Concordia University Department of Mechanical Engineering

MANU419 Erosion Rig

Standard Operating Procedure

Supervisor: Dr. Medraj

By: Billy Marquez Alfredo Martinez-Iglesias

Concordia university 8/27/2012

Table of Contents

Tab	le of Figures	. 2
1.	Introduction	. 3
2.	Sample Specifications	. 4
3.	Setup	. 5
3.1	Sample Setup	. 5
3.2	Software Setup	. 7
3.3	Test Run	. 9
3.4	Empty Out Scavenger Tank	15
3.5	End Program	16

Table of Figures

Figure 1: Sample Locations	Figure 2: High Speed Sample Location	4
Figure 3: Low Speed Sample Assemble	y	5
Figure 4: Torqueing the sample bolts		5
Figure 5: Valve 1 located on top of th	e ER Figure 6: Valve 2 located next to water pump	6
Figure 7: Water Valve #3		7
Figure 8: Close Lid		7
Figure 9: Setup data file		8
Figure 10: Setup workstations		8
Figure 11: Wokrstations		9
Figure 12: Water System Window		10
Figure 13: Clear Fault Status		10
Figure 14: Vacuum Pump Start		11
Figure 15: Rotor Startup		12
Figure 16: Water Pump Switch for Dr	oplet Generator	12
Figure 17: Record Experiment Time		13
Figure 18: Vacuum shut down		13
Figure 19: Water System Window		14
Figure 20: Chamber Drain		15
Figure 21: Scavenger Vent Valve #2		15
Figure 22: Scavenger Pump Start		16
Figure 23: Scavenger Pump Valve #1.		16

1. Introduction

This document has been written to serve as a standard operating procedure (SOP) to the Barbour Stockwell Incorporated (BSI) Erosion Rig (ER). It will provide a detailed walkthrough of the proper procedures in order to fully execute a complete test. This SOP was not provided by BSI and will only serve as a temporary operating procedure until BSI can provide the Thermodynamics Material Group (TMG) at Concordia University with an official procedure manual.

This is a working document that may be altered in the future for more optimized operation procedures or any additions to the ER.

2. Sample Specifications

There are three types of samples that can be tested on the ER.

- **1.** High Speed Sample (Shaped like a T)
- 2. Medium Speed Sample (Shaped like an L)
- **3.** Low Speed Sample Holder with Coupon

Each sample will have a maximum testing speed. The following is a table that will provide the recommended maximum speeds for each sample.

Table 1: Sample Speeds

Sample Description	Maximum	n Speeds
	RPM	m/s
High Speed Sample	ТВА	ТВА
Medium Speed Sample	ТВА	TBA
Low Speed Sample Holder with Coupon	14500	366

The location of each sample on the rotor is also a very important aspect. The bolt holes located on both the sample and the rotor can determine this location. The following figures will show how the installation of the samples should look.

Figure 1: Sample Locations

Figure 2: High Speed Sample Location

Figure 3 will demonstrate how a low speed sample assemble would look like when it is complete.

Figure 3: Low Speed Sample Assembly

When securing a sample to the rotor a torque wrench must be used. Each bolt must be torqued to 528 $in \cdot lb$. Figure 4 will demonstrate how this procedure should be done.

Figure 4: Torqueing the sample bolts

3. Setup

Prior to running any test, there must be a pre testing procedure in order to ensure that the samples are setup properly and the software is organized and ready to record. The following steps must be completed prior to any test.

3.1 Sample Setup

- 1. Weigh each pair of samples in order to ensure that they are identical. There can only be a maximum weight difference of no more than 0.1g.
- **2.** Install 2 samples and torque the bolts to the required **528** $in \cdot lb$ as mentioned above.

- **3.** Droplet Generator setup: Adjust parameters to obtain the proper droplet characteristics.
 - 3.1. Set the required flow rate and pressure: This may be achieved by adjusting two valves. Valve 1 is located on the top of the ER and Valve 2 is located next to the water pump. The following figures display the location of the valves.

Figure 5: Valve 1 located on top of the ER

Figure 6: Valve 2 located next to water pump

3.2. Select the Nozzle type. Note the following table will describe the different droplet sizes obtained at different pressures using the different nozzles.

Nozzle:					
Pressure	Pressure	D	roplet Size (mr	Droplet Count:	
(-psig)	(mbar)	Average	max	min	
14	48	0.38307342	0.55502392	0.22966507	4
13.5	82.5	0.46889952	0.63157895	0.32535885	5
13	117	0.44976077	0.66028708	0.22966507	4

Table 2: Droplet Sizes with different *nozzles*

Nozzle:					
Pressure	Pressure (mbar)	D	proplet Size (mm	Droplet Count:	
(-baig)	(IIIbal)	Average	max	min	
14	48	0.668175719	0.918859627	0.4784689	4
13.5	82.5	0.752125764	0.985831729	0.473660045	4
13	117	0.637696115	0.756223085	0.526315789	4

Nozzle:					
Pressure (-psig)	ressure Pressure Droplet Size (mm)		ו)	Droplet Count:	
(10)	(Average	max	min	
14	48	0.78398579	1.168875138	0.622671712	4

13.5	82.5	0.720893142	0.937799043	0.497607656	3
13	117	0.57913438	0.775651067	0.377111206	5

4. Ensure the water valve #3 is closed: This valve is located above the droplet generator extension as shown in figure 7.

Figure 7: Water Valve #3

- 5. WARNING: Make sure to remove all tools and loose objects from inside the chamber.
- **6.** Close the chamber lid: Slide lid over the opening, place alignment pins. Turn swivel arm located on top of lid and turn the knob on the lift operations panel to the down position as shown in figure 8.

Figure 8: Close Lid

3.2 Software Setup

- **1.** Setup Data Files to store data from each test
 - 1.1. Open Spin III located on the desktop
 - Go to File → Enter/Select Data File → File Name (name the test and place your initials to distinguish each researcher) see figure 9.

Figure 9: Setup data file

- 2. Open all workstations in order to configure parameters. Figure 10 displays all required fields.
 - 2.1. Go to Testing \rightarrow Constant Speed
 - 2.2. Go to Status → Analog Display
 - 2.3. Go to Status \rightarrow Digital Channels
 - 2.4. Go to Configuration \rightarrow Test Parameters

🔜 SPIN TEST CONTROL	🔡 SPIN TEST CONTROL	🔡 SPIN TEST C	ONTROL
Fault Status	F	ult Status	Fault Status
5 Communication	5 0	ommunication 5	Communication Fau
File Testing Status Configuration Maintenance	File Testing Status Configur	tion Maintenance File Testing	Status Configuration Maintenance
Constant Speed	Analog Displa		Test Parameters
Manual Test Panel	Digital Channe	s .	Inputs
	General Test	tatus	

Figure 10: Setup workstations

- 3. Setup Direction of rotation and Speed Limits. Figure 11 displays a standard test screen.
 - 3.1. WARNING: When standing above the ER if you want the rotor to have a clockwise rotation then you must choose Counter Clockwise rotation in the program.

- 3.2. In the Driving Test Parameters window choose your Trip Speed, Accel Factor, and Abort Rate
- 3.3. In the **Constant Speed Testing** window choose your **Speed Request and Ramp Request** (NOTE: make sure to press **ENTER** once a new speed or ramp is selected, otherwise program will not acknowledge the command)
- 3.4. WARNING: TO AVOID RESONANCE MAKE SURE NOT TO STOP BETWEEN THE SPEEDS OF 200 AND 6000 RPM AND ALSO DO NOT STOP BETWEEN 11000 AND 13000 RPM.

3.3 Test Run

1. Ensure the Water System/Maintenance window is closed (not displayed on the screen). Figure 12 shows what the water system/maintenance window looks like.

🔙 SPIN TEST CONTROL					
Fault S	atus	Comm I	Link	Clear Fault	Data Co
	nunication Fault				Juan
Hie Testing Status Configuration	Maintenance	_	_		
	water system				
	Configuration				
		🔛 Wate	r Maintenance		×
			Water Supply Open	Water Supply Close	
			Chamber Isolation Valve Open	Chamber Isolation Valve Close	
			Scavenge Tank Isolation Valve Open	Scavenge Tank Isolation Valve Close	
			Scavenge Tank Vent Open	Scavenge Tank Vent Close	
			Chamber Drain Open	Chamber Drain Close	
			Scavenge Pump Start	Scavenge Pump Stop	
	Figure 12: Water S	vstem Wir	ndow		

- 2. Check "Fault Status" if a fault is displayed then "Clear Fault."
- 3. Check "Water System Status" if a fault is displayed then "Clear Water Faults." See figure 13.

SPIN TEST CONTROL			Data Callection		X
5 Communication Fault	🔵 🛛 Comm Link	Clear Fault	Start Collection Stop Collection		09062012.SP3con
Ele Tarias Chara S Caratia Makazara					
Pie result Status Comparation President					
Drive resting parameters	A	Constant			
Trip Speed 6000 RPM					
	in Direction	Click hara to	clear st 600	NO RPM	
Abort Rate 50 RPM/S	C Clashuine				DDM
	C LUCKWISE	Equilt State	st 5		
Accel Factor 50 TYPM/5	Anti-Clockwise	Tault Statt	us		Constant Speed Test Start
		J		_	Drive Coast
🔛 Analo	og Channel Monitor			×	
Pigital Status	Channels 0-7				Drive ABORT
Canada Davieta					
Channel Description		ver Bearing Test Chamber		Scavenge	Arm Drive
0 Main Air Pressure Switch Secon	nd lach Temp	Temp Temp Vibra	Pressure Tank Pressure	Tank Level	Ambive
Chamber Vacuum Isolation Valve - N/C	25000 - 100	- 100 - 150	1000	- 100	
3 Scavenge Tank Vacuum Isolation Valve - N/C	20000		14		Test Status
4 Scavenge Tank Vacuum Isolation Valve - N/O					
5 Scavenge Tank Vent Valve - N/C	20000	⁸⁰			IDLE MODE
6 Scavenge Tank Vent Valve - N/O			10		
7 Chamber Drain Valve - N/C	15000 _ 60	60 9 0	600	- 60	Water System Status
8 Chamber Drain Valve - N/O			8	: (
10 Sowerse Task Water Overfill Switch	10000 휸 _ 40 위	40 ^오 60 ^오	-6 ² -400 2 -400 2	40 8	IDLE MODE
12	5000 = 20 =	20 30	200 200	- 20	
13 Air Safety Interlock			2		
14 E-Stop					Start Stop
15 📕		_0			
	0 21	20 22			Start Stop
			Click here to	clear 🖳	Start Stop
					Clear Water Faults
•			Water System	Status 💵 🖊	
Arstart 🔗 🚞 🖸 🧮 🚿					* 🔂 👫 🕼 9:39 AM 💼
					9/6/2012

Figure 13: Clear Fault Status

4. Click on Vacuum Pump Start located at the bottom right of the screen on the Test Status Panel. See figure 13.

Figure 14: Vacuum Pump Start

- 4.1 NOTE: wait for Test Chamber Pressure to drop to 25-30 mbar
- 5. Once Pressure is achieved Click on "Start Collection" located at the top of the screen. This will begin recording all data on the file created at the beginning of the software setup.
- 6. Click on "Arm Drive." This will arm the rotor and prepare it for rotations.
- 7. Click on "Constant Speed Test Start" to begin rotation of the rotor.
 - 7.1. NOTE: When clicking on Constant Speed Test Start you may need to click on it more than once in order to have the rotor continuously rotate.
 - 7.2. WARNING: If rotor does not spin at all there may be an issue in the compressed air line or in the faulty software. Check to ensure that 100 PSI is on the main line. If rotor still does not rotate (you may hear a slight hissing sound in the air lines) then the software (Spin III) must be shut off followed by shutting down the ER from the Control Station. Restart both the ER and Spin III to begin test once again. Note: You may have to restart both the ER and Spin III more than once.

8. Turn on Water Pump switch located next to the main compressed air line. See figure 16.

Figure 16: Water Pump Switch for Droplet Generator

- **9.** Once the requested speed is reached click on **"Water Cycle Start."** This will equalize the pressure in both the test chamber and the scavenger tank.
- **10.** Once both the scavenger tank and test chamber are equalized in pressure the drain valve will open automatically. (This will be heard by a click) (Please see User Guide for information on drain valve)
- **11.** Water Valve #3 (see figure 7) can now be opened to begin water erosion test.
 - 11.1. NOTE: Record time when valve #3 is opened. This time should be recorded from Data Collection located on the top right of the screen. This time can then be associated with the pressure drop recorded in the exported data sheet.

11.2. When water erosion experiment is complete simultaneously record the time and turn off water valve #3.

		<u>_ 문 ×</u>
Data Collection Start Collection	Stop Collection RECS 0 FILE C:\\09062	012.SP3con
	Record time when opening water valve #3 and turning off water valve #3	
	Figure 17: Record Experiment Time	

- 12. Once all data is recorded click on "Drive Abort" to begin slowing down and stopping the rotor.
- **13.** Allow RPM to drop to zero: Safety does not permit opening of lid prior to zero.
- **14.** Once rotor comes to a complete stop you can now click on **"Stop Collection"** in order to conclude data collection.
- 15. Shut off Water Pump Switch for the droplet generator. (See figure 16)
- 16. Shut down Vacuum Pump: Click on "Vacuum Pump Stop" located on the Test Status Panel.
- 17. Shut down Water Cycle: Click on "Water Cycle Stop" located on the Test Status Panel. See figure 18.

Figure 18: Vacuum shut down

- **18.** Open Water System/Maintenance window: Click on Maintenance \rightarrow Water System
 - 18.1. Open three Valves: This will allow the entire ER to return to atmosphere pressure. See figure 19.
 - 18.1.1. Chamber Isolation Valve
 - 18.1.2. Scavenge Tank Isolation Valve
 - 18.1.3. Scavenge Tank Vent

Figure 19: Water System Window

- **19.** Lid may now be opened:
 - 19.1. Turn swivel arm counter clockwise until it stops and hold in place
 - 19.2. Turn knob on "Lift Operation Panel" to up position
 - 19.3. Remove Alignment Pins
 - 19.4. Slide Lid to the right
 - 19.5. Once fully opened place rubber pads under lid and drop the lid on the pads
 - 19.6. WARNING: Watch out for fingers. NOTE: If lid is not in down position and rotor is turned manually the lid will slam down automatically.
- 20. Clean all excess water in the test chamber using the air hose and paper towel.
 - 20.1. To open the test chamber drain go to the water maintenance window and click on **"Chamber Drain Open."** See figure 20.

Figure 20: Chamber Drain

21. Samples can now be removed and inspected.

3.4 Empty Out Scavenger Tank

- **1.** Open Water Maintenance window:
 - 1.1. Click on Maintenance \rightarrow Water System
 - 1.2. Click on "Chamber Drain Open"
- 2. Open Scavenger Vent Valve #2 located at the bottom of the scavenger tank. See figure 21

Figure 21: Scavenger Vent Valve #2

3. Click on "Scavenger Pump Start" in the Water Maintenance window. See figure 22

🔡 SPIN TEST CONTROL					
Fault State	us		0		
5 Comm	unication Fault			пк 🔰 С	lea
File Testing Status Configuration	Maintenance				
	Water System	🔜 Water Ma	intenance		×
	Communications				
	Configuration		Water Supply Open	Water Supply Close	
		c	Chamber Isolation Valve Open	Chamber Isolation Valve Close	
		s	Scavenge Tank Isolation Valve Open	Scavenge Tank Isolation Valve Close	
		S	cavenge Tank Vent Open	Scavenge Tank Vent Close	
			Chamber Drain Open	Chamber Drain Close	
			Scavenge Pump Start	Scavenge Pump Stop	

Figure 22: Scavenger Pump Start

4. Slowly open Scavenger Pump Valve #1. NOTE: If you open the valve to fast water will splash everywhere. See figure 23

Figure 23: Scavenger Pump Valve #1

5. Once water is completely vented from the scavenger tank click on "Scavenger Pump Stop" in the water maintenance window and turn off both valves #1 and #2.

3.5 End Program

Shut down computer and turn control station off by turning the key to the off position.