Gua, 2000Yua] found a new ternary phase of the same stoichiometry Ni_2Mg_3Al ; its structural characteristics were determined and described in detail by [2001Gua]. Although the ternary alloys in both works were prepared in similar ways the Ni_2Mg_3Al alloy contained different phases in addition to the main phase. Therefore, the real composition of the compound discovered may differ slightly from the stoichiometry given.

Invariant Equilibria

At least one invariant four-phase equilibrium and one three-phase equilibrium exist in the ternary Al-Mg-Ni system, besides those in the adjacent binary systems. They are in the region of aluminium-rich alloys. The four-phase equilibrium is of eutectic type at a temperature of 449°C [1944Cha, 1952Han, 1993Pri]. The temperature of this equilibrium is assumed to be only by a few tenths of a degree lower than that of the binary eutectic reaction $L=(Al)+Mg_2Al_3$, which is reliably confirmed to be at 450.5°C [2003Luk]. Type and temperature of the three-phase equilibrium however are not firmly established. It is of eutectic nature and takes place at a temperature between 449°C, where the four-phase eutectic equilibrium is, and 552°C the melting temperature of Mg_2Al_3, [1993Pri].

The characteristics of the three-phase and four-phase invariant equilibria are listed in Table 2 according to [1993Pri] with some correction for (Al) and Mg₂Al₃ by [2003Luk]. Concentration of the liquid phase in the three-phase invariant equilibrium is not determined exactly, but taking into account its temperature it is reasonable to assume that it is close to the L=(Al)+Mg₂Al₃ eutectic point in the binary Al-Mg system. The reaction scheme for Al-NiAl₃-Mg₂Al₃ region is shown in Fig. 1.

Liquidus, Solidus Surfaces

The liquidus surface of the Al-Mg-Ni system in Al-NiAl-Mg₂Al₃ region is shown in Fig. 2. It is a compilation of the [1952Han, 1934Fus] data with some corrections drawn out that the next phase after NiAl₃ should be Ni₂Al₃ [1968Var, 2003Sal], rather than NiAl₂, as it was proposed by [1934Fus]. The temperatures of the invariant reactions in the binary systems are also corrected to comply with the today accepted binary descriptions of Al-Mg and Al-Ni [2003Luk, 2003Sal].

The projection of the solidus surface in the Al-Mg₂Al₃-NiAl₃ region is plotted in Fig. 3 based on [1952Han] with correction of the (Al) and Mg₂Al₃(β) homogeneity ranges by [2003Luk]. The Ni₂Al₃ homogeneity range is shown according to [2003Sal].

Temperature – Composition Sections

The statement of [1924Fus] that the Mg_2Al_3 -NiAl_3 section is a quasibinary one can not be correct taking into account the Al-Ni phase diagram [2003Sal], where the NiAl_3 phase is shown to form by a peritectic reaction from liquid and Ni₂Al₃.

Figure 4 gives the NiAl₃-Mg₂Al₃ temperature-concentration cut constructed using the data of [1952Han, 2003Luk, 2003Sal]. It can be considered as a quasibinary one only below the solidus temperature of the alloys and within the part between Mg₂Al₃ and the edge of the Ni₂Al₃ primary crystallization surface including the e_3 eutectic point.

Thermodynamics

[1991Han] showed that activity of magnesium, containing $3.8-8.6 \cdot 10^{-4}$ % O, in nickel melts increases with addition of aluminium.

Notes on Materials Properties and Applications

NiMg₂ base alloys with addition of Al are candidate materials for hydrogen storage [1998Ori]. Electrochemical capacity and live-cycles of NiMg_{2-x}Al_x ($0 \le x \le 0.5$) alloys during absorption and desorption of hydrogen increase with increasing Al contents, due to increasing amount of the Ni₂Mg₃Al

Al-Mg-Ni

phase in the alloy [2000Yua]. Addition of Al also improves the corrosion resistance of the NiMg_{2-x}Al_x alloys to a certain degree because an Al₂O₃ oxide layer forms on the surface. The corrosion rate of the ternary alloys is lower than that of NiMg₂ [2000Yua]. Chemical modification of NiMg₂ alloy by aluminium addition to (NiMg_{1.8}Al_{0.2}) is expected not to lead to significant reduction of onset temperature for hydrogen absorbing [2000Aiz].

 $NiMg_{1-x}Al_x$ phase with CsCl type crystal structure dissolves hydrogen interstitially without any structural transformation [1998Ori].

References

[1924Fus]	Fuss, V., "On the Constitution of Ternary Al Alloys" (in German), Z. Metallkd., 16, 24, (1924) (Equi Diagram Experimental 1)					
[1934Fus]	Fuss, V., "Metallography of Al and its Alloys", Berlin, The Sherwood Press. Inc., Cleveland, 142-143 (1934) (Equi. Diagram, Experimental, 1)					
[1934Hau]	Haughton, J.L., Payne, R.I., <i>J. Inst. Met.</i> , 54 , 275-283 (1934) quoted by [1998Jac] (Thermodyn.)					
[1943Mon]	Mondolfo, L., "Al-Mg-Ni, Aluminium-Magnesium Nickel", in " <i>Metallography of Aluminium Alloys</i> ", John Wiley and Sons, Inc., New-York - London, 101-102 (1943) (Equi. Diagram. Review, 1)					
[1944Cha]	Chao, H.L., "On the Ternary System Al-Mg-Ni", <i>Thesis</i> , Berlin Techn. Hochschule (1944) (Equi. Diagram, Experimental, 1)					
[1952Han]	Hanemann, H., Schrader, A., "Examples for the Crystallization of Ternary Systems" (in German), <i>Atlas Metallographicus</i> , $3(2)$, 120-122 (1952) (Equi. Diagram, Experimental, $\#$, *)					
[1968Var]	Varich, N.I., Litvin, B.N., "Structure of Phases in the Aluminium-Magnesium System Containing Transition Metals" (in Russian), <i>Izv. Akad. Nauk SSSR, Met.</i> , 6 , 179-182 (1968) (Experimental, 4)					
[1978Bag]	Bagnoud, P., Feschotte, P., "The Binary Systems Magnesium-Copper and Magnesium - Nickel, Especially the Nod-Stoechiometry of the MgCu ₂ and MgNi ₂ Laves Phases" (in French), Z. Metallkd., 69 , 114-120 (1978) (Crys. Structure, Equi. Diagram. Experimental. 24)					
[1991Han]	Han, Q., Wang, C., "Equilibrium of Mg-O and the Effect of Fe, Al and Cr on the Activity of Mg in Molten Nickel", <i>Beijing Keji Dexue Xuebao</i> , 13 (5), 461-466 (1991) (Experimental, Thermodyn., 4)					
[1993Pri]	Prima, S., "Aluminium-Magnesium-Nickel", MSIT Ternary Evaluation Program, in <i>MSIT Workplace</i> , Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.19481.1.20, (1993) (Crys. Structure, Equi. Diagram, Assessment, 10)					
[1996Mic]	Micke, K., Isper, H., "Thermodynamic Properties of Liquid Magnesium-Nickel Alloys", Monatsh, Chem., 127 , 7-13 (1996) (Equi, Diagram, Experimental, Thermodyn., 18)					
[1998Jac]	Jacobs, M.H.G., Spencer, P.I., "A Critical Thermodynamic Evaluation of the System Mg-Ni" <i>Calphad</i> 22(4) 519-525 (1998) (Equi Diagram Review Thermodyn # * 30)					
[1998Ori]	Orimo, I.S., Ikeda, K., Fujii, H., "B2-Phase Formation and Hydriding Properties of $(Mg_{1-x}Al_x)Ni$ ($x = 0 \sim 0.5$)", J. Alloys Compd., 266 , L1-L3 (1998) (Crys. Structure, Experimental, 10)					
[2000Aiz]	Aizawa, T., "Solid-State Synthesis of Magnesium Base Alloys", <i>Mater. Sci. Forum</i> , 350-351 , 299-310 (2000) (Experimental, 22)					
[2000Yua]	Yuan, H.T., Wang, L.B., Cao, R., Wang, Y.J., Zhang, Y., Yan, D.Y., Zhang, W.H., Gong, W.L., "Electrochemical Characteristics of $Mg_{2-x}Al_xNi$ (0 <x<0.5) <i="" alloys",="">J. Alloys Compd., 309, 208-211 (2000) (Crys. Structure, Electrochem. Prop., Experimental, 8)</x<0.5)>					

[2001Gua]	Guanglie, L., Linshen, C., Lianbang, W., Huantang, Y., "Study on the Phase Composition
	of $Mg_{2-x}M_xNi$ (M = Al, Ti) Alloys", J. Alloys Compd., 321(1), L1-L4 (2001) (Crys.
	Structure, Experimental, 8)
[2003Luk]	Lukas, H.L., Lebrum, N., "Al-Mg (Aluminium-Magnesium)", MSIT Binary Evaluation
	Program, in MSIT Workplace, Effenberg, G. (Ed.), MSI, Materials Science International
	Services, GmbH, Stuttgart; to be published, (2003) (Crys. Structure, Equi. Diagram,
	Assessment, 49)
[2003Sal]	Saltykov, P., Cornish, L., Cacciamani, G., "Al-Ni (Aluminium-Nickel)", MSIT Binary
	Evaluation Program, in MSIT Workplace, Effenberg, G. (Ed.), MSI, Materials Science
	International Services, GmbH, Stuttgart; to be published, (2003) (Crys. Structure, Equi.
	Diagram, Assessment, 164)

Phase/	Pearson Symbol/	Lattice Parameters	Comments/References	
Temperature Range	Space Group/	[pm]		
[°C]	Prototype			
(Al)	cF4	<i>a</i> = 404.96	at 25°C [Mas2]	
< 660.452	$Fm\overline{3}m$		dissolves 0.01 at.% Ni at 639.9°C	
	Cu		[2003Sal] and 18.6 at.% Mg at 450.5°C	
			[2003Luk]	
		$a = 410.5 \pm 0.8$	at 445°C in the alloy with 18.6 at.% Mg	
			[1952Han]	
(Mg)	hP2	<i>a</i> = 320.94	at 25°C [Mas2]	
< 650	<i>P6₃/mmc</i>	c = 521.07	dissolves 11.5 at.% Al at 436°C	
	Mg		[2003Luk] and < 0.04 mol% Ni at 500°C	
			[1934Hau]	
(Ni)	cF4	<i>a</i> = 352.40	at 25°C [Mas2]	
< 1455	$Fm\overline{3}m$		dissolves 20.2 at.% Al at 1385°C	
	Cu		[2003Sal] < 0.2 mol% Mg at 1100°C	
			[1998Jac]	
γ , Mg ₁₇ Al ₁₂	<i>cI</i> 58	<i>a</i> = 1054.38	at 41.4 at.% Al [V-C2]	
< 458	$I\overline{4}3m$		39.5 to 51.7 at.% Al [2003Luk]	
	αMn			
β , Mg ₂ Al ₃	<i>cF</i> 1168	<i>a</i> = 2816 - 2824	60 to 62 at.% A1 [2003Luk]	
< 452	$Fd\overline{3}m$			
	Mg_2Al_3			
ε, Mg ₂₃ Al ₃₀	hR159	<i>a</i> = 1282.54	56.3 at.% A1 [2003Luk]	
410 - 250	$R\overline{3}$	c = 2174.78		
	Mn ₄₄ Si ₉			
NiAl ₃	oP16	$a = 661.3 \pm 0.1$	[2003Sal]	
< 856	Pnma	$b = 736.7 \pm 0.1$		
	NiAl ₃	$c = 481.1 \pm 0.1$		
Ni ₂ Al ₃	hP5	<i>a</i> = 402.8	36.1 to 39.8 at.% Ni [2003Sal]	
< 1138	$P\overline{3}m1$	c = 489.1		
	Ni ₂ Al ₃			
Ni ₃ Al ₄	<i>cI</i> 112	$a = 1140.8 \pm 0.1$	[2003Sal]	
< 702	Ia 3 d			
	Ni ₃ Ga ₄			

Table 1: Crystallographic Data of Solid Phases

Dhaga/	Deerson Symphal/	Lattice Demonstrant	Commonts/Deferences
Filase/	Sease Creans		Comments/References
	Space Group/	[pm]	
	Prototype		
NiAl	<i>cP2</i>		42.1 to 71.3 at.% Ni [2003Sal]
< 1651	Pm3m	a = 286.0	
	CsCl		
Ni ₅ Al ₃	oC16		63 to 68 at.% Ni
< 723	Cmmm	<i>a</i> = 753	at 63 at.% Ni
	Pt5Ga3	<i>b</i> = 661	[2003Sal]
	0 0	<i>c</i> = 376	
Ni ₃ Al	cP4	<i>a</i> = 356.77	75.4 to 76.3 at.% Ni [2003Sal]
< 1372	$Pm\overline{3}m$		
	AuCu ₃		
NiMg ₂	hP18	$a = 520.5 \pm 0.1$	[V-C2]
< 759.31	P6 ₂ 22	$c = 1320 \pm 6$	[1998Jac]
	NiMg ₂		
Ni ₂ Mg	hP24	$a = 482.4 \pm 0.2$	66.2 at.% at 759.31°C to 67.34 at.% Ni
< 1147.60	P63/mmc	c = 1582.6	at 1095.28°C [1998Jac], [V-C2]
	Ni ₂ Mg		
* NiMg _{1-x} Al _x	cP2		In alloys with $x = 0.3 - 0.5$ prepared by
	$Pm\overline{3}m$		mechanical alloying [1998Ori]
	CsC1		
* NiMg _{1-x} Al _x	amorphous phase		In the alloys with $x < 0.2$ prepared by
			mechanical alloying [1998Ori]
* Ni ₂ Mg ₃ Al	<i>cF</i> 96	$a = 1154.74 \pm 0.02$	[2001Gua]
	$Fd\overline{3}$ m		
	derived from		
	Ti ₂ Ni		

Table 2: Invariant Equilibria

Reaction	<i>T</i> [°C]	Туре	Phase	Composition (at.%)		
				Al	Mg	Ni
$L \Rightarrow Mg_2Al_3 + NiAl_3$	449 - 552	e ₃	L	~60	~40	?
			Mg_2Al_3	61	39	0
			NiAl ₃	75	0	25
$L \Rightarrow Mg_2Al_3 + NiAl_3 + (Al)$	449	Е	L	64.6	34.6	0.8
			Mg_2Al_3	61	39	0
			NiAl ₃	75	0	25
			(Al)	81.39	18.6	0.01

Fig. 1: Al-Mg-Ni. Reaction scheme in the partial $Al-Mg_2Al_3-NiAl_3$ system

Landolt-Börnstein New Series IV/11A3 155

 $\text{MSIT}^{\textcircled{R}}$

MSIT[®]