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Thermodynamic principles are central to understanding material behaviour, particularly
as the application of these concepts underpins phase equilibrium, transformation and
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a strong understanding of the basic thermodynamics is required.

This fully revised and updated edition covers the fundamentals of thermodynamics,
with a view to modern computer applications. The theoretical basis of chemical equilibria
and chemical changes is covered with an emphasis on the properties of phase diagrams.
Starting with the basic principles, discussion moves to systems involving multiple phases.
New chapters cover irreversible thermodynamics, extremum principles and the thermo-
dynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions,
the state of systems at equilibrium and the changes as equilibrium is reached, are all
demonstrated graphically. With illustrative examples — many computer calculated — and
exercises with solutions, this textbook is a valuable resource for advanced undergraduate
and graduate students in materials science and engineering.
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‘Thermo-Calc’ is used throughout the book for computer applications; a link to a limited
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Preface to second edition

The requirement of the second law that the internal entropy production must be positive
for all spontaneous changes of a system results in the equilibrium condition that the
entropy production must be zero for all conceivable internal processes. Most thermo-
dynamic textbooks are based on this condition but do not discuss the magnitude of the
entropy production for processes. In the first edition the entropy production was retained
in the equations as far as possible, usually in the form of Dd€ where D is the driving force
for an isothermal process and & is its extent. It was thus possible to discuss the magnitude
of the driving force for a change and to illustrate it graphically in molar Gibbs energy
diagrams. In other words, the driving force for irreversible processes was an important
feature of the first edition. Two chapters have now been added in order to include the
theoretical treatment of how the driving force determines the rate of a process and how
simultaneous processes can affect each other. This field is usually defined as irreversible
thermodynamics. The mathematical description of diffusion is an important application
for materials science and is given special attention in those two new chapters. Extremum
principles are also discussed.

A third new chapter is devoted to the thermodynamics of surfaces and interfaces.
The different roles of surface energy and surface stress in solids are explained in detail,
including a treatment of critical nuclei. The thermodynamic effects of different types
of coherency stresses are outlined and the effect of segregated atoms on the migration
of interfaces, so-called solute drag, is discussed using a general treatment applicable to
grain boundaries and phase interfaces.

The three new chapters are the results of long and intensive discussions and collabora-
tion with Professor John Agren and could not have been written without that input. Thanks
are also due to several researchers in his department who have been extremely open to
discussions and even collaboration. In particular, thanks are due to Dr Malin Selleby who
has again given invaluable input by providing the large number of computer-calculated
diagrams. They are easily recognized by the triangular Thermo-Calc logotype. Those
diagrams demonstrate that thermodynamic equations can be directly applied without
any new programming. The author hopes that the present textbook will inspire scientists
and engineers, professors and students to more frequent use of thermodynamics to solve
problems in materials science.

A large number of solved exercises are also available online from the Cambridge
University Press website (www.cambridge.org/9780521853514). In addition, the website
contains a considerable number of exercises to be solved by the reader using a link to a
limited free-of-charge version of the commercial thermodynamic package Thermo-Calc.
In principle, they could be solved on a similar thermodynamic package.



Preface to first edition

Thermodynamics is an extremely powerful tool applicable to a wide range of science
and technology. However, its full potential has been utilized by relatively few experts
and the practical application of thermodynamics has often been based simply on dilute
solutions and the law of mass action. In materials science the main use of thermodynamics
has taken place indirectly through phase diagrams. These are based on thermodynamic
principles but, traditionally, their determination and construction have not made use of
thermodynamic calculations, nor have they been used fully in solving practical problems.
It is my impression that the role of thermodynamics in the teaching of science and
technology has been declining in many faculties during the last few decades, and for good
reasons. The students experience thermodynamics as an abstract and difficult subject and
very few of them expect to put it to practical use in their future career.

Today we see a drastic change of this situation which should result in a dramatic
increase of the use of thermodynamics in many fields. It may result in thermodynamics
regaining its traditional role in teaching. The new situation is caused by the develop-
ment both of computer-operated programs for sophisticated equilibrium calculations and
extensive databases containing assessed thermodynamic parameter values for individual
phases from which all thermodynamic properties can be calculated. Experts are needed
to develop the mathematical models and to derive the numerical values of all the model
parameters from experimental information. However, once the fundamental equations
are available, it will be possible for engineers with limited experience to make full use
of thermodynamic calculations in solving a variety of complicated technical problems.
In order to do this, it will not be necessary to remember much from a traditional course
in thermodynamics. Nevertheless, in order to use the full potential of the new facilities
and to avoid making mistakes, it is still desirable to have a good understanding of the
basic principles of thermodynamics. The present book has been written with this new
situation in mind. It does not provide the reader with much background in numerical
calculation but should give him/her a solid basis for an understanding of the thermody-
namic principles behind a problem, help him/her to present the problem to the computer
and allow him/her to interpret the computer results.

The principles of thermodynamics were developed in an admirably logical way by
Gibbs but he only considered equilibria. It has since been demonstrated, e.g. by Pri-
gogine and Defay, that classical thermodynamics can also be applied to systems not at
equilibrium whereby the affinity (or driving force) for an internal process is evaluated
as an ordinary thermodynamic quantity. I have followed that approach by introducing a
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Preface to first edition

clear distinction between external variables and internal variables referring to entropy-
producing internal processes. The entropy production is retained when the first and
second laws are combined and the driving force for internal processes then plays a cen-
tral role throughout the development of the thermodynamic principles. In this way, the
driving force appears as a natural part of the thermodynamic application ‘tool’.

Computerized calculations of equilibria can easily be directed to yield various types of
diagram, and phase diagrams are among the most useful. The computer provides the user
with considerable freedom of choice of axis variables and in the sectioning and projec-
tion of a multicomponent system, which is necessary for producing a two-dimensional
diagram. In order to make good use of this facility, one should be familiar with the
general principles of phase diagrams. Thus, a considerable part of the present book is
devoted to the inter-relations between thermodynamics and phase diagrams. Phase dia-
grams are also used to illustrate the character of various types of phase transformations.
My ambition has been to demonstrate the important role played by thermodynamics in
the study of phase transformations.

I have tried to develop thermodynamics without involving the special properties of
particular kinds of phases, but have found it necessary sometimes to use the ideal gas or
the regular solution to illustrate principles. However, even though thermodynamic models
and derived model parameters are already stored in databases, and can be used without the
need to inspect them, it is advantageous to have some understanding of thermodynamic
modelling. The last few chapters are thus devoted to this subject. Simple models are
discussed, not because they are the most useful or popular, but rather as illustrations of
how modelling is performed.

Many sections may give the reader little stimulation but may be valuable as reference
material for later parts of the book or for future work involving thermodynamic applica-
tions. The reader is advised to peruse such sections very quickly, but to remember that
this material is available for future consultation.

Practically every section ends with at least one exercise and the accompanying solution.
These exercises often contain material that could have been included in the text, but would
have made the text too massive. The reader is advised not to study such exercises until
a more thorough understanding of the content of a particular section is required.

This book is the result of a long period of research and teaching, centred on thermo-
dynamic applications in materials science. It could not have been written without the
inspiration and help received through contacts with numerous students and colleagues.
Special thanks are due to my former students, Professor Bo Sundman and Docent Bo
Jansson, whose development of the Thermo-Calc data bank system has inspired me to
penetrate the underlying thermodynamic principles and has made me aware of many
important questions. Thanks are also due to Dr Malin Selleby for producing a large
number of diagrams by skilful operation of Thermo-Calc. All her diagrams in this book
can be identified by the use of the Thermo-Calc logotype, A

Mats Hillert
Stockholm



1.1

Basic concepts of thermodynamics

External state variables

Thermodynamics is concerned with the state of a system when left alone, and when inter-
acting with the surroundings. By ‘system’ we shall mean any portion of the world that can
be defined for consideration of the changes that may occur under varying conditions. The
system may be separated from the surroundings by a real or imaginary wall. The proper-
ties of the wall determine how the system may interact with the surroundings. The wall
itself will not usually be regarded as part of the system but rather as part of the sur-
roundings. We shall first consider two kinds of interactions, thermal and mechanical,
and we may regard the name ‘thermodynamics’ as an indication that these interactions
are of main interest. Secondly, we shall introduce interactions by exchange of matter
in the form of chemical species. The name ‘thermochemistry’ is sometimes used as an
indication of such applications. The term ‘thermophysical properties’ is sometimes used
for thermodynamic properties which do not primarily involve changes in the content of
various chemical species, e.g. heat capacity, thermal expansivity and compressibility.

One might imagine that the content of matter in the system could be varied in a number
of ways equal to the number of species. However, species may react with each other inside
the system. It is thus convenient instead to define a set of independent components, the
change of which can accomplish all possible variations of the content. By denoting the
number of independent components as ¢ and also considering thermal and mechanical
interactions with the surroundings, we find by definition that the state of the system may
vary in ¢ + 2 independent ways. For metallic systems it is usually most convenient to
regard the elements as the independent components. For systems with covalent bonds it
may sometimes be convenient to regard a very stable molecular species as a component.
For systems with a strongly ionic character it may be convenient to select the independent
components from the neutral compounds rather than from the ions.

By waiting for the system to come to rest after making a variation we may hope to
establish a state of equilibrium. A criterion that a state is actually a state of equilibrium
would be that the same state would spontaneously be established from different starting
points. After a system has reached a state of equilibrium we can, in principle, measure
the values of many quantities which are uniquely defined by the state and independent of
the history of the system. Examples are temperature 7, pressure P, volume /" and content
of each component V;. We may call such quantities state variables or state functions,
depending upon the context. It is possible to identify a particular state of equilibrium by
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P

Figure 1.1 Property diagram for a constant amount of a solid material at a constant temperature
showing volume as a function of pressure. Notice that P has here been plotted in the negative
direction. The reason will be explained later.

giving the values of a number of state variables under which it is established. As might
be expected, ¢ + 2 variables must be given. The values of all other variables are fixed,
provided that equilibrium has really been established. There are thus ¢ + 2 independent
variables and, after they have been selected and equilibrium has been established, the
rest are dependent variables. As we shall see, there are many ways to select the set of
independent variables. For each application a certain set is usually most convenient.
For any selection of independent variables it is possible to change the value of each one,
independent of the others, but only if the wall containing the system is open for exchange
of ¢ 4 2 kinds, i.e. exchanges of mechanical work, heat and ¢ components.

The equilibrium state of a system can be represented by a point in a ¢ + 2 dimensional
diagram. In principle, all points in such a diagram represent possible states of equilibrium
although there may be practical difficulties in establishing the states represented by some
region. One can use the diagram to define a state by specifying a point or a series of
states by specifying a line. Such a diagram may be regarded as a state diagram. It does
not give any information on the properties of the system under consideration unless
such information is added to the diagram. We shall later see that some vital information
on the properties can be included in the state diagram but in order to show the value
of some dependent variable a new axis must be added. For convenience of illustration
we shall now decrease the number of axes in the ¢ + 2 dimensional state diagram by
sectioning at constant values of ¢ + 1 of the independent variables. All the states to be
considered will thus be situated along a single axis, which may now be regarded as the
state diagram. We may then plot a dependent variable by introducing a second axis.
That property is thus represented by a line. We may call such a diagram a property
diagram. An example is shown in Fig. 1.1. Of course, we may arbitrarily choose to
consider any one of the two axes as the independent variable. The shape of the line is
independent of that choice and it is thus the line itself that represents the property of the
system.

In many cases the content of matter in a system is kept constant and the wall is only
open for exchange of mechanical work and heat. Such a system is often called a closed
system and we shall start by discussing the properties of such a system. In other cases
the content of matter may change and, in particular, the composition of the system by
which we mean the relative amounts of the various components independent of the size
of the system. In materials science such an open system is called an ‘alloy system’ and
its behaviour as a function of composition is often shown in so-called phase diagrams,
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which are state diagrams with some additional information on what phases are present in
various regions. We shall later discuss the properties of phase diagrams in considerable
detail.

The state variables are of two kinds, which we shall call intensive and extensive.
Temperature 7 and pressure P are intensive variables because they can be defined at each
point of the system. As we shall see later, 7 must have the same value at all points in a
system at equilibrium. An intensive variable with this property will be called potential.
We shall later meet intensive variables, which may have different values at different parts
of the system. They will not be regarded as potentials.

Volume V is an extensive variable because its value for a system is equal to the sum
of its values of all parts of the system. The content of component 7, usually denoted by
n; or N;, is also an extensive variable. Such quantities obey the law of additivity. For a
homogeneous system their values are proportional to the size of the system.

One can imagine variables, which depend upon the size of the system but do not
always obey the law of additivity. The use of such variables is complicated and will not
be much considered. The law of additivity will be further discussed in Section 3.4.

If the system is contained inside a wall that is rigid, thermally insulating and imperme-
able to matter, then all the interactions mentioned are prevented and the system may be
regarded as completely closed to interactions with the surroundings. It is left ‘completely
alone’. It is often called an isolated system. By changing the properties of the wall we
can open the system to exchanges of mechanical work, heat or matter. A system open to
all these exchanges may be regarded as a completely open system. We may thus control
the values of ¢ 4 2 variables by interactions with the surroundings and we may regard
them as external variables because their values can be changed by interaction with the
external world through the surroundings.

Internal state variables

After some or all of the ¢ + 2 independent variables have been changed to new values
and before the system has come to rest at equilibrium, it is also possible to describe
the state of the system, at least in principle. For that description additional variables are
required. We may call them internal variables because they will change due to internal
processes as the system approaches the state of equilibrium under the new values of the
¢ + 2 external variables.

An internal variable & (pronounced ‘xeye’) is illustrated in Fig. 1.2(a)where ¢ + 1 of
the independent variables are again kept constant in order to obtain a two-dimensional
diagram. The equilibrium value of & for various values of the remaining independent
variable 7 is represented by a curve. In that respect, the diagram is a property diagram.
On the other hand, by a rapid change of the independent variable 7 the system may
be brought to a point away from the curve. Any such point represents a possible non-
equilibrium state and in that sense the diagram is a state diagram. In order to define such
a point one must give the value of the internal variable in addition to 7. The quantity &
is thus an independent variable for states of non-equilibrium.
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(a) (b)
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Figure 1.2 (a) Property diagram showing the equilibrium value of an internal variable, &, as a
function of temperature. Arrow A represents a sudden change of temperature and arrow B the
gradual approach to a new state of equilibrium. (b) Property diagram for non-equilibrium states
at Ty, showing the change of Helmholtz energy F as a function of the internal variable, &. There
will be a spontaneous change with decreasing /" and a stable state will eventually be reached at
the minimum of F.

For such states of non-equilibrium one may plot any other property versus the value
of the internal variable. An example of such a property diagram is given in Fig. 1.2(b). In
this particular case we have chosen to show a property called Helmholtz energy F which
will decrease by all spontaneous changes at constant 7" and V. Given sufficient time the
system will approach the minimum of F which corresponds to point B on the curve to
the left. That curve is the locus of all points of minimum of F, each one obtained under
its own constant value of 7. Any state of equilibrium can thus be defined by giving 7 and
the proper & value or by giving 7 and the requirement of equilibrium. Under equilibrium
& is a dependent variable and does not need to be given.

It is sometimes possible to imagine that a non-equilibrium state can be ‘frozen-in’
(see Section 1.4), i.e. by the temperature being so low that the non-equilibrium state
does not change markedly during the time it takes to measure an internal variable. Under
the given restrictions such a state may be regarded as a state of equilibrium with regard
to some internal variable, but the values of the frozen-in variables must be given in the
definition of the equilibrium. There is a particular type of internal variable, which can
be controlled from outside the system under such restrictions. Such a variable can then
be treated as an external variable. It can for instance be the number of O3z molecules in a
system, the rest of which is O,. At high temperature the chemical reaction between these
species will be rapid and the amount of O3 may be regarded as a dependent variable.
In order to define a state of equilibrium at high temperature it is sufficient to give the
amount of oxygen as O or O,. At a lower temperature the reaction may be frozen-in and
the system has two independent variables, the amounts of O, and O3 which can both be
controlled from the outside.

Exercise 1.1

Consider a box of fixed volume containing a small amount of a liquid, which fills the
box only partly. Some of the liquid thus evaporates. The equilibrium vapour pressure of
the liquid varies with temperature, P = kexp(—b/T) and we could use as an internal
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N/(kVIbR)

Figure 1.3 Solution to Exercise 1.1.

variable the number of gas molecules which is related to the pressure by the ideal gas law,
NRT = PV. Calculate and show with a property diagram how N varies as a function
of T.

Hint

In order to simplify the calculations, neglect the volume of the liquid in comparison with
the volume of the box.

Solution

Atequilibrium N = PV /RT = (kV/RT)exp(—b/T).

Let us introduce dimensionless variables, N/(kV /bR) = (b/ T)exp(—b/T).

This function has a maximum at 7/b = 1.

If the low temperature is chosen as 7/b = 0.4, then the diagram shows that N will
increase if the higher temperature is below 7'/b = 3.86 but decrease if it is above.

The first law of thermodynamics

The development of thermodynamics starts by the definition of O, the amount of heat
flown into a closed system, and /¥, the amount of work done on the system. The concept of
work may be regarded as a useful device to avoid having to define what actually happens
to the surroundings as a result of certain changes made in the system. The first law of
thermodynamics is related to the law of conservation of energy, which says that energy
cannot be created, nor destroyed. As a consequence, if a system receives an amount of
heat, O, and the work W is done on the system, then the energy of the system must have
increased by O + W. This must hold quite independent of what happened to the energy
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inside the system. In order to avoid such discussions, the concept of internal energy U
has been invented, and the first law of thermodynamics is formulated as

AU =0+ W. (1.1
In differential form we have
dU =dQ +dw. (1.2)

It is rather evident that the internal energy of the system is uniquely determined by the
state of the system and independent of by what processes it has been established. U is a
state variable. It should be emphasized that Q and W are not properties of the system but
define different ways of interaction with the surroundings. Thus, they could not be state
variables. A system can be brought from one state to another by different combinations of
heat and work. It is possible to bring the system from one state to another by some route
and then let it return to the initial state by a different route. It would thus be possible to get
mechanical work out of the system by supplying heat and without any net change of the
system. An examination of how efficient such a process can be resulted in the formulation
of the second law of thermodynamics. It will be discussed in Sections 1.5 and 1.6.

The internal energy U is a variable, which is not easy to vary experimentally in a
controlled fashion. Thus, we shall often regard U as a state function rather than a state
variable. At equilibrium it may, for instance, be convenient to consider U as a function
of temperature and pressure because those variables may be more easily controlled in
the laboratory

U = U(T, P). (1.3)

However, we shall soon find that there are two more natural variables for U. It is evident
that U is an extensive property and obeys the law of additivity. The total value of U of
a system is equal to the sum of U of the various parts of the system. Its value does not
depend upon how the additional energy, due to added heat and work, is distributed within
the system.

It should be emphasized that the absolute value of U is not defined through the first law,
but only changes of U. Thus, there is no natural zero point for the internal energy. One
can only consider changes in internal energy. For practical purposes one often chooses
a point of reference, an arbitrary zero point.

For compression work on a system under a hydrostatic pressure P we have

dW = P(—dV) = —PdV (1.4)
dU = dQ — Pdv. (1.5)

So far, the discussion is limited to cases where the system is closed and the work done on
the system is hydrostatic. The treatment will always be applicable to gases and liquids
which cannot support shear stresses. It should be emphasized that a complete treatment
of the thermodynamics of solid materials requires a consideration of non-hydrostatic
stresses. We shall neglect such problems when considering solids.
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Mechanical work against a hydrostatic pressure is so important that it is convenient
to define a special state function called enthalpy H in the following way, H = U + PV.
The first law can then be written as

dH = dU + PdV + VdP = dQ + VdP. (1.6)

In addition, the internal energy must depend on the content of matter, &V, and for an open
system subjected to compression we should be able to write,

dU = dQ — PdV + KdN. (1.7)

In order to identify the nature of K we shall consider a system that is part of a larger,
homogeneous system for which both 7 and P are uniform. U may then be evaluated
by starting with an infinitesimal system and extending its boundaries until it encloses
the volume V. Since there are no real changes in the system dQ = 0 and P and K are
constant, we can integrate from the initial value of U = 0 where the system has no volume,
obtaining
U=—-PV+KN (1.8)
H=KN. (1.9)

By measuring the content of matter in units of mole, we obtain
K = H/N = Hy. (1.10)

H,, is the molar enthalpy. Molar quantities will be discussed in Section 3.2. The first law
in Eq. (1.2) can thus be written as

dU = dQ + dW + HydN. (1.11)

It should be mentioned that there is an alternative way of writing the first law for an open
system. It is based on including in the heat the enthalpy carried by the added matter. This
new ‘kind’ of heat would thus be

d0* = dQ + HydN. (1.12)

The first law for the open system in Eq. (1.11) would then be very similar to Eq. (1.2)
for a closed system,

dU = dQ* + dW = dQ* — PdV. (1.13)

This definition of heat is less useful in treatments of heat conduction and we shall not
use it.

Exercise 1.2

One mole of a gas at pressure P; is contained in a cylinder of volume V; which has a
piston. The volume is changed rapidly to V>, without time for heat conduction to or from
the surroundings.
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(a) Evaluate the change in internal energy of the gas if it behaves as an ideal classical
gas for which PV = RT and U = 4 + BT.

(b) Then evaluate the amount of heat flow until the temperature has returned to its initial
value, assuming that the piston is locked in the new position, V5.

Hint

The internal energy can change due to mechanical work and heat conduction. The first
step is with mechanical work only; the second step with heat conduction only.

Solution

(a) Without heat conductiondU = — PdV but we also know that dU = BdT. Thisyields
BdT = —PdV.

Elimination of Pusing PV = RT gives BAT/RT = —dV/V and by integration
we then find (B/R) In(T»/ Ty) = — In(V2/ V1) = In(Vy/ Va) and Th = Ty (Vy/ V2)R/B,
where T is the initial temperature, 71 = P V1/R.

Thus: AU, = B(T» — T) = (BP Vi/R)[(V1/ V)R —1].

(b) By heat conduction the system returns to the initial temperature and thus to the initial
value of U, since U in this case depends only on 7. Since the piston is now locked,
there will be no mechanical work this time, so that dU, = dQ), and, by integration,
AUy = Qy. Considering both steps we find because U depends only upon 7:

0=AU,+ AUy = AU, + Qn; Qv = —AU, = —(BPV1/B)[(V1/ V2)"F — 11,

Exercise 1.3

Two completely isolated containers are each filled with one mole of gas. They are at
different temperatures but at the same pressure. The containers are then connected and
can exchange heat and molecules freely but do not change their volumes. Evaluate
the final temperature and pressure. Suppose that the gas is classical ideal for which
U= A+ BT and PV = RT if one considers one mole.

Hint

Of course, T and P must finally be uniform in the whole system, say 73 and Ps. Use
the fact that the containers are still completely isolated from the surroundings. Thus, the
total internal energy has not changed.

Solution

V=V+V,=RT1/PL+RTx/P,=R(T'+T5)/P;; A+BT1+A+BL =U=
24+ 2BT5; T3=(T1+T)/2; P;=2RT;/V =R(T\+ T5)/[R(T)+ T»)/P,]=P.
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Freezing-in conditions

As a continuation of our discussion on internal variables we may now consider heat
absorption under two different conditions.

We shall first consider an increase in temperature slow enough to allow an internal
process to adjust continuously to the changing conditions. If the heating is made under
conditions where we can keep the volume constant, we may regard 7 and V as the
independent variables and write

U U
dU=—) dT +(—) dV. (1.14)
oT / V),
By combination with dU = dQ — PdV we find
oU oU
do=\(—) dT — Pdr. 1.15
o= (i), +[(5r), + 19
We thus define a quantity called heat capacity and under constant Vit is given by
a U
Cy = 90y _ (93U} (1.16)
oT /), oT ),

Secondly, we shall consider an increase in temperature so rapid that an internal pro-
cess is practically inhibited. Then we must count the internal variable as an additional
independent variable which is kept constant. Denoting the internal variable as & we obtain

iU iU oU
dU = | — d7 + (—) dr + (—) dé 1.17
<3T>V,s oV )re & Jry ( )

oUu aU aU
() e [(), o), o

Under constant J and & we now obtain the following expression for the heat capacity

_(32\ _ (93U
Cre= (ﬁ)y,g B (aT)V.g' (19

Experimental conditions under which an internal variable £ does not change will be
called freezing-in conditions and an internal variable that does not change due to such
conditions will be regarded as being frozen-in. We can find a relation between the two
heat capacities by comparing the two expressions for dU at constant V,

U\ (), (Y (2
(a_T)V - <8T>V,g - ( 9% )T,V <8T>V (1:20)

Cy=0C o 08 1.21
y = V’E+(E>7,V<3—T>V. (1.21)

The two heat capacities will thus be different unless either (0U/d&)r y or (0&/0T )y is
zero, which may rarely be the case.
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It is instructive to note that Eq. (1.18) allows the heat of the internal process to be

expressed in state variables,
d U
<—Q) - <—) . (1.22)
& Jry & )1y

Suppose there is an internal reaction by which a system can adjust to a new equilibrium
if the conditions change. There is a complete adjustment if the change is very slow and
for a slow increase of 7" one measures Cy gow. For a very rapid change there will be
practically no reaction and one measures Cy rpig. What value of Cy would one find if
the change is intermediate and the reaction at each temperature has proceeded to halfway
between the initial value and the equilibrium value.

Exercise 1.4

Hint
Cy =(00/T )expteond. = (QU/T)y ¢ +(8U/08)r,y - (96/0T Jexpt.cond. and
(aé/a T)expt.cond. = (85/8 T)eq.'

Solution

Crapia=@U/IT)ve Crgiow = OU/IT)y e +(BU/38)7 y(06/3T)eqs Crimerm. =
@U/OT)y e + (QU/0E)r y0.5(08 /0T )eq. = (Cy rapia + Cy s1ow)/2. It should be noticed
that the value of (0U/0&)r, y may depend on & as well as 7. It may thus change during
heating and in different ways depending on how & changes. The last step in the derivation
is thus strictly valid only at the starting point.

Reversible and irreversible processes

Consider a cylinder filled with a gas and with a frictionless piston which exerts a pressure
P on the gas in the cylinder. By gradually increasing P we can compress the gas and
perform the work W = — [PdV on the gas. If the cylinder is thermally insulated from
the surroundings, the temperature will rise because AU = Q + W = — [PdV > 0. By
then decreasing P we can make the gas expand again and perform the same work on the
surroundings through the piston. The initial situation has thus been restored without any
net exchange of work or heat with the surroundings and no change of temperature or
pressure of the gas. The whole process and any part of it are regarded as reversible.
The process would be different if the gas were not thermally insulated. Suppose it were
instead in thermal equilibrium with the surroundings during the compression. For an ideal
gas the internal energy only varies with the temperature and would thus stay constant
during the compression if the surroundings could be kept at a constant temperature.
Heat would flow out of the system during that process. By then decreasing P we could
make the gas expand and, as it returns to the initial state, it would give back the work
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V.V, VvV

Figure 1.4 Schematic diagram of Carnot’s cycle.

to the surroundings and take back the heat. Again there would be no net exchange with
the surroundings. This process is also regarded as reversible and it may be described
as a reversible isothermal process. The previous case may be described as a reversible
adiabatic process.

By combination of the above processes and with the use of two heat reservoirs of
constant temperatures, 7, and 7;, one can make the system go through a cycle which
may be defined as reversible because all the steps are reversible. Figure 1.4 illustrates a
case with four steps where T;, > T,.

(1) Isothermal compression from V] to V, at a constant temperature 7,. The surroundings
perform the work ) on the system and the system gives away heat, — (), to the
surroundings, i.e. to the colder heat reservoir, 7,. The heat received by the system,
01, is negative.

(2) Adiabatic compression from V, to V3 under an increase of the temperature inside
the cylinder from 7, to Ti,. The surroundings perform the work W, on the system
but there is no heat exchange, O, = 0.

(3) Isothermal expansion from V3 to V4 after the cylinder has been brought into contact
with a warmer heat reservoir, 7,. The system now gives back some work to the
surroundings; Ws is negative whereas Q3 is positive. The warm heat reservoir, 7,
thus gives away this heat to the system.

(4) Adiabatic expansion from V4 back to ¥} under a decrease of temperature inside the
cylinder from Ty to T,; W is negative and Q4 = 0.

The system has thus received a net heat of Q = Q) + Q3 but it has returned to the initial
state and for the whole process we obtain Q + W = AU = 0and —W = Q0 = Q| + O3
where IV is the net work done on the system. According to Fig. 1.4 the inscribed area
is positive and mathematically it corresponds to [PdV. The net work, W, is equal to
— [PdV and it is thus negative and the system has performed work on the surroundings.
The net heat, Q, is positive and the system has thus received energy by heating. The
system has performed work on the surroundings, — W, by transforming into mechanical
energy some of the thermal energy, O3, received from the warm heat reservoir. The
remaining part of Q3 is given off to the cold heat reservoir, — 0, < Q3. This cycle may
thus be used for the construction of a heat engine that can produce mechanical energy
from thermal energy. It was first discussed by Carnot [1] and is called Carnot’s cycle.
From a practical point of view the important question is how efficient that engine would
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be. The efficiency may be defined as the ratio between the mechanical work produced,
— W, and the heat drawn from the warm heat reservoir, Q3.

pe W _Qt0 O (1.23)

03 03 03
This is less than unity because Q; is negative and its absolute value is smaller than Q5.

We can let the engine run in the reverse direction. It would then draw heat from the
cold reservoir and deposit it in the warm reservoir by means of some mechanical work.
It would thus operate as a heat pump or refrigerator.

Before continuing the discussion, let us consider the flow of heat through a wall
separating two heat reservoirs. There is no method by which we could reverse this
process. Heat can never flow from a cold reservoir to a warmer one. Heat conduction is
an irreversible process.

Let us then go back to the Carnot cycle and examine it in more detail. It is clear
that in reality it must have some irreversible character. The flow of heat in steps (1)
and (3) cannot occur unless there is a temperature difference between the system and
the heat reservoir. The irreversible character of the heat flow may be decreased by
making the temperature difference smaller but then the process will take more time. A
completely reversible heat transfer could, in principle, be accomplished by decreasing
the temperature difference to zero but then the process would take an infinite time. A
completely reversible process is always an idealization of reality which can never be
attained. However, it is an extremely useful concept because it defines the theoretical
limit. Much of thermodynamics is concerned with reversible processes.

We may expect that the efficiency would increase if the irreversible character of the
engine could be decreased. However, it may also seem conceivable that the efficiency of
a completely reversible engine could depend on the choice of temperatures of the two
heat reservoirs and on the choice of fluid (gas or liquid) in the system. These matters
will be considered in the next section.

Exercise 1.5

Discuss by what physical mechanisms the adiabatic steps of the Carnot cycle can get an
irreversible character.

Solution

There may be heat conduction through the wall of the cylinder also during the adiabatic
step, i.e. it would not be completely adiabatic. That effect would be less if the compression
is very fast. However, for a very fast compression it is possible that there would be violent
motions or oscillations inside the system. The damping of them would be an irreversible
process.
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Second law of thermodynamics

Let us now compare the efficiency of two heat engines which are so close to the ideal
case that they may be regarded as reversible. Let them operate between the same two
heat reservoirs, 7, and 7. Suppose one engine has a lower efficiency than the other and
let it operate in the reverse direction, i.e. as a heat pump. Build the heat pump of such
a size that it will give to the warm reservoir the same amount of heat as the heat engine
will take. Thanks to its higher efficiency the heat engine will produce more work than
needed to run the heat pump. The difference can be used for some useful purpose and
the equivalent amount of thermal energy must come from the cold reservoir because the
warm reservoir is not affected and could be disposed of.

The above arrangement would be a kind of perpetuum mobile. It would for ever
produce mechanical work by drawing thermal energy from the surroundings without
using a warmer heat source. This does not seem reasonable and one has thus formulated
the second law of thermodynamics which states that this is not possible. It then follows
that the efficiency of all reversible heat engines must be the same if they operate between
the same two heat reservoirs. From the expression for the efficiency 7 it follows that the
ratio O/ Qs can only be a function of 7, and 7 and the same function for all choices
of fluid in the cylinder.

A heat engine, which is not reversible, will have a lower efficiency but, when used
in the reverse direction, it will have different properties because it is not reversible. Its
efficiency will thus be different in the reverse direction and it could not be used to make
a perpetuum mobile.

It remains to examine how high the efficiency is for a reversible heat engine and how
it depends on the temperatures of the two heat reservoirs. The answer could be obtained
by studying any well-defined engine, for instance an engine built on the Carnot cycle
using an ideal classical gas. The result is

-w  Lh—-T,

0s L,
We must now accept that this result is quite general and independent of the choice of
fluid. Actually, it would also hold for a solid medium. In line with Carnot’s ideas, we can
give a more general derivation by first considering the production of work when a body
of mass AM is moved from a higher level to a lower one, i.e. from a higher gravitational
potential, gy, to a lower one, g,.

n (1.24)

—W=AM-(g — &) (1.25)

The minus sign is added because + /¥ should be defined as mechanical energy received
by the system (the body). With this case in mind, let us assume that the work produced
by a reversible heat engine could be obtained by considering some appropriate thermal
quantity which would play a similar role as mass. That quantity is now called entropy and
denoted by S. When a certain amount of that quantity is moved from a higher thermal
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potential (temperature 7j) to a lower one (temperature 7,) the production of work should
be given in analogy to the above equation,

—W=AS-(I, — T)). (1.26)
However, we already know that — ¥ is the sum of Q; and O3,
AS- Ty —AS-T, =05+ 0. (1.27)

We can find an appropriate quantity S to satisfy this equation by defining S as a state
function, the change of which in a system is related to the heat received,

AS=Q/T. (1.28)
The amount of S received by the system from the warm heat reservoir would then be
AS = 03/ Th. (1.29)
The amount of S given by the system to the cold reservoir would be
AS=-01/T,. (1.30)

The equation is satisfied and we also find
O -AS-T, T,

— 2 1.31
0; AS - T, Ty (131)
—-w Ty, — T,

_ @ Bk (132)
O3 OF T

in agreement with the previous examination of the Carnot cycle.
Let us now look at entropy and temperature in a more general way. By adding a small
amount of heat to a system by a reversible process we would increase its entropy by

ds = do/T. (1.33)

For a series of reversible changes that brings the system back to the initial state
/dQ/T =AS=0. (1.34)

This can be demonstrated with the Carnot cycle. By comparing Eqgs (1.29) and (1.30)
we find

01/T,+ O3/ Ty = 0. (1.35)

The quantity 7 is a measure of temperature but it remains to be discussed exactly how to
define 7. It is immediately evident that the zero point must be defined in a unique way
because 7,/ T, would change if the zero point is changed. That is not allowed because it
must be equal to —Q;/ Q3. The quantity 7 is thus measured relative to an absolute zero
point and one can say that 7 measures the absolute temperature.

It has already been demonstrated that by using an ideal classical gas as the fluid in the
Carnot engine, one can derive the correct expression for the efficiency, n = (Ty—74,)/T},.
One can thus define the absolute temperature as the temperature scale used in the ideal
gas law and one can measure the absolute temperature with a gas thermometer. When



1.6 Second law of thermodynamics 15

this was done it was decided to express the difference between the boiling and freezing
point of water at 1 atm as 100 units, in agreement with the Celsius scale. This unit is
now called kelvin (K).

Let us now return to the irreversible process of heat conduction from a warm reservoir
to a cold one. By transferring an amount d O one would decrease the entropy of the warm
reservoir by dQ/ Ty, and increase the entropy of the cold one by dQ/ 7,. The net change
of the entropy would thus be

dS = —dQ/T, +dQ/T, = dO - (T, — T,) Ty .. (1.36)

This irreversible process thus produces entropy. One talks about internal entropy
production

dyS > 0. (1.37)

The subscript ‘ip” indicates that this change of the entropy of the system is due to an
internal process. This is the second law of thermodynamics and it should be noted that it
concerns what happens inside a system, whereas the first law concerns interactions with
the surroundings. As we have seen, the transfer of heat to the system, dQ, will increase
the entropy by dQ/ T and, by also considering the effect of additional matter, dV, in an
open system we can write the second law as

dS =dQ/T + SudN + diS > dQ/ T + SndN. (1.38)

S 1s the molar entropy of the added material and can be derived exactly as Hy, in the
first law was derived in Section 1.3. With the alternative definition of heat in Eq. (1.12)
we would obtain

dS = dQ*/T — (Hyn/T — Sp)dN + dipS = dQ*/T — (Hy — T'Sw)/ T)dN
+dipS > d0*/ T — (Hp — TSp)/ T)dN. (1.39)

When a spontaneous process proceeds, it is in a direction that can be predicted from
the above criterion. A spontaneous process is always an irreversible process, other-
wise it would have no preferred direction and it would be reversible. A reversible pro-
cess is a hypothetical construction and can be defined by either one of the following
criteria,

dpS=0 (1.40)
dS =dQ/T + SndN. (1.41)

Exercise 1.6

Suppose a simple model for an internal reaction yields the following expression for
the internal production of entropy under conditions of constant 7, V and N, A;,S =
—EK/T — R[§In& — (1 4+ &)In(1 + &)], where & is a measure of the progress of the
reaction going from 0 to 1. Find the equilibrium value of &, i.e. the value of & for which
the reaction cannot proceed spontaneously.
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Hint

The spontaneous reaction will stop when di, S is no longer positive, i.e. when di, S /d§ = 0.

Solution

dipS /d§ = d(AjpS)/dé = —K/T — R[1+In§ —1—In(1+8)]=0; &§/(1+§)=
exp(—K/RT);, & =1/[exp(K/RT)—1].

Exercise 1.7

Find a state function from which one could evaluate the heat flow out of the system when
a homogeneous material is compressed isothermally.

Hint

Heat is not a state function of a system. In order to solve the problem we must know how
the change was made. Let us first assume that it was reversible.

Solution

For reversible conditions O = [7dS = T [dS = Ti(S, — S) and the heat extraction
—0 = T1(S) — S). For irreversible conditions dQ < 7dS; O < T1(S; — S1) and the
extracted heat is —Q > T1(S1 — $2), i.e. larger than before. However, if the final state
is the same, AU must be the same because it is a state function and the higher value of
—Q must be compensated by a higher value of the work of compression ¥ than during
reversible compression. How much higher —Q and W will be cannot be calculated without
detailed information on the factor making the compression irreversible.

Exercise 1.8

Consider a Carnot cycle with a non-ideal gas and suppose that the process is somewhat
irreversible. Use the second law to derive an expression for the efficiency.

Hint

For each complete cycle we have X AU = 0 and £AS = 0 because U and S are both
state functions.

Solution

SAU=W+01+03=0; ZAS=0i/T.+ 03/Tv + AjpS =0 where W and
AjpS are the sums over the cycle. We seek n = —W /(03 and should thus eliminate
01 by combining these equations: —Q; = O31,/ Ty, + AipS - To; —W =01+ 03 =
—O3/ Ty — AipS - T+ Q3 = 03(Ty, — T,)/ Ty, — ApS - T, andthusn = —W/Q03 =
(Ty — T,)/ Ty — AipS - To/ O3 < (Ty, — T,)/ Ty, because A, S, T, and Qs are all positive.
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Condition of internal equilibrium

The second law states that an internal process may continue spontaneously as long as
dipsS is positive. It must stop when for a continued process one would have

dipS < 0. (1.42)

This is the condition for equilibrium in a system. By integrating d;,S we may obtain a
measure of the total production of entropy by the process, Aj,S. It has its maximum
value at equilibrium. The maximum may be smooth, di, S = 0, or sharp, d;,S < 0, but
the possibility of that alternative will usually be neglected.

Asan example of the first case, Fig. 1.5 shows a diagram for the formation of vacancies
in a pure metal. The internal variable, generally denoted by &, is here the number of
vacancies per mole of the metal.

As an example of the second case, Fig. 1.6 shows a diagram for the solid state reaction
between two phases, graphite and Cr(;Cy 3, by which a new phase Cry¢Cg.4 is formed.
The internal variable here represents the amount of Cry¢Cp 4. The curve only exists up
to a point of maximum where one or both of the reactants have been consumed (in
this case Cry7Cg3). From the point of maximum the reaction can only go in the reverse
direction and that would give d;p, S < 0 which is not permitted for a spontaneous reaction.
The sharp point of maximum thus represents a state of equilibrium. This case is often
neglected and one usually treats equilibrium with the equality sign only, di,S = 0.

If di, S = 0 it is possible that the system is in a state of minimum A;,S instead of
maximum. By a small, finite change the system could then be brought into a state where
dipS > 0 for a continued change. Such a system is thus at an unstable equilibrium. As
a consequence, for a stable equilibrium we require that either di, S < 0, or di,S = 0 but
then its second derivative must be negative.

It should be mentioned that instead of introducing the internal entropy production,
d;pS, one has sometimes introduced dQ’/ T where dQ" is called ‘uncompensated heat’.
It represents the extra heat, which must be added to the system if the same change of
the system were accomplished by a reversible process. Under the actual, irreversible
conditions one has dS = dQ/T + d;;S. Under the hypothetical, reversible conditions
onehasdS = (dQ +dQ’)/T.Thus,dQ’ = Td;,S. Inthe actual process d;, S is produced
without the system being compensated by such a heat flow from the surroundings.

If the reversible process could be carried out and the system thus received the extra
heat dQ’, as compared to the actual process, then the system must also have delivered
the corresponding amount of work to the surroundings in view of the first law. Because
of the irreversible nature of the process, this work will not be delivered and that is why
one sometimes talks about the ‘loss of work’ in the actual process which is irreversible
and produces some entropy instead of work, dW = dQ" = T'd,S.

Exercise 1.9

Check the loss of work in a cyclic process working with a high-temperature heat source
of Tj, and a low-temperature heat sink of 7, and having some internal entropy production.
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Figure 1.5 The internal entropy production due to the formation of thermal vacancies in 1 mole
of a pure element at a temperature where the energy of formation of a vacancy is 947, k being
the Boltzmann constant. The initial state is a pure element without any vacancies. The internal
variable is here the number of vacancies expressed as moles of vacancies per mole of metal, uvs,.
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Figure 1.6 The internal entropy production due to the solid state phase transformation
C + Cro7Co3 — CryCo4 at 1500 K and 1 bar. The initial state is 0.5 mole each of C(graphite)
and Cry7Cy 3. The internal variable here represents the amount of CrycC 4.
Hint

In Exercise 1.8 we found —W = Q3(T, — 1)/ Ty, — AjpS - T, From this result we can
calculate the ‘loss of work’, e.g. if the amount of heat extracted from the heat source is
the same in the irreversible case as in the reversible one. Give this loss per heat extracted
from the heat source, and give it per heat given to the colder heat sink, Q.

Solution

For a reversible cycle one would have —W = Q3(Ty, — T,)/ Tp,- The ‘loss of work’ per
extracted heat is thus A, S - 7,/ Q3.
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For the second case we should eliminate Q3 from the two equations in the solu-
tionof Exercise 1.8: =03 = AipS- Ty + Q1 T/ Tas =W = Q1 + O3 = —01(Th, — To)/
T, — AipS - Th.

The ‘loss of work’ per received heat is thus A, S - 7;,/(—Q1). The two results are
equal in the reversible limit where O3/ T, = —Q1/ T, according to Eq. (1.35).

Driving force

Let the internal variable £ represent the extent of a certain internal process. The internal
entropy production can then be regarded as a function of this variable and we may define
its derivative d;,S/d& as a new state variable. It may also be regarded as a state function
because it may be expressed as a function of a set of state variables, including &, which
define the state. For convenience, we shall multiply by 7 under isothermal conditions to
obtain a new state variable,
dipS

dg -
One may use D = 0 as the condition of equilibrium. This quantity was introduced by
De Donder [2] when considering chemical reactions between molecules and it was thus
called affinity. However, it has a much wider applicability and will here be regarded as
the driving force for any internal process. The symbol D, chosen here, may either be
regarded as an abbreviation of driving force or as an honour to De Donder. It is usually
convenient to define £ by a variable that is an extensive property, subject to the law of
additivity. The driving force D will then be an intensive variable.

If'a system is not in a state of equilibrium, there may be a spontaneous internal process

for which the second law gives d;, S > 0 and thus

D=T (1.43)

Td;pS = Ddg > 0. (1.44)

It is evident that d¢ and D must have the same sign in order for the process to proceed. By
convention, d¢ is given a positive value in the direction one wants to examine and D must
then be positive for a spontaneous process in that direction. In many applications one
even attempts to predict the rate of a process from the magnitude of D. Simple models
often predict proportionality. This will be further discussed in Chapter 5.

If D > 0 for some internal process, then the system is not in a state of equilibrium. The
process may proceed and it will eventually approach a state of equilibrium where D = 0.
The equilibrium value of the variable & can, in principle, be evaluated from the condition
D = 0, which is usually more directly applicable than the basic condition d;, S = 0.

In the preceding section we connected an internal entropy production with the progress
of an internal process. However, we can now see that it is possible, in principle, to change
an internal variable without any entropy production. This can be done by changing the
external variables in such a way that the driving force D is always zero. Since D is zero at
equilibrium only, it is necessary to change the external variables so slowly that & can all
the time adjust itself to the new value required by equilibrium. In practice, this cannot be
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completely achieved because the rate of the process should be zero if its driving force is
zero. An infinitely slow change is thus necessary. Such an idealized change is identical to
the reversible process mentioned in the preceding section and it is sometimes described
as an ‘equilibrium reaction’. It would take the system through a series of equilibrium
states.

It may be convenient to consider a reversible process if one knows a state of equilibrium
for a system and wants to find other states of equilibrium under some different conditions.
This is the reason why one often applies ‘reversible conditions’. As an example we may
consider the heating of a system under constant volume, discussed in Section 1.4. The
heat capacity under such conditions, Cy, was found to be different under slow and rapid
changes. Both of these cases may be regarded as reversible because the internal entropy
production is negligible when D is small for a very slow change and also when d¢ is
small for a frozen-in internal process. For both cases we may thus use dS = dQ/T and
we obtain two different quantities,

_(99\ _ . (9§
CV:<ﬁ>V_T<aT>V (1:4%)

_(992\ _ (938
Cre= (8—T> o T <3T>V,g' (1.46)

These expressions are equivalent to those given in Section 1.4 in terms of U. For inter-
mediate cases, which are not reversible, one should consider U and not S, i.e. use the
first law and not the second law.

Exercise 1.10

Consider an internal reaction which gives an entropy production under isothermal condi-
tions, AjpS = —EK/T — R[§In§ — (1 4 &)In(1 + &)]. Derive the stability at equilib-
rium, defined as B = —7 - d} §/d&* = —T - dD/d§. (See Section 6.1.)

Hint

In Exercise 1.6 we have already calculated d;,S/dé and & at equilibrium.

Solution

dipS/dg = —K/T — R[In& —In(1 +&)]; df S/d&*> = —R[1/6 —1/(1+§)].
However, atequilibrium 1/& = exp(K/RT)—1; 1/(1+&)=[exp(K/RT)— 1]/
exp(K/RT).
Thus, B = +RT[1/€ — 1/(1 +&)] = RT[1 — exp(K/RT))*/ exp(K/RT).
This is always positive. The state of equilibrium must be stable.
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Combined first and second law

Combination of the first and second laws, Eqs (1.11) and (1.38) yield by elimination of
do,

dS = dQ/T + SpdN + dipS + (dU — dQ — dW — HydN)/ T
=dU/T + (Sw — Hy/T)AN — dW/T + d;yS. (1.47)

Denoting Hy,, — TSy, by G, a symbol that will be explained in Section 3.2, and intro-
ducing Dd§/ T for d;p, S from Eq. (1.43) and only considering compression work, we
obtain

dS = (1/T)dU + (P/T)dV — (Gm/T)dN + Dd/T. (1.48)

It should be noted that the alternative definition of heat, Eq. (1.12), would yield the same
result by eliminating dQ* between Eqs (1.13) and (1.39). The combination of the two
laws is due to Gibbs [3] and Eq. (1.48), without the last term is often called Gibbs’
equation or relation. We shall simply refer to Eq. (1.48) as the combined law and it
can be written in many different forms, expressing one state variable as a function of
the others. Such a function, based on the combined law, is regarded as a characteristic
state function for the set of variables occurring on the right-hand side. The variables in
that set are regarded as the natural variables for the quantity appearing on the left-hand
side.
It is more common to write the combined law in the following form

dU = TdS — PdV + GndN — DdE. (1.49)

Here, U is the characteristic state function and its natural variables are S, /" and N. One
usually regards S as an external variable although its value is also influenced by internal
processes and it is not possible to control its value by actions from the outside without
an intimate knowledge of the properties of the system.

When there are i internal processes, one should replace Dd£ by X Dd&!. For the sake
of simplicity this will be done only when we actually consider more than one process.
By grouping together the products of the external variables in Eq. (1.49) we write

dU = TY*dX* — Dde, (1.50)

where Y*? represents potentials like 7. It is evident that the pressure should be expressed
as —P in order to be comparable with other potentials. As a consequence, we shall plot
P in the negative direction in many diagrams (see, for instance, Fig. 1.1). X® represents
extensive quantities like S and V. The pair of one potential and one extensive quantity,
Y?* and X?, is called a pair of conjugate variables, for instance 7, S or — P, V. Other
pairs of conjugate variables may be included through the first law by considering other
types of work, for instance gravitational work. It is important to notice that the change
in U is given in terms of the changes in variables all of which are extensive like S and V'
and all of them are subject to the law of additivity.
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Since U is a state variable which is a function of all the external variables, X?, X°,
etc., and the internal & variables, we have

AU
yb = (—b> , (1.51)
BX chg

where X° represents all the X variables except for X°. It is interesting to note that all the
Y variables are obtained as partial derivatives of an energy with respect to an extensive
variable. That is why they are regarded as potentials. One may also regard — D and & as
a pair of conjugate variables where — D is the potential and is obtained as

oU
D=2 , 1.52
<3$ )xa (12

where X*? represents all the X variables. It should be emphasized that the Y potentials
have here been defined for a frozen-in state because & was treated as an independent
variable that is kept constant. Under conditions of maintained equilibrium one should
treat £ as a dependent variable and the potentials are defined as

. (U
o= (22) . (1.53)
IX® ) .

We will soon see that for equilibrium states the two definitions of Y give the same result.

In the following discussions we do not want to be limited to frozen-in states (d¢ = 0),
nor to equilibrium states or reversible changes (D = 0) and we will thus retain the Dd&
term in the combined law. It should again be emphasized that there are those two different
cases for which the term Dd¢ is zero and can be omitted.

The combined law can be expressed in several alternative forms depending upon the
choice of independent external variables. These forms make use of new state functions
which will be discussed soon.

Exercise 1.11

Try to include the effect of electrical work in the combined law.

Hint

There are two cases. First, consider the addition of an extra charge to the system. Second,
consider the case where the system is made part of an electrical circuit.

Solution

In the first case, the first law gives dU = dQ + dW + dW, where we may write d W, =
E - d(charge) = —FE Fdn., where F is the Faraday constant (the negative of the charge
of one mole of electrons) and 7, is the number of extra electrons (in mole). £ is the
electrical potential. The combined law becomes dU = 7'dS — PdV — EFdn. — Dd§.
However, E increases very rapidly with n, and reaches extremely high values before 7.
is large enough to have a chemical effect. This form is thus of little practical interest.
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Let us now consider a system that is part of an electrical circuit. It is evident that
the charge entering a system through one lead must be practically equal to the charge
leaving the system from the other lead, i.e. dn,; = —dne. The first law becomes
dU =dQ +dW + dW, =d0 +dW — E\Fdne — E;Fdney, =dO +dW — (E; —
E;)Fdne;, and the combined law becomes dU=T7dS— PdV —(E|—E,)
Fdne — Ddé. E, and E, are the electrical potentials on the two sides of the
system. At this time we do not need to speculate on what happens inside the system.

General conditions of equilibrium

A system is in a state of equilibrium if the driving forces for all possible internal processes
are zero. Many kinds of internal processes can be imagined in various types of systems
but there is one class of internal process that should always be considered, the transfer of a
quantity of an extensive variable from one part of the system, i.e. a subsystem, to another
subsystem. In this section we shall examine the equilibrium condition for such a process.

Let us first examine an internal process taking place in a system under constant values
of the external extensive variables S and V, here collectively denoted by X?, and let us
not be concerned about the experimental difficulties encountered in performing such an
experiment. We could then turn to the combined first and second law in terms of dU,
which is reduced as follows

dU = XY*X* — Dd¢ = —Ddé. (1.54)
The driving force for the internal process will be
D =—0U/3&) X" (1.55)

The process can occur spontaneously and proceed until U has reached a minimum. The
state of minimum in U at constant S and / is thus a state of equilibrium.

The internal process we shall now consider is the transfer of d.X® from one subsystem
(") to the other (”), keeping the remaining Xs constant at different values in the two
subsystems. It is convenient to measure the extent of this internal process by identifying
d& with —dX? for the first subsystem and +dX® for the second. We thus obtain, by
applying the law of additivity to D,

D_aU_aU/_i_aU”_ 8U/+8U”
T\8E ) \a(=xv /) \axe /), \axv) . \axvt/ ..’
(1.56)
The derivative 9U /9 X® is identical to the conjugate potential Y* and we thus find
D=7Y"—y", (1.57)

The driving force for this process will be zero and the system will be in equilibrium with
respect to the process if the potential Y has the same value in the two subsystems. We
have thus proved that each potential must have the same value in the whole system at
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equilibrium. This applies to 7, and to P with an exception to be treated in Chapter 16. It
also applies to chemical potentials u;, which have not yet been introduced.

Exercise 1.12

One may derive a term —E Fdn, for the electrical contribution to dU. Here E is the
electrical potential and —Fdn. the electrical charge because dn. is the number of moles
of extra electrons and —F is the charge of one mole of electrons. Evaluate the driving
force for the transfer of electrons from one half of the system to the other if their electrical
potentials are £/ and E” and can be kept constant. Define d¢ as dn..

Solution

—D =(U/d¢) = —(0U/on.) + (@U/0n.)' = E'F —E"F, D=(E"—E)F. In
practice, the big question is whether the charge transfer will change the potential differ-
ence or whether there is a device for keeping it constant.

Characteristic state functions

Under experimental conditions of constant S, /" and N it is most convenient to use the
combined law in the form given by Eq. (1.49) because then it yields simply

dU = —Ddé. (1.58)
At equilibrium, D = 0, we obtain
D =—(U/38)sy,n =0 (1.59)

for the internal process. If instead D > 0, then the internal process may proceed sponta-
neously and the internal energy will decrease and eventually approach a minimum under
constant S, V and N.

From an experimental point of view it is not very easy to control S but relatively
easy to control 7. A change of independent variable may thus be desirable and it can be
performed by subtracting d(7'S) which is equal to 7dS + Sd7. The combined law in
Eq. (1.49) is thus modified to

dU —-TS)=—-SdT — PdV + GndN — Dd§. (1.60)
We may regard this as the combined law for the variables 7, " and N and the combination

U — TS is regarded as the characteristic state function for these variables, whereas U is
regarded as the characteristic state function for the variables S and V. The new function



1.11 Characteristic state functions 25

(U — T'S) has been given its own name and symbol, Helmholtz energy, F,
F=U-TS. (1.61)
Under experimental conditions of constant 7, /" and N we obtain
dF = —Ddé. (1.62)
The equilibrium condition can then be written as
D =—(0F/3&)r,y.n = 0. (1.63)

In an experiment under constant 7, /" and N there may be spontaneous changes until
has approached a minimum.
In the same way we may introduce a state variable H = U + PV obtaining

dH =d(U + PV) = TdS + VdP + GndN — DdE. (1.64)

This may be regarded as the combined law for the variables S, P and N. The new variable H
is regarded as the characteristic state function for these variables and it is called enthalpy.
In fact, it has already been introduced in connection to the first law in Section 1.3.
The equilibrium condition under constant S, P and N is

D =—(0H/9&)spny =0. (1.65)

In an experiment under constant S and P there may be spontaneous internal changes until
H has approached a minimum.

By applying both modifications we can define U — T'S + PV as a new state variable,
G, obtaining

dG =d(U — TS+ PV) = —SdT + VdP + GndN — DdE. (1.66)

This may be regarded as the combined law for the variables 7, P and N and the character-
istic state function for these variables is called Gibbs energy, G. This characteristic state
function is of particular interest because 7'and P are the variables, which are most easily
controlled experimentally and they are both potentials. G may decrease spontaneously
to a minimum under constant 7, P and N and the equilibrium condition is

D =—(G/3&)pry =0. (1.67)

It may be mentioned that the mathematical operation, we have used in order to introduce
a potential instead of an extensive variable, is called Legendre transformation. An
important aspect is that no information is lost during such a transformation, as will be
discussed in Section 2.1.

Exercise 1.13

Suppose that it would be practically possible to keep H, P and N constant during an
internal reaction in a system. What state function should then be used in order to predict
the state of equilibrium?
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Hint
Find a form of the combined law which has dH, dP and dN on the right-hand side.

Solution

dH =TdS + VdP 4+ GndN — Dd¢; TdS =dH — VdP —GpdN + Ddé. We thus
obtain D = T(35/3&)y p.ny > 0 for spontaneous reactions. Equilibrium is where S(§)
has its maximum.

Exercise 1.14

In Exercise 1.6 we considered an internal reaction in a closed system giving the fol-
lowing internal production of entropy under isothermal conditions. A;,S = 6K /T —
R[EIn& — (1 + &) In(1 + &)]. Now, suppose the heat of reaction under constant 7, V" and
Nis Q = K. Derive an expression for Helmholtz energy F and use it to calculate the
equilibrium value of &. Compare with the previous result obtained by maximizing the
internal production of entropy.

Hint

Use AF = AU — A(TS), where AU is obtained from the first law and AS from the
second law.

Solution

Under constant 7, " and N, the heat of reaction must be compensated by heat flow from
the surroundings, Q = £K. Since the volume is constant AU = Q = £K.

The total increase of entropy is AS = Q/T + A, S=EK/T + AjpS = —R[E In§ —
(1+&)In(1 +&)] and thus AF = AU — A(TS) =K + RT[EInéE — (1 +&)In(1 +
£)]-

This is identical to —7 A, S. For this particular system, we thus get the same result if
we minimize AF or maximize A, S under constant 7, V" and N.

Entropy

Before finishing the present discussion of basic concepts of thermodynamics, a few
words regarding entropy should be added. No attempt will here be made to explain the
nature of entropy. However, it is important to realize that there is a fundamental difference
between entropy and volume in spite of the fact that these two extensive state variables
appear in equivalent places in many thermodynamic equations, for instance in the forms
of the combined law defining dU or dG. For volume there is a natural zero point and
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one can give absolute values of V. As a consequence, the change of G due to a variation
of P,(0G/9P)r n, is a well defined quantity because it is equal to V. One may thus
compare the values of G of two systems at different pressures.

For internal energy or enthalpy there is no natural zero point but in practical appli-
cations it may be convenient to choose a point of reference for numerical values. The
same is true for entropy although it is quite common to put S = 0 for a well-crystallized
substance at absolute zero. That is only a convention and it does not alter the fact that
the change of the Gibbs energy G due to a variation of 7, (0G/9T)p n, cannot be given
an absolute value because it is equal to —S. As a consequence, it makes no sense to
compare the values of G of two systems at the same pressure but different temperatures.
The interaction between such systems must be based upon kinetic considerations, not
upon the difference in G values. The same is true for the Helmholtz energy F because
(0F/0T)y, y is also equal to —S.

The convention to put S = 0 at absolute zero is useful because the entropy difference
between two crystalline states of a system of fixed composition goes to zero there accord-
ing to Nernst’s heat theorem, sometimes called the third law. It should be emphasized
that the third law defined in this way only applies to states, which are not frozen in a
disordered arrangement.

Statistical thermodynamics can provide answers to some questions, which are beyond
classical thermodynamics. It is based upon the Boltzmann relation

S = klnW, (1.68)

where k is the Boltzmann constant (= R/N*, where N* is Avogadro’s number) and W
is the number of different ways in which one can arrange a state of given energy. 1/W is
thus a measure of the probability that a system in this state will actually be arranged in a
particular way. Boltzmann’s relation is a very useful tool in developing thermodynamic
models for various types of phases and it will be used extensively in Chapters 19-22.
It will there be applied to one physical phenomenon at a time. The contribution to the
entropy from such a phenomenon will be denoted by AS or more specifically by AS;
and we can write Boltzmann’s relation as

AS; = k1n W, (1.69)

where W; and AS; are evaluated for this phenomenon alone. Such a separation of the
effects of various phenomena is permitted because W = W, - W, - W5 - ...

S:kll’lW:klIl(Wl-W2~W3~...)=k(1l’1W1+11’1W2+1HW3+"')
=AS +AS +AS;+ - (1.70)

Finally, we should mention here the possibility of writing the combined law in a form
which treats entropy as a characteristic state function, although this will be discussed in
much more detail in Chapters 3 and 6. From Eq. (1.63) we get

—dS=-(1/T)dU —(P/T)dV + (Gn/T)dN — (D/T)d§. (1.71)
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This formalism is sometimes called the entropy scheme and the formalism based
upon dU is then called the energy scheme. See Section 3.5 for further discussion.
With the entropy scheme we have here introduced new pairs of conjugate variables,
(-1/T,U),(—P/T,V)and (Gn/T, N). We may also introduce H into this formalism
by the use of dU = dH — VdP,

dS = —(1/T)dH + (V/T)dP + (Gw/T)AN — (D/ T)dt. (1.72)

Two more pairs of conjugate variables appear here, (—1/7, H) and (=P, V/T). It is
evident that S is the characteristic state function for 4, P and N as well as for U, V and
N. By subtracting dS from d(H/T') we further obtain

d(H/T — )= Hd(1/T) + (V/T)dP + (Gn/T)dN — (D/T)ds.  (1.73)

This is equal to d(G/T) because G =U — TS+ PV = H — TS. This form of the
combined law has the interesting property that it yields directly the following useful

expression for the enthalpy,
T
H = (8(G/ )) . (1.74)
d1/T) ) pn

Exercise 1.15

Equation (1.66) shows that S can be calculated from G as —(0G/dT)p y. It may be
tempting to try to derive this relation as follows: G = H — T'S; 9G/dT = —S. How-
ever, that derivation is not very satisfactory. Show that a correction should be added and
then prove that the correction is zero under some conditions.

Hint

Remember that A and S may depend upon 7.

Solution

G = H — TS gives strictly (0G/0T)py = (0H/dT)p.y — T(3S/3T)p.y — S. How-
ever, the sum of the first two terms (the contributions from the 7-dependence of
H and S) is zero under reversible conditions and constant P and N because then
dH =T7dS + VdP + GndN — Ddé = TdS according to Eq. (1.64).

Exercise 1.16

We have discussed the consequences for G and F of the fact that S has no natural zero
point. Actually, nor does U. Find a quantity for which this fact has a similar consequence.
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Hint

Look for a form of the combined law which has U as a coefficient just as S'is a coefficient
indG = —-8dT + VdP 4+ GdN — Dd§.

Solution

Equation (1.71) gives dS = (1/7)dU + (P/T)dV — (Gwn/T)dN + (D/T)d§;
d—F/T)=d(S—-U/T)=dS —(1/T)dU — Ud(1/T)=-Ud(1/T)+ (P/T)dV —
(Gm/T)AN +(D/T)dg;  O[F/T1/3[1/TDyne =U.

Thus, one cannot compare the values of F/T at different temperatures.
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Evaluation of one characteristic state function from another

For the sake of simplicity we shall only consider closed systems in this chapter and thus
omit terms in dNV. In the first chapter we have defined some characteristic state functions,
U, F, H and G in addition to S. Each one was introduced through a particular form of the
combined law. The independent variables in each form may be regarded as the natural
variables for the corresponding characteristic state function. In integrated form these
functions can thus be written as

U=UGS,V,E&) @2.1)
H = H(S, P,§) 2.2)
F=F(T,V,&) (2.3)
G = G(T, P, £). Q2.4)

All these expressions are regarded as fundamental equations because all thermody-
namic properties of a substance can be evaluated from any one of them. This is because
the combined law in its various forms shows how the values of all the dependent variables
can be calculated for any given set of values of the independent variables. As an example,
from the combined law for the variables S, V and &, Eq. (1.49), we get

T = 0U/0S)y. 2.5)
—P = (3U/3V)ss 2.6)
—D = (3U/d&)s.p. @.7)

As a consequence, we can now calculate the value for any other of the characteristic state
functions at a given set of values of S, / and &, for instance

G=U-TS+PV=U=80U/dS)ys— V(@OU/IV)ss. (2.8)

It should be noted that the calculation of the value of G from U is only possible because
one knows an expression for U as a function of its natural variables. As a consequence of
the same principle, even if G can thus be obtained as an analytical expression from U(S,
V, &) by the use of the above relation, the result is not a fundamental equation because
G(S, V, &) does not allow the dependent variables to be calculated. They can only be
calculated from G as G(T, P, &) through S = —(0G/0T)p s and V = (0G/0P)r¢. It is
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thus necessary first to replace S and V' by 7and —P as a new set of independent variables,
which is seldom possible to do analytically. If that replacement is not done, then some
information has been lost in the calculation of G from U.

It should again be emphasized that an expression for a characteristic state function
will be a fundamental equation only if expressed as a function of its natural variables.

Exercise 2.1

Show that G = (3[H/S]/3[1/S])p.

Hint

Evidently, no internal reaction is considered. The natural variables of H are S and P It
should thus be possible to express G in terms of H and its derivatives.

Solution

Without any internal reaction we have for a closed system from Eq. (1.64): dH = T'dS +
VdP; T =(H/3S)p.

We get (A[H/S]/0[1/SD)p = H+ (1/S)OH/3[1/S)p = H— S@H/3S)p = U +
PV —ST =G.

Internal variables at equilibrium

We have already emphasized that & is a dependent variable if the system is to remain
in internal equilibrium. Since D = 0 in such a state, the equilibrium value of £ can be
evaluated from a fundamental equation for any one of the characteristic state functions,
for instance U(S, V, &) from Eq. (1.49),

— D =(3U/3)s, = 0. 2.9)

By applying this to the equation for U one obtains a relation for the equilibrium value
of & for the prescribed values of S and V,

E=E£(S, V), (2.10)

where £ has thus become a dependent variable since we now consider states of equi-
librium. Equation (2.10) can be used to eliminate & from the equation for U(S, V, &) to
yield an equation for states of internal equilibrium. This may be inserted in U(S, V, &)
in order to yield

U=U(S,T). 2.11)

It may be of practical importance to calculate the values of various state variables at
equilibrium. That would be straightforward if a fundamental equation under equilibrium
conditions is available. If only a fundamental equation containing & is available, then one
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should first apply the equilibrium condition to find how the equilibrium value of & varies
with the other independent variables. We have just seen how one, in principle, can use that
information to eliminate £ and obtain the wanted fundamental equation. In practice that
may be difficult or even impossible to do analytically. In that case one can evaluate the
corresponding derivative as a function of & from the fundamental equation available and
insert the equilibrium value of £&. We shall now see that this method will give the correct
value.

The proof is based on the equilibrium condition for the relevant characteristic state
function ®(v',v”, ..., &), where v/, v etc. are the natural variables for ® and

i =0 2.12
(%)v“ - ( . )

The subscript v? indicates that all the natural variables v/, v" etc. are kept constant.
Any derivative of the function for equilibrium states with respect to one of the natural
variables, v, can be expressed through derivatives of the initial function containing & as
an independent variable,

9P 9P 9D 9E 9D
<w>v° - (w>v°,é - <¥>va (ﬁ>vc - (ﬁ>v°,$ (213)

when £ has its equilibrium value. The subscript v¢ indicates that all natural variables
except v° are kept constant. This proof depends on the use of Eq. (2.12) which is valid
only when the variables v* that are kept constant are the natural variables of ®. As an

example
1
— 0, 2.14
<3€ )r,v ’ -

because the natural variables of U are S and V. That is why Cyp, the heat capacity at
constant volume, is different when & is frozen-in and when & has time to adjust to
internal equilibrium (see Eq. (1.21)).

Furthermore, it should be emphasized that this method of calculation can only be
applied to the first derivatives of the characteristic state function, and not to higher-order
derivatives, since, in general

ru 0 2.15
sxmaE O 2.15)

Exercise 2.2

A very simple model for the magnetic disordering of a ferromagnetic element gives
the following expression at a constant pressure, AG =&(1 — &)K + RT[§In& +
(1 — &)In(1—&)] where K is a constant and & is the fraction of spins being disordered.
The degree of magnetic disorder varies with 7, & = &(T). Derive an expression for
the contribution to the enthalpy due to magnetic disordering, A H. Then calculate, at
the temperature where £ = 1/4, the corresponding contribution to the heat capacity at
constant P which is defined as ACp = (0AH/3T)p.
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Hint

A magnetic state cannot be frozen-in. £ will always have its equilibrium value. It can
be found from (0AG/9d&)r p = 0, which yields (1 —2£§)K + RT In[§/(1 —&)] = 0.
Unfortunately, this does not give & as an analytical function of 7'and we cannot replace &
by Tin AG. Thus, it is convenient to make use of the fact that (0 AG/0&)r p = 0 at equi-
librium, which gives —AS = (0AG/dT)p = (0AG/dT)p ¢ according to Eq. (2.13).
We can then evaluate AH from AG + T AS.

Solution

AS = —(0AG/T)pe = —R[EInE + (1 —&)In(1 —&); AH =AG+TAS =
(1 = &K + RT[EInE + (1 — §)In(1 — §)] — RT[EIn& + (1 — §)In(l — §)] =
E(1-8)K; (0AH/0T)pe = 0. It is evident that ACp cannot be evaluated in this
way. The reason is that (0AH/0&)r p # 0. The natural variables for / are not T"and P
but S and P. Thus, we must use the basic form of Eq. (2.13), ACp = (0AH/3T)p =
(0AH/dT)p s + (0AH/3E)7r p(3E/0T)p.

From the relation between & and 7' at equilibrium, given in the hint, we get:
3T/38)p = —(K/R)~2/In[§/(1 — &)] — (1 — 25)[1/& + 1/(1 — )]/(n[&/(1 —
O ACp = 0+ (1 — 26)KR/K (2/In[£/(1 — §)] + (1 — 2€)/6(1 — &)(In[&/
a- 5)])2} = 1.29R for & = 1/4.

Equations of state

If a characteristic state function for a particular substance is given with a different set of
variables than the natural one, then it describes some of the properties but not all of them.
Such an equation is often regarded as a state equation and not a fundamental equation.
As an example,

U =U(T, P)

is often called the caloric equation of state. Some of the quantities which are usually
regarded as variables may also be represented with an equation between other variables,
for instance.

V = V(T, P).

This is sometimes called the thermal equation of state. The practical importance of
some state equations stems from the fact that they can be evaluated fairly directly
from measurable quantities and can thus be used to rationalize the results of mea-
surements on a particular substance. As an example, the derivatives of J with respect
to 7 and P can be obtained by measuring the thermal expansivity and the isothermal
compressibility, respectively. It is much more laborious to evaluate the fundamental
equation for a substance.
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A major problem in the evaluation of the fundamental equation or an equation of state
is the choice of mathematical form. The form is not specified by thermodynamics but
must be chosen from a knowledge of the physical character of the particular substance
under consideration. A considerable part of the present text will be concerned with the
modelling of the fundamental equation for various types of substances.

Exercise 2.3

An ideal classical gas is defined by two equations of state. For one mole, they are PV =
RT and U = A + BT where A and B are two constants. Try to derive a fundamental
equation.

Hint

Try to find F(T, V). Use U = F+ TS =F — T(0F/dT)y which yields (0U/aT)y =
—T(3*F/dT?*)y. Alsouse P = —(3F/3V)r.

Solution

(3’F/0T*)y = —(U/dT)y)T = B/T.

Integration yields (0F /0T)y = —BInT + Ky; F = —BTInT + K\T + K>,
where K; and K, are independent of 7 but may depend upon ¥ That dependency is
obtained from RT/V = P = —(0F/dV)y = —=T@OK,/0V)r — (0K,/9V)r.

Thus, (0K,/0V)r =0and (0K, /0V)r = —R/ V. K, is independent of V and K| =
—RInV + K3;.

Weget F=—BTInT — RTInV + K57 + K.

To determine Ky: A+ BT =U=F+TS=F—-T@F/oT), = BT + K,. We
thus find K, = 4. We cannot determine K3 from the information given. Our result
isF=A4 Ks;T — BT InT — RT In V which is a fundamental equation, F(T, V). We
can also derive the Gibbs energy G = F + PV = F — V(0F/dV); = F + RT but
in order to have a fundamental equation in G we must obtain G(7, P) by replacing
V with P and T which is possible in the present case where V' = RT/P. We thus get
G=A+(K;+R—RInR)T —(B+R)TInT+ RTInP.

Experimental conditions

By experimental conditions we here mean the way an experiment is controlled from the
outside. It primarily concerns variables which we may regard as external. Let us first
consider the pair of conjugate variables —P and V Either one of them can be controlled
from the outside without any knowledge of the properties of the system. In the pair
of conjugate variables 7 and S, one can control the value of 7 from the outside but the
control of Srequires knowledge of the properties of the system or extremely slow changes.
In practice, it may even be difficult to keep S constant when another variable is changed.
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On the other hand, one can control the change in two other state variables, U and H, by
controlling the heat flow

dU = dQ — PdV (2.16)
dH = dU + d(PV) = dQ + VdP. 2.17)

For some isothermal processes dQ/d¢ is independent of the extent of the process, e.g.
melting of a pure substance. It is then convenient to define £ as the amount of melt formed,
expressed in moles, and the heat of reaction per mole under constant P is obtained as

1
2_[(22 _ (22
N‘Z(aé)f,Pdg (as>m' e

A negative value implies that the process gives off heat to the surroundings under isother-
mal conditions. Such processes are called exothermic. Processes absorbing heat from
the surroundings are called endothermic. Equations (2.16) and (2.17) show that the heat
of reaction may be regarded as the energy or enthalpy of reaction, depending on whether
V or P is kept constant. It should be noted that the definition of heat of reaction, which
is based on treating Q in the first law as positive when the system receives heat from the
surroundings, results in the heat of reaction being negative when heat is ‘generated’ by
the reaction, i.e. given off. That is opposite to common sense but may be accepted for
the sake of consistency.

Of course, Q itself is not a state variable, because it does not concern the system itself
but its interaction with another system, usually the so-called surroundings. An important
experimental technique is to keep the system thermally insulated from the surroundings,
i.e. to make dQ = 0, which is called adiabatic conditions. Experimental conditions
under which various state variables are kept constant are often given special names,

constant P isobaric
constant V' isochoric
constant 7' isothermal
constant P and T isobarothermal
constant H isenthalpic
constant § isentropic
constant U isoenergetic
constant composition isoplethal
constant potential equipotential

From the above equations for dU and dH, it is evident that an isenthalpic reaction
can be accomplished under a combination of isobaric and adiabatic conditions and an
isoenergetic reaction can be realized under a combination of isochoric and adiabatic
conditions.

Let us now turn to the internal variables, which we have represented by the general
symbol &. At equilibrium & has reached a value where the driving force for its change,
D, is zero. If the conditions are changed very slowly by an action from the outside, &
may vary slowly but all the time be very close to its momentary equilibrium value. In
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Section 1.8 we have already concluded that D is then very low and the internal entropy
production,

dipS = D&/ T, (2.19)

is very low. In the limit, one talks about a reversible reaction where di,.S = 0. In view of
the relation

TdS = dQ + Dd, (2.20)

we see that a reversible reaction, D = 0, which is carried out under adiabatic conditions,
dQ = 0, is isentropic. By examining the combined law in the variables 7" and V" we see
that a reversible reaction, which is carried out under isothermal and isochoric conditions,
takes place under constant F If it is carried out under isothermal and isobaric conditions,
it takes place under constant G. It is usual to consider such conditions and they may be
called isobarothermal conditions.

The heat flow into a system on heating is often studied experimentally under con-
ditions that may not approach reversible ones. The heat capacity is defined as follows,
independent of the reversible or irreversible character of the process.

C =dQydr. (2.21)
For isochoric conditions
U
Cy=\|— (2.22)
oT /

because dU is always equal to dQ — PdV according to the first law. For isobaric condi-

tions we obtain
Cp = of (2.23)
P=\ar ), '

because dH is always equal to dQ + V'd P according to the first law.

We have already seen that for heat capacity the result will be different if £ is kept at a
constant value or is allowed to be adjusted to its equilibrium value which varies with 7" In
many experiments with molecular species, their amounts are frozen-in at reasonably low
temperatures and £ is thus kept constant. At higher temperatures, the amounts may be
adjusted by molecular reactions and £ may thus be adjusted to its equilibrium value. When
discussing Cp and Cy it may sometimes be wise to specify the conditions regarding &.
Usually it is assumed that the & values for all possible internal processes are adjusted to
their equilibrium values but it is not unusual to consider some process as frozen-in.

Exercise 2.4

The isothermal compressibility «7 is defined as —(d V' /d P)r/ V', where the derivative is
evaluated under reversible, isothermal conditions, i.e. a very slow compression, D = 0.
Show a similar way of defining the adiabatic compressibility.
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Hint

Suppose the adiabatic compression is so rapid that there can be no internal process, i.e.
d¢ =0.

Solution

The second law gives 7dS = dQ + Dd£ and both terms are now zero. We thus have
dS = 0 and can define the adiabatic compressibility as —(d V' /d P)s/ V. This is why this
quantity is usually denoted by «s. Note that this is justified only if the compression is
much faster than all internal reactions, including heat conduction.

Notation for partial derivatives

Since there are many alternative sets of independent variables it is necessary to indicate
which variables are to be kept constant in the evaluation of a particular partial derivative.
In order to simplify the notation for characteristic state functions, we can omit this infor-
mation when we use the natural variables, i.e. the particular set of independent variables
characteristic of the state function under consideration. Since G is the characteristic state
function for 7, P we could then write 0G /9T instead of (0G /9 T') p. Furthermore, we may
introduce a shorthand notation for these derivatives, say Gr. Second-order derivatives
can be denoted by two subscripts and G 7p would thus mean

o= (29)), (G (09) ) o e
ar \oP),),  \apP\o7),),

Full information must be given as soon as a set of variables, different from the natural
one, is used.

The shorthand notation can be used for frozen-in conditions, d¢ = 0, and for equilib-
rium conditions where £ is regarded as a dependent variable. When there is any doubt
as to what conditions are considered, such information should be given.

Exercise 2.5

How should Hyr be interpreted?

Hint
Study the combined law in the form dH = 7dS + VdP — Dd§.

Solution

The natural variables of H are S and P Thus Hyr is an illegal notation because 7 is not
one of the natural variables of H. We conclude that H7r should not be used.



38

2.6

Manipulation of thermodynamic quantities

Use of various derivatives

Of course, Cp and Cy can both be related to any one of the characteristic state functions
but in each case a certain choice gives a shorter derivation. Cp is defined with 7 and
P as independent variables and we should thus use G, which has 7 and P as its natural
variables. The fundamental equation G = G(T, P) gives S = —(0G/dT)p and thus

H(T,P)=G+TS=G—-T0G/dT)p = (@[G/T1/3[1/T])r (2.25)
Cp=@H/dT)p = —T(0*G/aT*)p = T(3S/3T)p. (2.26)

For C we should use F(T, V') and, since S = —(d F/dT)y, we find in an analogous way
Cy =@U/dT)y = —T(3*F/T?)y = T(3S/dT)y. (2.27)

However, we may wish to compare the two heat capacities and must then be prepared to
derive both from the same characteristic state function, say G. For Cp we already have
an expression — 7' Gyr, and Cp will now be derived from U through G as a function of
Tand P

U=G+TS—PV=G—-TGr — PGp (2.28)
dU = (Gy — Gy — TGrr — PGpr)dT + (Gp — TGyp — Gp — PGpp)dP
= —(T'Grr+ PGpr)dT — (T'Grp + PGpp)dP. (2.29)

However, in order to evaluate C which is equal to (dU/d7T); we must know U as a
function of Tand Vinstead of 7’and P We need a relation between dV, d7'and dP. Starting
with V' = (0G/dP)r = Gp we obtain

dV = GprdT + GppdP (2.30)
dP = dV/Gpp — GprdT/ Gp. 231)

This gives dP as a function of dV and d7" which can be inserted in the above equation
dU = —(T'Grr + PGpr)dT — (TGrp + PGpp)(dV /Gpp — GprdT / Gpp). (2.32)
Remembering that G pr is identical to G 7p, we thus obtain

Cy = @U/dT)y = —TGrr — PGrp + T(G1p)*/Gpp + PGrp
= T(Grp)?/Gpp — TGrp (2.33)

so that
Cy = Cp + T(Grp)*/ Gpp. (2.34)

Using the same method we can derive an expression for any quantity in terms of the
derivatives of G with respect to 7 and P
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It should be pointed out that, by tradition, one instead relates various quantities in
terms of the following three quantities which are directly measurable.

Heat capacity at constant pressure Cp = (0H/9T)p = —T Gy (2.35)
Thermal expansivity « = (0V/3T)p/V = Grp/Gp (2.36)
Isothermal compressibility k7 = —(0V/dP)r/V = —Gpp/Gp. (2.37)

These three quantities are thus closely related to the three second-order derivatives G,
Grp and Gpp. The two schemes of relating quantities can easily be translated into each
other. Itis interesting to note that through experimental information on the three quantities
Cp, o, and k7 one has information on all the second-order derivatives of G.

Together, they thus form a good basis for an evaluation of the fundamental equation
G(T, P).

Exercise 2.6

Derive an expression for Cy for a substance with G =a +bT +cTInT +dT?* +
eP?+ fTP + gP>.

Hint

Use either one of the equations given for C but remember first to make sure that the
proper variables are used.

Solution

Letususe Cy = T(3S/0T)y but then we must evaluate S(7', V') from G. First, we get
—S(T,P)y=0G/oT)p=b+c+cInT +2dT + fP.

In order to replace P by V we need V =(0G/dP)r = e+ fT + 2gP, which
gives—S =b+c+clnT +2dT + f(V —e — fT)/2g; Cyp=T@0S/0T)y =
—T(c/T +2d — f*/2g) = —c — T(2d — f?*/29).

Exercise 2.7

Show how one can calculate the heat absorption on reversible isothermal compression
from easily measured quantities.

Hint

Since T'and P are most easily controlled experimentally, we should use these variables. In
Exercise 1.7 we obtained the result O = 71(S, — S;) which could be very convenient but
only if the properties of the substance have already been evaluated from the experimental
information
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Solution

Under reversible, isothermal conditions: dQ = TdS = T(3S/9P)rdP = —T(3*°G/
ATIP)AP = —T(dV/dT)pdP = —TVadP; Q= —T[ VadP, where a = (3V/
aT)p/ V.

Comparison between C, and Cp»

Let us now examine the relation between Cy and Cp in more detail. It is usually given in
the following form

Cp = Cy(l + yaT), (2.38)

where y is a dimensionless quantity called Griineisen’s constant. By comparison with
the relation between Cy and Cp given by Eq. (2.35) we can express y in terms of the
directly measurable quantities

y = —(Grp)’/aCyGpp = Va/irCy, (2.39)

where k7 and Cjy are both positive and, with few exceptions, « is also positive and it
is never strongly negative. The y quantity often has a value of about 2. Note that Cp is
always larger than Cy, independent of the sign of «, because y« is equal to Va? /krCy,
which is always positive.

The quantity y can be expressed in many ways, some of which are given here without
proof

1 GpGrp VvV Fy ¥V <as> (8P
Y = ) =V
T

_ .o _V fw_ 7 —) . (240
T GTTGPP - G%"P T FTT CV v aU)V

In all these forms y is proportional to ¥, which in turn varies with 7'if P is kept constant. It
is evident that one cannot discuss how y for a particular substance varies with 7 without
specifying if P or V' is kept constant. If Cy(T) is evaluated from Cp(7T) using values
of y and o measured at 1 bar, then the resulting values hold for different volumes at
different temperatures. Cy may be regarded either as a function of 7', V" or 7', P and it is
evident that the functions Cy (7, V) and Cy (T, Py) are different. A comparison of the
two functions, evaluated from Cp(7, Py) for tungsten is given in Fig. 2.1. It should be
emphasized that all other quantities, such as « and k7, can also be treated as functions
ofeither 7, Vor T, P.

Exercise 2.8

Express Frr and Frp in terms of Gy and Grp. Then show that the second and third
members of Eq. (2.40) actually are equal.

Hint
FTI—SIGTal’ldVIGp.
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Figure 2.1 The heat capacity of tungsten evaluated in three different ways. Even though Cy is
defined as the heat capacity at constant V, it may be regarded as a function of 7, Vor 7, P.

At each temperature Cy(7, Py) is evaluated at the volume given by the actual temperature
and a selected constant pressure Py.

Solution

In order to change from variables 7" and P to 7 and V, we calculate from V' = Gp;
dV = GprdT + GppdP; dP =dV/Gpp — GprdV /G pp.

From the hint: dFy = FppdT + FrpdV = GrpdT 4+ GrpdP = (Grp — G%"P/
Gpp)dT + G7pdV /G pp.

Compare terms in these expressions: Fyr = Gp — GZTP/ Gpp; Fry = Grp/Gpp.

Third member: (VGTP/GPP)/T(GTT — G%"P/GPP) = GPGTP/T(GTTGPP — G%"P)’
which is the second member.

Change of independent variables

One often wants to change the set of independent variables. An example was given in
Section 2.6 where C was first given as (dU/dT')y and was then evaluated as a function
ofthe derivatives of G with respect to 7’and P Such changes can be made by the following
automatic procedure, which is based upon the properties of Jacobians. It is here given
without mathematical proof. We start by a definition of the Jacobian
du ou
Ou,v) _(ox 0y 2.41)
8(x, y) A% ov
ax  dy
It should be emphasized that the derivatives in the determinant are partial derivatives,
either under constant y or x. It obeys the following rule

du,v)  9u,v) [o(x,y)
a(x, y) n ar,s) [ o, s)

We can thus introduce r and s as new independent variables instead of x and y.

(2.42)
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The derivative of a thermodynamic quantity can be expressed by a Jacobian because

ou Jdu Su o
a(u, — — a
@) _ gx ‘;y —|ox B =<_”> , (2.43)
8(x’y) _y _y 0 1 dx y

dx dy

and the new independent variables, » and s, can thus be introduced in the following way

ou ou ox ox
(a_u> Ay dw.y) [dx.y) | or as/la a5
ax/, o(x,y) O(rs) /[ o(rs) dy dy dy dy
ar as ar as

(2.44)
It should be realized that du/dx actually means (du/dx), and du/dr means (du/0r),.

This equation contains the following relations as special cases. They can of course be
proved in a much simpler way:

ou ax

<ax)y:1/ <au)y (24
(_8”> :_<_3y) /<_3y> . (2.46)
ox /, ax /, u/,

Exercise 2.9

Express (0G/dT)y in terms of functions usually measured and tabulated.
Hint

Most measurements are made by controlling 7'and P. Change to these variables. Remem-
ber that dx /dr and dx/ds in Eq. (2.44) mean (dx/9r), and (dx/9s),.

/

= (3G/dT)p — (3G/dP)r(3V/dT)p/(dV/IP)r = —S + Vakr.

Solution

I 3G/dT 3G/dP

aV/aT aV/oP

AT/dT 9T/dP
aV/aT V)P

Exercise 2.10

A condensed phase is compressed adiabatically and reversibly from a pressure 0 to P.
Derive an equation for the temperature change in terms of easily measured quantities.
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Hint

Adiabatic and reversible conditions are also isentropic. We want (d7/d P)s. Change the
variables to 7 and P.

Solution

aT/dT T/P
3S/dT S/dP

aP/dT dP/OP

OT/8P)s = 9S/0T 8S/9P

/

= —(38/3P)r/(3S/3T)p = —G1p/Grr = —Va/(—Cp/T) = TVa/Cp.

We thus get d7 = (T Va/Cp)dP. The result does not depend on the compressibility
which may seem surprising. How could there be compression caused heating if the
phase is incompressible? The answer is that the thermal expansivity, «, is zero if the
compressibility is zero.

Maxwell relations

Some partial derivatives can be transformed in a very special way. The requirement is
that the variable to be kept constant is a conjugate variable to one of the numerators in
the derivative. The method may be illustrated by the following example:

dG = —SdT + VdP; —S=(3G/aT)p; V =(3G/dP)T (2.47)

v\ _ (80G/oP)r\ G  9*G a(aG/aT)P> . (8S
(ﬁ),ﬁ( aT >P_8P8T_8T8P_< P T__<ﬁ>r
(2.48)

or by the shorthand notation

v aS
(ar),, e <8P>T (249

The relations obtained in this way are called Maxwell relations. We can use any form of
the combined law and thus obtain a large number of such relations. It should be noticed
that all derivatives related by Maxwell relations are constructed in such a way that the
variable to be kept constant is conjugate to the quantity in the numerator but the relations
may be inverted, of course.

Exercise 2.11

Transform (01 /9T )¢ using a Maxwell relation.
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Hint

Use the inverse quantity, (07 /9 V)¢ in order to place the conjugate quantities, 7’and S, in
the right positions. Use the characteristic state function with " and S as natural variables,
ie. U

Solution

3V /3aT)s = 1/(dT/3V)s = 1/(3*U/aV3S) = —1/(dP/3S)y = —(3S/3P)y.

Exercise 2.12

Prove the identity T(92P/3T?)y = (3Cy/dV)r.

Hint

Since T'and V are the variables, it is convenient to base the solution on F and its derivatives.
dF = —SdT — PdV gives the following Maxwell relation: (0.S/0V ), = (@ P/3T)y.
Also,use Cy =T (05/9V), from Eq. (2.27).

Solution

Using the Maxwell relation we get T(32P/3T?%), = T(d(dP/3T)y/dT)y = T(3(3S/
aV)r/dT)y = Td>S/dVAT. From Cy = T(dS/dT)y we get (dCy/dV)r = Td*S/
dTdV which is the same result.
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Chemical potential

In Chapter 1 we were concerned mainly with closed systems but have also considered
the addition of more matter through terms with dN. Without explicitly stating it, it was
presumed that the properties of the system were not affected by this addition. That would
hold for a one-component system and also if the added matter has the same composition as
the initial system. We shall now take changes of composition into account by generalizing
GndN to X u;dN; where the subscript i identifies different components.

dU = TdS — PdV + Tu:dN; — Ddt. 3.1)

The u; quantity is a potential just like 7, —P and —D. It was first introduced by Gibbs [3]
and is called chemical potential. Its close relation to Gy, will be explained in Section 4. 1.
w; and N; are conjugate variables and the terms p;dN; may thus be included in £ Y2d X? in
the generalized form of the combined law, introduced in Section 1.9. For any component
j of the system the chemical potential may be defined from Eq. (3.1) as

u; = @U/IN))s v n.&- (3.2)

The subscript ‘N, indicates that all N; are kept constant except for N;. At equilibrium
with respect to the internal process, where & is a dependent variable, we have

w; = @U/IN;)s v, (3.3)

The summation ¥ u;dN; is taken over all components in a chosen set of independent
components. In chemical thermodynamics one often takes the summation over all molec-
ular species but then one must also define a set of independent reactions. That procedure
is less general and will be avoided in the present text.

From the new, more general form of the combined law introduced above, it is evident
that the number of external variables which can be varied independently of each other
under equilibrium conditions is ¢ + 2, if there are ¢ independent components. In general,
w; is a function of S, V, N; and & and we can write

or under conditions of internal equilibrium

1wy = (S, V. Ny, (3.5)
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This is another equation of state but it is not a fundamental equation and, thus, it does
not contain all the properties.

When considering systems with variable composition it is useful to define many new
quantities. A large part of the present chapter is devoted to discussions of such quantities.

Exercise 3.1

Show how 1 ; can be evaluated from a derivative of S instead of U.

Hint

Use the entropy scheme.

Solution

—dS = (=1/T)dU + (—P/T)AV + £(u:/ T)AN; — (D/ T)d¢ yields:
OS/ON)u vy Nne =—mj/T.

Molar and integral quantities

Let us consider a homogeneous system at equilibrium and define a part of it as a subsys-
tem. The size of the subsystem may be expressed by the value of any extensive variable.
The most natural way may be to use the content of matter because from the experimental
point of view it is easier to control the content of matter than the volume or entropy. One
usually uses the total content of matter, N, defined by

N =%N,. (3.6)

Sometimes we shall use the content of a particular component, N;, instead of the total
content of matter, N.

As a measure of the content of matter Gibbs used the mass, but today it is more
common to use the number of atoms or species. We shall use the latter method but it
should be emphasized that it is often necessary to specify what species are considered,
which Gibbs did not have to do. On the other hand, thermodynamic models of special
kinds of substances are often based upon considerations of atoms and it is then convenient
to interpret N and N; as the number of atoms (or groups of atoms). The number is usually
expressed in units of moles, i.e. approximately 6 x 1073 pieces (Avogadro’s number, N*).

The volume V is proportional to N in a homogeneous system and we may define a
new quantity, the molar volume

Ve = V/N. (3.7

This quantity has a defined value at each point of a system. It is thus an intensive
variable like 7, —P and u,;. However, its properties are quite different, a fact which
becomes evident if we consider a system consisting of more than one phase, i.e. regions
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exhibiting different properties. In each homogeneous phase V;, has a different, constant
value but 7', — P and u; must have the same value in the whole system at equilibrium
(with one exception which we shall deal with later). This is the property of a potential as
noted in Section 1.10 and we may conclude that V7, is not a potential. It is very important
to distinguish between two kinds of intensive variables, potentials and molar quantities.
One should try to avoid using the words ‘intensive variable’ and when using them one
should specify what kind one is considering.

In the same way we may define the molar quantity for any extensive property obeying
the law of additivity, e.g. the molar content of component i. Usually, it is denoted by x;
and is called mole fraction

x; = N;/N. (3.8)

However, it is sometimes essential to stress its close relation to other molar quantities.
‘Molar content’ is thus preferable.

The molar quantities have been defined for a homogeneous system or for a homo-
geneous part of a system. The definition may very well be extended to the whole of a
system with more than one phase but such a molar quantity is not strictly an intensive
quantity and may be regarded as an average of an intensive quantity.

Let us return to a homogeneous system at equilibrium, i.e. with D = 0, and define
a very small subsystem enclosed inside an imaginary wall. We shall let the subsystem
grow in size by expanding the wall but without making any real changes in the system,
i.e. without changing P, T or composition. For this process we have

ds = SudN (3.9)
dV = VyudN (3.10)
dN; = x;dN. 3.11)

However, d¢ = 0 because no internal process is going on. We may thus evaluate the
change in U as follows

dU = TdS — PV + Sp:dN; = (TSm — P Vi + Zpix;)dN. (3.12)

The value of the expression in parentheses is constant. By integrating over the expan-
sion we obtain

U= (TSn— PV + Xpix))N =TS — PV + Zu; N; (3.13)
U/N = Up = TSpn — PV + Zpix;. (3.14)

Using the definition of Gibbs energy in Section 1.11 we get
G=U—-TS+ PV =2XZu;N;. (3.15)

G, which was introduced as a notation for Hy,, — 7'S,, in Eq. (1.48), is thus identical to
the molar Gibbs energy,

G = Up — TSm+ PV = Hy — T Sn. (3.16)
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In Section 1.11 we did not recognize changes in composition. For that case Eqs (3.15)
and (3.16) would yield

G = Zu;N; (3.17)
Gm = Z/L,’X,‘. (318)

It may be noted that for a pure substance x; = 1 and G, will thus be equal to the chemical
potential of the substance.

Extensive quantities like U are sometimes called integral quantities in order to be
distinguished from molar quantities. When defining N as the mass, as Gibbs did, one
usually calls the quantities, obtained by dividing with N, specific instead of molar. Most
of the thermodynamic relations are valid independent of how N is defined.

In many cases it is convenient to consider one mole of formula units or groups of
atoms and the molar quantities are then defined by dividing with the number of formula
units or groups of atoms, expressed as moles, i.e. units of approximately 6 x 10?3,

It can be easily shown that all the relations between integral quantities also apply to
molar quantities, e.g.

< _1S_—1 G =1 (INGn B G _ [3Gn
"N N\oT),, N T Jpn T )py T )p.

(3.19)

because all x; are constant if all N; are kept constant.

Exercise 3.2

Cuprous oxide has a density of 6000 kg/m>. Give its molar volume in two different ways
and also its specific volume.

Hint
The atomic mass is for Cu 63.546 and for O 15.9994.

Solution

The mass of one mole of the formula unit Cu,O is 143.09 g or 0.14309 kg and the
molar volume is thus 0.14309/6000 = 24 x 10~° m? per mole of Cu,O or 8 x 107° m?3
per mole of atoms, i.e. moles of Cu70033. The specific volume is 1/6000 = 167 x
10~° m?/kg, whether one considers Cu,O or Cug 6700 33.

More about characteristic state functions

We have seen that

U=TS—PV+ SN (3.20)
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in a multicomponent system. It is evident that we get the following relation for the Gibbs
energy

G=U-TS+ PV =2ZuN;. (3.21)

The relations between the characteristic state functions can be summarized as follows
YuiNy=G=H-TS=U+PV -TS=F+ PV (3.22)
Yuixi =G =Hyn =TSy =Un+ PVyy — TS = Fn + PV (3.23)

In Section 1.11 we discussed various forms of the combined law obtained by changing
from S to 7 and from V to P in the set of independent variables. We can now generalize
them as follows:

dU = TdS — PdV + Su;dN; — Ddé (3.24)
d(U — TS) = dF = —SdT — PdV + Lp:dN; — Dd& (3.25)
d(U + PV)=dH = TdS + VdP + Su;dN; — Ddg (3.26)

dU—-TS+ PV)=dG = —S8dT + VdP + £ u;dN; — DdE. (3.27)

It is evident that the chemical potentials for a substance can be evaluated from any
one of these characteristic state functions if it is given in terms of its natural variables

wj = @U/IN)svn.e = OF/ON) v N e = (0H/IN))s pn.e =(0G/IN;)T PN,k
(3.28)

We may consider & as a dependent variable under equilibrium conditions but, in view
of Section 2.2, that fact does not change the value of a partial derivative. We could thus
omit & and write

w; =@U/ON))sy.n, =@F/ON;)ryn, =(©@H/IN;)s pn, =(@G/IN;)r pN,-
(3.29)

The remaining extensive variables, /V;, can also be replaced by their conjugate potentials,
Wi, and we can get four new forms of the combined law

dlU — Zu;N))=d(TS — PV)=TdS — PdV — X N;du; — Dd& (3.30)
dU—-TS—2u;N;) =d(—PV)=—-8dT — PdV — £ N;du; — Dd¢ (3.31)

dlU - PV —Zu;N;))=dTS)=T17dS+ VdP — X N;du; — Dd& (3.32)
dU—-TS+ PV —2u;N;)=0=—-8dT + VdP — ¥ N;du; — Dd&. (3.33)

The first three forms define new characteristic state functions. The fourth form
is unique because it defines a function which is identically equal to zero since
U—TS— PV = Zu;N;.Forreversible conditions, D = 0, or in the absence of internal
processes, dé = 0, it yields a direct relation between the ¢ + 2 potentials, the so-called

Gibbs—Duhem relation. Consequently, one of the potentials is no longer an independent
variable.

SdT — VdP + £N;du; = 0. (3.34)
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This relation is often given in terms of molar quantities
SmdT — VipndP + Zx;dp; =0 (3.35)

For a pure substance x; = 1 and the chemical potential is identical to the molar Gibbs
energy, G, as noted after Eq. (3.18). The Gibbs—Duhem relation thus simplifies to

SmdT — VindP + dGy, = 0. (3.36)

Equation (3.31) gives a characteristic state function which is equal to (—P /) and is
particularly interesting in statistical thermodynamics. This characteristic state function
is sometimes denoted by €2 and is called ‘grand potential’. It can be evaluated from the
so-called grand partition function, &,

Q=—kTInE. (3.37)

The grand partition function is defined for a so-called grand canonical ensemble for which
T, V and p; are the independent variables and Q2 = Q(7, V, u;). It is sometimes useful
in calculations of equilibrium states because it may yield relatively simple relationships.
The fact that it applies under constant values of 1;, which may be difficult to control
experimentally, does not limit its usefulness in such calculations.

In this connection it may be mentioned that the ordinary partition function Z is defined
for an ordinary canonical ensemble for which 7, V" and N; are the independent variables.
It can be used to evaluate the Helmholtz energy

F=—kTInZ. (3.38)

Furthermore, for a microcanonical ensemble one keeps U, V" and N; constant and can
evaluate S(U, V, N;).

The remaining two new forms of the combined law and their characteristic state
functions have not found much direct use. However, in the next section they will
prove useful in some thermodynamic derivations. It should finally be emphasized that a
large number of additional forms may be derived by selecting some of the N; and some
of the u; as independent variables. We shall discuss one such example in Section 14.5.

Exercise 3.3

Prove the well-known equality (0G/9Na)r.p.n, = (3F/dNa)r,v.n, from Eq. (3.29) by
changing variables using Jacobians.

Hint

T and all N; are not to be changed. Simplify the notation by omitting them from the
subscripts. Change from N, P to Na, V. Then express all derivatives of G in terms of
Fusing P=—(0F/0V)rn, =—Fyand G=F + PV =F — VFy.
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Solution

3G/INs 3G/aV
dP/INy 9P/IV

INA/ONs ONA/OV
dP/INy  AP/AV

(22, - /

= (0G/ONA)y — (3G /V)n,(OP/ONA)y /(P /OV )N,

But, (BG/aNA)V = FNA — VFVNA; (8G/8V)NA = FV —_ FV — VFVV = —VFVV;
(0P/ONA)y = —Fyyn,; (0P/3V)y, = —Fyyp. Inserting these we get (0G/0NA)p =
(Fny = VEyn, — (=VFEyy)(—=Fyn)/(=Fyy) = Fy, = (0F/ONA)y.

Additivity of extensive quantities. Free energy and exergy

The extensive quantities that were primarily defined in Chapter 1 are additive with no
restrictions. The values of J/ U, S and N of a composite system are always equal to the
sum of the values for the subsystems. This is also true for the contents of all components
N;.InEqs (3.31) and (3.32) we defined quantities that are equal to —PV and 7S. They are
also extensive but it is evident that they are additive only if the potentials 2 and 7 have the
same values in the subsystems. The same is true for £ A and G because they are defined
by subtracting 7S or adding PV. As a consequence, it was mentioned in Section 1.12
that one cannot compare Gibbs energy values for states at different temperatures.

The problem can sometimes be solved by accepting that 7 and P in the definition
G =U — TS+ PV are the values in the surroundings. Then one can add the Gibbs
energy for two subsystems that are kept at different 7' and P,

G+ Gy =Ui(Th, P1) — TS(Th, P)+ PVi(Ty, P) + Ux(T, P»)
— TS(Ts, P,)+ PVy(Th, Py) = U(Th, P)+ Ux(Tn, o) — T[Si(Ty, P))
+ S2(Ta, P)]+ PIVi(Th, P)+ VaTa, P)] = Uiy = TS12+ PVigp = Gija.
(3.39)

because U, S and V are all additive. It should thus be realized that one could add Gibbs
energies of two subsystems at different 7" or P from tabulated values only by first breaking
them down into U, S and V values. Then one must decide on the relevant 7" and P for the
whole system. It would normally be 7'and P of the surroundings which appears natural if
only one subsystem has contact with the surroundings and the other one is an inclusion.
If each subsystem has its own surroundings, then there is probably no good reason to try
to compare or add their G values.

A particularly interesting case is found when a homogeneous system has different 7 or
P than the surroundings. One may then be interested in predicting the maximum amount
of work that can be extracted from the system when it moves towards equilibrium with
the surroundings. Since the surroundings are always regarded as a homogeneous, infinite
reservoir, its 7’and P are constant and a process under constant 7'and P should of course
be treated with the Gibbs energy function. Equation (3.27) gives, if there is no exchange
of matter,

dG = —SdT + VdP + Su;dN; — DdE = —Ddt. (3.40)
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For a spontaneous process Dd¢ is positive and Dd§/ T is equal to the internal production
of entropy. If there were a mechanism by which one could extract another kind of work
than through a volume change, PdV, then it should have been included in W in the first
definition of the first law, Eqs (1.1) and (1.2), and it would have been considered all
through the derivations and appear in Eq. (3.40). Of course, extracted work should be
given with a minus sign. Equation (3.40) would thus have been modified

dG = —dWey — DdE. (3.41)
For a reversible process one obtains
AWexe = —dG;  AWexe = G(initial) — G(final). (3.42)

This gives the maximum work that can be extracted. It is clear that G(final) is evaluated
for T'and P of the surroundings. It is also evident that G(initial) must be given as

G(lnltlal) = U(Tim Pin) - TS(Tin» Pin) + PV(Tim Pin)v (343)

because any two extensive quantities can only be compared if the law of additivity applies.

The quantity AWy, can be regarded as the part of the energy of the initial system
that is free to be transformed into useful work. That is why Gibbs energy was initially
called Gibbs free energy. If the surroundings are instead a reservoir of constant 7" and
V then one should repeat the derivation starting from the Helmholtz energy and that is
the reason why it was initially called Helmholtz free energy. Often one extracts work by
allowing the system to react with a chemical compound in the surroundings, usually O,
used for burning a fuel. In that case, the appropriate free energy function would be found
by considering a reservoir with constant 7, P and 1o,

d® = d(G — Nopo) = — SAT + VAP + Zu;dN; — Nodpo — AWexe — DdE.
(3.44)
For a reversible process under constant P, 7, N; and o, we find
AWy = G(initial) — G(final) — o[ No(initial) — No(final)], (3.45)

where Nop(final) is the total content of O after the system has received enough O, from
the surroundings to burn the fuel.

It is evident that, what has here been called free energy, must be defined in different
ways depending on the surroundings or on how the system reacts with the surroundings.
In mechanical engineering it is often called exergy.

Various forms of the combined law
In Section 3.3 the discussion was based on the energy scheme, which starts from the
combined law in the form

dU = TdS — PdV + Zu,;dN; — DdéE, (3.46)

where all the independent variables are extensive ones. It defines the following set of
conjugate pairs of variables (7', S), (—P, V') and (u;, N;). However, there are many more
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possibilities to express the combined law in terms of only extensive quantities as inde-
pendent variables. Using the new characteristic state functions, obtained in Section 3.3,
we can change variables in the combined law. For example, let us replace S by
(TS—PV)/T + PV/T, obtaining

dS=d[(TS - PV)/T]+(P/T)dV + Vd(P/T). (3.47)
By inserting this expression we get

dU = TAd[(TS — PV)/T]1+ PdV + TVA(P/T) — PdV + p;dN; — Ddé
= Td[(TS — PV)/T]+ TVAd(P/T)+ Su;dN; — Ddt. (3.48)

By subtracting (P/T) - TV (which is equal to PV) from U, we can form a new charac-
teristic state function with only extensive quantities as independent variables

dU — PV)=d[U — (P/T) - TV]
= Td[(TS — PV)/T]— (P/T)A(TV)+ Su:dN; — Dd&. (3.49)

This form of the combined law defines a new set of conjugate pairs, {7, [(TS —
PV)/TY), (~P/T. TV)and (u;, Ny).

We may instead replace V'by [(PV — T'S)/P + T'S/P] and after some manipulations
we obtain a new characteristic state function with only extensive variables as independent
variables

d(U + TS) = d[U + (T/P) - PS]
— —Pd[(PV — TS)/P]+ (T/P)d(PS) + £:dN; — Ddé. (3.50)

which yields a new set of conjugate pairs.
We may also rearrange the terms in the combined law before introducing new func-
tions. The entropy scheme uses

—dS = —(1/T)dU — (P/T)dV + S(u:/ T)dN; — (D/ T)dt. (3.51)

It immediately defines a new set of conjugate pairs and two more alternatives are obtained
by replacing U or V in the way demonstrated above. One may also rearrange the terms
in the combined law as follows

dV = (T/P)dS — (1/P)dU + S(u;/P)dN; — (D/P)dk. (3.52)

This may be called the volume scheme and it yields three more alternatives. We have
thus obtained the sets of conjugate pairs of variables given in Table 3.1. In each pair the
potential is given first and between them one can formulate a Gibbs—Duhem relation. In
each case the characteristic state function for the extensive variables is given to the left.
We may also define a number of content schemes by the following arrangement of
terms, but they will probably have very limited use and will not be discussed further.

—dN; = (T/pu)dS — (1/pu)dU — (P/p)dV + Z(Mk/uj)de —(D/p;)ds.
k (3.53)
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Table 3.1 Some sets of conjugate pairs of state variables

From the energy scheme

U: TS P,V Wi, N;
U-Pr: T,(S—-PV/T) —P/T, TV Wi, N;
U+ TS: T/P, PS —P,(V-TS/P) u;, N;
From the entropy scheme

~S—PV/T: —T.H —~P,V/T (1i/T). N;
—-S—-U/T: —P/T, H/P —-1/P,PU/T (ni/T), N;
From the volume scheme

V. T/P,S -1/P,U (ui/P), N;
v-u/p:  —YTTU/P —T/P.F/T  (u/P).N;
V+ TS/P: T,S/P —1/P,F (ui/P), N;
Exercise 3.4

Suppose one would like to consider U as an independent variable. What would be its
conjugate potential?

Solution

From the entropy scheme we find —1/ 7 and from the volume scheme —1/ P. Evidently,
the choice depends on what other conjugate pairs one would like to consider at the same
time.

Exercise 3.5

In Sections 9.1 and 10.7 we will find that the two axes in a phase diagram should be
taken from the same set of conjugate pairs. Suppose one would like to use U, F or G as
one of the axes in a unary system. How should the other axis be chosen?

Solution

From the entropy scheme we find that U could be combined with —P /T (which may
not be very practical) or V. From the volume scheme we find that U could be combined
with 7/ P (which again may not be very practical) or S. We find F in the volume scheme
only, and it can be combined with 7 or S/ P (which is not very practical). We do not find
G in any scheme except in the form of y; for a unary system.

Calculation of equilibrium

In calculations of equilibrium it is often assumed that the temperature and composition
can be kept constant. Instead of using the basic condition of equilibrium, d;, S = 0, it is
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then more convenient to use D = 0, where D is the driving force for the internal process
and is equal to 7°d;,S/d&. However, D may be evaluated in a large number of ways, e.g.
the following ones, which are based on the energy scheme.

=D = QU/08)s,y.n, = (0F/08)r,y N, = (0H/3E)s, P N,
= (0G/0&)r.p.n, = (02/0&E) 7,y p1;- (3.54)

In fact, any of these methods could be used and they must all give the same answer to
the question whether the system is in equilibrium. The choice simply depends on what
fundamental equation is available. In most cases the Gibbs energy is used because a
fundamental equation of the form G = G(T, P, N;, &) is available.

Suppose one finds that D # 0 then the system is not in equilibrium and one may instead
like to know what state of equilibrium the system would eventually approach, i.e. the
equilibrium value of &£. Then it is essential to know the experimental conditions because
one wants to find a state of equilibrium under the initial values of a particular set of
external variables. Suppose one is going to keep 7 and J constant during the experiment.
Then one would primarily like to use F = F(T, V, N;, ), derive an expression for
—D = (0F/93&)r,v,n, = 0 and solve for the equilibrium value of §.

However, suppose that one has only G = G(T, P, N;, §) but the experimental con-
ditions will keep 7 and V constant. The calculation is then carried out by iteration,
starting with the prescribed 7 value and evaluating the equilibrium value of & from
(0G/9&)r.p. N, = 0 for afirst choice of value for P. Using the equilibrium value of &€ one
can evaluate V' from (G /9 P)r,p,x;,. and compare with the prescribed V' value and then
obtain a better P value by iteration.

Suppose the initial state is known and the experimental conditions are adiabatic,
yielding dU =dQ — PdV =0 or dH =dQ + VdP = 0, depending on whether one
keeps V or P constant. If P were kept constant then A would also be constant and could be
obtained from any fundamental equation. In order then to calculate the equilibrium value
of & one should prefer a function with P and H as independent variables. By rearranging
the terms in dH = 7'dS + VdP — Dd& we find

dS = (—1/T)dH + (V/T)dP + =(w;/ T)dN; — (D/ T)dk. (3.55)

It is evident that S(H, P, N;, &) is the characteristic function for which one should like
to have an equation. If instead another fundamental equation is available, one has to use
iteration as just described.

When a thermodynamic model for a certain kind of system is based on basic physical
properties, it may result in an explicit expression for the grand potential Q(7, V', w;, &)
and not G(T, P, N;, &) or F(T,V, N;, §). The grand potential can then be used to find
the equilibrium under prescribed values of N; by iteration.

Finally, consider an o« + [3 two-phase system where the relative amounts and composi-
tions of the phases can vary but not the content of the whole system. The internal variable
can be defined as £ = N* = N — N®, where N is the total content, but it is not imme-
diately evident how the equilibrium compositions of « and (3 can be related to £&. How-
ever, in a binary system the compositions can be calculated directly from the two-phase
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equilibrium if 7and P of the equilibrium state are known, using G = G(T, P, Nf)and
GEH = GEI(T , P, NiB ). Finally, & can be calculated from a mass balance. In a higher order
system one must use iteration. If instead the equilibrium values of 7" and V" are known,
then the fundamental equation £ = FX(T, V¢, N¥)and Ff = F*¥(T, V8, Niﬁ) would
be of little use because the molar volumes of the phases are not known until P and the
phase compositions have been calculated. One would have to guess the final P value,
carry out a calculation based on G% and G¥ as already described, and finally evaluate the
total volume V" and compare with the required value. By iteration one could eventually
find the P value that gives the correct / value. For the calculation of a phase equilibrium
it is evident that G = G (T, P, Nf) is the most useful fundamental equation for all
experimental conditions.

Exercise 3.6

Examine what would be the most convenient way of calculating a two-phase equilibrium
under given values of 7 and V' in a pure element.

Hint

We have already seen that it is not practical to use F¥ = FX(T, V%) and FP =
FB(T, VB) for a two-phase equilibrium at given 7 and V because V& and V,F are
not defined directly by the experimental conditions.

Solution

Using the molar Gibbs energy for each phase we get for the whole system G(7, P, &) =
EGX(T, P)+ (N — &)GB(T,P) where £ = N* = N — NP. Equilibrium requires that
—D =(0G/d&)r.p = GX(T,P) — GB(T,P) = 0. In this particular case we may thus
calculate P for the two-phase equilibrium at a given T without iteration and without
involving &, which only describes the amounts of the phases. Then we can calculate
Ve =(3G%/3P)rand Vf = (dGP /3 P)7 for these Tand P values. Finally, we calculate
the £ value satisfying V% + (N — £)VE = 1.

Evaluation of the driving force

In the preceding section we discussed the calculation of the equilibrium value of an
internal variable, £, under various conditions. The calculation of the driving force for the
corresponding reaction is simpler because the system does not ‘feel” which variables are
to be kept constant until the reaction is under way. One could use —D = (G /9&)r p y,
as well as any other expression for D. On the other hand, as the reaction gets under way
there will be changes in the variables that are not controlled and the result will depend
upon the experimental conditions. Then one must either use the appropriate fundamental
equation or an iteration technique similar to the one described in the preceding section.
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For example, when using G(7', P, N;, &) for an experiment under constant 7 and ¥, one
canmake a series of calculations along the reaction path by selecting a number of € values.
For each value one can use iteration to evaluate the P value yielding the experimental
value of V' = (0G /9 P)r v, ¢. Using that pair of &, P values one can calculate —D from
(9G/0E)r.p.n,-

There are many cases where one knows the initial and final states for a process but
does not know or is not interested in the ‘reaction path’ in detail. In such cases it may
be interesting to evaluate the total production of entropy due to internal processes

AipS = /dipS = /(D/ T)dE. (3.56)
For isothermal reactions 7 is constant and
AipS = (1/T)/ Ddé. (3.57)

The quantity [ Ddé could be called the integrated driving force but unfortunately it is
often called simply ‘driving force’. It could also be identified with the integrated value
of the ‘loss of work’ discussed in Section 1.7. Anyway, it should only be applied to
isothermal reactions because 7 initially appears in the integrand.

Under constant 7, P and N; we obtain, using the combined law expressed for G,

Ddé = —SdT + VAP + £u;dN; — dG = —dG. (3.58)

Under these conditions, the integrated driving force is thus equal to the decrease in Gibbs
energy,

/Ddg = —AG. (3.59)

Since G is a state function it is evident that AG is here independent of the reaction path
and so is the integrated driving force, as long as the final state is the same. The driving
force D defined by the derivative of G in Eq. (3.54) at any value of £ along the path, i.e.
at any stage of the reaction, depends critically upon the reaction path.

If the reaction occurs under other conditions, the integrated driving force will be
given by the change in the characteristic state function for which the natural variables
are constant during the reaction. For instance, under constant 7, " and composition,
[ Dd§ = —AF. However, suppose G(T, P, N;, &) is the only fundamental equation
available, then one must first find the final equilibrium by iteration, as described in the
preceding section. Then one can use G(7, P, N;, &) to evaluate

fDdg = —AF = —A[G — P(3G/IP)r.n, &) (3.60)

Exercise 3.7

Consider a binary system at constant 7, V, Ng and 4. It is in a metastable state of (3.
Show how one can calculate the integrated driving force for the transformation to a
more stable phase «.
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Hint

Ddé is present in all forms of the combined law. In the present case it is most convenient
to use the form where 7, 7, Ng and up are the independent variables.

Solution

Choose d(—PV)= —S8SdT — PdV — 4+ugdNg — Nadug — Ddé. In our case
d(—PV)=—Dd§; [DdE = [d(PV)=(PV), — (PV) = V(P,— Py). It is evident
that P must increase during the spontaneous transformation. It should be noticed that
the content N, is not constant under these experimental conditions.

Driving force for molecular reactions

Many kinds of system contain aggregates of atoms, e.g. molecules. Even though there
may be reactions between the molecular species (often called ‘chemical reactions’) the
individual molecule often has a long lifetime, not only inside a phase but also with respect
to exchange of matter between phases or between a system and the surroundings.

When studying the rate of a molecular reaction, it may be interesting to evaluate its
driving force. Let the extent of reaction be &, expressed per mole of reaction formula.
The driving force will then be

j
Di—_ <E) __ v (29 VAN S uvl. (361
A& ) 1 p gt — \ON/ Pl dg/ -

1

The reaction coefficients are thus defined as
v/ = dN//dg;. (3.62)
The equilibrium condition for a single process is given by

D=-Y% vu=0. (3.63)

1
As an example, for an ideal gas mixture one can write the chemical potential as a function
of the partial pressure
M = o,l,Ll'+RT11’1Pl'. (364)

By inserting this in the equilibrium condition we get

N(P)g, = exp (— Z(v7i/RT)). (3.65)

This is the law of mass action. The value of the right-hand side is regarded as the
equilibrium constant and may be denoted by K. When the left-hand side is not equal to
K, then the system is not in equilibrium and the driving force for the reaction is

D= - viu; = RT In(K/TI(P)"). (3.66)
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Exercise 3.8

For dilute, condensed solutions one can express the chemical potential with Henry’s law,
wi = °u; + RT In f; + RT Inx;, where x; is the molar content of component i and f; is
the activity coefficient. Show how one can express the equilibrium with a pure compound
having the stoichiometric coefficients v;. Derive an expression for the driving force for
the dissolution of the compound in the solution.

Hint

Suppose the chemical potential of the compound in the other phase is u.. The reaction
would be: compound — Xv;1.

Solution

D =1-°uc — Zvipti = "pe — Zv;°w; — RTIn(T1(f)") — RT In(TT(x;)") =
RT In[exp(AG./RT)/TI( f;)" I1(x;)" ] where A2 G denotes Gibbs energy of formation
of the compound from the elements in their reference states. Of course, one may define
(AG¢/RT)II(f;)" as an equilibrium constant K. From equilibrium, where D = 0, one
would then have K = I1(x;)y; and in general D = RT In(K /T1(x;)").

Evaluation of integrated driving force as function of 7 or P

According to Section 3.7, the integrated driving force for an &« — 3 phase transforma-
tion, which takes place under constant 7, P and V;, should be equalto —AG = G* — GP.
One is sometimes interested in evaluating the variation of —AG with T or P. The fol-
lowing procedure can be used close to equilibrium.

For constant P it is convenient to evaluate the effect of a change of 7 on the relative
stability of the two phases by starting from the following equation, obtained by applying
G = H — TS to both phases under the same 7,

AG(T) = AH — TAS. (3.67)

If the two phases are in equilibrium with each other at 7, for the P value under consid-
eration, we have

0= AH — T,AS. (3.68)

Suppose the difference 7 — T, is so small that AH and AS have practically the same
values at both temperatures. By eliminating AS or A H we obtain

/Ddg =—AG = AH(T —T,)/T, = AS(T — T,). (3.69)

For constant 7 it is convenient to evaluate the effect of a change of P by starting from
the following equation

AG(P) = AF + PAV. (3.70)



60

3.10

Systems with variable composition

By the same procedure we now obtain
/Ddé =—-AG =AF(P — P,)/P, = AV(P, — P). (3.71)

Again, this equation can only be used so close to P, that the variation of AF and AV
with P is negligible.

Exercise 3.9

Consider two phases of pure A, o and L, which are in equilibrium at 7, P,. At T =
T, + AT and P = P, there is a driving force for the transformation o« — L. How much
should P be changed in order to restore the equilibrium? To get a numerical value, use
the ‘typical’ values ASy, = R and AV, = 0.2 x 107% m3/mol.

Hint

The driving forces due to the two changes must eliminate each other.

Solution

AS(T —Ty)+ AV(Py—P) = 0; (P —P)/T —T,) = AS/AV = ASy/AVy =
R/AVy =8.3/(0.2 x 107°) Pa/K = 400 bar/K.

Effective driving force

When a phase transformation occurs under diffusion it often happens that the pro-
cesses occurring at the phase interfaces are rapid compared to the rate of diffusion.
The transformation will then be diffusion controlled and the boundary conditions gov-
erning the rate of diffusion can be evaluated by assuming that, whenever two phases
meet at an interface, their compositions right at the interface are very close to those
required by equilibrium. This is called the local equilibrium approximation. That
approximation will be used in the following, except when other conditions are clearly
defined.

So far, we have chosen to regard 7" - d;,S/d& as the driving force for the process, the
progress of which is measured by &, and it thus seemed natural to assume that the rate of
the process is proportional to D = T - d;,S/d&, at least as a first approximation, yielding
d&¢/dt = K D where K is a constant of proportionality. However, one should be aware of
the possibility that a process may be accompanied by an entropy production that does
not contribute to the rate of the process. This possibility may be best explained by an
example from a very simple type of transformation.

Let us first consider particles of pure solid A immersed in liquid B. The component
A may dissolve in the liquid to a small but measurable extent, but B does not dissolve in
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the solid. It is well known that smaller particles will dissolve and larger ones will grow,
so-called coarsening or ‘Ostwald ripening’. The driving force comes from the increased
pressure inside the smaller particles due to the surface tension. Next, suppose that B
can dissolve in solid A but the temperature is so low that diffusion can be neglected.
We would still expect that the pressure difference makes the smaller particles go into
solution and the larger ones grow. However, the growing layer of a large particle should
now be a solid solution of B in A and the net process could be written as: solid A(from
small particle) + liquid B(with low A content) — solid A — B alloy(in growing layer).
The chemical driving force for such a reaction can be evaluated from —A G, assuming
that all the phases are under the same pressure, and it should be added to the effect of the
pressure difference. It would seem that the chemical driving force should give a drastic
increase of the net driving force for the process and make it possible even without the
pressure effect, at least after the process has started. Such a process has actually been
observed in sintering in the presence of a liquid.

However, in this description of the process we did not consider the local equilib-
rium conditions at the surface of the smaller particle. Even though the rate of diffusion
inside solid A is negligible, the rate of transfer of atoms between solid and liquid at
the interface may be appreciable. Under ordinary conditions the net rate of any reac-
tion is believed to be the difference between opposite fluxes that are much larger. We
should thus recognize that there is a very localized reaction at the interface by which
a monolayer of an A-B solid solution forms. The chemical driving force will drive
that reaction but it will soon slow down if B does not diffuse into the interior of the
smaller particle. Only the pressure difference may remain and cause material from
the monolayer to go into solution and diffuse to the larger, growing particle. B from
the liquid will then again react with the fresh A in the smaller particle and the monolayer
will be healed. It may thus seem that much if not all the chemical driving force will be
lost.

This example has demonstrated that there may be a Gibbs energy dissipation caused
by a process, which does not actually drive the process. One might say that even if a
Gibbs energy dissipation depends on the progress of a process, the process does not
necessarily make use of that Gibbs energy dissipation. The effective driving force, from
which one may estimate the rate of reaction, has to come from another source, in our
example from the pressure difference due to the surface tension.

In the above example, it was fairly easy to identify the various steps in the whole
process and thus to identify what part of the total driving force actually contributes to the
rate. The example gets more complicated if we replace the liquid by a grain boundary
which has contact with a B-rich reservoir outside the A material. Even in that case it
has been observed experimentally that an A — B solid solution can grow at the expense
of pure A, a phenomenon called DIGM (diffusion-induced grain boundary migration).
Cahn et al. [4] argued that the chemical driving force does not contribute at all and they
proposed that the effective driving force comes from the process of diffusion of B down
the grain boundary. Later, it was proposed that a part of the chemical driving force is
not dissipated, as described above, thanks to the action of coherency stresses, and that
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this undissipated part is able to drive the main process. This will be further discussed in
Sections 16.11 and 16.12.

This kind of complication is often neglected and it will not be further considered in
this book. We shall regard chemical driving forces as forces actually contributing to the
rate of processes but the local-equilibrium approximation will be applied in most cases
in order to evaluate it.
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Partial quantities

It is common to keep 7 and P constant but vary the amount of some component, N;. It
is interesting to examine what happens to various thermodynamic quantities under such
conditions and we shall thus define a new kind of quantity called partial quantity for
any extensive quantity A4.

partial quantity of j: 4; = (04/dN;)r p n,- 4.1
Such partial quantities appear in the expression for the differential of A(T, P, N;)
d4 =©A/0T)p ndT + (0A/0P)r ndP + X 4;dN;. 4.2)

From Eq. (3.29) we saw that the chemical potential 11; can be derived as a partial
derivative of any one of the characteristic state functions U, F, H and G. However, it is
important to notice that only one of these partial derivatives is a partial quantity with the
definition used here, (0G/9N;)r p n,, because it is evaluated under constant 7 and P.
We can thus write

w; =0@G/IN)r PN =G (4.3)

With the shorthand notation introduced for partial derivatives in Section 2.5, this quantity
could also be denoted by G ;.

Since the chemical potential 14 ; is identical to the partial Gibbs energy G ; one may
wonder if both names or symbols are necessary. However, we shall find it useful some-
times to use one and sometimes the other. When we are interested in the variation of
properties of a homogeneous system consisting of a single phase with variable compo-
sition, and employ an analytical function Gin(7, P, x;), then G is the most natural term
to use. When we are concerned with a more complex system, where G ; of a small part
cannot be defined because the composition of that part cannot vary gradually, then 1 ; is
the most natural term to use.

In order to distinguish the notation for a partial quantity 4; at any composition from
the notation for the same quantity in pure j, the latter one will be identified by a small
superscript circle in front, °4 ;. It should be noticed that °4; is actually identical to Ay,
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of pure j, because for a system with one component we have N; = N and obtain from
Eq. (4.1),

°A; = (0A/IN;)r.p.N, = (0A/IN)r.p = A/N = A, (4.4)

It is evident that 4; is also an intensive quantity and this can be demonstrated by the
fact that it is related to the intensive quantity 4,, and can be calculated from it. Using
the following relations: N = XN;; x; = N;/XN;; 0x;/dN; =(N — Nj)/N2 =
(1 —x;)/N; x¢=Ni/EN;; 9x,/IN; = —Ni/N* = —x;/ N, we obtain

y _(BA) B <8(NAm)>
/ IN; )y, IN; )y
94 ax; 94 9
=1-Am+N~(—m) (i) +N~Z(—m) (ﬂ)
8xj % BNJ N, Py 8Xk X 8Nj N

0 Am 0Am

j =

All the partial derivatives of 4., are here taken under constant 7’and P and molar contents
of the other components; x; is excluded from the summation. We can modify the equation
by including x; in the summation

0A4m ¢ 0Am
A=A+ —2) - ; . 4.6
, +(axj)m > (5 )X, “6)

i=I

When evaluating each derivative in Eq. (4.6) from an expression of 4 as a function of all
x;, one will keep all the other x; constant, including x; although it is really a dependent
variable. Since this is physically incorrect, these derivatives cannot be used alone. On the
other hand, one may transform Eq. (4.6) by replacing x; in the first term of the summation
using Xx; = 1, obtaining

dAm IAm ¢ dAm <8Am
A, =4 Em) _(Z5m) 37y, () | @
J m + ( 8)(]- >XI ( axl >x1 ;X |:< ax,- )xl 8x1 x ( )

The differences of derivatives appearing here can be interpreted physically. They are
actually identical to the derivative of A4,, withrespect to the particular x ; when x| has been
selected as the dependent variable. Equation (4.7) is thus the mathematically correct way
of evaluating 4 ; but Eq. (4.6) offers a more convenient way. Furthermore, when Eq. (4.6)
is applied to Gibbs energy and the difference is taken between components j and 1, one

obtains
G 0Gn
G,-—Gk=< ) —( ) . (4.8)
' ox; /,, axr /,,

This is the driving force for diffusion of component j in exchange for component 1,
sometimes called diffusion potential. The diffusion potential for exchange with the
major component is thus obtained as the derivative of G, with respect to the component
if the major component has been selected as the dependent one.
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Equation (4.6) is frequently used for calculating chemical potentials as partial Gibbs
energies. For a binary 1-2 system one can regard G(T, P, x1, x;) as G(T, P, x,) because
X1 + x, = 1. This yields

dGpy,
=G =Gy —x—— 4.9
M1 1 X2 dx, (4.9)
dG
ur =Gy =Gp+(1 —Xz)?m (4.10)
2

Exercise 4.1

For substitutional solutions one often defines an activity coefficient for a component 7 as
y; = expl(G; — °G; — RT Inx;)/RT]. Show that for low contents of B and C in A one
has the following approximate relation under constant 7 and P, if x is not included in
the set of independent composition variables, d In yg/dxc = 9 In y¢/9xp.

Hint

Start from a Maxwell relation dGg/dNc = 0°G/dNcdNg = dG¢/dNg. Then g0
from derivatives with respect to N; to derivatives with respect to x; by using x; =
Ni/N;  9xi/dN; = (N = N)/N* = (1 = x;)/N;  9x;/dN; = —N;/N> = —x;/N.

Solution

Gi = °G; + RTInx; + RTIny;; 9Gg/dNc = RT[(1/xg)(—xs/N) + (dInys/
dNc)] = 0Gc/ONg = RT[(1/xc)(—xc/N)+ dInyc/9dNg] and thus dInyg/dNc =
d In yc/d Ng, exactly. However, we should examine derivatives with respect to x; and
not N;. Notice that we should choose an analytical expression for yg containing xg and
xc as independent variables. For small xg and xc we get approximately

dInys/dNc = (dInyg/dxp)(—xp)/N + (3 Inys/dxc)(1 —xc)/N
= (@ Inyg/dxc)/N

dlnyc/dNg = (d1lnyc/dx)(1 — xp)/N + (3 Inyc/dxc)(—xc)/N
= (0Inyc/dxp)/N.

Thus, 0 Inyg/dxc = 9 Inyc/dxp.

Relations for partial quantities

In Section 3.2 we saw how an expression for the integral internal energy could be derived
by integration over a homogeneous system. It will now be demonstrated that the same
method can be applied to any other extensive quantity, 4. Consider a homogeneous
system with constant 7, P and x;. Then all the partial quantities 4; are also constant.
We select an infinitely small subsystem and allow it to grow by simply extending its
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imaginary wall. The growth in size may be represented by dV and the increase of the i
content is obtained as

dN; = x;dN. (4.11)

By integrating the differential of 4 under constant 7" and P and remembering that all 4;
and x; are constant, we obtain from the definition of 4;, Eq. (4.2),

A Z/dA Z/EAldM :/EA,-x,-dN: EAi)Ci/dN

An = A/N = T A;x;. (4.13)
It may again be emphasized that the partial quantities are always defined with 7'and P as
independent variables. If we were to define a corresponding quantity under constant 7'and

V, for instance, it would not have the same properties because V' is an extensive variable.
By differentiating A = X A; N; we obtain

d4 = ¥ 4;dN; + £ N;d4;. (4.14)
Comparison with the expression for d4 in Eq. (4.2), yields
EN;d4; — (dA/3T)p N, dT — (0A/dP)r n,dP = 0. (4.15)
This expression is most useful when applied to the Gibbs energy, giving
Y N;dG; + §dT — VdP = 0. (4.16)

This is identical to the Gibbs—Duhem relation, Eq. (3.34), since G; is identical to u;.
For other quantities it may be most useful under conditions of constant 7 and P. As an
example, for volume we would obtain, under constant 7 and P,

ENdV;i =0 or ExdV; =0. (4.17)

Since all the partial quantities are defined as the partial derivatives with respect to some
content under constant 7" and P, it is evident that the following relations hold between
them

It is also evident that the expressions for other extensive state variables as derivatives
of the characteristic state functions can be applied to partial quantities as well. As an
example, we can start from an expression for S in terms of G and derive a similar
expression for S; in terms of G,

G
s=—(& (4.19)
T ) p
o _ ( 8S> ([ a <8G>
’ INj J1.p.n, IN; \OT /p y, PN,
_ i(ﬁ) :_<@> :_<%) . (420)
AT \IN; T.P.N;/ p N, aT P.N; ar P.N;

i
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Furthermore, from the Gibbs—Duhem relation, Eq. (3.34), we obtain by taking the deriva-
tive with respect to N,
2°G

— 421
IN;IN; “-21)

i
V;dP — S;dT = dpu; +ZN,»8—Nj =du, +ZN[
It should be emphasized that the summation of terms cannot be omitted. As a conse-
quence, it is not possible to derive a Gibbs—Duhem relation for the partial quantities.
Finally, by applying Eqs (4.11) and (4.13) to Eqs (1.11) and (1.38) we can write the first
and second laws in the following forms

dU = dQ +dw + ) HdN; (4.22)
dS =dQ/T + ) S;dN; + d;S. (4.23)

Exercise 4.2

Derive the relation H; = (d(u;/T)/0(1/T))pn, from H = (0(G/T)/9(1/T))p,n,
in Eq. (2.25).

Solution

Hj = @H/ON))r.p.N, = 0(G/T)/3(1/T))p.N,/IN))1.P.N,
= 3G/ T)/INj)r.p.N./I1/T))p.N,
= (0(G;/T)/3(1/ T)p.n, = (8(u;/T)/d(1/T))p ;-

Alternative variables for composition

By composition we mean the relative amounts of various components, preferably the
set of molar contents, x;. We shall now examine different ways of expressing the molar
contents in a ternary system. The same methods may be applied in higher-order systems.
In order to distinguish the methods we shall use a number of different notations.

(i) x; = N;/N = N;/EN;
(ll) Zj =N]/N1 =X_/'/X1

The size of the system is thus measured by N, Ny and (N; + N, + - - - + Ny), respec-
tively.

The characteristics of the three methods for a ternary system (with £ = 2 in the third
method) are compared in Fig. 4.1, where the regular triangle introduced by Gibbs is
shown in Fig. 4.1(a). Isopleths (lines along which some composition variable is held
constant) according to the other schemes are shown in Fig. 4.1(b) and (c). It should be
noticed that the isopleths for u; are also isopleths for «, since #| + u, = 1. InFig. 4.1(c)
it should be noticed that z; = 1 everywhere. The three diagrams are redrawn with linear
scales for each kind of variable in Fig. 4.2. Here, the isopleths with arrows extend to
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Figure 4.1 The Gibbs triangle showing three different methods of representing composition. The
corners represent pure component 1, 2 and 3, respectively.

(a) (b) (c)
X3 us[~ [
0.8 0.8 0.8
0.67 0.67
0.6 0.6 0.6
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0 02 04 06 08 1 0 0.2 04 06 08 1 0 0.2 0406 08 1
X2 us 2

Figure 4.2 The diagrams from Fig. 4.1 drawn with linear scales for the actual composition
variables. The arrows indicate that the component is situated at infinity and parallel lines with an
arrow pointing to the same pure component at infinity.

infinity. It should be emphasized that any line, which is straight in the Gibbs triangle, is
still a straight line in these modified diagrams.

When these new composition variables are used, the calculation of partial quantities is
changed. Before turning to these calculations, it should be realized that the definition of all
the molar quantities to be used in one context should be modified in the same way. Taking
the Gibbs energy as an example, its molar quantity should be defined as G/N; when dis-
cussed in connection with z; (case (ii)) and G/(N; + N,) when discussed in connection
with u; (case(iii)) if & = 2. We shall denote these molar quantities by G,y and Gpyz.

With the method used in deriving an expression for 4; in Section 4.1 we obtain, for
case (ii),

G = N1Gni(z1,z2,z3) withz; = 1 (4.24)
G G
ur =Gy =Gm1—22< ml) —23( ml) (4.25)
322 2 323 2
0G
=Gy =25 ( ml) (4.26)
822 7

3G
s = Gy = z3 ( 1) . (4.27)
823 2
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For case (iii) we have

G = (N1 + N2)Gmio(uy, up, uz) withuy +up = 1 (4.28)
=Gy = Gun + (85(3;1212)”[ > u; <3g;‘212>m (4.29)
1 = G = Gy + (8;2”)”[ ~Yu (@) (4.30)
s = Gy = (a;‘:;”)ul. 4.31)

On the other hand, it should be emphasized that many equations derived with the ordinary
way of expressing the size of the system, will hold without further modification, if one
simply replaces all molar contents x by the corresponding z or u# and all other molar
quantities by the corresponding molar quantities which may be denoted by A, or Ay 2.
The following relations are useful

uj = N;/(Ny + N2) =x;/(x1 + x2) (4.32)
Amiz = A/(N1 + N2) = A/N(x1 +x2) = Am/(x1 + x2) (4.33)
Amiz = A/(Ny + N2) = EN; 4; /(N1 + N2) = Zu; 4; (4.34)

z; = N;/Ni =x;/x1 (4.35)

Ami = A/Ny = 4/Nx) = Am/x) (4.36)
Ami = A/N1 = ZN;A; /N1 = Xz; 4; = A1 + 2245 + 23 43. (4.37)

It should be observed that 4; is the usual partial quantity (34/9dN;)r p.x;-

Sometimes it may be convenient to use the notations A, and x; for all these quantities.
It is then necessary always to specify how one mole is defined, i.e. whether one considers
one mole of 1, one mole of 1 + 2 or one mole total. In higher-order systems one may
measure the size of the system in several ways. It may be convenient to use the notations
i1,k and A, 1..x where 1. .. k are the components used to measure the size.

Exercise 4.3

Show that s = G + (1 — x2)(0Gm/0X2)x,/x, in a ternary system.

Hint

Replace variables N, N, and Nj using x,(= N,/N), x3/x1(= N3/N;) and N(= N| +
N> + N3).

Solution

Let G, be a function of x; and x3/x1: G = NGn(x2, x3/x1); 2 = (0G/IN2) N, Ny =
Gm + N(OGm/0x2)x;/x,(0x2/IN2)N, Ny + N(OGm/0(x3/x1))x, (3(x3/X1)/ON2) N, Ny =
Gm+ N(0Gm/0x2)x,/x, (N — N2)/N? + N3G /0(x3/X1))x,-0 = Gy + (1 — x2)(0Gm/
axZ)x;/xl .
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(a) (b) 1

Figure 4.3 Two ways of applying the lever rule.

The lever rule

Let us consider some molar quantity A, in two homogeneous subsystems (phases), o
and 3, with different properties, and then evaluate the average of the molar quantity, 4%,
in the total system. By definition we have

A% = A%/ N* (4.38)
AP = AP /NP, (4.39)

Using the law of additivity we obtain

N* NB
av __ o B o« By _ g . B Y L B 4B
Ay = (A" 4+ AP)/(N*+ N®) = 4, Ne T VB NB+Am N N = fYA4; + fPA].

(4.40)

The fractions of atoms present in each subsystem, i.e. the relative sizes of the two sub-
systems, are denoted by f* and fP. The terms can be rearranged because /* + f# = 1.

FoAY =A%) = fP (45— 42). (4.41)

This is often called the lever rule and is often used when A, is a molar content x;. That
case is illustrated in Fig. 4.3(a).
The terms can be rearranged in another way

(A% — A%) = fP(4B — 4%). (4.42)

This equation can be illustrated by two balancing forces, each of which tries to turn the
lever around the point representing the o subsystem (see Fig. 4.3(b)).
The lever rule can be extended to more subsystems. It is easy to see that

Afr‘:zfaAg‘i‘fﬁAE'}’fyAK'i_“" (4.43)

For three subsystems in a diagram with two molar quantities one obtains a triangle and
the total system will be represented by a point placed at its centre of gravity. This case
is illustrated in Fig. 4.4.

When the positions of the three subsystems and the total system are known, then one
can evaluate the fractions by several graphical methods, as illustrated in Fig. 4.5.
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ALk

Figure 4.4 The lever rule applied to a system with three subsystems «, (3 and y. The triangle is
regarded as capable of rotating around the point representing the whole system.
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Figure 45 (a)—(d) Four methods of evaluating the fractions of a subsystem, f®, or the ratio of
fractions of two subsystems, f*/f7.

The tie-line rule

It is evident from Fig. 4.4 that a mixture of only two subsystems will fall on the straight
line between them, which is called tie-line or conode. This we shall call the tie-line
rule. It must be realized that it holds only if the same measure of size is used for both
quantities. In most applications we shall use the total number of moles or moles of a
specific element. An example is shown in Fig. 4.6. Both V}, and xg were defined by
dividing ¥ or Ng by N. The value of ¥}, for the composition xj; is an average between
the end-points of the tangent. They represent the partial molar volumes, V5 and Vg, for
the same composition.

Vin(xg) = x) Va(xg) + x5 Va(xp)- (4.44)
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Vin | Vi(xg)
—~— OVB
Vo(xg)
Valxp)
OVA -

A x5 Xg —— B

Figure 4.6 Property diagram for a binary system showing the molar volume as a function of
composition at constant 7 and P. The intercepts made by the tangent give the partial quantities.
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Figure 4.7 Property diagram for a binary system showing the molar Gibbs energy as a function
of composition at constant 7" and P, using the total content of atoms, N, as a measure of size (a)
or Na(b).

The fact that the end-points of the tangent give the partial quantities can be shown with
Eq. (4.6). If xp is regarded as the only variable by treating x5 as | — xp, we obtain

dVm dVm dVm

Vg = Vm+dx—B—Xde—B= Vm"‘(l—xB)dx—B- (4.45)
Two methods of measuring the size are compared in Figs. 4.7(a)and 4.7(b). The tie-
line rule applies to both. The rule does not apply to Fig. 4.8 because different measures
of size have there been used for the Cr and C contents. The straight lines in (a) have no
physical meaning but the curved lines in (b) are the true tie-lines. Other examples of

inconvenient choices will be given in Section 10.7.
The tie-line rule also holds in three dimensions. As an example, Fig. 4.9 shows a
molar Gibbs energy diagram for a ternary system and the intercepts of the tangent plane
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Figure 4.8 zc,, xc diagram for Fe—Cr—C at 1 bar and 1200 K. (a) is drawn under the incorrect
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assumption that the tie-line rule applies; (b) is correct.

Gn c
OGC
A
Ge —fo,
°Gy VAR
/' N

G 1

A 1

)

OGB

Gg

Figure 49 Molar Gibbs energy diagram for a ternary solution.
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on the component axes represent the partial Gibbs energies. According to the tie-line
rule, the molar Gibbs energy of the alloy falls on the plane through these points. This
is also in accordance with Eq. (3.18), G, = Xx;u;, where p; is identical to G; (see

Equation (4.13)).

Exercise 4.4

Suppose one has measured the lattice parameter a of face-centred cubic (fcc)-Fe as a
function of the carbon content. What composition variable should be most convenient
in a diagram showing the volume of the unit cell, a3?
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Hint

It would be most convenient if the tie-line rule could be applied. Then one could, for
instance, see immediately if the volume of a system would be different when carbon is
distributed uniformly or non-uniformly. Use the fact that carbon dissolves interstitially
in fec-Fe.

Solution

The unit cell contains a fixed number of Fe atoms and a variable number of C atoms.
The volume of the unit cell is thus proportional to V' / Nge, i.e. Vin/xpe. The composition
should thus be expressed as N¢/ Nre, i.€. X /XFe.

Different sets of components

When considering a system open to exchange of matter with the surroundings in
Section 3.1, we introduced the terms X u;dN; in the expression for dU. These terms
were subsequently carried over into the expression for dG and a chemical potential for
any component j can thus be defined as

G
;= (_> ) (4.46)
8N./' T,P,N,.&

The quantity N; represents the amount of component j. The quantities N; and N are
often measured as the number of atoms or groups of atoms, whether the corresponding
molecule exists or not. However, the set of independent components can be chosen in
different ways and it is self-evident that whatever choice is made it cannot be allowed to
affect the total value of dG = X ;dN;. As a consequence, there is a relation between the
chemical potentials defined for different sets of components. Let us compare two sets.
As the first set we shall take the elements i, j, k, etc., and as the second set we shall take
formula units denoted by d, e, £, etc. Let af" be the number of 7 atoms in a formula unit
of d. It is interesting to note that the set of @ values for a new component d defines its
position in the 7, j, kK compositional space. If the formula unit of d is defined for one mole
of atoms then alfi is equal to the molar contents of the elements in the new component,
x;’ . Further, let N; be the total number of formula units of the new component d. The
total number of 7 atoms in the system is then obtained by a summation over all the new
components.

N =) alNy. (4.47)
d

‘We thus obtain

D widN =) (Z al de) => (Z al M,») dn;,. (4.48)
i d d

i
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This result can be inserted into the expression for dG instead of X u;dN; and we thus
find for the chemical potential of component d,

G d
pa = (W)W,M =Y aln (4.49)
It is interesting to note that the final expression for p, is independent of how the other
components in the new set were selected. The expression can thus be used to calculate
the chemical potential of any compound or species or combination of atoms, whether it is
used in a set of independent variables or not. Actually, one can define a component with
the same composition as the whole system. The chemical potential of such a component
is equal to Gy, and was used in the combined law in Section 1.9.

Exercise 4.5

Consider a solution phase with two sublattices and the same number of sites on each. If
A and B can occupy the first one and C and D the second one, then we can use the chem-
ical formula (A,Bi_,)1(C,D;_,);. It may seem reasonable to use the following expres-
sions for the properties in a simple case where all the ternary solutions behave as ideal
solutions between two compounds each, e.g. (A;B_,);C; as xA;C; and (1 — x)B;C;
yielding puac = °Gac + RT In(xy) and ppp = °Gap + RT In[x(1 — y)], etc. How-
ever, this would be reasonable only under an additional condition. Accept the expressions
given here and find the condition.

Hint

The four s are related.

Solution

By definition puac = ua + e, ete.

Thus, uac + usp — pap — uec = 0 and °Gac + RT In(xy) + °Gpp + RT In
[(1=x)(1—=y)]— °Gap — RT In[x(1 — y)] — °Gpc — RT In[(1 —x)y] = 0 and thus
°Gac + °Gpp = °Gap + °Gpc. This requires that the pair AC + DB has the same sta-
bility as AD + BC, which must be an unusual case.

Constitution and constituents

The composition of a system together with the condition of equilibrium defines the
state of the system but it gives no direct information on how the atoms are arranged. In
order to understand the properties and to make a realistic model of the thermodynamic
properties as a function of composition, it is necessary to have some idea about the
arrangement of the atoms. The modelling should be based on the constitution of the
system, i.e. the detailed description of the distribution of the atoms. The occurrence
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of regions of different structures and compositions, so-called phases, is of primary
importance. The distribution of atoms within each phase may also be important, for
instance their distribution on different sublattices or in groups like molecules, ions or
complexes. Groups of atoms, including ions and single atoms, are often called species.
They may be so stable that they can be transferred from one phase to another and even
from the system to the surroundings.

Another useful concept is constituent by which one understands a certain kind of
species on a certain sublattice in a certain phase. In the following discussion of con-
stituents we shall only consider single atoms. However, the results can be generalized
easily to molecular or ionic species.

Let us consider a phase with several sublattices in a higher-order system. The sublat-
tices may be identified by superscripts, s, ¢, u, etc., their numbers of sites may be denoted
by a*, a’, a", etc., the number of j atoms in the ¢ sublattice by N ; and the corresponding
site fraction by ;. By definition

=N/ 3N (4.50)

The site fraction is thus a kind of molar content (mole fraction), evaluated for each
sublattice separately. The molar contents in the whole phase can be evaluated from the
site fractions

x; =aty;/2as, (4.51)

where ¢ represents the sublattice in which j resides. In simple cases the relation can be
inverted and the site fractions can be evaluated from the composition of the phase

! :szafy;/ZaS. (4.52)
N N

However, in the general case an element may enter into more than one sublattice. One
can still evaluate the composition from the site fractions

xj=Y a'y / > a, (4.53)
t s

but it is not certain that this relation can be inverted, i.e. that the site fractions can
be evaluated from the composition. Instead there may now be one or more internal
variables, describing the distribution of the elements on the various sublattices. Such
internal variables will be discussed further in Chapter 20. Together with the external x;
parameters they define the state of the phase. An alternative way of defining the state
is by only giving the site fractions. A site fraction may thus have a mixed character of
internal and external variable.

The total number of formula units can be obtained by considering any sublattice or
the whole phase,

N:ZN{/a’:ZNi”/a“=...=ZZN§/Z¢Z“. (4.54)
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Exercise 4.6

For (A, B),(C, D),, prove that Gy, = yciB,c. + ¥aita,n, + (Vb — Ya)UB,D, -

Hint

Use ug,c. = aup + cuc ete., xo = aya/(a + ), ete.,and ya +yg = 1 = yc + yp.

Solution

YcuB,C, + YaMa,p, + ()b — ya)uB,n, = ycaus + yccpc + (yp — ya)aus + (yp —
YA)CUD = yccpce + yaapa + ypepup + (ve + yp — ya)aps = yecpc + yaapa +
ypeup + ypaus = (a + ¢)(xcpuc + xapa + xpup + xgup) = G, for one mole of
formula units.

Chemical potentials in a phase with sublattices

When trying to evaluate a chemical potential of a component in a phase with two or more
sublattices, we run into difficulties because we cannot vary the content of one component
alone unless it is present in all sublattices. The reason is the fixed total amount of atoms
in each sublattice relative to the total amounts in the other sublattices. This kind of
restriction on the contents of a phase may be called stoichiometric constraint and this
kind of phase is called a stoichiometric compound. The word stoichiometric actually
means that the coefficients in the chemical formula are small integers but the word is
often used to mean ‘fixed composition’. Usually, one follows from the other.

If we were to neglect the difficulty with the stoichiometric constraint and calculate the
chemical potential of a constituent j in sublattice s with the method used in Section 4.1,
we should get the following formal result

1 G (3G
1 =Gm+ — - ‘Zyi<as), . (4.55)
¢ vt Vi Lot

yj

where G, is defined for 1 mole of atoms and Xa* = 1. The factor 1/a® comes from
the fact that XN = a*N. It must be emphasized that the expression for 41} cannot be
used alone. It can only be used in combinations obeying the stoichiometric constraint.
Two methods of obeying the constraint should be considered. In the first method one
considers the addition of balanced amounts of atoms to all sublattices, corresponding to
the addition of a compound j,k,ul,». For the chemical potential of that compound we
obtain

t,t u,u v,V
Mjalkaul,,v =da M] +a I’Lk—‘ra M[

0Gn G Gy 0Gn
=Gy + + — E E § .
+<8y§-) <8y}4> (ay;) .y’(ay.s>x
’ v v ’ v § ! o

(4.56)
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It is evident that we can here drop the restriction £a° = 1 and redefine G, to hold for
1 mole of formula units.

If an element A appears in all sublattices, then one could consider a compound which
is a form of the pure element A and with Xa® = 1 its chemical potential would be

pa = a'wy +a"uy +a’uy

G, 3G 3G (3G
-enr (57), 0 (55),+ (5%), 22 (7).
" Wa /)y WA/ Wa / ZZ i/

(4.57)

This calculation can be performed only if the element is present in all sublattices. Oth-
erwise, 4 by itself has no unique physical meaning for such a phase.

The other method of obeying the stoichiometric constraint is to substitute an element
for another one in a certain sublattice. The result will be

1 G G
b= = = (Wm) (50| (458)
J v k /7y

The difference 11; — puy is the diffusion potential derived in Section 4.1 where it was
denoted G; — Gy.

For a system in internal equilibrium the calculation of x; — u; must give the same
result independent of what sublattice is used in the calculation. Otherwise there would
be a driving force for an exchange of atoms between the sublattices. Thus,

Wy — Wy = 1 — . (4.59)

Ifthere are vacancies in one of the sublattices, then one can evaluate the chemical potential
of any element present in that sublattice at equilibrium because the vacancies may be
treated as an additional element with a chemical potential py,, which can be defined as
zero at equilibrium. It would also be possible to calculate the chemical potential of an
element not present in that sublattice but present in all the other ones.

It should again be emphasized that the quantities u; etc., which refer to a specified
sublattice, in general have no unique meaning by themselves and they do not have
the same value in different sublattices, not even at equilibrium. There may be several
methods of calculating the ,u§ quantities and they may give different results. But in the
combinations obeying the stoichiometric constraint the results must be the same. This
question is connected with the fact that one cannot add just one element to a phase with a
stoichiometric constraint. It follows that the set of independent components contains less
components than there are elements. In such a case one may define the set of components
by using compounds and talk about component compounds. On the other hand, there
may also be too many possible component compounds and for the set of independent
components one must make a selection.
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Exercise 4.7

We have seen that the chemical potential of an element A in a system with more than
one sublattice can be evaluated under two different conditions. In one case the element
is present in all sublattices and in the other case it is present in a sublattice #, which
has vacancies. In the latter case, consider another element B which is only present in a
second sublattice, u, that has no vacancies. Can its chemical potential also be evaluated?

Hint

Use the fact that the chemical potential of the first element, A, can be evaluated.

Solution

Using the second sublattice we can evaluate 1, — g = 4 — py but only under internal
equilibrium conditions. But 14 is known from the first sublattice u, = py — ul, = nly

and thus ug = wy — (U — 1)
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Thermodynamic treatment of kinetics of internal processes

In Chapter | we considered spontaneous processes inside a system when discussing the
second law but later in that chapter we only considered equilibria. We shall now discuss
the thermodynamic treatment of the kinetics of such processes. This field of thermody-
namics is often called irreversible thermodynamics but the full term should rather be
thermodynamics of irreversible processes. The word irreversible is often replaced by
the word spontaneous. A process occurring inside a system may be caused by a change
imposed upon the system by some external action, but it will here be regarded as a spon-
taneous result of the new conditions inside the system. All processes inside a system
that actually occur will thus be regarded as spontaneous. It would really be unnecessary
to use either of the terms irreversible and spontaneous processes if it were not for the
need to distinguish them from the limiting case of a cyclic process, e.g. the Carnot cycle,
when it is carried out in such a way that the internal processes it gives rise to produce
a negligible amount of entropy. Since a cyclic process is controlled by actions from the
outside and they could be performed in the reverse direction, it is possible to run the
cycle in the reverse direction. All the internal processes it gives rise to will also reverse
and if their entropy production is again negligible the two cases will be identical in the
limit, except for the sign. In the limit, such processes are regarded as reversible.

An internal process at any given moment could not spontaneously proceed in either
direction except for cases of so-called unstable equilibrium. That would require that
the driving force is the same in both directions and must thus be zero and the process
must be infinitely slow. A reversible process is thus a hypothetical construction but of
considerable theoretical interest as a limiting case.

As a first approximate treatment of the kinetics of processes one assumes that the
rate of a process, often called flux and denoted by J, is proportional to a thermodynamic
force, X. A positive value of the force implies that it drives the process in a predetermined
direction. Counting the flux as positive in the same direction one writes

J=LX. (5.1
The kinetic coefficient L is thus positive by definition. If & denotes the extent of the

process, then the flux is defined as

Sk

== (5.2)
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The rate of entropy production can be written as
dipS  dipSdé

= = . 5.3
=% T d (5-3)
The definition of the thermodynamic force is given as
dipS
X =2 5.4
5 (5:4)

Combination with Eq. (5.1) yields for the rate of entropy production
o=JX=LX*>0. (5.5)

Since L is positive by definition, this is in agreement with the second law requiring that
a spontaneous process produces entropy.
If there are simultaneous processes, they may all contribute to the entropy production

aps = 30 (3 ) 6 = Yo xide (56)

S 0pS d& .
o=-7 _Z<agi> - => X (5.7)

One should then generalize the linear kinetic equation, Eq. (5.1) by taking into account
the possibility that simultaneous processes may interact.

Ji:ZijXkZijXj+ZijXk. (5.8)
k k#j

This isusually called phenomenological equation because it is not based on any physical
model.

The flux and force for an individual process j are defined by Eqs (5.2) and (5.4), using
the extent of the process, &;. They are thus related to each other and are regarded as a pair
of conjugated quantities. Their product gives the entropy production for that process,
o}, but it should be realized that the second law is derived only for the whole system,

EDIEDY (L,-,—X,- + ZL,—ka) - X; > 0. (5.9)
j =

On the other hand, the entropy production for an individual process could be negative
if there are simultaneous processes. When this happens, it is caused by the cross coeffi-
cients, L j;, in Eq. (5.8). That possibility can be demonstrated by starting with a situation
where X; = 0 and the other forces have such values that £ L j; X} > 0 for the actual set

of L j values. Then

o, =J,X; = (ijXj + ZijXk> X; =0, (5.10)
k#j
even when J;, as calculated from Eq. (5.8), is not zero. By changing to a slightly negative
value of X; one obtains

2 ~
oj=JiX; =LyX2+ kZijXka = (; ijXk) X, <0, (5.11)
#J J
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We have here neglected the first term that contains the small quantity X ; squared. The
negative value of Eq. (5.11) is caused by the cross coefficients L j;. According to the
second law, the negative value must be compensated by the other processes yielding
positive values. That puts a special requirement on the relation between the L coefficients.
The L matrix must be positive definite and for a system with two processes that means that

4L11Ly > (L1 + Lap)?, (5.12)

in addition to the requirement that all Z,;; must be positive, which has already been
discussed. Those coefficients may be described as diagonal coefficients.

It is an interesting question whether the change of X ;, which made o; negative, as
a compensation increased the entropy production from another process. For the simple
case of two processes Eq. (5.11) yields,

or = Li; X; X + L X7 (5.14)

and o; can turn negative only by the action of the cross term L ;; X; X; in Eq. (5.13)
and it is thus necessary that it is negative. Provided that L j; and L;; have the same
sign, Ly X;X; in Eq. (5.14) will also be negative and both o; and o} will decrease by
the coupling between the two processes. In fact, Onsager [5] has demonstrated that L j;
and Lj; do not only have the same sign but even the same value. This is called the
reciprocal relation and can only be applied to a pair of kinetic equations containing
conjugate pairs of flux and force. Onsager’s derivation was based on the assumption of
microscopic reversibility and the assumption that macroscopic processes obey the same
kinetic law as the decay of the corresponding microscopic fluctuations. Objections have
been raised regarding assumptions not stated explicitly by Onsager, e.g. by Truesdell [6]
but the validity of the reciprocal relationship is widely accepted.

Exercise 5.1

Can a process occur, i.e. J; # 0, without producing entropy?

Solution

Yes! The entropy production is equal to J; X| and will vanish if X} = 0 even if J; =
Ly X1+ LipXy = LipXy #0.

Exercise 5.2

The material in a living organism can get more ordered, implying that the entropy
decreases. Does the second law not hold for living organisms?

Solution

The living organism cannot do this by itself, i.e., if it is completely isolated. It can do it by
receiving light energy from the sun, a case, which should be treated with an appropriate
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form of the combined law. It can also do it by being a subsystem in a bigger system and
its internal processes can then be coupled to processes in the other subsystem.

Transformation of the set of processes

It is possible to change the formal description of what happens in a system with simulta-
neous processes without affecting what actually happens. There may be different reasons
for such a change to a new set of processes. One reason could be an advantage in the
physical interpretation of the processes. Another reason could be that one is looking for
a set of phenomenological equations with negligible cross terms in order to simplify
numerical calculations.

Of course, one requirement for such a transformation is that the entropy produc-
tion is the same in both descriptions. For simplicity, we shall limit the present dis-
cussion to two simultaneous processes. Let the primary phenomenological equations
be

Ji =L X+ LipXs (5.15a)
Jr =Ly Xy + LnXs. (5.15b)

Introduce a new set of fluxes by linear combinations

Jl* =anJi +apn (5163)
J2* =y J1 +and. (5.16b)

The entropy requirement gives

o=hX1+LX;= JI*XT + JZ*X; = 0[11.]1)(“1k +Ol12J2XT +(¥21J1X§ +0622J2X;.

(5.17)

Comparing terms in first J; and then J, we find that it is necessary to choose
Xl :(XUXT—{-C{ZIX; (5183)
X, = OllzXT-l—Otsz;. (5.18b)

The fluxes and forces for the primary set of processes can be eliminated by first inserting
Egs. (5.15) and then Egs (5.18) into Eqgs (5.16),
JP=anluXi+anlnXs +opnlaX +enlnXs
= (an L +anly)(oan Xy +ankX3)
+ (L +anpln)anX] +anXs) = LT X7 + L1, X5 (5.19a)
Jy = LX) +anLlinXs + ol X+ enlnXs
= (o1 L1y + o Lo o X + 021 X5)
+(a21 L1 + anln)anX] +anXy) = L5 X7+ L, X, (5.19b)
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where
LY, =a} Ly +ananly +ananln +abLlyn (5.20a)
LY, = anaa L +aponi Loy +ojom Ly + appanlyn (5.20b)
L3, = aniani Ly + apan Ly + agiann Ly + anain Ly (5.20¢)
L3 = a3, L11 + anaai Loy + aaoanLis + a3, L. (5.20d)

This derivation of the new coefficients can easily be generalized, resulting in
Ly =YY agtrLi. (5.21)
ik

The description has thus been changed to a new set of processes and it is immediately
evident that for the new cross coefficients one finds LT, = L3, if L = L,;. Onsager’s
reciprocal relation is still valid. It should further be emphasized that the new processes
appear to be coupled even if the initial processes were not. According to Eqs (5.20b and
c), the following cross coefficients appear if one starts with processes without coupling,

Lip=L=0

! ) (5.22)
LY, = anooi Ly +apoaxnlyy = L.

It is interesting to note that for this case the reciprocal relation is a mathematical conse-
quence and there is no need to use a derivation based on physical arguments in order to
explain that the reciprocal relation is preserved.

Of course, it is also possible to apply a transformation in order to eliminate the cross
coefficients. Starting with L, = L,; # 0 one can change to two new processes for which
L}, = L% = 0. According to Eqs (5.20b and c), the requirement is that one has chosen
the a;; coefficients to satisfy

ajran Ly + (oo + apo) Ly + apanls = 0. (5.23)

However, there are an infinite number of ways to accomplish this even though one can
immediately eliminate many of them as trivial variations because o; in Eq. (5.7) would
not be affected if one of the conjugate pairs of flux and force is redefined by multiplying
the flux with a factor and dividing the force with the same factor. One can eliminate this
kind of freedom by choosing «;; = 1 = ay; but the requirement is still satisfied as soon
as the following relation between «, and o, is obeyed.

ay L+ (1 +oapaz)Lin +apls =0 (5.24)
Liy+ oy Ly

. (5.25)
Ly +ax Ly

A2 = —

On the other hand, with the present understanding of principles there is no guarantee
that the set of processes that actually occur on a microscale, when Eq. (5.25) is satisfied,
should not be coupled in any way. However, there are several cases where two processes
could be expected not to be coupled by a physical mechanism. Examples are processes
that occur in different subsystems or reactions between molecules in a gas, which occur
in contact with one catalyst each. Prigogine [7] has mentioned the case of heat flowing
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through a system where a homogeneous molecular reaction takes place, suggesting that
the two processes could not be coupled. It is an interesting question whether one would
always find that there is no coupling if one could really identify the actual processes
on the microscale. If that is the case, then the reciprocal relation should always be a
mathematical consequence of a different choice of processes.

Exercise 5.3

Show how Eq. (5.21) can be derived.

Hint
Start with Eq. (5.16a) and insert in turn Eqs (5.15a) and (5.18).

Solution

Js* = Zasil][ = Zasi ZLika = Zasi ZLikZarka;
i i k i k r

L:; = ZasiZ Likark = Z ZasiarkLik'
i k k

i

Alternative methods of transformation

So far, we have introduced a new set of processes by expressing the new fluxes as linear
combinations of the initial ones. One could just as well express the new forces as linear
combinations of the initial forces

X7 = BuXi + BXz (5.26a)
X5 = BuXi + PnXa. (5.26b)

The initial processes are still defined by Eqs (5.15) but we shall invert them to make
them consistent with the new way of defining the new processes

X1 = RuJi+ R (5.27a)
X2 = RatJ1 + Rn s (5.27b)

The R coefficients can be obtained from the L coefficients in Eqs (5.15) by standard
methods. With a similar procedure as before, one now obtains

X;i=Y) R,J (5.28)

R, =" BuBRi (5.29)
i k

The L* coefficients can be evaluated by inverting Eq. (5.28).
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One may also like to prescribe both flux and force for one process and not make any
prescription for the other process

Jl* =aJ1 +anh (5.30)
X7 = BuXi + BXs. (5.31)

One should then express J; and X7 using the four coefficients defined by these equations.
In general, a complete set of 8 coefficients can be expressed in terms of the o coefficients
by inverting Eqs (5.18)

a11/Ba2 = —az/Ba1 = —aa1 /B2 = an/Bi1 = Ao — apy). (5.32)
For the second process one could thus write
o
Jy = anJi +an, =ap (AJI + J2> =ay (_@Jl + Jz) (5.33)
o B

o o
X5 = BuXi + BnXs = Bn (—a—lz)ﬁ +X2> = b (—%Xl +X2) . (5.34)
1 1

022

In these expressions only o, was not given by Eqgs (5.30) and (5.31). However, ay; is
eliminated in the product J; X3 and, as in the discussion following Eq. (5.23), it may
thus be regarded as a trivial factor for the second new process. It may thus be concluded
that in order for a new process, defined by its flux and force, to be part of a new set of
conjugate processes it must be combined with a unique partner defined by Eqs (5.33)
and (5.34).

Finally, it may happen that for some particular reason one would like to prescribe the
flux for a new process but the force for the other process.

X7 = BuXi + Xz (5.35)
Jz* = ap1J] +anl;. (5.36)
Again, the o and g coefficients are related by Eq. (5.32) but this time only three of the

coefficients given by the initial equations are independent. Let o5 be the dependent one.
Eq. (5.32) yields

oy = —anpfia/pi. (5.37)

This must be satisfied when the initial equations, Eqs (5.35) and (5.36) are formulated.
As a compensation, there is a degree of freedom when evaluating the remaining four
coefficients. Lets us choose «; as the arbitrary parameter. Eq. (5.32) would then yield

o
Br = — P (5.38)
an
1 o o
ap = — (OlllOlzz - ﬁ) = 2 (@B -1 (5.39)
2] B a1 B
o o 1
po= 2P 2P e e D anpn -, (5.40)
o a1 B asg

An application of this kind of transformation will be given in Section 17.5.



5.3 Alternative methods of transformation 87

So far, we have always transformed the initial set of processes into the same number
of new processes. However, there are cases where the new set will contain one process
more or one less. When transforming the phenomenological equations for diffusion in
order to change the frame of reference, one often introduces a set with one process less.
That case will be discussed in Section 5.8. A case with an increase of the number of
processes will now be described.

It may happen that one describes the development of a system with a set of processes
that one is convinced are those that actually take place on a microscale. Nevertheless,
experimental measurements have yielded cross coefficients. There is thus a coupling
between the processes but it is possible that it may be caused by an additional process
that was not considered primarily because it was formally possible to represent the exper-
imental information without using it. By introducing the phenomenological equation for
that process into the representation of experimental information, it is possible that the
cross coefficients decrease in value or even become negligible. If several additional pro-
cesses seem possible, one may decide to use the one giving the lowest cross coefficients.
That one would then be regarded as the coupling process.

Suppose one has studied two processes finding that they are coupled as described by
L1, = Ly # 0 in their phenomenological equations,

Ji = LuXi+ LipXs (5.41a)
Jr=LanX1+ LnXs. (5.41b)

With these equations one has thus been able to give an adequate description of how the
system develops. However, one is convinced that the two processes actually occur in
the system and feels that they should be independent of each other if it were not for
the presence of a third process that is responsible for the coupling. Assuming that there
should be no cross terms if the system is represented by all three processes one would
write

Ji=LIX} (5.42a)
Ji = LiX; (5.42b)
Ji = LiX3. (5.42¢)

It should be noticed that it is necessary to redefine the fluxes of the two initial processes
when the third one is introduced even though those processes are the same as before and
should still have the same forces.
Xi =X (5.43a)
X5 = X. (5.43b)
Of course, there should be some relation between the third process and the initial ones

because an adequate description of the system can be given already by the initial ones.
Suppose the relation is

Xt =kX) 41X, = kXT + X7, (5.44)
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The entropy production must be the same in both descriptions. By eliminating X3 one
obtains

o=JIX]+ X+ X, = +kIDHXT + (I +1I)X;
= X+ hX;. (5.45)

By inserting Eqs (5.43) one can identify the relations between the two sets of processes
by comparing terms.

Jy= T+ kJE (5.46a)
Jy = JF+1J} (5.46b)

Introducing the phenomenological equations for the three new processes from Eqs (5.42)
one obtains,

Ji= Jf A kJF = LiXT +kL(XT +1X3) = (LT + L)X + kL X, (5.47a)
S =JF F1JF = L3X5 + ILE(kXT +1X3) = kLX) 4+ (L5 + PLY)X,.  (5.47b)

It is satisfactory to see that the reciprocal relation is obeyed. Comparison with Eqs (5.41)
yields

Ly =L} + kL Ly =kILy = Ly;; Ly = L} + I’L} (5.48)
or inverted,
L= Lyy/kl =Ly /k (5.49a)
Ly =Ly —1*Liy/kl =Ly — Lial/k (5.49b)
LY=Ly —k*Ly/kl =Ly — Ligk/1. (5.49¢)

The introduction of a third, coupling process is thus another way of describing the
development of the system without any cross terms. The advantage of this method is that
the initial processes will be part of the final description. That may be desirable if they
have a strong physical basis.

The fact that it is always possible to introduce a set of processes without cross terms
may be of theoretical interest even without trying to identify their physical background,
as demonstrated by the following example. It may seem self-evident that there could be
no spontaneous processes in a system without any entropy being produced. o = 0 for
the whole system should thus be a condition of equilibrium for the whole system and for
all parts of it. However, it has been argued that one process having o; > 0 and another
one having o; < 0 could together yield o = 0. On the other hand, the fact that one can
always describe what happens in the system with a set of processes without coupling
proves that there is no basis for that argument. Each one of those processes will only
be driven by its own thermodynamic force because all cross coefficients are zero. All
those processes will have to give positive contributions to the entropy production if they
progress. One could thus apply the second law to the individual processes if they are
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not coupled. One may conclude that there can be no spontaneous changes in a system if
o = 0 for the whole system.

Exercise 5.4

In an attempt to eliminate the cross terms in two processes one introduces a third process
by requiring that (1) J; = J;* + J5" and (2) J, = J; — J5'. Evaluate the L* coefficients
if this is possible.

Hint

Start by finding the condition for preserving the rate of entropy production.

Solution

o= X1+ X5+ KX =0X1+DLXo =] +IDX1+ () = IHXy = J X +
JZ*XZ + J;(Xl — Xz), which yields XT = Xl; X; = Xz; X; = Xl — Xz.

Insert Eqs (5.42) in Eq. (1) or (2): Ji = J{+J5 = L7X] + L3X; = L7 X, +
L3(X) — Xo) = (L7 + LX) — L3 Xy; h=J = =L3X5 - LiX; =L3X, —
L3(X1 — X3) = —L3X, + (L5 + L) X>.

Comparison with Eqs (5.41) yields Ly =L7+L%; Lix=—L;=Lyy;
L22 = L; + L§ or inverted: L; = —le = _LZI; L; = Lzz - L; = L22 + le;
Ly=Ly—L;=1Ly+ L.

Basic thermodynamic considerations for processes

In order to apply thermodynamics to the kinetics of processes, one must be aware of some
fundamental principles and new assumptions must be made. For inhomogeneous systems
the basic extensive quantities, N;, U, V" and S are obtained by integration of the local
value of the corresponding intensive property, usually expressed by the molar quantity.
It is thus necessary to assume that one can define the local value of those quantities. The
molar quantity is not just an average over a larger system. It is an intensive quantity and
depends on the local values of 7, P and composition and also on the arrangement of the
atoms. However, it may also depend on the gradient of those quantities. There are no
gradient effects in a homogeneous system and in the present work they will be neglected
for inhomogeneous systems unless specifically stated. An exception is the treatment
of a phenomenon called spinodal decomposition for which important restrictions are
described by including the effect of composition gradients on the Gibbs energy. See
Section 15.4.

N;, U and V obey the law of additivity and their values in a system are conserved
quantities in the sense that they can only change by interaction with the surroundings.
Their values for the whole system are thus conserved if there is no exchange of heat, work
or volume with the surroundings. The entropy, S, can change by internal processes but
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S — AjpS is a conserved quantity if A;,S is defined as the internally produced entropy.
Other extensive quantities are derived from the primary ones by adding or subtracting
terms containing P, 7 and u;, e.g. the terms PV and TS. The law of additivity applies to
such quantities only under special precautions as discussed in Section 3.4.

Finally, it should be noted that, when applying thermodynamics to systems with inter-
nal processes, one assumes that thermodynamic properties, evaluated under equilibrium
or frozen-in conditions, apply not only to stable and metastable systems but also to unsta-
ble systems undergoing changes. In the present work that assumption will be applied as an
approximation without further discussion. We shall for instance evaluate thermodynamic
properties by assuming that any momentary situation is frozen-in.

Most of the applications in this chapter are based on the combined law in the form

dS = (1/T)dU + (P T)dV — S(u;/ T)dN; + dipS. (5.50)

where d;,S$ is the entropy production which must be positive for a system undergoing
spontaneous changes. We shall first consider cases where d;,S is caused by homogeneous
processes that will not disturb the uniformity of a system which is uniform from the
beginning. Transport processes require a quite different approach. They concern quanti-
ties that can be exchanged with the surroundings and in the limit they could sometimes
establish a stationary state of flow through the system. Even though such processes may
concern quantities already present in the combined law, it should be realized that in the
combined law they represent direct exchanges with the surroundings and not processes
of flow inside the system. The discussion of transport processes will thus be preceded
by considering a discontinuous system composed of two subsystems and with transport
between them.

Starting with processes in homogeneous systems we shall presume that all thermo-
dynamic properties are uniform. Internal processes may tend to change some properties
but the processes must progress uniformly in the whole system in order not to change the
homogeneous character. In a system that is not completely isolated there may be compli-
cations, e.g. due to the heat of reaction leaking out to the surroundings and causing heat
flow from the interior of the system to its surface. In a system open for heat transfer to
a reservoir of constant temperature it is common to assume that the temperature is kept
constant although there must be temperature gradients in order for the heat of reaction
to leave the system. Evidently, one assumes that those gradients and the corresponding
thermodynamic forces for the heat flow are so small that their production of entropy is
negligible. That will now be our assumption.

It may often be more convenient to use the combined law in the form based on Gibbs
energy if 7 and P are kept constant. By further assuming that there is no exchange of
matter with the surroundings we get for spontaneous changes of the state,

dG = VdP — SAT + $;dN; — TdypS = —TdipS = —XD;d&; < 0. (5.51)

D; is the driving force for process ;. It is defined as a generalization of the driving force,
D, in Section 1.8.

3, S dG
L (5.52)
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Introducing the flux of process j, J; = d&;/d¢, we get for the time derivative

dipS

-G=T
dr

The rate of entropy production, o, was defined by Eq. (5.3) and the second law requires
that it is positive. That explains why dG in Eq. (5.51) was stated as negative. It should
be emphasized that the driving force is only defined for constant 7" and is then related to
the more generally applicable thermodynamic force X; by

D, =TX;. (5.54)

That is shown by comparison with Eq. (5.7). The term driving force for D; is here used
in an attempt to avoid confusion with the thermodynamic force, X ;.

The internal production of entropy, o, is a well defined quantity and 7o is regarded
as the dissipation of Gibbs energy. It is thus connected to the internal processes. On the
other hand, —G in Eq. (5.53) describes the change of the properties of the system with
no regard to how the change occurred. The equality of the two may seem self-evident
but is extremely useful and may be illustrated in diagrams of the molar Gibbs energy
versus molar content. Then it is necessary to express both the dissipation and the change
of Gibbs energy in the same dimensions as the diagram, i.e. J/mol. Equation (5.53) is
expressed in J/s and it would thus be necessary to divide the whole equation by some
flux, J,, measured as mol/s. One would then obtain the change of Gibbs energy per mole
of the flux,

—AGw =—-G/J, = 2f;D;, (5.55)

where f; = J;/J,. For simple case with just one process, .J, will normally be defined as
the flux of that process and — A G, will be equal to D;. One can then evaluate the driving
force D; from —A G, and it is even common to regard it as the driving force itself. For
more complicated cases one may even regard it as the total driving force. However, it
should be remembered that —A G, is the change of the properties of the system and D
or f;D; represents dissipation.

There are many kinds of homogeneous processes, some of which can be described as
a change of order, e.g., short-range order of the atoms relative to each other and even the
transition to a state of long-range order if it occurs by a so-called second-order transition,
which is homogeneous. An extreme case of order among the atoms is the formation of
molecules by so-called chemical reactions. They will be treated separately in the next
section.

Exercise 5.5

Suppose T and V are kept constant. What form of the combined law should it then be
natural to use? How would the time derivative of that characteristic state function be
related to the rate of entropy production if there is no exchange of matter?
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Solution

Using Helmholtz energy, the combined law is written as dF = —VdP — SdT +
YuidN; — TdipS = —TdipS = —XD;d§; < 0. The time derivative of Helmholtz
energy is the same as of Gibbs energy but the conditions are different — F = T dipS/dt =
To=%XD;J; >0.

Homogeneous chemical reactions

The combined law for dG contains the terms X1 ;dN; where the summation includes
a set of ¢ components. Each one is regarded as independent if it cannot be formed by a
reaction between the other ones. Basically, the set should only contain the ¢ independent
components. For homogeneous chemical reactions one sometimes includes more com-
ponents. One may then choose which ones should be regarded as independent. The other
ones will be regarded as dependent and each one of them can be formed by a reaction
between the independent ones. Those reactions are regarded as independent reactions
but many more reactions could occur between the components. If one considers s com-
ponents altogether, there will be (s — ¢) dependent components and the same number of
independent reactions. That number will be represented by » = s — c.

A component could be a pure element but could also be a molecule or some hypo-
thetical aggregate of atoms. Let us express the chemical composition of component j by
the letter J and write

J=>dll. (5.56)
i=1

! represents the stoichiometric coefficients and 7 represents a pure element

or the composition of any other basic unit used for representing the composition of
the components. Let these units be the independent components and J be a dependent
component. It is evident that Eq. (5.56) should then be the reaction formula for the
formation of J if it is turned around.

where a

c
> dlr=. (5.57)
i=1
We could thus regard the a/ coefficients as the reaction coefficients for the reaction
between J and the ¢ independent components. They have here been normalized by
making the coefficient for J equal to 1. There will be such a reaction for each dependent
component, i.e. r reactions. They may be chosen as the » independent reactions among
the many more possible reactions between the s components.

One reason to include dependent components in X ;dN; is that it may facilitate
the modelling of the thermodynamic properties, e.g. for a gas containing several kinds
of molecules. A related reason is that one may like to consider frozen-in states where
the rates of internal reactions are negligible. In that case one may add some amount of
any component without having to consider its possible reactions with other components
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inside the system. The dependent components can then be treated as independent and
we may define the chemical potential of any component

G
i = < ) . (5.58)
8]\71 T,P,N,

Even though the system is frozen-in, we may evaluate the driving force for the » reactions
by which each one of the » additional components could react with the independent ones.
It may be derived as follows.

Considering the changes of all the s components, both independent and dependent
ones, we may write the combined law as

dG = VdP — SAT + Y w;dN; (5.59)

s
i=1

We would now like to introduce the extent of the internal reactions, £/, in this equation.
One may define the reactions in such a way that each reaction represents the formation
of a single dependent component from the set of independent ones, but without the other
dependent components being involved. In a closed system, the change of an independent
component may be given by the loss caused by several reactions, and may thus be related
to the increase of several dependent components.

dN; == "a/dN,. (5.60)
j=1

For the dependent components dN; is only caused by their own independent reactions.
The combined law for a closed isobarothermal system will thus be

dG = VdpP — SdT—i—im (—iaidej) +iu,~d1\(,
' j=1 j=1

i=1

=VdP — SdT — Y D/dg’. (5.61)

-
Jj=1

The driving force for the formation of the dependent component ; is here defined as

C

DI =" (a] i) — ;. (5.62)

i=1

The combined law for an open system could thus be written
dG = VdP — SAT + > " pidN; + Y " p;dN; — Y D/de/. (5.63)
i=1 j=1

J=1

It should be emphasized that dNV; and dN; here represent only the amounts received from
the surroundings. The changes due to all internal reactions are included in d&/. Under
freezing-in conditions one should omit ¥ D/d&/. When the internal reactions are very
fast, there is almost internal equilibrium and the driving forces necessary for maintaining
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equilibrium are so small that ¥ D/d&/ can again be omitted. Then

W=y alu (5.64)
i=1

dG = VdP — SdT + ) (dM + Za{d]\@). (5.65)
i=1 j=1

Again, dN; and dN; represent only the amounts received from the surroundings. When
treating intermediate cases one should take into account the rate of all reactions, starting
with the 7 reactions by which the » dependent components can form from the independent
ones and then adding those in which two or more of the dependent ones take part. We
shall now consider the very simplest case where there are one independent component
and two dependent ones. The dependent components will be denoted by 1 and 2 and
their reactions will also be identified by 1 and 2. For consistency with the derivations in
Section 5.4 the superscripts used for D and & in the above equations will now be given
as subscripts. Without any coupling between the first two reactions their rates will thus
be given as

dé

Ji = d_tl = L} X! = K{ D} (5.66)
d
i = % — L5X; = KiDj, (5.67)

where D} = T X} according to Eq. (5.54) and K = L}/ T. For the additional reaction,
where both dependent components take part, we write

d
Jy = g = L}X; = K{D5. (5.68)
Suppose this reaction produces component 1 and consumes component 2. Then we know

that its driving force must be
D; = D} — Dj. (5.69)

By direct measurements of the amounts of the two dependent components one would not
get any direct information on the third reaction but one can represent the experimental
information using the phenomenological equations for those reactions.

J] = K]]D] + K12D2 (5708.)
Jo =Ky Dy + KnDs. (5.70b)
The goal is to evaluate the kinetic coefficients in the three processes, assumed to have no
cross terms, from the experimentally determined coefficients in Eqgs (5.70a and b). This
problem was discussed in more general terms in Section 5.2. By comparing the relations

between the driving forces given by Eqs (5.44) and (5.69) we find that the present case
corresponds to k = 1 and / = —1. From Eq. (5.49) we thus find

Ki=—-Kp=-Ky; K;=Kn+Kpn, Ki=Ki+Kn (5.71)
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We have thus been able to eliminate the cross terms in Eqs (5.70) by introducing an
additional reaction.

Exercise 5.6

Demonstrate that Onsager’s reciprocal relation applies to the reactions between CO, CO,
and O, in a gas in contact with pure C as solid graphite.

Hint

Among the four components there are four possible reactions obtained by omitting one
component at a time. We should accept that all four actually occur. There will only be
two independent components and we may choose C and O,. First one should decide how
many independent reactions there are. There are four species, CO, CO,, O, and C, but
only two components. There will thus be two independent reactions. Start by defining
them. Denote their driving forces by D and D,. Then define as many dependent reactions
as possible but express their driving forces in terms of Dy and D;.

Solution

We may choose the following reactions as independent, CO, — C + O, (1) and 2CO —
2C + O, (2). Then 2CO — CO; — C (3) and 2CO; — 2CO — O, (4) are dependent
reactions. Reaction (1) can be obtained from (3) 4 (4) and its driving force will be
Dy = D3 + D4. Reaction (2) can be obtained from 2(3) 4 (4) with D, = 2D3 + Dy4. The
rates of formation of C and O,, respectively, will be J©*! = KDy + 2K, D5 + K3D3 =
Ki(D3 + Dy) + 2K(2D3 + Dyg) + K3D3 = (K1 + 4K, + K3)D3 + (K1 +2K3) Dy
anngfal = K1Dy + KyDy + K4Dy = K((D3 + Dy) + Ko(2D3 + Dg) + Ky Dy =
(K1 4+ 2K5)D3 4+ (K| + K, + K4)Dy4. Both cross coefficients are equal to K| 4 2K5.

Transport processes in discontinuous systems

We shall now consider the simultaneous transportation of heat and matter within a system.
Those quantities are included in the second law, Eq. (1.38), which will now be generalized
to several components,

dS =dQ/T — 8dN; + d;pS. (5.72)

First we shall consider a system completely isolated from the surroundings in which
Eq. (5.72) reduces to dS = d;, S and, introducing the contributions from various internal
processes from Eq. (5.6), we write

dS = dipS =) X;d&; (5.73)

We shall not use the second law expressed through dG because the temperature is not the
same in the whole system. In the second law heat and matter represent exchanges with
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the surroundings. In order to make them take part in an internal transportation process
we shall now consider a system with a sharp discontinuity separating two subsystems.
For each subsystem it is as if there were exchanges with its surroundings when heat and
matter are transported between them. The subsystems will be regarded as homogeneous
and it will be assumed that the equilibration within each subsystem is very efficient. It
only requires a low thermodynamic force and will thus produce a negligible amount of
entropy. We can then evaluate the entropy production due to transportation between the
subsystems by simply comparing the total entropy content before and after the exchanges.
However, we cannot apply the concept of heat to the state of a system and shall instead
apply the combined law in the form of Eq. (1.72), generalized to several components
to the two equilibrium states. Under constant P the difference in entropy of the whole
system will be

dipS =dS" +dS8" = (1/T")dH' — Z(uy/TAN, + (1/T")dH" — Z(uy/ T")dN} .
(5.74)
The subsystems are identified by (') and (”). The total values of U and N; will be
maintained in a completely isolated system and that is the choice made by most authors.
However, instead of keeping V' constant, as for a completely isolated system, we prefer

to keep P constant because that is a more common experimental condition. Thus, A and
Ny will be conserved in the system,

dH = dH' +dH" =0 (5.75)
dNj = AN} +dN} =0 (5.76)

The transport of internal energy and matter between the subsystems will be regarded as
simultaneous internal processes in the system and their extents will be expressed by the
amounts received by the second subsystem (”). Their production of entropy will be given
by Eq. (5.74),

1 1 4 M;C/ M;{ "
dipS = <T— - F) dH" =) (T— - )N (5.77)

We may thus introduce two fluxes, Jy = dH”/dt and J;, = dN'/dt, and two forces,

1 1 1

o () (4

X, = <T” T/) =-a (%) (5.79)
0ipS 1\ dH” wi\ dNY
S S S ygma (L) oy a () 550
7 ot Z (T ) dr T/ dt (5:80)
For small differences in 7 and composition we can approximate
1 —1

Xu=A|l=|=—=AT 5.81
i=a(7)=7 (581)

_ ey _ —1 M
X, = A(T)_ = At TEAT (5.82)
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The phenomenological equations would be
Jy=Luna (L —ZLH-A(ﬂ) (5.83)
T AT

Ji = LigA (%) > Lya (%) (5.84)

According to the reciprocal relation we know Ly = Liy. However, by transforming
—A(uy/ T) according to Eq. (5.82) we find after rearranging terms

Jy = <%> (_LHH“FZLHij)AT_ (%)ZLH/'AM (5.85)
Ji = <%> <_Lk1—1 + ZMijj> AT — (%) ZijAﬂj- (5.86)

It is interesting to note that the cross coefficients are no longer equal when we regard
AT and Apu; as the forces. This is a demonstration of the fact that the reciprocal relation
holds only when the fluxes and forces have been selected as conjugate pairs, each of
which contributes with X;J; to the entropy production.

If the discontinuity separating the subsystems is a wall with a hole, one may
like to regard the pressure difference between the subsystems as the force for trans-
port of matter through the hole. If there is only one component, its chemical poten-
tial is identical to the molar Gibbs energy and it can vary with 7 and P according
to Eq. (3.35),

AGpy = VAP — SnAT. (5.87)

By also using G, = Hy, — T'Spy one can transform X in Eq. (5.82) and obtain for a pure

element,
Gm 1 1
Xi=-Al—=)==-GuA[=) - =AG,
T T T
= GmAT VmAP + SmAT = HmAT VmAP (5.88)
T2 T T T2 T ’ '
Exercise 5.7

Examine if the reciprocal relation applies to the phenomenological equations for Jy and
Jy if expressed with AT and A P as forces.

Hint

The forces can be replaced by the two new forces, AT and A P, only for a pure element
where there are only two forces to start with. For that case, insert A(Gp/T) from
Eq. (5.88) as A(u;/T) into Eqs (5.83) and (5.84).
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Solution

We obtain Jy = —((Lyy — Ly Hw)/ T>)AT — (L g3 Vi/ T)AP and J; = —((Ljy —
LixHy)/THAT — (L Vi) T)AP. The reciprocal relation does not apply.

Transport processes in continuous systems

It is evident that the kinetic coefficients in Eqs (5.83) and (5.84) do not represent prop-
erties of the two subsystems because it was assumed that the equilibration within each
subsystem is very efficient and the corresponding production of entropy should be neg-
ligible. The kinetic coefficients must represent properties of the discontinuity separating
the subsystems and the production of entropy occurs inside the discontinuity. It could be
a membrane or wall separating the two subsystems or a phase interface between crystals
of'two different phases or between two liquids. It could even be an impermeable wall with
a small hole through which matter can diffuse as from a Knudsen cell. At the same time,
the wall could conduct heat. That could be a case of negligible coupling, i.e., negligible
cross coefficients.

In the preceding section there was no discussion of what happens inside the disconti-
nuity but in order to give the kinetic coefficients any physical interpretation it is necessary
to give the discontinuity some width and assume a model for its properties. With the very
rough approximation that the discontinuity consists of a wall of homogeneous material
it would make sense to define an average gradient A(1/7)/Az inside the discontinuity
if Az is its width. Equation (5.80) would thus change to

dipS A(L/T) A/ T)
0=%=|: = JH—ZTJk]Az. (5.89)

In order to remove the assumption that the discontinuity consists of a layer of a homo-
geneous material, we shall now consider a thin slice of the material separating the two
subsystems. The rate of entropy production in that slice would be

do_ d(1/T) d(ue/T)
— = J — — . 5.90
% el > o (5.90)
The local values of the force in a one-dimensional inhomogeneous system are defined
as

_dXy  d(1/T)  —1dT

VX, = = —_ L 591

=4 dz 72 dz 5-91)
dX; d(ur/T)  —ldpg | e dT

VX, = k- ST TS ARED 5.92

T dz T dz | T2 dz (5-92)

By integrating over the whole width we obtain

o= fdo =/ZJ,-VX,»dz. (5.93)

As an example, for isothermal diffusion of a number of components we get for the
dissipation of Gibbs energy, —AG,

—AG = T/do = —/ZJk(duk/dz)dz. (5.94)
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The phenomenological equations, Eqs (5.83) and (5.84), would change to
Ju = LuuV(/T) =Y LuxV(ue/T) (5.95)
Je = LigV(/T) =" Ly V(u;/T). (5.96)

As already emphasized, heat is not a state variable and one cannot define the content of
heat in a system. Instead, it is connected to a particular way of exchanging energy with
the surroundings. The popular concept of heat content is actually the amount of energy
that can be extracted from the system in that way. Heat capacity is the capacity to receive
energy in that way with a given increase of its temperature. By studying how heat has
to be fed into a system at one end and extracted from the other end in order to maintain
a certain temperature difference, one can study heat conduction, usually denoted by X.
That heat is supposed to flow through the system and it is only in that sense that heat
exists inside the system.

In contrast, enthalpy is a property of the system and there is no mechanism operating
directly on enthalpy by which it can move between the system and the surroundings. For
the same reason, there is no mechanism operating directly on enthalpy that can make it
flow through the system. Nevertheless, we have managed to derive the thermodynamic
force for enthalpy flow, which is valid in a formal sense. It should now be used to derive
the thermodynamic force for the flow of heat, which should be of more fundamental
nature. It can be obtained by realizing that the flow of enthalpy depends not only on heat
flow but also on the flow of matter, which carries enthalpy with it. We may thus evaluate
the flux of heat by subtracting the contribution from the flux of matter from the flux of
enthalpy,

Jo = Ju — THyJy. (5.97)
We may retain the flux of matter in the new set of fluxes,
JiE = (5.98)

It is easy to see that, in order not to change the entropy production, we must use the
following forces,

VX} =VX; =V(/T) (5.99)
VX; =VXiy + HiVXy = —V(ux/T)+ HV/T). (5.100)
It is interesting to note that we thus find the same driving force for heat as for enthalpy but
it should be realized that it is to some part the result of how we defined the other process in
the new set of processes. Furthermore, since we have a physical understanding for these
two processes, the flow of heat and matter, it seems reasonable to start by defining the

phenomenological equations for them. By neglecting the possible coupling between them
and considering only one diffusing species, we write

I = LyoV Xy (5.101)
Ji =L, VX (5.102)

In passing, we may note that comparison of Fourier’s law for heat conduction, Jp =
—AdT /dz, and Eq. (5.101) with the force from Eq. (5.99) inserted, gives the relation
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Lo =AT 2, which is particularly interesting since it has been found experimentally
that 2 is often rather independent of 7. It seems that L7, , depends strongly on 7.

Combining Eqs (5.97) to (5.102) we can relate the phenomenological coefficients in
the two formalism,

Ju = I+ HiJi = LoV Xy + HLy VX
= LoVXy + HLjg(VXy + HiV.Xpy) (5.103)
Jo=JF = L5 VXE = L, (VX + HVXp). (5.104)

The phenomenological coefficients for the set of processes defined by flow of heat
together with enthalpy and appearing in Eqs (5.95) and (5.96) would thus be

Lyy = Lo+ H{Lj (5.105)
Ly = HiL}, = Lyy (5.106)
Ly =L}, (5.107)

In this way it is thus possible to get numerical values for the flow of enthalpy although such
flow does not occur physically. It is worth noting that the main information is obtained
already from experimental information on diffusion and heat conduction obtained with-
out both processes being present simultaneously and it results in a prediction of cross
coefficients for the enthalpy formalism.

Another choice of forces can be obtained from Eq. (5.100) using the same transfor-
mation as in Eq. (5.88). It only applies to pure elements or species and yields

Vim dP

VXF= 2
k T dz

(5.108)
It is interesting that the thermodynamic force driving the flux of matter due to a pressure
gradient is thus independent of the temperature gradient if one considers heat flux as
the other flux rather than the flux of internal energy. In principle, this simple expression
does not hold in a system with more than one component. However, when a gas or liquid
is subjected to a pressure gradient then it will flow as if it were a pure substance and
Eq. (5.108) can be applied.

Exercise 5.8

Prove that the entropy production is not changed if the new set of processes, defined by
Eqgs (5.97) to (5.100), are applied instead of Jy and Jj.

Solution

The procedure in Section 5.2 yields Jy;VXy + L/ VX, = Vo = JéVX*Q +
SNVX; =y - SH )V Xy + Zh(VXy + iV Xy) = JuV Xy — SHiJy -
VXy+2LhVX+XHJ, -VXy =JyVXy + 2. VX,
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Substitutional diffusion

The flux of any transport process must be given relative to some frame of reference.
For heat conduction in a solid material it is natural to fix the frame to the material itself
because it will not be much affected by the process. However, there may be some heat
expansion of the material and the formal description may thus be simplified if distances
in the frame are measured as atomic distances. In a crystalline material the frame of
reference will thus be fixed to the crystalline lattice. In metallic solutions diffusion
normally occurs by atoms jumping into neighbouring vacant sites in the lattice. From
a fundamental point of view it may thus seem natural to describe diffusion in a lattice-
fixed frame. For diffusion of atoms dissolved interstitially in a host lattice the situation
would be somewhat similar to the case of heat conduction if one had chosen a frame
fixed to the host lattice. However, there may be a small effect due to the interstitial atoms
expanding the host lattice and it would again be an advantage to measure distances in
atomic distances.

The situation is different in a substitutional solution where the solute atoms occupy
the same kind of lattice sites as the host atoms. A lattice-fixed frame may thus expand
or contract locally if the solute atoms diffuse with a different rate to that of the solvent
atoms. Experimentally, it may be easiest to study substitutional diffusion in a volume-
fixed frame. If the solute atoms diffuse faster and by a vacancy mechanism, there would
be a net flow of atoms in one direction and of vacancies in the other relative to the
lattice. Vacancies would thus have to be generated in some places and condense in
other places, resulting in local creation or disappearance of lattice sites. There could
be a considerable difference between the lattice-fixed and volume-fixed frames. It is of
considerable practical importance to be able to transform diffusion data from one frame
to another and that is done by defining different sets of processes in different frames and
to transform between them. We shall first discuss this for a simple binary system and
transform from the lattice-fixed frame to a number-fixed frame, which is identical to the
volume-fixed frame if the molar volume is constant. A more general treatment will then
be given, which could easily be extended to the volume-fixed frame.

Primarily we shall describe diffusion of individual components relative to the
lattice-fixed frame. The diffusing atoms will transport volume with a rate X V;J;, where
V; is the partial molar volume and that transport can be studied experimentally by
placing small inert markers in the material. They are called Kirkendall markers and can
be assumed to be fixed to the lattice. They will thus move with a velocity v = —XV; J;
relative to the volume-fixed frame. Expressed as mol/s m? the Kirkendall shift will thus
be represented by the flux

i =v/Vo==) a, (5.109)
i=1

where a; = V;/ Vi, and Xx;a; = 1. Let the flux of a component j be J j’-“ in the volume-
fixed frame. If the lattice-fixed frame moves with a velocity v relative to the volume-fixed
frame, e.g. measured by the Kirkendall shift, then the flux in the lattice-fixed frame will be
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Combination with Eq. (5.109) yields
Jr=Ji X/ Ve=Jj—x; > aidi =Y (8 — aix;)J;, (5.111)
i=1 i=1

where §;; is the Kronecker symbol and it is equal to 1 for i = j but 0 otherwise. By
definition of the volume-fixed frame we have a relation between the new fluxes,

> a;Jr=0 (5.112)
j=1
1 n—1
Jr=——> a;J;. (5.113)
an S

We can thus eliminate J;* and instead include the Kirkendall shift, J§, from Eq. (5.109)
in the new set of independent processes. Introducing the new set of processes through
a generalized version of Eqs (5.16) we write

n
Jr=) il (5.114)
i=1
Comparing with Eq. (5.111) we find «;; = §;; — a;x; for j =1ton —1. For j =n,

comparison with Eq. (5.109) yields «t,; = —a;. The coefficients in the phenomenological
equations for the new set of processes are now obtained directly from Eq. (5.21).

L, = Z Z (i) — aixs)(Srk — axx,y)Lik (5.115)
i=1 k=1
n n

Lig =Y > (8 — aix,)(— ap)Li (5.116)
i=1 k=1

Ly, =Y > (=a)u — ax)Lix (5.117)
i=1 k=1

Ly =YY (—ai)(— ap)Li. (5.118)
i=1 k=1

The relations of the new thermodynamic forces to the initial ones are obtained from a
generalization of Eqgs (5.18) by inserting the expressions for «;;,

n n—1
VX; = 0 VX; =VXi—a; Y x,VX; —a;VXy forj=1ton—1 (5119

i=1 i=1
n—1
VX, =—a, Yy x;VX] —a,VX%. (5.120)
i=1

Comparing these equations we find
VX;T =VX; —(a;/a,)VX,. (5.121)
For the number-fixed frame all a; = 1 and Eq. (5.121) is simplified to
VXj =VX; -VX,. (5.122)



5.8 Substitutional diffusion 103

This is the gradient of the diffusion potential and it applies to interdiffusion under
exchange of atoms with those of a selected type, #, usually identified as the solvent. Insert-
ing Eq. (5.121) in Eq. (5.120) we obtain the thermodynamic force for the Kirkendall shift

n—1

VX = =VX,/a, — Y xi(VX; = (ai/a,)VX,)
i=1

n
VX +x,VX, + (VXn/an)Zx,-a,- —xu(a,/a,)VX,

i=1 i=1

- %V (5.123)
i=1

_VXn/an -

n

We here made use of Xx;a; = 1. The result is equal to 0 because VX; = —d(w;/ T)dz,
where T is the local temperature, and ¥x;du; = 0 due to the Gibbs—Duhem relation
under isobarothermal conditions. Consequently, the Kirkendall migration will not
produce any entropy. That is a natural conclusion because the markers are fixed to the
lattice and do not move in a physical sense. It is thus possible to completely neglect the
Kirkendall migration when transforming the diffusion equations from the lattice-fixed
frame to another frame. This is the case where the number of independent processes is
decreased, which was mentioned in the discussion following Eq. (5.40). The description
of diffusion of all the components relative to each other will still be complete but the
Kirkendall migration will be forgotten. It should be emphasized that the Gibbs—Duhem
relation does not apply to diffusion across a phase interface with its discontinuous jumps
in properties and composition. The full treatment given here is thus necessary for diffu-
sional phase transformations with a discontinuous jump in composition at the interface.
That will be further discussed in Sections 17.5 and 17.6. It will also be useful for diffu-
sion inside a phase with appreciable differences in composition between neighbouring
atomic planes, e.g. in ordered alloys or in steep composition spikes close to an interface.

Realizing that the Kirkendall shift should not produce any entropy and its driving
force should thus be zero, we could have transformed the diffusion equations from the
lattice-fixed frame to the number-fixed frame in an easier way, in particular for a binary
system. For diffusion by exchange of A and B atoms the force should be

VX] =VXs— VXs. (5.124)

where the forces in the lattice-fixed frame are V.X; = —du;/dz. For the Kirkendall shift
we have

Ji=—Jx— Jp. (5.125)

This case was defined by Eqs (5.35) and (5.36) and now ap = —1, 000 = —1, 11 = 1

and B,; = —1. Equations (5.38) to (5.40) show that in order not to change the entropy
production we must have

Jl* =o1Ja +o12JB =Ol]1JA—(1 —Ol1|)JB (5126)

VX = BuVXa+ B2VXp = —(1 —a11)VXa — a1 VXp. (5.127)
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It can easily be checked that ¥ J;VX; = 0 = XJ*VX}. The | parameter is arbitrary
but with the choice o = xg and 1 — &1 = x4 one finds that VX5 = 0 due to the Gibbs—
Duhem relation. That choice will thus give the same result as the previous derivation.
Other alternatives are less useful.

Exercise 5.9

Express the flux of a component in the number-fixed frame in terms of those in the
lattice-fixed frame.

Hint

Use Eq. (5.114) and remember that all ¢; = 1 for the number-fixed frame.

Solution
n n
P VI S S 9
i=1 i=1 i#k i#k
For a binary system, J{ = xgJa — xaJp and Jg = xaJp —xgJa = —J}.

Onsager’s extremum principle

When a system is initially in a state of non-equilibrium, it is of practical interest to be able
to predict how the state will change with time as a result of internal processes. Normally,
this is done by using kinetic equations, e.g. the linear phenomenological equations. An
alternative method will now be described but it should be emphasized that it will result
in the same predictions as the linear phenomenological equations. As a consequence,
it cannot be used outside the linear range. In fact, it may be regarded as a method of
deriving the linear phenomenological equations for the processes involved, a method that
sometimes may be a convenient way of formulating those equations.

The alternative method is based on the ‘dissipation function’ defined by Onsager [5].
His function originates from the rate of entropy production of the system, which was
derived in Section 5.1. According to the second law, spontaneous processes in a system
result in an entropy production and the rate will be

o=y X;J;>0. (5.128)
With a linear kinetic equation for each process we have

Jp =Y LjyXk. (5.129)
k

The rate of entropy production would then be

o=y Y LjX;X. (5.130)
j ok
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One could just as well invert the kinetic equation, Eq. (5.129), obtaining

X; =Y Ry (5.131)
k
o= JiX; =0 > RuJe=>_> R (5.132)
J k J k

The new kinetic coefficients represent the resistance or friction of the processes whereas
the L coefficients represent their mobilities. The set of R coefficients are directly obtain-
able from the set of L coefficients. If there were no cross coefficients one would simply
get

o= (1/L;j)J;. (5.133)

The right-hand side of Eq. (5.132) could have been formulated directly by assuming that
the rate of entropy production is a function of the fluxes and developing that function
in a Taylor series. Evidently, the first term in the series can be omitted because there
can be no entropy production without a flux. The second term can also be omitted in
view of the second law because that term is linear in the fluxes and would make the
entropy production change sign if the direction is reversed, which is not allowed since
the entropy production of spontaneous processes must be positive. The right-hand side
of Eq. (5.132) represents the third term except for a factor ',. Onsager thus defined a
function

O, )=%hY Y Rk (5.134)
ok

He called it dissipation function because 2 is not only equal to the rate of entropy
production, o. Under isobarothermal conditions 27 ® actually represents the rate of
Gibbs energy dissipation. Without any physical argument, Onsager then formulated a
new function, ¥ = o — ® and examined under what conditions its value is maximized.
For a system with gradual variations of the local state he found the answer by variation
analysis. We shall avoid this complication by limiting the derivation to a small volume
with approximately uniform conditions or to a system with more than one homogeneous
region.

Comparison of Eq. (5.132) and first part of Eq. (5.134) demonstrate that & is equal to
o /2. However, they represent different functions. This is best understood by multiplying
them with 7. According to Eq. (5.53), T'd;,S is equal to the decrease in Gibbs energy of
the system if it is completely isolated, and — 7o is the time derivative of Gibbs energy,
G. The quantity o thus represents a rate of change of the state of the system. On the
other hand, 7® with @ defined by Eq. (5.134) shows how the Gibbs energy is being
dissipated by friction. The new function is thus defined as

V=0—-0=) X;J;—hY Y Ryl (5.135)
J Jok

We shall now consider a purely hypothetical case where the fluxes can vary under fixed
forces and the coefficients, if they are not constant, vary with the forces but not with the
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fluxes. Then we obtain the following conditions,under which W has an extremum,
ow

— 1 _
57, =% /221{:(1% + Rij)Ji =0 (5.136)
W 1
5 = Xk~ /2Z(Rkj + Rji)J; = 0. (5.137)
k -

J

Itis evident that this is a way of reproducing the kinetic equation, Eq. (5.131), if Onsager’s
reciprocal relation applies. On the other hand, comparison between Eqs (5.136) and
(5.137) demonstrates that this new method of deriving the kinetic equations results in
the reciprocal coefficients being equal because '5(R jx + Ry;) is equal to 1/2(Rkj + Rj).
However, this cannot be taken as a proof for Onsager’s reciprocal relation because there
is no physical principle behind his extremum principle. It should be regarded simply as
a mathematical tool for formulating the linear kinetic equations.

Onsager showed that if there is an extremum it has to be a maximum. However, it
should be emphasized that the value of the maximum is of no interest, nor the fact that
it is a maximum. His principle has thus been called Onsager’s extremum principle. It
should further be emphasized that the extremum is an extremum only in comparison
with the results of non-linear kinetic equations because it is found by keeping the force
constant while varying the flux, i.e., by not requiring the linear law between force and
flux.

However, it is difficult to see how the expression for ®(J, J) in Eq. (5.134) could be
created by combining Eq. (5.128) with a non-linear kinetic equation.

Most practical applications of Onsager’s extremum principle might concern systems
under constant 7 and P and it is thus convenient to use Gibbs energy instead of entropy
and we know that G = —o T, e.g. from Eq. (5.53). We could thus write Eq. (5.135) as

TV =—-G—To. (5.138)

One should first model Gibbs energy as a function of various internal variables, &;,
and take its time derivative to form G as a function of all the fluxes .J ', being defined as
d&; /dt. One has thus identified some internal processes and from their phenomenological
equations one could express the contribution to the dissipation of Gibbs energy from
each one,

¢ =T R, (5.139)
k

where T, being constant, is usually not shown explicitly but is incorporated into the R
coefficient. In addition, there could be other processes that are not identified as eas-
ily. Their contributions should also be evaluated in the same way and included in the
dissipation function

TO =1%LX¢;. (5.140)

Onsager’s extremum principle states that the kinetic equations are obtained from

oW G Ao,
AN ) (5.141)
3J; 3J; — 0.J;
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By solving this set of equations one can thus calculate how the system develops with time.
In order to succeed it is necessary to express all the ¢; functions as functions of the same
fluxes that describe the change of Gibbs energy, G. An example will be given in Section
17.4. A special advantage of this method is that one may use a model of the properties
that includes some dependent variables and apply mathematical expressions for their
dependencies as auxiliary conditions by using Lagrange multipliers when deriving the
conditions for an extremum of Onsager’s W function.

It should finally be emphasized that Onsager’s extremum principle was derived under
the condition that the phenomenological coefficients are constant. It will be discussed
again in Section 17.3.

Exercise 5.10

Onsager’s principle is sometimes regarded as a principle of extremum or maximum
entropy production. Examine if the condition of an extremum for the rate of entropy
production, o, gives the same result as an extremum of Onsager’s function W.

Hint

Use ® = 0/2 from Eq. (5.134) as an auxiliary condition by introducing a Lagrange
multiplier.

Solution

L=0o+M®—0/2); 9L/3J; = X;+ M hE(Rjk + Riy)Je — X;/2) = 0. Apply-
ing Onsager’s reciprocal relation, multiplying by J; and adding the equations for all j,
yields TX;J; + MEZR i J; — hEX;J;) =0 or 0 + A2P — o). With ® = 0/2
this shows that A = —2, yielding the kinetic equations as dL/dJ; = 2X; — X(R;; +
Ryj)Jx = 0. This is in complete agreement with Eq. (5.136).
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Stability

Introduction

For a spontaneous internal process Ddé must be positive according to the second law.
A positive D value would thus require that d€ is positive. The process would proceed
forward. Negative D values would reverse the direction. At equilibrium we have D = 0
by definition but it is then of interest to examine if it is a stable or unstable equilibrium.
We should thus examine the consequence of a small fluctuation d that brings the system
away from the state of equilibrium. Since D is zero, it is then necessary to consider a
higher term in Eq. (1.44)

TdipS = Ddé +'/(dD/d§)(d§)* = '/(dD/dg)(dE ). (6.1

When dD/d§ is positive, Td;,S would increase further if d§ increases further. That
would thus happen spontaneously whether the fluctuation is positive or negative. Any
small fluctuation would grow and the system is unstable. The quantity —dD/dé may be
regarded as the stability and will be denoted by B.

As an introduction to a more detailed discussion of stability it may be instructive to
compare with the mechanical analogues in Fig. 6.1. It shows two bodies with different
cross-sections and in contact with a flat floor. Their potential energy varies with the
angle 6.

Only very slow changes will be considered, and it will be assumed that any release of
potential energy goes into frictional losses. Kinetic energy will thus be neglected. The
extent of the process, &, will be expressed by the angle 6 and the potential energy will
be denoted by £.

The variation of £, D and B with 0 is illustrated in Fig. 6.2 for the body with an elliptical
profile. It has an energy minimum at @ = 0 and a maximum at 0 = /2. In both these
positions the driving force for a further rotation is zero, D = —d£/d0 = 0, and they
both represent equilibria. The quantity d>£/d§? = —dD/d# may there be regarded as
the stability and the lower part of the diagram shows that for & = 0 it is positive and
the equilibrium is thus a stable one. For & = /2 it is negative and the equilibrium is
unstable. A small fluctuation of § away from 7/2 in any direction will here give a force
for a further growth of the fluctuation.

Figure 6.3 is for the body with a rectangular cross-section. It also has two equilibria,
atf = 0 and 7r/2, which are both stable because a small fluctuation of 6 will give a force
for rotation back to the initial position. This case corresponds to Fig. 1.6 where A;,S has
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Figure 6.1 Mechanical analogues of two cases of thermodynamic systems.
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Figure 6.2 The energy, driving force and stability for the elliptical body in Fig. 6.1 as function of
the angle of rotation.

a sharp maximum. In order to decide whether such an equilibrium is stable it is not only
unnecessary but even incorrect to look at the value of d’>E/df? because it represents
the stability only when the driving force is zero, D = —dE /d6 = 0, which is not the
case for # = 0 or /2. Figure 6.3 demonstrates that d> £/d6? would give an incorrect
prediction for these two equilibria. On the other hand, there is a third equilibrium which
has D = —dE/df = 0 at some angle between 0 and 7/2 and there d*E/d9? < 0 and
will correctly predict that the equilibrium is unstable.
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Stability
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Figure 6.3 The energy, driving force and stability for the rectangular body in Fig. 6.1 as function
of the angle of rotation.

Of'the two stable equilibria, one (6 = 7/2) has a higher energy than the other (6 = 0).
For thermodynamic systems such a state is called metastable.

Some necessary conditions of stability

In the discussion of general conditions of equilibrium in Section 1.10 we saw that a
system is in a state of internal equilibrium with respect to the extensive variables if
each one of the potentials has the same value in the whole system. It remains to be
tested if it is a stable or unstable equilibrium. We thus return to the combined law
according to the energy scheme and apply dU to the whole system, but we replace Dd&
in Eq. (1.54) by —1/4B(d£)? because we shall only consider a state of equilibrium where
D=0.

dU = TY*dX? + 14B(d§)%. (6.2)
First we shall consider only one internal process at a time, the transfer of dX® from

one half of the system, denoted by ’, to the other, denoted by "/, dé = dX Y — _dx?,
On the other hand, we shall limit the discussion to systems with no exchanges with the
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surroundings. All the dX? of the total system are zero and Eq. (6.2) simplifies to

dU = 14B(d§)? (6.3)

’U ’uU ?u '
B=—=—= + | —=—== . (6.4)
082 (0X°)? ) ye (0X°)? ) ye
Here we have used the fact that the change of U'in the total system must be equal to the sum

of the changes in the two subsystems. The two terms are equal if the system consists of a
homogeneous substance at equilibrium. By introducing the potential Y* = (U /3 X") x

we then obtain
92U U vty
B=—=2|—— =2 — . (6.5)
982 @X°7 ) o 0X° ) y.

The value of this derivative depends upon the size of the system. It should be evaluated
for half of the system but the stability condition, B > 0, is not affected by the size. The
derivative may thus be evaluated for a system of any given size in the formulation of the
stability condition. It can be written as

U aYP
<—) >0 or (m) >0 or UXhXb > 0. (66)
XC

The last form uses the shorthand notation for derivatives of characteristic state functions,
introduced in Section 2.5.

From Eq. (6.6) we may conclude that in order for a substance to be stable it is necessary
that it has such properties that any pair of conjugate variables must change in the same
direction if all the other extensive variables are kept constant. Actually, so far we have
proved this only for conjugate pairs appearing on the energy scheme, i.e., (7, S), (—P, V)
and (u;, IV;). For them the stability conditions could be written as

USS > 0; UVV > 0; UN,-N, > 0. (67)

As an example, in a stable system the chemical potential of a component, u;, cannot
decrease when the content of the same component, N;, increases under constant S and
V. As another example, when the temperature of a substance is increased at a constant
volume, the entropy must also increase in order for the system to be stable.

U <8T 0 (6.8)
= — > U. .
Ss 35 ),

Using Eq. (2.27) we can write this stability condition as
T/Cy > 0. (6.9)

In combination with the fact that the absolute temperature 7 is always positive, this
implies that the heat capacity under constant volume, Cy, must be positive

Cy = T(3S/dT)y.n, = T/(dT/3S)y.n, > 0. (6.10)
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However, in order to indicate where the limit of stability is, one should stick to the
condition as obtained directly from Eq. (6.8), i.e Eq. (6.9), or since T is positive,

1/Cy > 0. (6.11)

The limit of stability occurs as 1/Cy goes to zero, i.e., as Cy goes to infinity. Similar
considerations can be based upon the entropy scheme, where we have

—dS = (=1/T)dU + (=P/T)dV + X(u:/ T)AN; — (D/T)ds.  (6.12)

By again replacing Dd¢ at equilibrium by —14B(d&)? we obtain under constant U, V/
and N;,

B
—ds = 1/2?((15)2 (6.13)
B (=S 3=\ 3%(=9)\" arey’
() (i), (), GR), o
T & a(X®)? J \ (X*)? / X"/ e
Since T is never negative, we find
aYP
XC

where X®, Y is any pair of conjugate variables appearing in the entropy scheme, i.e.
(—=1/T,0),(—P/T,V)and (u;/ T, N;). As an alternative we could have defined the
stability by replacing (D/ T)dé with —14B(d&)?. Then T would not have appeared in
Eqgs (6.9) and (6.10). Similar considerations can also be based on the volume scheme
introduced in Section 3.5,

dV = (T/P)dS — (1/P)dU + S(u;/P)dN; — (D/P)dk. (6.16)

At equilibrium under constant S, U and N; it yields

B vy’

—=2(— . (6.17)
P X ) .

The conjugate pairs of variables are here (7/ P, S), (—1/P, U) and (ui/ P, N;).

Exercise 6.1

In Section 2.7 we saw that Griineisen’s constant can be evaluated from y = V(d P/dU)v
and it often has a value of about 2. Is this a quantity that is always positive for a stable
system?

Solution

y concerns the variation of P with U but they are not conjugate variables in any of the
schemes presented in Table 3.1. Thus, we cannot prove that y is always positive. On the
contrary, it may be negative because o may be negative inrare casesand y = Va /k7Cy.
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Sufficient conditions of stability

So far we have discussed stability with respect to one internal process at a time. In
Chapter 5 we considered more than one simultaneous process, expressing d;, S as X X;d§;
or I'd;p S as ¥ D;d&;. At equilibrium the forces are zero and we need the next higher-order
terms. Instead of Eq. (6.1) we should write

TdpS=> Didé —1h> > Bydeds; = 1Y Y Bdgd;.  (6.18)
P P

We should thus generalize Eq. (6.2) and by arranging the Y*dX? terms in a special order
we write the combined law as

dU = TdS — PdV + jupdNy + -+ + puedNe + pidNy + 15 Y Y " Byydéidg;.
S (6.19)

We shall again keep all the extensive variables for the whole system constant and consider
the transfer of some amounts of the extensive quantities, here S, V', N, N3, ..., N, Ny,
between the two subsystems. In order for the system to be in a stable equilibrium all
the stability conditions given in Eq. (6.7) must be satisfied. However, in Chapter 5 we
found that cross terms could be very important for the kinetics and it is also true here.
It is an interesting question if it is then necessary to stipulate that all the B;; stabilities
are positive in order to ensure that the system will be stable. In fact, it will now be
shown that it is sufficient to ensure that a smaller set of conditions are satisfied if the
members of that set are chosen in a particular way. For the present set we have the

definition
*U U aY?
B = — = — (6.20)
’ 0&;d&; a.xadXx® aX® /)

According to Section 2.5, B;; could be denoted Uy.y» because the set of extensive
variables are the natural variables of the U.

By first considering the transfer of only some amount of one of the extensive variables,
there will be no cross effects and taking the first extensive variable we write

aoT
Uss = <—> >0, (6.21)
S V,Na,...;Ne, Ny

44444

as a condition of stability. Next, consider the transfer of d7 but also of some S. However,
it is possible to eliminate the cross effect between them by the use of the combined law
after subtracting d(79),

dF = d(U — TS) = —SdT — PdV + p2dNs + - - - + j1dN,
+udNy+ 15 )Y Bipdgds;. (6.22)
i

Instead of prescribing the amount dS to be transferred we shall consider the amount
that keeps T constant. The value of T, being a potential, must be uniform in the system



114

Stability

at equilibrium and there can be no cross terms between a potential and an extensive
quantity. The new stability condition will simply be

Jo(—P
Fyy = < ( )> - 0. (6.23)
OV )NV,

Next we shall add d(P V') obtaining dG and when considering the transfer of dV, the
next stability condition in the set will be

o2
()
w ON2) 7. p Ny, NN,

Then we subtract d(u, N,) obtaining a characteristic state function applied in Eq. (3.44),

> 0. (6.24)

d(G — uaN;) = —8dT + VdP — Npdpy + pusdNs + - -
+ 1edNe + pidNy + 15 0 Bydéidg;. (6.25)
i

When considering the transfer of dV3 we obtain the stability condition
s )
IN3 T,P,12,Ngv.oo, Ne, Ny

.....

(G — paNo)wy, = ( > 0. (6.26)
By proceeding in the same way we obtain conditions involving all the components from
2 to ¢ and each time with one more potential among the variables that are kept constant.
Finally we obtain

e
( K ) =~ 0. (6.27)
8NC T,P,u2,.cc;le—1. Ny

It would seem that there is one more derivative in this series, (1/9N1)7. P s, 110,
where all the variables to be kept constant are potentials. However, that derivative is
always equal to zero in view of the Gibbs—Duhem relation between the potentials. It says
that w1 cannot vary if all the other potentials are constant. The final derivative thus yields
a trivial condition, which will not be included in the set of stability conditions.

We have thus been able to derive a set of ¢ 4 1 stability conditions without involving
any cross terms. As explained in more detail in Chapter 8, at equilibrium there are
¢ + 1 degrees of freedom in a one-phase system with ¢ components. The set of ¢ + 1
stability conditions can thus ensure that the system with its ¢ + 1 degrees of freedom is
stable against all possible fluctuations that can utilize the ¢ + 1 degrees of freedom. We
have thus obtained a sufficient set of stability conditions. Naturally, one could form a
number of such sets by rearranging the extensive variables in a different order. It should
be emphasized that if all the conditions in a sufficient set are satisfied, then all other
stability conditions are automatically satisfied. It may be mentioned that the variable, put
last among all the extensive variables, was thus chosen to express the size of the system.
For that purpose Gibbs used the volume V. Of course, any extensive variable could be
used.

Finally, it should be emphasized that a set of stability conditions can only be sufficient
with respect to the particular kinds of freedom that are considered. In addition to those
considered so far, there could be degrees of freedom concerning the homogeneous state
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of the system, e.g., the mutual order among different atoms and the crystalline structure.
Such a case will be discussed in Section 6.7.

Exercise 6.2

What would be the last stability condition if we use the combined law written according
to the basic entropy scheme?

Hint

Consult Table 3.1. Select the content of component 1 to define the size of the system.

Solution

We get (0(pte/T)/ON/T,P/ T in) T,.... s/ T,n; > 0 but since 1/T is kept constant, 7" is
also kept constant and because 7 is always positive we could just as well write this
condition as (dfte/ON)T, P.ps.....pte_r.N; > 0, Which we recognize.

.....

Summary of stability conditions

We have seen that stability conditions are defined through the derivative of a potential with
respect to its conjugate extensive variable. In Section 6.2, all the remaining extensive
variables in the same set of conjugate pairs were kept constant. In Section 6.3 it was
shown that a stability condition is also obtained if one or more of the potentials are kept
constant instead, i.e.

aY®
— > 0. (6.28)
aX Ych

However, it must be emphasized that all the independent variables appearing in a stability
condition must come one from each pair in a set of conjugate pairs. One cannot use a
mixture of variables from different sets. Nine possible sets were listed in Table 3.1
and they can all be used for this purpose. Each one yields its own form of the Gibbs—
Duhem relation and eight stability conditions, not counting those where a mixture of
wu; and N; are used. This makes 72 stability conditions, but few of them are really
useful.

Exercise 6.3

Find a stability condition concerned with Cp.

Hint
Remember that Cp = T(9S5/0T)p ;-
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Solution

It is evident that we should look for a stability condition involving (87°/9S)p n,. We
find the combination of variables in line 1 of Table 3.1 listing pairs of conjugate vari-
ables. The combined law with S, P and N; as independent variables is obtained as
dU +d(PV)=dH =TdS + Vd(P) + Zpn;dN;, where T = (0 H/dS)p n,. We get the
stability condition Hss = (0°H/3S?)p.y. = (dT/3S)p.n, > 0 and thus 7/Cp > 0.

Limit of stability

Let us now compare the stability conditions occurring in a given set of sufficient con-
ditions. Suppose we are inside a stable region and want to know which one will first
turn negative as we move into a region of instability. We can find this by first examining
which derivative is the smallest one inside the stable region. Let us start by comparing
any two conditions, which differ only by the choice of variable in a conjugate pair to be
kept constant, the extensive variable or the potential. Using the ability of Jacobians to
change the independent variable from Y° to X¢ we find

Y® Y® Y® aYe aye
) =\low) 5y Pers / -) . (6.29)
0x® ), \oxt ). \oxe),,\oxv) ./ \ox<),

In view of a Maxwell relation, (9Y®/dX )y and (3Y°/9X%)y. are equal and
(0Y°¢/9.X°) x» cannot be negative for a stable system. Thus, the last term with its minus
sign cannot be positive and we find

oY°N (97" (630)
axv )~ \axv ) . '

It is evident that each time a potential is introduced among the variables to be kept
constant, the stability condition gets more restrictive. The most severe condition is the
one where only one extensive variable is kept constant, the one chosen to represent the
size of the system. Consequently, this derivative must be the first one to go to zero and
that happens on the limit of stability. Of course, it is possible that one or several of the
other derivatives also go to zero at the same time. However, we can always find the limit
of stability by considering the last condition in the set if we know that we start the search
from inside a stable region.

Let us now consider what happens to the last derivative in a different set of stability
conditions. We can write the condition for the limit of stability according to the first set
of necessary conditions in the following general form

aY®
— =0, (6.31)
axe )y

where Y° indicates that all potentials except for Y° and Y! are kept constant during the
derivation. However, in this situation where the derivative is zero, Y® is also constant
and, according to the Gibbs—Duhem relation, the only remaining potential, Y, must also
be constant. We thus find that, in this situation, it is possible to change the value of an




6.6

6.6 Limit of stability against fluctuations in composition 117

extensive variable, X®, without affecting any potential, nor the value of the extensive
variable chosen to express the size of the system. However, the other extensive variables
will change with X®, because they are dependent variables, and it would be possible to
accomplish the same change of the system by prescribing how any one of them should
change. The above relation thus holds for any conjugate pair of variables. We thus find
that the last stability condition, obtained in each set of stability conditions, are all zero
at the same time. Anyone of them could be used to find the limit of stability if one starts
from inside a stable region.

It should be emphasized that inside a region of instability the above conditions may
again turn positive when other conditions have become negative. In the general case it
is thus necessary to apply a whole set of stability conditions. It is only when one is able
to start from a point inside a stable region that one can identify the limit by applying a
single condition.

Exercise 6.4

Show for a unary system that (d(—P)/9V )y and (07 /9S)p go to zero at the same time,
as they should because only one extensive variable, N, is kept constant (and it is omitted
from the notation in the case of a substance with fixed composition).

Hint

In order to compare them, they must be expressed in the same set of independent variables,
which can be done using Jacobians. Take S and V, for instance.

Solution

We obtain (3(—P)/dV)r = Uyy — (Usy)*/Uss and (3T/38)p = Uss — (Usy)*/
Uyy = (0(—P)/dV)r - Uss/Uyy. If one expression goes to zero when Ugg and Uy
are still > 0, then the other expression also does. The two quantities can be expressed as
1/Vkyand T/Cp. It is interesting to note that k7 and Cp both go to infinity at the limit
of stability.

Limit of stability against fluctuations in composition

Experimentally and in practice it is most common that temperature and pressure are
approximately constant. The question of stability then concerns only fluctuations in
composition. We can omit 7 and P from the notation and give the limit of stability as

O e
< i ) o (6.32)
aN, 2oy o1, N

Usually the experimental information is available as fundamental equations of Gibbs
energy. It would thus be convenient to express Eq. (6.32) in terms of Gibbs energy. This
can be done by the use of Jacobians of a higher order than discussed before. The result
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is conveniently written with the notation Gy, for (9 /9 N;) N; which is also equal to
892G /dN;dN;. One has thus obtained the following (see [8]),

Gy . . Gy

Gy . Gy
0/be . .. . ’
(azuv ) - / S . . (633)
€7 2o the—ts N ) C ; Gc—1,2 . Gc—l,c—l

GCZ CE Gcc

The second determinant can be related to the derivative for the preceding component,

Gyn . Gye

<3Mc—1) B /’ Gxn Gzc 2
aNC*1 25 fhe—2,Ney Ny G C 2,2 c 2,02

c—12 - c l,c—1

(6.34)

Again, the second determinant can be related to the derivative for the preceding compo-
nent, etc. Finally we obtain by eliminating all lower-order determinants

Gn . . G

<8Mc)<aﬂc—l) (%)_ . . . (635)
aN. J\oN._; ) "\aN,) | . . . | '

Gc2 .. Gcc

For convenience, we have here omitted the indices for the derivatives. In a stable region
all these derivatives are positive. No derivative can decrease its value to zero before the
first one. The criterion of limit of stability can thus be given simply as

Gyn . . Gy
=0. (6.36)
Ga . . Gu
However, this is still not the most practical way of writing the criterion because the Gibbs

energy is usually given as a function of the composition, x;, x3, . .. and the size of the
system is expressed by the total number of atoms, N, rather than N;. Thus,

G =N Gu(x2, %3, ...). (6.37)

It should thus be most practical to express the criterion for the limit of stability in terms

of the derivatives of G,,. We should introduce dx; and dN in the expression for dG.

Using x; = 1 — x, — x3 — - - - because we have chosen x| as the dependent composition
variable, we find

N; = Nx; (6.38)

dN; = Ndx; + x;dN. (6.39)

D widN; =N pidx; +dN Y pix; =N Y (i — pa)dx; + GudN - (6.40)
i i=l i=l i=2

dG = —SdT + VAP + N Y (u; — p1)dxy + GmdN — > D'dg’. (6.41)
i=2
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We may proceed as before because we can keep x ; of a whole system constant and transfer
dx; between two halves and the same amount of component 1 in the other direction. The
limit of stability will now be given by

<3(Mc - m))
dxc 2= 5o hem1 — o1, N

Again we shall change the variables to be kept constant by using Jacobians. The final
expression will then contain derivatives of the type (d(ux — 11)/9x7)x, n and they can
be expressed as (392G / dx;9x7)y,, which we shall abbreviate as gi;. We shall also use
the notation

=0. (6.42)

Gy
Mg — 1 = <—> =g, (6.43)
Xj

Bxk

where x| is a dependent variable. This was shown in Section 4.1 in which it was mentioned
that ; — gy is regarded as the diffusion potential between j and k. The difference from
Eq. (4.8) is caused by the molar Gibbs energy G, here being treated as a function of
T, P and all x; except for x|, which is chosen as a dependent variable. In that case
dx; = —Xdx;. By introducing the notation g for first-order derivatives of Gy, and gy,
for second-order derivatives, we obtain the following convenient form of the limit of
stability

82 - - 82

=0. (6.44)

82 - - e

It should be noted that Eq. (6.42) could have been written as

0g.
(g) - 0. (6.45)
axC 82,281, N

It should again be emphasized that g; and gy, are defined with x; as dependent variable.

For a binary system, the condition for the limit of stability reduces to g», = 0. Although
the limit of stability of a solution is exactly defined by the condition just given, there
have been attempts to modify this expression in order to get a function which is more
suitable for representing the properties of a solution in its stable range as well. In par-
ticular, the determinant in Eq. (6.44) goes to infinity at the sides of an alloy system,
an effect which can be removed by multiplication with x;x;...x.. One may further
make the expression dimensionless by dividing by RT to the proper power. For a binary
system one has thus defined the stability function x;x,g,,/RT, which is unity over
the whole range of composition for an ideal solution and goes to zero at the limit of
stability.

Exercise 6.5

Show that the stability function, just defined, is unity over the whole system for an ideal
A-B—C solution.



120

X1X2X3

6.7

Stability

Hint

An ideal solution has G, = Zx;(°G; + RTInx;). Take the derivatives of Gy, remem-
bering that x; = 1 — x, — x3.

Solution

g =dGn/dx; =°G, —°G1 + RT(Inxy —Inx;); go = RT(1/x2+1/x1); gn =
RT(1/x1) =g3; g33 = RT(1/x3+ 1/x1). We thus get

1 1 1 1 1\?
RT = x1x2x3 + + + - — =x;+x3+x3=1.
X2X3 X2X1 X1X3 X1X1 X1

Exercise 6.6

g32
833

Use a Jacobian transformation to show that the limit of stability in a ternary system is
82 823
832 833

=0.

Hint

By omitting the variables that are kept constant, the stability condition in Eq. (6.42) can

I(1a —
be written as (M> =0.
3X3 H2— [

Solution

s — 1) (s — pu1) dx3 dx3
<3(,LL3 — ,LL])) _ BX3 8x2 8)63 3)62

93 po—m |02 — 1) A(p2 — p1) o — 1) (w2 — p1)
0x3 0x, dx3 x>
%G %G
8X38X3 3)633)(2 / asz g2 g3
= o Jg = 0.
G 3°Gp 0x30xy |83 &3
3)628)(3 8x28x2

However, g»> > 0 in the stable region and it does not reach g, = 0 before our condition
82 823| _ 0
832 833

is satisfied. Our condition can thus be written as

Chemical capacitance

The diagonal elements in the G.. determinant can be written as (dut;/9dN;)r p n, and
they must all be positive because they are stability conditions according to Section 6.2.
In addition, the inverse quantities are sometimes regarded as the chemical capacitance
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of the component j [9],

IN;

) = <3—) =1/Gj;. (6.46)
HjJ 1P

This quantity may be of practical importance because it is often of considerable interest

to be able to increase the amount of a component j in a system without increasing the

chemical potential of the same component too much. A system with a high capacity is

said to be well buffered.

An off-diagonal term in the G, determinant cannot by itself form a stability condition
because it concerns variables that do not make a conjugate pair. It may thus be positive
or negative in the stable region. Nevertheless, its inverse quantity may also be used as a
kind of chemical capacitance. The following relation holds between them,

u, PG

1/ Q= o = _
/4= N, T NN, AN,

=1/ (6.47)

Exercise 6.7

What gas mixture is best buffered for oxygen: (a) 1 mol of Ar and 10~% mol of O, at
1 bar and 1550 K; or (b) 0.99 mol of CO; and 0.01 mol of CO at 1 bar and 1550 K?

Hint

The conditions were chosen in such a way that the equilibrium partial pressure of oxygen
is very close to 107° in case (b) as well as in case (a). Accept this information.

Solution

(@) Po, = 1-No,/Nar = No,; Mo, = °mo, + RTInPo, = °uo, + RT InNo,;
1/ 0,0, = dpt0,/dNo, = RT/No, = RT/107°.

(b) If we add No,, most of it will react by O, + 2CO — 2CO, yielding Nco = 0.01 —
2No, and Nco, = 0.99 4+ 2No,. We get, using the equilibrium constant K: Po, =
K(Pco,/Pco)* = K[(0.99 + 2No,)/(0.01 —2No,)I*;  1/R0,0, = dit0,/dNo, =
2RT[2/(0.99 +2No,) — (—2)/(0.01 — 2No,)] =4RT/0.01. Thus, (Qozoz)b >>
(Q0,0,)"

Limit of stability against fluctuations of internal variables

As mentioned in Section 6.3 there are ¢ + 1 degrees of freedom with respect to fluctu-
ations resulting in differences between various regions of the system and ¢ — 1 of them
are connected to fluctuations in composition. All these degrees of freedom are related to
the extensive variables that were originally defined from interactions with the surround-
ings. Thus, they can also be used to represent exchanges between various regions of the
system, regarded as subsystems. There is another kind of variable that can only describe
changes within a homogeneous system and without involving any interaction with the
surroundings. They give rise to internal degrees of freedom in addition to those already
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discussed. The problem of stability also applies to such variables. As an example we shall
now consider a crystalline system with more than one sublattice. In order to describe the
constitution in such cases, the concept site fraction was introduced through Eq. (4.50).

V=N /Z NS (6.48)

The sum of site fractions in a sublattice is equal to 1. The superscript s identifies a
particular sublattice. If N is now the number of moles of formula units, we have

G=N- G, (yj) , (6.49)

where G, is the Gibbs energy for one mole of formula units. We now want to express
dG in terms of all the dy} and dN. We obtain

dG = —SdT + VdP + ) Y " ¢3dy} + GudN — > D'dé". (6.50)
s

The summation for each sublattice starts from the second constituent present in that
sublattice, the first constituent being chosen as the dependent one. ¢ is the conjugate
variable to y just as gy = ux — w1 from Eq. (6.43) is the conjugate variable to xj.

0G 0G
o =— =N|(—" : (6.51)
7o\ oy , ay; ,
TPy ,yi N S TPyl

where y; denotes the site fractions of all the other independent constituents on the same
sublattice and y! denotes the site fractions of all the independent constituents on other
sublattices. By proceeding as before we obtain for the limit of stability

¢!
(i) —0, (6.52)
ay; TPyl | N

sees P

and, after changing the variables to be kept constant using Jacobians,

g1 - Lk
=0. (6.53)

gkt - Zkk

As before, g;; denotes the partial derivatives of Gy, but, for convenience, we have now
numbered all the independent constituents in all the sublattices from 1 to k. It should be
noted that & could be equal to, smaller than or larger than ¢, the number of components
in the system. It should be emphasized that any internal variable, &, can be included
in the & variables if it is an extensive quantity divided by the size of the system. In a
ferromagnetic alloy it could be the number of atoms per mole with magnetic spins in a
certain direction. A particularly simple case is obtained in a pure element if there is only
one interval variable. The stability condition is then

B = % >0
(9&7)
Finally, it should be remembered that a criterion of stability can only be applied to a state
of equilibrium and all the elements of the determinant, being partial derivatives of G,
must be evaluated for that state before the value of the determinant can be calculated. It
is thus necessary first to calculate the equilibrium values of all the internal variables.

(6.54)
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Exercise 6.8

At low T, (3-brass has two sublattices and could be represented by the formula

(Cu, Zn)|(Zn, Cu);. The major constituent in each sublattice is given first. All the sites

are equivalent and the system will disorder above a certain temperature. Calculate

the critical temperature if Gy = xA°Ga +x5°Gp + 0.5RT (¥, Inyy + ypInyg +
"

yalnyy + ygInyg) + K(vayvs + ypya)- Kis a negative constant and " and ” identify the
sublattices.

Hint

There are two independent variables in addition to 7’and P, namely the alloy composition
and the degree of order. To simplify the calculations it may be convenient instead to treat
vi and yj as the independent variables. Then yy =1 —y,; yg=1—yi; xa=
Wy +¥30)/2;  xp = (yg + ys)/2. Treat T and P as constant. For the disordered state

ro_
YA = VA = XA

Solution

Let y, be variable 1 and y) be variable 2. We find g = °Ga/2 — °Gg/2 +
05RT(Iny, —Inyg) + K(yg —v3); & = °Ga/2 —°Gp/2+ 0.5RT(Iny, —Inyy

+K(=yy+ ) gn=K(=1-1)=gu; gu=05RT(1/y, +1/yp)=0.5RT/
Vaves €2 =05RT(/yi+1/y5)=0.5RT/y\ys. The criterion for the limit of
stability gives g1122 — g12821 = 0; (0.5RT)?/y\yayive = (=2K)*. The critical
temperature for ordering in a disordered alloy of composition xa, xg is thus 7 =

4(—K)XAXB/R.

Le Chatelier’s principle

When discussing the limit of stability we compared the values of two derivatives, which
differed only by one of the variables to be kept constant. Using the same method of calcu-
lation we can also compare the effect of changing an external variable under a frozen-in
internal variable £ and under a gradual adjustment of £ according to equilibrium, i.e.
D = 0. It should be remembered that £ may be treated as an extensive variable and —D
could be regarded as its conjugate potential. We obtain

(5%),..= (), - (). (). / (52),. o
ox® ), \oxv ), \og )\ axv ), E )

For simplicity, the variables that have been kept constant in all the derivatives have been
omitted from the subscripts but any set of potentials and extensive variables presented
in Table 3.1 can be used. (8Y?/3&)y and (8(—D)/8Xb)5 are equal due to a Maxwell
relation and (a(—D)/9&) y» is equal to the stability B at equilibrium. For a stable system,
B is positive and the second term on the right-hand side with its minus sign cannot be
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Stability

yb

Le Chatelier’'s
modification

dyb
; - AXP
dX® /p-o

b Y
dYP\ b A
dXx® /g

XC

Figure 6.4 Illustration of Le Chatelier’s principle. The extensive variable X® is changed by an
amount A X" by an external action. An internal process is first frozen in, d¢ = 0, but then
proceeds to a new equilibrium, D = 0. The initial effect on Y® is thus partly reversed. During
the whole process either the potential or the extensive variable of the other pairs of conjugate
variables is kept constant (here represented by X° on the abscissa).

positive. We thus obtain from Eq. (6.48)

ay® aYb
o<()  <(%). (6.56)
ax® ), o~ \axt ),

This relation is quite general. It has here been derived using the energy scheme. It can
also be derived using the other schemes.

Suppose the equilibrium inside a system is disturbed by an action from the outside.
For instance, X° is changed quickly by an amount A X® and there is not enough time for
an internal reaction, i.e. £ is kept constant. Thus, the potential Y is changed according
to the term appearing on the right-hand side of the inequality and first on the right-hand
side of Eq. (6.55) (see the left-hand arrow in Fig. 6.4). After a sufficiently long time the
internal reaction will occur and & will change to a new state of equilibrium, D = 0, and
the net change of the two stages may thus be calculated from the term appearing in the
middle part of the inequality and on the left-hand side of Eq. (6.55) (see the right-hand
arrow pointing upward in the figure). It represents the change of Y® due to a slow change
AXP®. The difference between the two changes of Y represents the change due to the
internal reaction, the so-called Le Chatelier modification. The inequality shows that the
change in Y® will thus be partly reversed during the second stage (see the arrow pointing
downward in the figure). This principle was formulated by Le Chatelier [10] but in a less
exact manner. It should be emphasized that it concerns two conjugate variables, X° and
Y®. It should further be emphasized that the extensive variable must be regarded as the
primary variable. If, instead, the potential variable is regarded as the primary one, then
the opposite result is obtained

.Xx° X
i >{—) =0 (6.57)
ar® ) o, aYd ),

The derivation of Le Chatelier’s principle is based on derivatives and it has thus been
proved only for infinitesimal disturbances. There is no guarantee that it always applies
to large disturbances.
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Exercise 6.9

Test Le Chatelier’s principle on the change of temperature and pressure when an amount
of heat is added to a two-phase system of water vapour and liquid water under constant
volume. Suppose that evaporation is initially very slow due to a thin film of oil.

Hint

Remember that dU = dQ — PdV. At constant J'we thus have dU = dQ and could choose
U as the variable that is changed by an action from the outside. Its conjugate variable
is — 1/T. The internal variable £ may be identified with the amount of vapour.

Solution

Identify U with X® and — 1/7 with Y®. For a stable system we get, at constant &,
i.e. before any change of the amount of vapour, 0 < (3(—1/7)/dU ). This means that
—1/T, and thus also T, has increased due to the increase of U.

At the higher temperature the equilibrium vapour pressure will be higher. In a second
stage of the process there will thus be evaporation and the temperature will decrease in
agreement with Le Chatelier’s principle, 0 < (3(=1/T)/dU)p=o < (3(=1/T)/9U).

On the other hand, the pressure has increased during the first stage due to the heating
of the vapour present from the beginning. During the second stage, the pressure will
increase further, in apparent contradiction to Le Chatelier’s principle. However, pressure
is not conjugate to U, which was the variable that was changed to a new value in the
experiment.

The result is far from trivial because there would be further evaporation during the
second stage only if the increase in pressure of the initial vapour due to its heating is
smaller than the increase of the equilibrium vapour pressure due to the heating of the
water. By relying upon Le Chatelier’s principle we may thus conclude that the heating of
the vapour gives a smaller increase of the pressure than the heating of the water would
increase the equilibrium vapour pressure.
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energy diagrams

Molar Gibbs energy diagrams for binary systems

In this chapter we shall derive some useful thermodynamic relations relating to phase
equilibria under constant temperature and pressure, sometimes in exact form but some-
times using approximations in order to bring the final expressions into a suitable form.
We shall see how property diagrams for the molar Gibbs energy can be used in such
derivations. Most of the applications will make use of the tie-line rule (see Section 4.5).

As an introduction, some basic properties of solutions must be discussed and, in the
present section, a simple solution model will be described. A more thorough discussion
will be given in Chapter 20.

Let us first consider a case where a solution phase « can vary in composition over a
whole binary system from pure A to pure B. It is then convenient to compare the G,
value at any composition with the value one can read on the straight line between the two
end-points, sometimes called the end-members of the solution. The difference is often
called the Gibbs energy of mixing and is denoted with a superscript M. It is illustrated
in Fig. 7.1. It is defined by the following equation

G% = xA°G% + xp° G + MG~ (7.1)

A warning should be issued regarding the interpretation of MG,,. Usually it is defined
with reference to the straight line between points representing the pure components in
the same state as the phase under consideration, i.e. the end-members of the solution.
However, sometimes it is defined with reference to a different state for one of the compo-
nents, for instance the state which is most stable at the temperature under consideration.
This is illustrated in Fig. 7.1(b) where pure B is more stable as 3 than as .

The Gibbs energy diagram gives information on the partial molar Gibbs energies
for the two components, i.e. the chemical potentials. For a single phase one can use
the construction explained for V, in Fig. 4.6 and illustrated for Gy, in Fig. 4.7. It is
now demonstrated again in Fig.7.2(a) and is in agreement with the following relations,
which are examples of the more general expression for all partial quantities, derived in
Section 4.1.

G% = G% + (1 — xp)dG% /dxp = G + xAdG* /dxp (7.2)
GE — G% = dG* /dxp. (7.3)
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(a) (b)
Gm A Gm A

oGg

oG

°G, °Ga

A Yow o

Figure 7.1 Molar Gibbs energy diagram for a binary system illustrating the definition of the
Gibbs energy of mixing. The end-members of the solution are used as references in (a) but a
more stable state of B is used in (b).

(a) (b)
Gm A Gm A
OGB
GA(X,B)

B .
°Gg  Gil(xp)

OGA

1 ,
x x Gglxpg) X
A B B 0 B Xg P> 1.0

Figure 7.2 (a) Tangent construction to obtain a chemical potential. (b) Definitions of excess
quantities for an alloy of composition x.

An important contribution to the Gibbs energy of mixing comes from the entropy of
mixing of the two kinds of atoms. In Section 19.8 we shall consider the case where they
are distributed at random and shall find that the entropy of mixing of one mole of atoms
will then be —R(x Inxa + xpg Inxp). A solution with only this contribution to the Gibbs
energy of mixing is regarded as an ideal solution

Gl — x °GY + x5°G% + RT(xa Inxp + xp Inxp). (7.4)
Using Eq. (4.5) relating partial quantities to molar quantities we obtain
Gideal — 0GX 4 RT Inxp. (7.5)

A comparison with the ideal solution is given in Fig. 7.2(b). The curve for G9! shows
that the term R7(xa Inxs + xp Inxp) is negative and makes the G, curve look like a
hanging rope. It is the main cause of the stability of solutions.
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It is common to summarize all other contributions to the Gibbs energy with a term
called the excess Gibbs energy and denoted by EG%.

G = G L EGY = x,°G% + xp°GRE + RT(xa Inxa 4+ xp Inxg) + EG%. (7.6)

This is also illustrated in Fig. 7.2(b). In the same way we may define the mixing and
excess quantities for the partial Gibbs energies,

GE = Gideal L EGY = °G% + RT Inxp + GE. (7.7)
MGE = RT Inxg + “G§. (7.8)

It is evident that the mixing and excess quantities can be calculated directly in the same
way as Gj.

MGy =MGY + (1 — xp)dMGY Jdxg = MG — x2AdM G /dxa (7.9)
PGy =G+ (1 —xp)d"GY [dxp = "Gl — xAd" G /dxa. (7.10)

It should be emphasized that one cannot give an absolute numerical value to the partial
Gibbs energies, °G{y or °G%, because there is no natural zero point for Gibbs energy.
Numerical values can be given only to differences in Gibbs energy between two states.
Thus we can give a value to G} — °Gg, and another value to G — °G]§, where pure
«—B and pure 3—B are regarded as two different choices of reference states for B. Such
a value gives the vertical distance between two points (see the B-axis in Fig. 7.2(a)).
For alloys, a numerical value can be given only to differences between two states of the
same composition. The two lines representing MGy, and MG/, in Fig. 7.1(a) and (b),
respectively, are thus vertical. This stems from the fact that one cannot compare the
Gibbs energies for A and B. When starting to construct such a diagram one can give the
°Gy — "GS line any convenient slope.

If one has chosen the end-members of an A-B solution to define the reference states,
°G 4 and °Gp, then it is evident that the excess Gibbs energy is zero at the two sides of
the system where G, is equal to °G 4 or °Gp. For a dilute solution of B in A we may
thus try to approximate G, as Lx,xg, an expression that goes to zero on both sides.
This is the regular solution approximation, and using the equation relating Gp to Gy, we
find

GR=°Gi+ RTInxg + G} =°GE + RT Inxg + L*x3. (7.11)
It is common to introduce the chemical activity, ap, through the expression
Gy =°GR+ RTInag =°GE + RT Inxg + RT In f3, (7.12)
where
ap = fBXB, (7.13)
and fp is called the activity coefficient of B. The activity is thus defined as

ag = exp[(G} — °Gy) /RT]. (7.14)
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G i

oG!

OGX

A B

Figure 7.3 Molar Gibbs energy diagram illustrating the definition of the standard Gibbs energy
of formation, A°G? , of a compound 6.

The activity coefficient is obtained through
RT In fz = G§. (7.15)
For a dilute solution, i.e. low xg, we may thus write
RTInfz =FGE = L*2 = L* or fg=exp(L*/RT). (7.16)

With this approximation, the activity is proportional to the content. This is called Henry’s
law. We also find for low xp,

RTIn fp =G5 + (1 —xa)d"GY [dxa = L% = 0. (7.17)

The value of f, is thus unity close to the A side. This is called Raoult’s law. When
Henry’s law holds for B and Raoult’s law holds for A, then we obtain

dGy/dxg = G — G =°G} + RT Inxg + L* — °GX — RT Inxy (7.18)

d*GS/ dxj = RT/xp + RT/xn = RT(xa + xp)/xaxp = RT /xaxp = RT /xp.
(7.19)

For an intermediary phase, which does not extend to the pure components, one must
always refer the Gibbs energy to the values of the components in selected states, usu-
ally their stable states. For a phase with a well-defined composition one often talks
about the standard Gibbs energy of formation (see Fig. 7.3). From that diagram we
obtain

A°G® =°G® — x,°G% — x5°Gh. (7.20)

This quantity is often denoted by ArG® or A GY . Itis important to mention the reference
states to which it refers and also the amount of material being considered, for instance
1 mole of atoms or 1 mole of formula units (like, e.g., Cry3Cs).
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—-RTIn1.04

}

Figure 7.4 Solution to Exercise 7.1.

Exercise 7.1

An « solution in the A-B system has ag = 0.9 at 1000 K when pure «—B is used as
reference state. Calculate ap referred to another state of B, called 3—B, which is more
stable than o—B by 1200 J/mol. Illustrate with a G, diagram.

Hint

The position of the point on the B-axis representing G does not depend upon the choice
of reference state. We can thus equate any two expressions for Gj.

Solution

as™ = 0.9; °Gy + RTIn(a§™) = Gy = °G§ + RT In(ay");

af™® = @™ exp[(°G% — °G)/RT] = 0.9 x exp(1200/8.3145 x 1000) = 1.04. Since
this is > 1, the « solution is supersaturated with B in comparison with the stable 3 state
of B (see Fig. 7.4).

Exercise 7.2

Fe;C is metastable at all temperatures and could thus decompose into an Fe-rich phase
and graphite. At 1169 K the stable Fe phase () dissolves about 1.24 mass% C. Mea-
surements have shown that the Gibbs energy of formation of Fe;C at 1169 K is negative
(1620 J/mole of formula units). Explain how this can be reconciled with the fact that
Fe;C is not stable by sketching a Gy, xc diagram.

Solution

Fe;C falls 1620 J/mol below the line of reference between pure Fe and pure graphite
(dashed line in Fig. 7.5) but it falls above the common tangent representing the y +
graphite equilibrium. Thus, Fe;C is more stable than a mixture of the pure elements but
less stable than a mixture of an Fe—C solution and pure C.
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graphite -

Fe

Figure 7.5 Solution to Exercise 7.2.

(a) (b)
Gm Gm A
GB(X'I)
L Ga(x,)
GB(X3)

Figure 7.6 (a) Construction showing that a negative curvature results in a decrease of Gg when
xp is increased. (b) Demonstration that a system between the points of inflexion is unstable. A
small difference in composition will increase spontaneously.

Instability of binary solutions

In Figs 7.1 and 7.2 we have sketched molar Gibbs energy curves, each with two minima
and a central region where 3%G,,/0x3 is negative. This region falls between two points
of inflexion and according to Section 6.6 they should define the limit of stability. In
Fig. 7.6(a) tangents have been drawn at some compositions between the points of inflexion
and it can be seen that Gp decreases when xp increases. According to Eq. (6.27) this is
also a violation of the condition of stability.

The change in the total Gibbs energy of the system, when one half of the system grows
richer in A and the other one in B, is illustrated in Fig. 7.6(b). The tie-line rule requires
that the total Gibbs energy of a mixture is represented by a point on the line connecting
the points representing the two parts. Since the overall composition is not changed, the
total Gibbs energy moves down along a vertical line at the alloy composition (not shown
here). Such a system is thus unstable against fluctuations in composition.
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Figure 7.7 Solution to Exercise 7.3.

Exercise 7.3

In a binary solution one usually discusses two activities, aa and ag, and for a stable
system each of them increases monotonously with the content of the same component.
However, one may define the activity of an intermediary species, e.g. A;B. Prove that
aa,p also increases as the content of A;B increases in a stable system and thus has a
maximum at the very composition of A;B.

Hint

Instead of the chemical activity, aa,s, let us consider the chemical potential ju4,5, which
is equal to 2up + B, i.e. 2Ga + Gp, or, even better, KAy 3By 35 ie. 2Ga + Gg)/3). It
may be studied in a Gy, xg diagram.

Solution

For any alloy the tangent in the G, xg diagram gives G5 and Gy on the two sides
and the intersection of the tangent with a vertical line at xg = 1/3 thus gives (2G5 +
Gpg)/3. By inspection it is evident that the intersection has its highest position for the
alloy xg = 1/3 (see Fig. 7.7). Otherwise, the G, curve must have a negative curvature
somewhere.

lllustration of the Gibbs—Duhem relation

The molar Gibbs energy diagram in Fig. 7.8(a) shows a stoichiometric compound, 0,
with a well-defined composition A,B;, possibly because it is a crystalline phase with
two sublattices. Often, the composition of such a phase cannot vary appreciably without
a very steep increase of the Gibbs energy. It is thus practically impossible to vary N
and keep Np constant and the definition of partial Gibbs energy, given in Section 4.1,
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Figure 7.8 Molar Gibbs energy diagram for (a) a binary stoichiometric phase 6 and (b) a binary
solution phase «. If 114 is controlled by some method, then the value of 5 is given in both cases.

cannot be used. However, the tangent construction in Fig. 7.2 can still be used. For this
case we shall prefer to talk about chemical potentials and use the notations ua and
wg. The situation is not drastically different for a phase with variable composition (see
Fig. 7.8(b)). For both types of phase one may select the value of s and the value of up
will then be fixed. One could also talk about the chemical potential of the compound,
ta,B,- From Section 4.8 we get

GajB, = Hap, = Y _ajti =apa +bus;  pe = (uap, —aua)/b.  (7.21)

By comparing the values defined by two different tangents we find for a stoichiometric
compound, because jia,p, 1s fixed,

xa(ux — wy) + xp(ug — up) =0, (7.22)

where a = x5 and b = xp if a + b is chosen as 1. This may be regarded as the Gibbs—
Duhem relation integrated for a phase with constant composition.

For a phase with variable composition one may also select the value for p 4, and the
value for ug will then be fixed by the expression for the molar Gibbs energy,

G = xapa +xguB;  MUB = (Gm — Xalta)/XB, (7.23)

but here G, varies with the composition and the composition varies with the choice of
a, as demonstrated for a solution phase « in Fig. 7.8(b). The Gibbs—Duhem relation
holds

xadua +xpdug =0, (7.24)

butnot in the integrated form given for the stoichiometric compound, because the tangents
do not intersect in a point on the G, curve.

In a ternary system one may have a solution between two binary stoichiometric phases
ifthey are isomorphic (have the same structure). Figure 7.9 shows a Gibbs energy diagram
for such a case. The composition can now be varied with one degree of freedom and we
may consider two components or end-members A,C, and B,C..

This kind of solution may be represented by the formula (A, B),C,. and the composition
may be represented by molar contents defined as

xg,c. = Np,c./(Na,c, + Ng,c,), (7.25)
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Figure 7.9 Molar Gibbs energy diagram for a ternary solution between two binary
stoichiometric phases.

where the two Ns represent the moles of formula units. Another method of representation
is based on the molar contents evaluated for each sublattice, the so-called site fractions
which were discussed in Section 4.7.

From Fig. 7.9 it is evident that the molar Gibbs energy for this kind of solution phase
can be expressed in the following ways ifa + ¢ = 1.

Gm = XaMA + XBUB + XCUC = YAMA,C. + VBUB,C,- (7.26)

The diagram in Fig. 7.9(a) with two possible tangent planes shows that the values of
a,c, and up,c, are well defined by the composition but p, i and pic are not.

Exercise 7.4

Consider the chemical potential of Fe;C in a solution phase of Fe, C and Mn, using basic
principles. Show that it is actually equal to 3up. + (¢ by making a calculation using
Section 4.6.

Hint

In the Fe-C—Mn system we usually use Fe, C and Mn as the components but now we
should change to a new set of components. Fe;C is one component and the others could
be C and Mn. Notice thatdG = > u;dN; cannot change its value just because we change
the set of components to be considered.
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(a) (b)
AGm AGn
B
o
B o is stable B is stable
Xg )iB /I o+f is stable I\\
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Figure 7.10 The common-tangent construction for finding the compositions of two phases in
equilibrium at given 7 and P.

Solution

Let the amounts of the components be N, Nc and Ny, in the old description and
Nfe,c» N¢ and Ny, in the new one. Denote the chemical potentials in the new description
with 44;. The mass balance for each element gives Nvin = Ny, Nre = 3N{, c and Nc =
N(/Z + Nlc‘e3C'

We thus get D uidN/ = > widN; = predNre + pvndNvn + ncdNe = g -
3dNge,c + umndNyy, + cdNe + wedNgee = Gure + 1e)dNge,c + ucdNG +
nind Ny, -

Thus, tc = f4cs Py, = Mmn and (g, o = 3ure + fic.

Two-phase equilibria in binary systems

In a two-phase equilibrium we have the following two conditions at constant 7 and P
because the chemical potential for each component must be the same in the two phases.

Gy = s = G (7.27)
GS = pua = Gh. (7.28)

Itis evident that these conditions can be satisfied only by a common tangent, as illustrated
in Fig. 7.10(a). The lowest possible G, for each composition is shown in Fig. 7.10(b) and
it is evident that some mixture of o« + {3 represents the stable state for an alloy between
the two tangent points.

For a stoichiometric phase with its well-defined composition, it is not possible to
define the chemical potentials since one can draw different tangents without changing
the composition of the point of tangency markedly. On the other hand, the chemical
potentials of a phase can be defined by equilibrium with a second phase. Figure 7.11(a)
illustrates this case when the second phase is a solution phase or (b) another stoichiometric
phase. When it is a solution phase, we obtain

GB =x8- GR(xB) + x5 - G (xh). (7.29)



136

Applications of molar Gibbs energy diagrams

(a) (b)
AGm | |0 AGn | |0 o

U U

ta “a
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Figure 7.11 Molar Gibbs energy diagram showing the equilibrium between (a) a stoichiometric
phase and a solution phase and (b) between two stoichiometric phases.

By solving this equation, one can determine the composition of the solution phase, f3,
and from the known properties of 3 one can then calculate s and pg. In Fig. 7.11(b)
both phases, 0 and ¢, are stoichiometric phases, and we obtain the following relations

0 b b0
xnG xn G
G = xSua+xpus;  pa= w (7.30)
Xg —Xp

0 ¢ ~0
xAG;[r)l —x,Gpy

0 ¢
XA — XA

Gb = xi)MA +x§,’ua; UB = (7.31)

These equations also apply to the equilibrium between two solution phases if the G
and G are evaluated for the equilibrium compositions.

Exercise 7.5

In a binary system, where the mutual solubilities are very small, there are two stable
stoichiometric phases «(A3B,) and 3(ABj;). Calculate the chemical potential of B in a
50: 50 alloy in terms of the quantities G% and GP . Base the calculation on a construction
in the G, diagram.

Hint

Remember that the Gibbs energy of a two-phase state falls on the common tangent.
Start by drawing a solid line representing all stable states. It should show that both
stoichiometric phases are stable.

Solution

Evidently, the alloy is o+ 3 (see Fig. 7.12). With xg§ = 0.6 and xﬁ = (.25 the con-
struction gives g = u3 P = G% 4+ (GB — G%) - (x% — 0)/(x% — x8) = G% + (G —
G%) - 60/(60 — 25) = (60/35)GB — (25/35)G*.
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Figure 7.13 The relation between Gibbs energy curves of two phases and their two-phase fields in
the phase diagram. The dashed line is the so-called 7, line or allotropic phase boundary.

Allotropic phase boundaries

One can sometimes draw a line inside a two-phase region to show where the two phases
would have the same Gibbs energy value if they had the same composition. It is the critical
limit for a hypothetical diffusionless phase transformation. Such a transformation is very
similar to an allotropic transformation in a pure element and the line, sometimes called
the allotropic phase boundary, is often denoted by 7;,. This name is derived from the
word ‘allotropy’, i.e. the property of a substance of being found in two or more forms.
Figure 7.13 illustrates the relation between the allotropic phase boundary and the molar
Gibbs energy diagram.

Exercise 7.6

Consider a binary system with three phases of variable compositions and in a eutectic
equilibrium (see Section 12.5) with each other. Show reasonable positions of the three
allotropic phase boundaries. Extrapolate all of them below the eutectic temperature.
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Figure 7.14 Solution to Exercise 7.6.

Hint

Consider in particular how the three allotropic phase boundaries intersect each other when
extrapolated. Will there be one or three points of intersection? It may be instructive to
sketch a molar Gibbs energy diagram.

Solution

It is evident that 7**" and 7"*# will intersect inside the o + B phase field. Consider
a G, diagram (Fig. 7.14) at the eutectic temperature, showing one G, curve for each
phase (thick lines in the lower portion of the figure). Each one of the three intersections
is a point on a 7, line. When the temperature is decreased, the L curve is lifted (see thin
line) relative to the other two until all three curves finally intersect in one point. There
the three 7, lines will intersect. In the phase diagram (upper portion) we should thus
draw the 7**P line through the intersection of the other two.

Effect of a pressure difference on a two-phase equilibrium

In order to illustrate the effect of pressure, we shall consider an incompressible phase,
f3. The application of a hydrostatic pressure will lift up its Gibbs energy curve by the
amount PPV P. This is illustrated in Fig. 7.15(a). Since VP is usually dependent on the
composition, the curve will be somewhat deformed. The construction with a tangent will
yield PPV and PPV, where ¥ and V) are defined from V in the same way as G
and GE are defined from GP (see Fig. 4.6).

The relative position of the Gibbs energy curves for different phases can change with
pressure due to differences in the molar volumes. The equilibrium conditions can thus
be modified by the application of a hydrostatic pressure. This effect is even stronger if
the pressure is applied to one of the phases only, which may happen due to the effect
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(a) (b)
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Figure 7.15 (a) Effect of a hydrostatic pressure on the molar Gibbs energy of a single phase. The
phase is assumed to be incompressible. (b) The effect of pressure in a stoichiometric phase on
the equilibrium composition of a coexisting phase not under pressure.

of surface energy in a curved interface. In Fig. 7.15(b) the phase under pressure is
a stoichiometric phase and its molar Gibbs energy is increased by P’ V. We may, for
instance, imagine that the phases are contained in a cylinder where the balance of surface
energies, o, at the wall of the cylinder gives a constant radius of curvature p = 20/ P?.
The diagram illustrates that the solubility of 6 in « is increased due to the pressure
in 6, assuming ordinary pressure in «. It should be emphasized that this case must be
treated with care because the two phases are under different pressures and the law of
additivity does not apply to the Gibbs energy unless special precautions are taken. This
was mentioned in Section 3.4 and will be discussed in Section 16.7. However, in applying
the common-tangent construction we have only made use of the definition of the chemical
potentials.
The effect on the solubility can be estimated if one knows the curvature of the G,
curve. The difference in slope between the two tangents can be estimated as [xg / G(Pe) —
xY 9(0)] d?G% /dx} if the change in composition is small. If the distance between the
two phases is reasonably constant, we obtain, by multiplying with that distance,

POVe = (xB — ) [x oc/G(P ) — “/9(0)] Y /dxd (732)

xy/ 2P — xg/°(0) = POVE J(x§ — xH)d2GE Jdxd. (7.33)

When o is a dilute solution we may approximate d>G% /dx3 with RT /xg/ 0 according to
Eq. (7.19) and obtain

0P — x§1°0) = POVEXS®/RT (x§ — x5). (7.34)

This equation is often applied to a spherical interface and 207/ is then substituted for P°.
In that form it is known as the Gibbs—Thomson equation. For large changes in solubility
one should integrate over the pressure increase and allow x /% on the right-hand side to
vary during the integration. For an infinitesimal increase in P® we get

dey/® /x§® = [VE/RT (x§ — x5)] - dP°. (7.35)
For the case where (x§ — x) is reasonably constant integration yields

In[x5/°(P®) /x3°(0)] = POV /RT (x§ — x5). (7.36)
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Figure 7.16 Molar Gibbs energy diagram illustrating the change in composition of a phase, {3,
under pressure when in equilibrium with another phase, .

If the phase under pressure can also vary in composition, its equilibrium composition
will also change. This case is illustrated in Fig. 7.16. The change in composition of the
phase under pressure can be evaluated from Fig. 7.16(b) where a tangent to the initial
GB curve has been drawn for the 3 composition of the new equilibrium. The diagram
defines a quantity A Gy, which is given as

AGnm = PP(x3VE +x5V5), (7.37)
but also as
MG = (v —x§) - °Gf/dvg - [x"*(PP) — 1y (0)], (7.38)
if d>GP /dx2 is reasonably constant. By equating the two expressions we obtain
xb/“(PP) = x5/%(0) = PP(x3 V% + x5 i) /(e — x§) - GE [dx3]. (7.39)

If the 3 phase is a dilute solution of B in A, then x§ V,f’ + x5 V]-f is approximately equal
to the molar volume for pure A in the 3 state, which we shall simply denote by VIE, and
d?GP /dx2 can be approximated by RT/x[ according to Eq. (7.19), yielding

dxl//xb/* = [VE/RT (x§ — x3)] - dPP. (7.40)

We can take into account the effect of P? on both phases if they are both dilute solutions

of B in A but then we cannot treat xg’ — x§ as a constant. However, the expressions for

dxg/ R /xg/ P and dxg/ “/xg/ * are identical for two dilute solutions,
deg/P [xi/P = dul/* JxB/™. (7.41)
Integration yields
xi (PP x5 (0) = 3 (PP) [ (0) (7.42)

xp “(PP) —xi P(PE) _ x*(0) x5 (0)
xp(PP) x5%(0)

(7.43)
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The quantity on the left-hand side appears in the equation for dxg/ * with a slightly
different notation, (x]g5 —xg)/ xg. This ratio can thus be treated as a constant during the
integration of dxg/ %, yielding

xp/X(PP) = x5/*(0) = (PPVE/RT) - x/* J(x§ — x5) (7.44)
x5/ P (PP — x3/P(0) = (PPVE /RT) - 2P [ (xf — x§). (7.45)

It should again be emphasized that the equations in the present section were derived only
for an incompressible phase.

Exercise 7.7

The precipitation of Sn from a supersaturated solid solution of Sn in Pb sometimes
results in a lamellar aggregate of a Sn phase with very little Pb and a Pb phase with
less Sn. The aggregate, comprising alternate layers, grows into a Pb-rich matrix of the
original composition. Experimental studies have been made of the coarseness of such
a structure in terms of a quantity w, the combined width of one lamella of each phase.
When discussing theoretical predictions the measured w is compared with the critical
value w* which would completely stop the growth of the Sn phase because, due to
the effect of surface energy, it would put this phase under such a high pressure that
it would be in equilibrium with the original Pb matrix in spite of its supersaturation.
This pressure can be calculated from the effect of surface energy. In one study an alloy
with xg, = 0.112 was investigated at a temperature where the equilibrium value was
0.06. The investigators assumed that the new phase had the equilibrium composition,
Xxsn = 0.06, and using the Gibbs—Thomson equation for large changes they calculated
w* from w* = 20 V,/RT In(0.112/0.06). They found that the observed w was about
100 times larger than w* instead of twice according to a simple theory. Check their
calculation.

Hint

Make a careful analysis of what pressure the surface energy will impose on the Sn
phase under the simplifying assumption that the Pb lamellae are not under an increased
pressure.

Solution

The pressure in the Sn phase will balance the surface energy, which gives a force of 20 L
if L is the length of the lamella. The area of the edge is fw*L if fis the fraction of the Sn
phase. Thus, P* fw*L = 20 L. The lever rule gives / = (0.112 — 0.06)/(1 — 0.06) =
0.055. Now relate the pressure to the change in solubility, In(0.112/0.06) = P*V,,/RT
(1-0.112) = P*Vy,/RT. Combining these equations yields w* = 20/P*f = 20 Vi /fRT
In(0.112/0.06). The investigators missed the factor f( = 0.055) which explains most of
the discrepancy.



142

1.7

Applications of molar Gibbs energy diagrams

(a)
A

D=-AG?}
XS“OV

Figure 7.17 (a) Molar Gibbs energy diagram. (b) Method for evaluation of the driving force for
the formation of a new phase 0 from a supersaturated (3 solution.

Driving force for the formation of a new phase

When we take some A and B away from a large quantity of a solution phase, «, it is like
taking them from one reservoir each, with the chemical potentials equal to G} and G§,
respectively. As long as the amount of the o phase is large, we can take A and B in any
proportion without changing the values of G and G§. We can thus form a small amount
of a new phase, 0, of any composition without changing the Gibbs energy of the whole
system, provided that the new phase falls on the « tangent. If the new phase falls below
the tangent, the decrease counted per mole of atoms in the new phase is obtained as

— AGY =x3 - G (x§) +x - G (x§) — G2 (x5). (7.46)

This is illustrated in the molar Gibbs energy diagram in Fig. 7.17(a). By convention,
the change of Gibbs energy accompanying a reaction is defined as AGy, = GRM™ —
Greactants Tt s evident that the decrease in Gibbs energy, —A Gy, is equal to the driving
force for the precipitation of the 6 phase from a supersaturated {3 solution, counted per
mole of 0, if the extent of the reaction, &, is expressed as the number of moles of 8, N°,

3G 3G o
p=—(& — (= = —AGY, (7.47)
as T,P,N; IN T,P,N;

The magnitude of the driving force for the precipitation of 0 from a supersaturated
« solution, counted per mole of 0, can be estimated from the supersaturation Axg in
almost the same way as the effect of pressure on solubility was evaluated. By comparing
Fig. 7.17(a) with Fig. 7.15(b) we obtain from Eq. (7.32)

D =—AGY =PV = Ax} - d*GY [dxj - (x§ — x5). (7.48)

This is the driving force at the start of the precipitation of 8. As the process continues,
the supersaturation will decrease gradually and so will the driving force. It may thus be
interesting to evaluate the integrated driving force which should represent an average
value for the whole process. The method of evaluation is illustrated in Fig. 7.17(b).
One usually evaluates the integrated driving force for the transformation of the whole
system, i.e. the difference in Gibbs energy between the final x + 8 mixture and the initial
supersaturated «. It is simply given by the short vertical line in Fig. 7.17(b).
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Figure 7.18 Solution to Exercise 7.8.

Exercise 7.8

Consider the formation of a small amount of 3 from a large reservoir of « under condi-
tions such that the reservoir has the potentials G} and G§ and the new phase has Gﬁ and
G E (accepting that such conditions can somehow be realized). (a) Construct a reasonable
molar Gibbs energy diagram and use it for deriving an expression for the driving force
per mole of 3 phase. Express the result in terms of the potentials and the compositions
of the two phases. (b) Suppose the composition of « has been decided. How should one
choose the composition of {3 in order to get the largest driving force?

Hint

(a) Using the given potentials one can draw the tangents to the two Gibbs energy curves.
Evaluate the distance between them at the proper composition. (b) In this exercise, the
tangent to the o curve is given. The question is how we can find the point on the (3
curve which lies as low as possible relative to the « tangent. In principle, it can be found
without drawing the corresponding 3 tangent but it would be most helpful to do so, so
long as one draws that tangent correctly.

Solution

(a) See Fig. 7.18(a). (b) One should choose the composition obtained from a parallel
tangent construction (see Fig. 7.18(b)).

Exercise 7.9

Show with the construction in Fig. 7.17(b) the magnitude of the integrated driving force
counted per mole of the 8 phase formed.

Hint

The magnitude is — A G,/ if f?is the final fraction of @ in the alloy. The question is
how to find this by construction. Notice that f© can be found graphically using the lever
rule.
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— —AG,/f°
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Figure 7.19 Solution to Exercise 7.9.

Solution

Draw a straight line joining the final o and the initial « (Fig. 7.19). Extend the line to the
composition of 6. Also use the tangent to the final o point shown in Fig. 7.17(b). Read
the distance between intersections on the 6 composition.

Partitionless transformation under local equilibrium

So far, we have mainly considered stationary states and for a state with more than
one phase we have assumed equilibrium between the phases, which is a reasonable
approximation after a long enough time at a high enough temperature. The situation is
quite different during a phase transformation but it is still common to assume that full
equilibrium is established locally at the phase interface even when it is migrating through
the material. This was introduced in Section 3.10 and is called the local-equilibrium
approximation and will now be our starting point for an examination of partitionless
transformations. The local conditions at migrating interfaces will be further discussed
in Chapter 14.

When a 3 — « transformation occurs in an alloy without any difference in composi-
tion between the reactant phase (also called parent phase) and the product phase (also
called daughter phase or growing phase), it is regarded as a partitionless transformation.
The two phases will fall on the same vertical line in the molar Gibbs energy diagram.
Figure 7.20(a) shows the construction for a binary system. Under constant 7' and P, the
driving force is given by the vertical distance between two points representing the initial
{3 and the growing o

D =GP — G* = —AG,. (7.49)

It is evident that the partitionless transformation cannot possibly occur under local equi-
librium unless the composition of the phases falls on the left-hand side of the point of
intersection between the two G, curves.

Whether or not a transformation can actually occur under the conditions illustrated in
Fig. 7.20(a) will be discussed in Section 14.4. An attractive possibility is illustrated in
Fig. 7.20(b). It is based on the assumption of local equilibrium at the interface and that
is why the common-tangent construction is used here. This illustration presumes that the
parent phase is so supersaturated that its composition falls on the equilibrium composition
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Figure 7.20 (a) Change in Gibbs energy for a partitionless § — « transformation. (b) A
partitionless transformation under local equilibrium. Here the whole decrease in Gibbs energy
drives the diffusion in the matrix phase, 3. The quantity x° is the initial composition of the 8
alloy and also the equilibrium composition of «.

Figure 7.21 Use of the common-tangent construction to find the boundary conditions for the
diffusion process.

of the growing phase. It should be realized that the local-equilibrium assumption implies
that there is a gradient within the parent phase, as illustrated in Fig. 7.21. There the
composition axis has been turned vertically in order to demonstrate how the molar
Gibbs energy diagram can yield the boundary conditions for diffusion.

Figure 7.21 demonstrates that the local-equilibrium assumption implies that there is a
pile-up of one of the components in front of the migrating interface. After an induction
period during which this pile-up is being built, one could expect a steady-state process
in which the rate of migration and the composition profile stay constant. As the interface
migrates through the system and pushes the pile-up forward, it makes material of the
initial alloy composition move up on the pile-up and on the top it will be deposited
on the growing phase, the composition of which is here assumed to be equal to the
initial one. During this process the material passes through regions of higher and higher
alloy content. In each such region the chemical potentials can be described by the end-
points of the tangent to the G, curve at the local composition. The value of G, for the
material we consider will be found on that tangent and at the initial composition. It is thus
evident that the material will gradually decrease its Gibbs energy by an amount —A Gy,
corresponding to the arrow in the Gy, diagram. The length of the arrow represents the
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XUB = xo— XBO

Figure 7.22 Partitionless 3 — « transformation under local equilibrium and under a pressure
difference, respectively.

integrated driving force dissipated by diffusion in the pile-up. Under our assumptions,
all the driving force is used to drive the diffusion and the transformation is completely
diffusion controlled.

In rapid transformations an appreciable driving force may be required in order to
make the phase interface move with the high speed. A driving force may also be required
in order to balance the pressure difference across a curved phase interface, caused by
its surface energy, 20/ p. The total driving force on the interface, Dy, may actually be
regarded as a pressure difference AP = Djy/ V. In a very crude but useful approach it
is assumed that the rate of migration, v, of an interface is proportional to the net pressure
difference,

v=M: APyt =M (Dint/ Vin —20/p), (7.50)

where M is the mobility of the interface, o is the specific surface energy and p is the
radius of curvature, assuming a spherical shape.

The part of the driving force acting on the interface, Djy, has an effect on the local
equilibrium between the two phases, as illustrated in Fig. 7.22. The G, curve for the
growing phase is lifted by an amount Dj, relative to the curve for the parent phase
as if there actually were a pressure difference Di,/ V. Due to this construction, the
equilibrium composition of the growing phase is displaced and the local-equilibrium
assumption now requires that the parent phase is initially even more supersaturated and
falls on the other side of the equilibrium composition of the growing phase, i.e. inside
its one-phase field. The amount of driving force dissipated by diffusion will in general
be higher than before.

Exercise 7.10

Consider the partitionless growth of « into a small spherical (3 particle of radius p in
a binary alloy. Suppose there is local equilibrium at the interface and no driving force
is required in order to make the interface move at a velocity v. Make a reasonable
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Figure 7.23 Solution to Exercise 7.10.

construction in a Gy, diagram illustrating that this could occur at an alloy composition
inside the & 4+ 3 two-phase region.

Hint

The surface energy, o, may lift the Gy, curve for {3.

Solution

The solution is presented in Fig. 7.23.

Activation energy for a fluctuation

Sometimes one is interested in the formation of a fluctuation for which the driving force
is negative. In such cases one instead talks about the activation energy. For the moment,
we shall make two assumptions: (i) the fluctuation is only in composition, not in structure;
and (ii) the size will not be prescribed. We have already demonstrated that a system is
not stable against fluctuations in composition if d?G,/dx? is negative. We shall now
consider the case of a positive curvature, Fig. 7.24. The activation energy per mole of
atoms in a fluctuation Axp is represented by AGy, in the diagram. By introducing the
curvature of the GZ curve we directly obtain an approximate expression if both Henry’s
and Raoult’s laws hold,

AGy = 1 (Ax§)2 . dZGf;/dxz > 1) (Ax{;‘)z . RT/XXXS
1h(AxE)’ - RT /xS (7.51)

12

However, in this case we should examine the validity of the approximation by also
carrying out an exact calculation. By comparing with the evaluation of the driving force
for the precipitation of a new phase we find without any approximation

AGy = G —x Gy —xL Gy =xL (G — GX) +xL(Gy — G}),  (7.52)
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composition of
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Figure 7.24 Molar Gibbs energy diagram for a fluctuation in composition.

where the superscript f denotes the fluctuation. Henry’s and Raoult’s laws yield
AGp = RT[xf In (xf /x%) + xfIn (xf /x5)]. (7.53)
For |x§ — x&] <« x& < 1 we obtain approximately
AGpy = HRT (x — x5) /xS (7.54)

This is in agreement with the previous approximation, Eq. (7.51).

Exercise 7.11

Consider a binary liquid with 0.1% of B in A at 1273 K. Evaluate the activation energy
for the formation of fluctuations with 0.05 and 0.15% of B, respectively. Express the
results as joule per mole of atoms in the fluctuations.

Hint

It might be justified to use a dilute solution approximation but not the special approxi-
mation for |x§ — x§| <« x§.

Solution

(@) AGm=RT[0.99951n(0.9995/0.9990) + 0.0005 In(0.0005/0.0010)] = 1.625RT.
(b) AG,, = RT[0.9985 In(0.9985/0.9990) -+ 0.0015 In(0.0015/0.0010)] = 1.147RT.

Notice that the approximate equation would have given:

(@) AGy = 0.5RT(0.0010 — 0.0005)/0.0005 = 2.646RT.
(b) AGy = 0.5RT(0.0010 — 0.0015)%/0.0015 = 0.882RT.
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Figure 7.25 Molar Gibbs energy diagram for a two-phase equilibrium in a ternary system. The
two-phase field is created by the common tangent-plane rolling under the two surfaces. (a) Two
ordinary solution phases. (b) One ordinary solution phase, , and one solution between two
compounds.

Ternary systems

The property diagram for G, at constant 7" and P as function of the molar content
in a ternary phase is a three-dimensional diagram with a surface like a canopy. It can
be shown that for a stable phase it is everywhere convex downwards and Fig. 4.9 was
drawn in accordance with that fact. In that diagram the tangent plane to an alloy was
also drawn, the intersections of which give the partial Gibbs energies in the alloy, i.e.
the chemical potentials. We shall now apply such diagrams to various cases of phase
equilibria.

Equilibrium between two phases requires that they have the same value for the chem-
ical potential of each component. In a binary system this leads to the common-tangent
construction where the intersections with the sides represent the chemical potentials. In
a ternary system it leads to a common tangent-plane construction where the intersec-
tions with the three edges represent the chemical potentials. With the two Gibbs energy
surfaces given, one can allow this tangent plane to roll under them and thus describe a
series of possible equilibrium situations, each one represented by a tie-line between the
two tangent points in the plane. The result will be a two-phase field, formed by projection
on the compositional triangle (see Fig. 7.25(a) where one tie-line is projected).

The general equilibrium condition in a ternary system is of course G = ua = Gﬁ,
Gg = us = Gg and G¥ = uc = Gg. These three equations leave one degree of freedom
for the two-phase equilibrium since each phase can vary its composition by two degrees
of freedom. The two-phase region in a ternary phase diagram will thus be an area covered
by tie-lines. Each tie-line connects two points, representing the coexisting phases in a
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possible state of equilibrium. This conclusion still holds even if there is a restriction to
the variation in composition of one of the phases but the equilibrium equations will then
be modified, as we shall now see.

Let us first consider the equilibrium between a solution of compounds and an ordinary
solution phase. It can be illustrated with the molar Gibbs energy diagram in Fig. 7.25(b).
It should be noticed that here a 4+ ¢ = 1 because the diagram is for one mole of atoms.
The construction shows that the equilibrium condition can be derived by considering
two of the sides of the triangular tangent plane

G c. = apa + cpc = aG% + cGE (7.55a)
Gy c. = aup + cuc = aG§ + cG (7.55b)

These equilibrium conditions leave one degree of freedom because there are two equa-
tions and three possible variations in composition, one for the solution of compounds
and two for the ordinary solution phase. By taking the difference between the equations
we find that

(GA,c. — Ga,c.)/a =Gy — Gy, (7.56)

Let us next consider the equilibrium between two solutions of compounds, 6 and ¢, with
the formulas (A, B),C, and (A, B),C,, where a + ¢ = 1 = b 4 d. The previous type
of equation applies to each one of these phases although the chemical potentials on the
right-hand side cannot be referred to any one of the phases but are simply the chemical
potentials of the two-phase equilibrium.

GR,c, = apa + cpc

Gh,c, = ams + cpuc
Ghc, = bua+duc
Gg’bcd =bug +duc.
By eliminating the unknown potentials we find a single equilibrium condition

(Ghc. = Ghe)/a=na—us= (G, — Ghc,)/b- (7.57)

We have thus found that there will again be one degree of freedom because now there
are two possible variations in composition, one for each line compound. If one selects a
composition for one phase, the composition of the other one is given by this equation.
The result will be similar but mathematically more complicated if the two solution phases
are formed by the mixing of a different pair of components.

Exercise 7.12

Consider the equilibrium between a solution phase (A, B),C. and a stoichiometric com-
pound A;B,,C, in a ternary system. Show how the chemical potential of the element C
can be calculated.
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Hint

For the stoichiometric compound, ¢, there is only one relation. For the solution phase,
0, there are two. Find a combination of Gs that eliminates ua and ug.

Solution

°Ge =lpus +mug +npc; Giacc = apa + cuc; G%“CC = aug + cpuc. Elimi-
nate 1a and pp by taking a°G® —1G3 . —mGj (. , which is found to be equal to
(an — cl — cm)uc. We obtain ¢ = (ot"Gfr’1 — ng,,CC - mGgaCC)/(an —cl —cm).

Solubility product

According to Eq. (3.18) the Gibbs energy of a phase ¢ is always related to the chemical
potentials p; by the following relation

Gh=>"xtw. (7.58)

where xi(b represents the composition of the phase. When the phase is a compound, the
composition is constant and it is described by the indices in the formula, e.g. /,m,n in
A;B,,C,. For one mole of formula units we have, ifl +m +n =1,

°G$ =lup+mug +nuc. (7.59)

The superscript ° is used in order to indicate that the value refers to the compound itself,
the ‘pure compound’, and not to a compound phase, diluted by other components being
dissolved in it.

Figure 7.26 illustrates the equilibrium between a compound ¢ and a solution phase, o.
There is only one equilibrium condition and it is obtained by inserting the partial Gibbs
energies of the solution phase instead of the chemical potentials in the last equation. So,

°GP =1G + mGy +nGg (7.60)

Let us consider the solubility curve of ¢ in « close to the A corner and introduce
activities instead of chemical potentials. The activity a; is defined through the equation

G; =°G; + RT Ina;, (7.61)
where °G; is the molar Gibbs energy of some reference state for i. Eq. (7.59) yields
(°G® —1°Gx —m°Gg —n°Gc) /RT =1-Inay +m -Inag +n -Inac. (7.62)

Using the standard Gibbs energy of formation of the ¢ phase from the pure components
in their reference states, which is equal to the expression in parentheses, we get

exp (A°GY /RT) = (as) (ap)"(ac)". (7.63)



152 Applications of molar Gibbs energy diagrams

L 0=

A C

Figure 7.26 Molar Gibbs energy diagram for a ternary system with an ordinary solution phase, «,
and a ternary stoichiometric phase, ¢.
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Figure 7.27 Isothermal and isobaric section of the Fe—Cr—C phase diagram near the Fe corner.
The solubility curves for strictly stoichiometric compounds would have been straight lines in the
logarithmic diagram (b) and hyperbolic in the linear diagram (a).

In a dilute solution the activity of minor components is approximately proportional to the
content expressed, for instance, as the molar content. The activity of the major component
is approximately unity and can thus be omitted from the equations. Thus,

exp (A°G2/RT) = (ag)"(ac)". (7.64)

The left-hand side is often denoted by K and is regarded as the solubility product. The
solubility curve for a compound in a terminal solution may thus be approximated by a
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Figure 7.28 Solution to Exercise 7.13.

hyperbolic curve in a linear phase diagram and with a straight line in a logarithmic phase
diagram. As an example, in Fig. 7.27 an isobarothermal section of the phase diagram
Fe—Cr—C is presented. The diagram shows the solubilities of three carbides in y. In the
logarithmic diagram the solubility lines are almost straight although the compositions
of the carbides are not quite constant.

Exercise 7.13

Consider the equilibrium between two ternary stoichiometric phases. Even though the
compositions are fixed, there is a degree of freedom from a thermodynamic point of view
because there must be three chemical potentials. After a value has been chosen for one
of them, the other two are fixed. Derive equations for their calculation.

Hint

There are only two equations relating the three potentials, one for each phase. Choose
one of the potentials as the independent one and eliminate one of the other two.

Solution

Write the two conditions as °G® = aua + bug + cuc and °G® = lup + mug + npc.
A Gibbs energy diagram demonstrates that there is indeed one degree of freedom
(Fig. 7.28). We can thus take any value of 1, for instance, and then express the other
two in pc. After eliminating upg by multiplying the first equation with m and the other
with b and subtracting, we get up = [m°G® — b°G% + (bn — cm)uc]/(am — bl) and
in the same way ug = [l"Gren —a®G® + (an — cl)pucl/(bl — am).
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Figure 7.29 Solution to Exercise 7.14.

Exercise 7.14

Sketch the whole Y + M7C; two-phase field in Fig. 7.27 and include a series of tie-lines.

Hint

Tie-lines are straight lines in diagrams with linear scales. When the scales are changed
to logarithmic, only those tie-lines remain straight that are horizontal or vertical or have
a slope of unity.

Solution

The solution is given in Fig. 7.29.
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Phase equilibria and potential
phase diagrams

Gibbs’ phase rule

We saw in Section 3.1 that the internal energy of a c-component system is a function
of ¢ 4+ 2 independent, extensive state variables, with the possible addition of internal
variables, and the fact is that the equilibrium state of the system is completely determined
by the ¢ 4 2 variables. Consequently, if the state of a system is known, one may calculate
the change of internal energy U by specifying the change of these variables, assuming
that there is no entropy-producing process inside the system. So, for a reversible change
we have

dU = TdS — PdV + Su;dN;, (8.1)

where 7, — P and u; are potentials. We have also seen that one can instead introduce
other independent variables, for instance the potentials 7 and — P, obtaining

dG = d(U — ST + VP) = —SAT — Vd(—=P) + Zu:dN;. (8.2)

The state of the system is still determined by ¢ + 2 independent variables. However,
when we further introduced all the chemical potentials p; as variables in Section 3.3,
we obtained a relation between the ¢ + 2 variables which did not involve any other state
function,

Instead, this equation gave a relation between the ¢ + 2 potential variables. As mentioned
in Section 3.3 it is usually called the Gibbs—Duhem relation. As a consequence, only
¢ + 1 of the potentials, 7, —P and u; are independent and any one of them may be
regarded as the dependent potential. In order to define the state of a system completely
it is thus necessary to use at least one extensive variable and that is for the purpose of
defining the size of the system. It is convenient to use the total content of matter, N, for
this purpose or the content of one of the components, N;. If one is only interested in the
properties of a substance, one may disregard the size of the system and regard the state as
completely defined by ¢ + 1 potentials. In order to represent all the states we then need
a diagram with » = ¢ + 1 axes, a state diagram according to Section 1.1. We shall call »
the dimensionality of that diagram. In the following, when we talk about the properties
of a system, we shall disregard its size.
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If w; is chosen as the dependent potential, then it is convenient to divide by N; and
thus introduce molar quantities per mole of component 1.

iy = =SpidT = Veyd(=P) = Y zidps;. (8.4)
2
In this connection it may again be emphasized that one should always specify how the
formula unit is defined for molar quantities like S;,, and Vy,. In Section 4.3 the molar
quantities, obtained by dividing by N;, were identified with the subscript ‘m1’ and N; /N,
was denoted by z;. For clarity this notation is adopted in the present discussion.

When considering more than one phase in mutual equilibrium, one has a relation of
the above type for each phase and every such relation should be obeyed simultaneously
if the phases are to stay in equilibrium during the change. Of course, 7 must have the
same value in all the phases and the same holds for all ut;. Neglecting the effect of surface
energy, the same holds for P. The Gibbs—Duhem relations for all phases will thus contain
the same changes of the potentials. For each new phase, added to the equilibrium, there
will thus be one more relation between the changes of the potentials and the number
of independent variables will decrease by one. This is expressed by Gibbs’ phase rule,
Eq. (8.59).

v=c+2—p, (8.5)

where v is called the variance or the number of degrees of freedom for the equilibrium
with p phases.

The independent variables in Gibbs’ phase rule are primarily the potentials because
the derivation of the expression for the variance is based upon the Gibbs—Duhem relation,
which concerns the change of potentials. An extensive quantity must be included in the
set of independent variables in order to define the size of the system but that feature is
not covered by Gibbs’ phase rule and will not be further discussed here. On the other
hand, instead of a potential one may alternatively use one of the molar quantities S

ml>
V% and zX for any phases «, because they are intensive variables and are strictly related

ml i
to 7, —P and w,;. However, it may again be emphasized that the molar quantities are not
potentials like 7, —P and u; although they are intensive quantities. They will generally
have different values in the individual phases.

It should be emphasized that ¢ is the number of independent components. In an alloy
system it is usually the number of elements but in a system with molecules it may not
be immediately evident how many species should be included in the set of independent
components because it is affected by stoichiometric constraints. In a complicated system
it may be difficult to identify the number of stoichiometric constraints. We shall return
to this problem in Chapter 13.

We may encounter even more complicated cases in systems with molecules of
restricted capability to react with each other. In order to describe such cases with Gibbs’
phase rule one sometimes includes all molecules or ‘chemical substances’ and then sub-
tracts a term for the number of ‘independent reactions’ in order to obtain the number of
components. However, the problem remains and is now focused on defining the number
of independent reactions. This problem was discussed in Section 5.5. As a consequence,
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we shall not modify Gibbs’ phase rule in this way. By components we shall understand a
set of chemical substances necessary and sufficient for defining the over-all composition
of every phase, taking due notice of all the chemical reactions which can occur and also
of all stoichiometric constraints.

In the remainder of the present chapter we shall discuss the consequences of Gibbs’
phase rule for a kind of diagram which will be introduced soon, the so-called phase
diagrams.

Exercise 8.1

Consider as a system the content of an expandable vessel. In the vessel one has enclosed
a certain amount of water. Then one varies 7 and P by actions from the outside and
studies what happens to } in an attempt to decide whether the system behaves as a unary
system. Due to its larger volume, it is easy to see when a gas phase forms. Discuss what
one would expect to happen. Suppose the wall of the vessel acts as a catalyst for the
dissociation of H,O into H, and %, O».

Hint

The discussion should be based upon Gibbs’ phase rule written asc = v — 2 + p.

Solution

The vapour pressure of H,O depends on 7. At any arbitrary external P there will be a
unique 7 where water and vapour can coexist. To choose P arbitrarily is the only freedom,
whichyieldsc = v —2+ p =1 — 2+ 2 = 1. This system behaves as a unary. It would
start to behave as a binary if some hydrogen can leak out through the wall of the vessel.
Then water and gas can coexist over a range of 7 although very small.

Fundamental property diagram

Let us first discuss a 7, P diagram for a substance with one component, A, and one
phase, . According to Gibbs’ phase rule the state is completely determined by giving
the values of 7" and P, i.e. by giving a point in the 7, P diagram. In this sense we may
thus regard the 7, P diagram as a state diagram according to Section 1.1. The value
of ua for the substance can be calculated and plotted as a surface above the 7, P state
diagram, yielding a three-dimensional diagram, see Fig. 8.1. This type of diagram we may
regard as a property diagram for the particular substance under consideration. Actually,
this diagram can be looked at from any direction and any one of 7, P and ua may be
regarded as the dependent variable. The state may be defined by a point on any side of
the property diagram. As a state diagram one may thus use a diagram formed by any two
of the potentials.
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Figure 8.1 Fundamental property diagram for a unary system with one phase. Any one of the
three potentials can be chosen as the dependent variable (property). The potential P has been
plotted in the negative direction because —P appears naturally in thermodynamic equations.

This kind of property diagram is of special interest because it is composed of a
complete set of potentials. We shall call it the fundamental property diagram and it
has the axes 7, P and one pu; for each component. In a unary system 4 is identical to
Gy, and the surface in the diagram thus represents a fundamental equation, Gy, (7, P).

For a higher-order system it represents a fundamental equation (7, P, uz, i3, - ..)
which is of a type we have not defined before. In principle, we could calculate a point on
the surface from any one of the fundamental equations, if it is available. One can then
follow the surface by applying the Gibbs—Duhem relation. For a unary system we get

SAdT — VAP + Nadua = 0. (8.6)

The direction of the surface is given by the relations

A 14 LI S a(—P) S
=—— <0 ) =—— —_ =——. (8.7

a(—P) /), Na aT ), Na or /. vV
As many times before, we take —P as a potential rather than +P. The numerical values of
the last two ratios depend on what reference we choose for the entropy. If we accept the
common choice of § = 0 at 7= 0 K, then S and all the ratios are positive at 7 > 0 and all

the derivatives are negative. Figure 8.1 was constructed accordingly. Similar expressions
can be derived for a system with several components and we can summarize all the

expressions in a general form
ay? X
YC

where Y° represents all the potentials except Y and Y°.
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Figure 8.2 Fundamental property diagram for a unary phase. The surface is everywhere convex.
The property surface is here shown for negative pressures, which is not unrealistic for solid
substances.

Since a point on any side of the 7, P, ua diagram defines the state, we can use the
third axis for the representation of some other property. We may, for instance, represent
the refractive index r as a function of 7 and P but that would not be a fundamental
property diagram. However, knowing a point on the surface, we may follow the surface
by applying an equation similar to the Gibbs—Duhem relation.

3 3
dr = <—r> ar + (—r) dp. (8.9)
oT ), 0P ),

The surface in Fig. 8.1 was given as a plane for the sake of simplicity. That would require
that V/N, and S/N, are constant for the o« phase, independent of 7" and P. In reality,
they are not constant and the surface would be curved. We shall now examine in what
direction it will be curved. The fundamental property diagram is independent of the size
of the system since only potentials are concerned. However, we have the right to consider
a system of a constant size and to define that size by any extensive variable. If we take
X* as that variable, and keep it constant when we evaluate the curvature in a section of
constant Y° from the derivative of Eq. (8.8), we obtain

32y? A(— X"/ X%) 1 [ox® 1 aY®
s ) T\ e =~ x\are ). .= x/ \axe <0
Ye, Xxa Ye, xa Ye, Xa Ye, xa

(8.10)

in view of the stability condition Eq. (6.28). The result is illustrated in Fig. 8.2 for an
element A with the choice of us >0at 7 = 0 and P = 0. The surface looks like part of a
dome and is everywhere convex, as seen from the origin. A different choice of reference
for pa will simply displace the whole surface vertically.

Let us return to the simple picture in Fig. 8.1. Suppose that we make a similar diagram
for the same substance in another possible structure (phase), 3, and plot the two surfaces
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AN

Figure 8.3 Fundamental property diagram for a unary system with two phases. One may regard
/L/[i — uX as the integrated driving force for transformation from {3 to « at the given values of 7'
and P.

in the same coordinate frame. We can then compare the two phases at the same 7 and P,
for instance, and evaluate the difference in p 4, see Fig. 8.3.

Let us consider a possible transition from phase [3 to phase « at the fixed values
of 7 and P. We cannot evaluate the driving force for that transition without knowing
the detailed mechanism, i.e. the reaction path. However, we can evaluate the integrated
driving force for the transition, /Dd&. We should then use the form of the combined law
having 7, —P and u4 as the variables:

0= —SdT — Vd(—P) — Nadua — Ddz, (8.11)

in which T and P must be regarded as independent variables if they are kept constant.
The third potential, 14, must then be regarded as a dependent variable. In addition, we
may choose one of the extensive variables as independent in order to define the size of
the system and it must come from the conjugate pair, which has not yet been used to
define an independent variable. It must thus be Na. For a system at constant 7, —P and
N we obtain

/DdE = - /NAduA = —Na(% — 1R) = Na(uh — n%). (8.12)

It is evident that the phase with the lower w4 value will be the more stable phase. At the
combination of 7and P, marked in Fig. 8.3, o is thus the more stable phase. Furthermore,
the line of intersection of the two surfaces must be a line of coexistence because on that
line there is no driving force for a change. This line is shown in Fig. 8.3. In the figure the o
phase is stable in front of the coexistence line and the 3 phase behind it. It is evident that
the coexistence line represents a ridge on the composite surface representing the stable
states. We may generalize this observation and conclude that the surface representing
stable states in a system with several phases is composed of pieces, one for each stable



8.2 Fundamental property diagram 161

Figure 8.4 Fundamental property diagram for a substance having four different structures
(phases). The two-phase lines are all ridges. There are no re-entrant angles.

phase, and joined by coexistence lines which are all ridges. An example with four phases
is shown in Fig. 8.4. If we combine this with the previous conclusion that the surface
for each single phase is convex, we may conclude that the composite surface is also
convex.

Exercise 8.2

Using the criterion that the more stable phase in a unary system under constant 7" and
P has the lower chemical potential, it is possible to obtain a so-called phase diagram
from Fig. 8.3. (This will be demonstrated in Fig. 8.5.) Suppose that one would instead
like to choose pa and 7T as the independent variables and construct a phase diagram
with these axes. What criterion could then be used for deciding where each phase is
stable?

Hint
The answer can be found by again considering the combined law in the form of

Eq. (8.12). What extensive variable should be regarded as independent when p5 and
T are chosen as independent potentials?

Solution

We must choose V as the independent extensive variable. By keeping } constant together
with T'and s we should obtain [Ddé = [VdP = [V(P* — PP) > 0 if a is the more
stable phase. It is evident that the phase with the highest P will be the more stable
phase.
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(a) (b)
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e —
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Figure 8.5 Projection of the fundamental property diagram onto the 7, P state diagram, yielding
a potential phase diagram.

Topology of potential phase diagrams

A coexistence line in the fundamental property diagram can be projected onto any side
of the diagram, for instance the 7, P side (see Fig. 8.5). In that 7, P diagram (Fig. 8.5(b))
we may indicate on which side of the line each phase is stable, i.e. has a lower pa value
than the other phase. We may further indicate that the coexistence line represents the
« +  equilibrium. Such a diagram is called a phase diagram and it is actually a state
diagram used for plotting coexistence lines. In this chapter we shall mainly be concerned
with phase diagrams. In order to emphasize the character of the axis variables we may
call the present diagram a potential phase diagram. It is worth remembering that it
is actually a projection of the fundamental property diagram. When 7, —P, 4 is used
as the complete set of potentials, one usually projects in the direction of ua and presents
the 7, P phase diagram. However, it should be remembered that in Section 3.5 it was
shown that there are at least nine ways of writing the Gibbs—Duhem relation and there
are thus at least nine sets of potentials that can be used in the construction of potential
phase diagrams.

Knowing one point on the coexistence line in the fundamental property diagram we
can determine the direction of the line by applying the Gibbs—Duhem relation to both
phases using the fact that d7, dP and du, must be the same in both phases if they still
coexist

dia = —S%dT + V%P (8.13)

dua = —SBdT + VEdP. (8.14)

This system of equations defines the direction of the o + [3 coexistence line in the
fundamental property diagram. The direction of the projected line in the 7, P phase
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Figure 8.6 The 7, P phase diagram for carbon, according to a thermodynamic assessment.

diagram, i.e. the o« 4+ 3 phase field, is obtained by eliminating dua from the Gibbs—
Duhem relations
dPp s*— &SP
— = mi“é (8.15)
a7 yx—yy
As an example Fig. 8.6 shows the equilibrium between graphite and diamond in a
T, P phase diagram for carbon. Except for low temperatures the equilibrium line is
almost a straight line because the differences in Sy, and V}, stay rather constant. At low
temperature the line becomes parallel to the 7" axis because the difference in Sy, goes to
zero at absolute zero in agreement with the third law of thermodynamics.
Using the alternative form of the Gibbs—Duhem relation, obtained from line 5 in
Table 3.1, we may introduce (H% — HP)/ T instead of (S* — SF).
d-P) H* — HP

a1/ VT (510

dP (H*— H®/T

T e (8.17)
This is known as Clapeyron’s relation. It should be realized that the molar volumes
of condensed phases are so small that pressures of about 1 bar have an effect on the
equilibrium temperature which is negligible for many purposes.

Suppose there is a third possible phase. We shall then have a third surface in the
property diagram. There will be three coexistence lines and one point of intersection, a
triple point, and by projection they will all show up on the phase diagram (see Fig. 8.7).

It is immediately evident that all the angles between the three intersecting lines in
the phase diagram are less than 180°. We have thus found the 180° rule which says that
the corners of a one-phase field must have angles less than 180°. The dashed lines in
Fig. 8.7 represent metastable extrapolations of the two-phase coexistence lines and they
fall inside the one-phase field of the third phase. The geometrical elements of the potential
phase diagram are called phase fields and they are listed here.
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(b)

A/T T

Figure 8.7 Projection of a property diagram (a) onto the 7, P state diagram, yielding a phase
diagram (b) with three univariant and one invariant phase equilibria. Metastable equilibria are
shown with dashed lines.

(a) Points where three phases are in equilibrium. We cannot change any variable without
changing the kind of equilibrium. We call this an invariant equilibrium or a zero-
dimensional phase field.

(b) Lines where two phases are in equilibrium. We can change only one variable inde-
pendently without leaving the line. We call this a univariant equilibrium or a one-
dimensional phase field.

(c) Surfaces where a single phase exists. We can change two independent variables
without leaving this kind of phase field. We call this a divariant equilibrium or a
two-dimensional phase field.

The dimensionality of a phase field in the potential phase diagram is thus equal to the
variance of the corresponding phase equilibrium. We shall denote the dimensionality by
d and can calculate it from Gibbs’ phase rule. With one component it yields

d=v=c+2—p=3—-p. (8.18)

A three-phase equilibrium thus has a variance of 0 and appears as a point (d = 0). A
single phase has a variance of 2 and it thus requires a surface (d = 2) to be represented.

More phases can be added but there will be no new kind of geometrical element.
The probability of more than three surfaces meeting in a point in a property diagram
is negligible for any real system. As an example of a more complex phase diagram,
Fig. 8.8 reproduces the Fe phase diagram. Most of the lines are fairly straight similar
to the line in Fig. 8.6. An exception is the two branches of the bce + fcc line because
they can be joined by a curve looking as a parabola by extrapolating them to negative P
values. Clapeyron’s relation shows that the heat of transformation has different signs for
the two branches and must go through zero at some intermediate temperature, i.c. at a
negative pressure. The reason is a magnetic transition in the bee phase.
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Figure 8.8 7, P phase diagram of Fe according to an assessment of experimental information.

Exercise 8.3

Derive an equation for the & 4+ {3 line in a unary 7, P phase diagram under the conditions
that A H;,, and AV, can be regarded as constant.

Hint

Start with Clapeyron’s relation, Eq. (8.17).

Solution

dP = (AHn/AViu AT /T)and P — Py = (AHpn/AVw) In(T/ Tp) under constant A Hy,
and A V4. In addition, a point on the line, ), Py, must be known. It should be noticed
that it is sometimes more convenient to approximate A Sy, as constant than A Hy,. The
result is then a straight line in a linear 7, P phase diagram. When one of the phases is
a gas, one may approximate AV, by RT /P and integration yields, if A Hy, is constant,
InP = K exp(—AHw/T).

Exercise 8.4

A T, P phase diagram for a unary system (pure A) is given in Fig. 8.9. It shows four
phases. Construct a reasonable 7, s property diagram at P;. It should show all the
stable and metastable two-phase equilibria at P;.

Hint

The T values for all the two-phase equilibria at P; are easily found by extrapola-
tion. Approximate all the 7, ua lines by straight lines, intersecting at the two-phase
equilibria.
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Figure 8.9 See Exercise 8.4.

(a)

Figure 8.10 Solution to Exercise 8.4.

Solution

The solution is given in Fig. 8.10. The convex polygon close to the origin represents the
stable equilibria.

Potential phase diagrams in binary and multinary systems

So far we have discussed a system with one component, a unary system. In a binary
system we have two components and four potentials, 7, —P, 4 and . The fundamental
property diagram will be four-dimensional and cannot be visualized. The phase diagram
will be three-dimensional and it will be composed of four geometrical elements as
illustrated in Fig. 8.11. They are all phase fields.

(a) Points where four phases are in equilibrium. We cannot change any variable without
changing the kind of equilibrium.

(b) Lines where three phases are in equilibrium. We can change only one variable inde-
pendently without leaving the line.
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Figure 8.11 7, P, up phase diagram for a binary system with four phases.

(c) Surfaces where two phases are in equilibrium. We can change two independent
variables without leaving this phase field.

(d) Volumes where a single phase exists. We can change three independent variables
without leaving this kind of phase field. Its equilibrium is trivariant.

For higher-order systems, ternary, quaternary, quinary, etc., the principles will be the
same. The phase diagram will have ¢ + 1 axes, where ¢ is the number of components.
The geometrical elements will be points, lines, surfaces, volumes, hypervolumes, etc.,
and they will represent phase equilibria which have a variance of zero, one, two, three,
four, etc., in accordance with Gibbs’ phase rule.

Suppose one wants to calculate a state of equilibrium under the requirement that it
must consist of p specified phases. Then one must, in addition, specify the values of v
independent variables, where v is given by Gibbs’ phase rule, v = ¢ +2 — p. On the
other hand, suppose one wants to calculate a state of equilibrium without specifying any
phase. Then one must specify the values of v independent variables, where v is equal
to ¢ + 1 because the phase diagram will have ¢ 4 1 axes. That corresponds to the case
of one specified phase. This does not violate Gibbs’ phase rule because one will always
fall inside a one-phase field, p = 1. In practice one will never be able to hit exactly on

the other types of geometrical elements.

Figure 8.3 illustrated the integrated driving force for a transition from {3 to . The
same situation cannot be illustrated for a higher-order system but the integrated driving
force can be derived in the same way under conditions where 7, P and all the chemical
potentials except for u; are kept constant. The combined law yields

Nidpy = —SdT + VdP = Y " Nyduy — Ddg = —Ddé (8.19)
2

/ Ddg = =N, (1§ — i) = N1 (1§ — uf). (8.20)

It is thus necessary that 1¢; is lowest in the stable phase if all the other potentials are kept
constant.
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In the above integration it was assumed that N; is kept constant which was the way
to define the size of the system. However, it must be noted that the content of all the
other components will most probably change during a transition carried out under the
conditions considered here. It may be of more practical interest to derive the integrated
driving force for a transition under constant 7, P and composition. It can be obtained
from the combined law expressed in terms of Gibbs energy,

dG = —SdT + VdP + Su:dN; — Ddé = —Ddé (8.21)

/Dds =GP - g% (8.22)

Exercise 8.5

Try to formulate the equivalence of the 180° rule for a point where four phases coexist
in a binary three-dimensional phase diagram.

Solution

All such points must be on pointed tips. The four adjoining three-phase lines must fall
on ridges.

Sections of potential phase diagrams

In order to visualize a higher-order potential phase diagram one may decrease the
number of dimensions by making a section at a constant value of some potential, an
equipotential section. It will show exactly the same geometrical elements as a poten-
tial phase diagram for a system with one component less. One may section several
times and thus decrease the dimensions of a higher-order phase diagram until it can
be plotted as a two-dimensional diagram. It is common first to keep P constant and
then 7. One may then continue and keep the chemical potential of some component
constant.

At each sectioning one will lose the geometrical element of the lowest dimensionality.
This is demonstrated in Fig. 8.12 which was obtained by taking a horizontal (7 = 7))
section through the potential phase diagram in Fig. 8.11. The chance of hitting the
four-phase point is negligible and no four-phase point should be included in this type
of diagram. The topology of a diagram will thus be the same whether the number of
dimensions is decreased by sectioning at a constant value of a potential or by reducing
the number of components by one. In order to distinguish the two cases, one may call
the diagram with axes for all the independent potentials a complete potential phase
diagram. It has ¢ + 1 axes.

In Section 8.3 we called the geometrical elements phase fields. In the complete poten-
tial phase diagram a phase field has the dimensions given by Gibbs’ phase rule. However,
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Figure 8.12 Equipotential (isothermal) section of the potential phase diagram in Fig. 8.11 at
T=T.

its dimensionality decreases by one unit for each sectioning and we obtain
d=v—ng=c+2—p—ns, (8.23)

where 7 is the number of sectionings. In order to avoid confusion with the variance of
a phase equilibrium, which is given by Gibbs’ phase rule and is independent of what
kind of diagram is used, this will be called the phase field rule. The number of axes in
the diagram, », which initially is ¢ 4 1, will also decrease by sectioning, » = ¢ + 1 — n,
and we can thus write the phase field rule as

d=r+1-p. (8.24)

Phase fields for which d <0 will normally not show up in the final diagram, as
demonstrated by the negligible chance of hitting the four-phase point in the above
case.

It is evident from the second form of the phase field rule that a diagram with r axes
has the same topology independent of how many sectionings of potential axes have been
used to obtain it. By inspecting a diagram without knowing the number of components,
it is thus impossible to tell if it is a section or not.

Exercise 8.6

Consider the equilibrium Fe 4 S(gas) <> FeS under a constant P. Can it exist in a range
of T?

Solution

We have two components, Fe and S, i.e. ¢ = 2, and three phases, Fe, gas and FeS, i.e.
p = 3. If we section at some pressure, we have ng = 1. Thusd = c+2 —p —ng =2+
2 — 3 — 1 = 0. Under these conditions the equilibrium can exist only at a particular 7.
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Figure 8.13 Isobaric section at 1 bar of the W—C phase diagram with two potential axes, drawn in
two alternative ways. 1/7 has been plotted in the negative direction because —1 /T appears
naturally as a potential in thermodynamic equations.

Binary systems

As an example of a sectioned phase diagram, Fig. 8.13 shows the bcc—W and WC phases
in the W—C phase diagram at 1 bar. Two different sets of axes are used. Since a chemical
potential has no natural zero point, a reference must be chosen. In this case graphite at
1 bar and the actual temperature was chosen for carbon.

It is interesting to note that the univariant two-phase field approximates very well to
a straight line in Fig. 8.13(b). Its slope is obtained from the Gibbs—Duhem relation for
constant P, applied to each one of the phases. In order to calculate the slope of the line
in Fig. 8.13(b) we shall apply the Gibbs—Duhem relation in an alternative form obtained
from the fifth line of Table 3.1 after dividing all the extensive quantities by Ny.

d(uw/T) = Had(1/T) — 2 d(uec/ T) (8.25)
d(pw/T) = HyCd(1/T) — 28 “d(pc/ T). (8.26)

On the line of coexistence the change of each potential must be the same in both phases.
We may thus eliminate d(uw/7) by subtracting one equation from the other, to obtain
d(uc/T) _ Hy© — Hy,
d(1/T) ¢ —z¥

(8.27)

Here, z¥ = 0 and zY“ = 1. Since the solubility of carbon in bcc—W is very low, we can
approximate H ", with the enthalpy of pure bcc-W, OH&,“, to obtain

d(MC/T) _ WC _ o gybce
D - HYE —© Fbee, (8.28)

However, in order to define a numerical value for the right-hand side, it is necessary to
choose a state of reference for carbon. By introducing graphite as the state of reference
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Figure 8.14 The Fe—C phase diagram at 1 bar, plotted with two potential axes.

for carbon, we obtain

d((nc=°GE)/T) _ we 4
d(1/T) - ml

Hy® —°HE, (8.29)

because d(° G(g:r /T)/d(1/T) = OH(%”. The right-hand side is the heat of formation of one
mole of WC units from the pure elements, a quantity we may denote by A Hyc. The
fact that the curve in Fig. 8.13(b) is almost straight, indicates that the heat of formation
is approximately constant. By definition uc — °G¢ is equal to RT Inac where ac is the
carbon activity, referred to graphite, and Eq. (8.29) can be written as
RdIlnac
/Ty

A2 Hiye, (8.30)

and we could have plotted Rlnac as the abscissa and still have the almost straight line.
In Fig. 8.13(a) the potentials 7 and j.c — °G¢ have been used on the axes and with
the usual form of the Gibbs—Duhem relation we obtain
d(uc — °G¢)
dr
The abscissa could have been interpreted as R7Inac. From the fact that the slope is rea-
sonably constant we may conclude that the entropy of formation of WC is approximately
constant, but not as constant as the heat of formation.

The situation will be more complicated if one or both phases can vary in composition.
As an example, a complete Fe—C phase diagram at a constant pressure is presented in
Fig. 8.14, using the axes 1/7 and (uc — °Gg)/ T. The strong curvatures are caused by
the strong variation in composition of the fcc and liquid phases. All the lines turn vertical
at low values of j1¢. That is where the C content goes to zero and all phases become pure
Fe. The difference in composition thus goes to zero.

= —Sp” 4 °Su° + °SE = ApSwc. (8.31)

For reactions involving oxygen it is natural to use an O, gas of 1 bar as reference.
However, we may also express the oxygen potential by the ratio of the partial pressures
of CO, and CO in an ideal gas and use as a reference a gas where these partial pressures
are equal. Figure 8.15 gives an example of such a diagram with information from a large
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Figure 8.15 Combination of isobaric phase diagrams for many M—O systems at 1 bar. The
oxygen potential is represented by Pco,/Pco in a hypothetical gas which is not present, except
for the line CO + CO,.

number of M—O systems. An oxide is stable above each line. Below the line the stable
state is either the pure metal or a lower oxide. The diagram is calculated for 1 bar and the
state for pure Zn above the boiling point is thus Zn gas of 1 bar because the O, pressure
is low enough to be neglected. This diagram is often called the Ellingham diagram. It
should be emphasized that the effect of pressure is so small that this diagram could be
used for any pressure down to zero and up to many bars, except for (i) the line CO +
CO; which holds only for Pco 4+ Pco, = 1 bar and (ii) the line for gaseous Zn.

Exercise 8.7

Consider a system with graphite in a vessel under a pressure of 1 bar and a temperature
of 1000 °C. The vessel can expand and accommodate a gas. What would be the partial
pressures in the gas if a small amount of oxygen is introduced?

Hint

In this case the ordinate axis in Fig. 8.15 expresses not only the oxygen potential but
also gives the actual value of Pco,/ Pco.

Solution

The system would place itself on the CO + CO; line and from Fig. 8.15 we read for
1000 °C: log(Pco,/ Pco) = —2 which together with Pco, + Pco = 1 bar yields Pco, =
0.01 bar and Pco = 0.99 bar.
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Figure 8.16 Solution to Exercise 8.8.

Exercise 8.8

173

From the information given in Fig. 8.15 construct an Fe—O potential phase diagram at a

constant pressure of 1 bar.

Hint

It is not necessary to change the axes. The liquid phase cannot be included due to lack

of information.

Solution

The phase diagram is shown in Fig. 8.16.

Ternary systems

For a ternary system one may obtain a two-dimensional phase diagram by sectioning at
constant 7 and P. Figure 8.17 shows such a diagram for the Ti—-O—Cl system and the
axes represent ;o/RT and puci/RT, expressed by the logarithm of the partial pressures
of O; and Cl, in an imagined ideal gas that would be in equilibrium with the system.

Again we find that the univariant phase equilibria are represented by lines which look
straight, a fact that can again be illustrated by application of the Gibbs—Duhem relation.
For constant 7'and P we get by applying the Gibbs—Duhem relation in its ordinary form,
Eq. (3.84), and dividing all the extensive quantities by Ny; and thus introducing z;,

duti = —zdduo — zgduc

duti = —ng/io - Z(B;ldﬂa
dpa 25— zg

duo B z& — zgl.

(8.32)
(8.33)

(8.34)



174

Phase equilibria and potential phase diagrams

—_ _5_ B
&
=)
L)
~10 - L
-15

@ Iog(Poz)

Figure 8.17 The Ti—-O-Cl phase diagram at 1 bar and 1273 K, plotted with two potential axes.
The potentials are expressed in terms of the partial pressures (in bar) in an ideal gas which is not
present.

-4

log(mass-% O)

A log(mass-% S)

Figure 8.18 The Ce—O-S phase diagram at 1 bar and 1273 K, plotted with two potential axes. The
potentials are expressed in terms of the contents in liquid iron which is not present.

It is interesting to note that the slope can be calculated directly from the compositions
involved.

A sectioned potential diagram like Fig. 8.17 is sometimes called a Kellogg diagram.
It must be emphasized that here the gas phase is not considered in the phase equilibria.
The partial pressure is simply a popular means of expressing the chemical potential of
volatile elements. It may be expressed in bar and the reference states are chosen as an
ideal gas with a partial pressure for O, or Cl, of 1 bar. Thus we have, for instance,

2(no —°GS")/RT = In Po,. (8.35)

Alternatively, one may express chemical potentials through the content in any other phase
that happens to be present or could be present. As an example, Fig. 8.18 shows a case
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Figure 8.19 The Cu—O-S phase diagram sectioned at 1 bar and a potential of SO, equal to the
potential of pure SO, gas of 1 bar.
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Figure 8.20 See Exercise 8.9.

where the logarithm of the contents of O and S in liquid iron are used for representing the
Ce—O-S phase diagram at constant temperature and pressure. With these axes one can
directly see what cerium compound should form first from liquid iron if the cerium con-
tent is gradually increased. However, the diagram does not reveal what cerium contents
are required in the liquid iron phase.

One may also section a ternary phase diagram at some value of a chemical potential
and keep the temperature as an axis. Figure 8.19 shows such a case sectioned at a constant
value of us + 2o and plotted with o /RT versus 1/T. Here o /RT is expressed by the
ratio of the partial pressures of CO, and CO in an ideal gas.

Exercise 8.9

Figure 8.20 shows at what O, and N, pressures three nitrides can form from pure Si at
1840 K. (a) Use the slopes in order to evaluate the O content in o and [3, both of which
are usually considered to be Si3Ny. (b) Their coexistence lines are missing in the phase
diagram. Calculate their slopes.
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Figure 8.21 Solution to Exercise 8.9.

Hint

The axes may be regarded as potential axes for O and N because 7 is constant. We can
thus apply the relation djio/dun = —(z3 — 2%)/(z8 — z8), similar to Eq. (8.34). The Si
phase does not dissolve noticeable amounts of O or N. In all the oxides and oxynitrides
we can assume the following valencies: +4 for Si, —2 for O, —3 for N.

Solution

(a) z; is here defined as N;/Ns;. For oo/Si we read duo/dun = —45 = —(z8 — 0)/
(zd —0) = —z{/z3. Applying electroneutrality, 4 = 2z + 3z{ =2z +45 -
3z5 = 13723; z5 = 0.0292; z{ = 45 - 0.0292 = 1.3139. Figure 8.21 thus predicts
that the formula for the o phase is Si;1N; 3139000292 Or Siz.978 Vag,022N3.91300.087-

For 3/Si we read duo/dun = oo = —(ZE] — 0)/(zg —0); zg = 0. The formula
for {3 is SizNy.

(b) For o/3 we then get: duo/un = —(1.313 — 1.3333)/(0.0292 — 0) = 0.664. For
a/SipN,O we get: duo/un = —(1.3139 — 1)/(0.0292 — 0.5) = 0.667. The two
new coexistence lines will thus be parallel and almost vertical in Fig. 8.21 because
of the very enlarged scale for log Py, .

Exercise 8.10

For the invariant equilibrium TiCly 4+ TiO, + Ti3Os in Fig. 8.17 it has been found that the
partial pressure of Ti is 5 x 10722 bar. Construct a reasonable log Po,, log ar; diagram
for these three phases at the constant values of 7'and P.

Hint

Evidently, the potential diagram in Fig. 8.17 was obtained from the fundamental property
diagram by first sectioning twice (at constant 7 and P) and then projecting in the
direction. Now we are asked instead to project in the ¢ direction. Start by plotting the
point for the three-phase equilibrium at log Pr; = —21.3 and a value of log Py, obtained
from Fig.8.17. Then we can calculate the slopes of invariant equilibria in terms of the
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compositions involved. When one obtains an indeterminate value one should go back to
the derivation of the equation used.

Solution

At constant 7, P we have a three-dimensional property diagram looking like Fig. 8.7(a)
but with i, o and pc; on the axes. Figure 8.17 is the projection on the o, ¢y side.
Now we want the projection on the 1o, pri side. Then we must project in the ¢ direc-
tion and define z; as N;/N¢,. For TiO, and Ti;Os we get zp and zy; equal to infinity.
We should thus go back to the Gibbs—Duhem relation for two phases, « and 3, and get
xpdur + x5duo + x&duc = 0 and x%dun + xgd,uo + xgldug =0.

For TiO, /TiCly: x4 = 0 and already the first equation yields duri/dpo = —x3/x5; =
—2anddIn aTi/d In P02 = O.Sd/,LTi/d/,LQ =—1.

For TizOs/TiCly: x3 =0 and already the first equation yields duri/duo =
—xg/x% = —=5/3 and dInai/dIn Py, = 0.5duri/duo = —=5/6.

For TiO, /Ti305: x& = xgl = 0 and the only solution to the two equations is dut; = 0
and duo = 0. This two-phase equilibrium will thus occur in one point only (see Fig.
8.22). The reason is that we have projected the property diagram in the direction of the
TiO, + Ti;Os5 coexistence line.

In a two-dimensional potential phase diagram we normally expect to see two-
dimensional phase fields for single phases and one-dimensional phase fields for two
phases in equilibrium. As expected, the phase field for TiCly is two-dimensional but not
the one for TiO; or Ti;Os. However, since TiO; and Ti;Os do not dissolve any Cl, their
properties are not affected by wc;. The p1¢; axis in the fundamental property diagram is
thus parallel to the property surface of both phases and hence parallel to the line rep-
resenting their intersection. In the p¢) projection these surfaces will become lines and
their intersection, representing a two-phase equilibrium, will become a point. Compare
Fig. 8.7 and let i correspond to pa, let o correspond to — P and puc) correspond to 7.
Rotate all the surfaces slightly until the (3 4 y coexistence line is parallel to the 7 axis.
It will then appear as a point in the 7 projection.

Direction of phase fields in potential phase diagrams

In the discussions of two-dimensional phase diagrams we have several times derived
equations for the slope of two-dimensional phase fields. We shall now give a more general
treatment. The direction of phase fields is governed by the Gibbs—Duhem relation, which
applies to each one of the p phases in an equilibrium, e.g. for the phase «:

— SpdT + V2dP — ) " xfdu; = 0. (8.36)

If all the phases stay in equilibrium with each other when some variation is made, each of
du;, dTand dP must have the same value for all phases. By combining the Gibbs—Duhem
relation for all phases one obtains a system of equations for the coexistence of the phases
in the fundamental property diagram. With p phases we have p Gibbs—Duhem relations
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Figure 8.22 Solution to Exercise 8.10.

and can thus eliminate p — 1 of the variables. If we would choose to eliminate u; for i
from 1 to p — 1, we should multiply each equation by a factor that we can represent by a
determinant. For example, the equation for the o phase should be multiplied by a factor

BB B
XpoXy .. X,
Y oY Y
X{oxX, .. X,
€ € €
XpooXy .. X,

As a shorthand notation such a determinant will be written by giving the diagonal ele-

ments |xl[5 X .. X »—1| - By adding the equations for all the phases, we obtain
—|SexPxy X, 1dT + Ve Py x;_l'dP - Z Py x;_l‘dui =0.

(8.37)
Using an alternative form of the Gibbs—Duhem relation found from line 5 in Table 3.1
we instead obtain

g xf XY D (/T) X xg[dp

-2

The factors in front of du; or d(u;/T) for i from 1 to p — 1 are zero because two
columns have the same elements. For instance, withi = p — 1 the first and last columns
in the last determinant are identical. It should be emphasized that the equation can be
formulated in many ways by including different u; in the set of eliminated variables. All
such alternative equations apply simultaneously and together they give the direction of
the phase field. We shall now consider various cases by considering different values of
p — c and in some cases different values of p.

o S x;,lld(m/r)zo. (8.38)
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Forp = ¢ + 1 we have a univariant equilibrium according to Gibbs’ phase rule,v = 1,
and shall thus obtain a linear phase field in the potential phase diagram. All the du; or
d(u; /T) can be eliminated mathematically because ¢ = p — 1. Furthermore, in this case
each column in each determinant contains all the x; in a phase and we can make use of
¥x; = 1 in the remaining terms,

|HX 1 x) . . xId(/Dy+ vy 1 x) . . xIdP/T =0. (8.39)

This gives the direction of the phase field in a (1/7), P phase diagram produced by
projection of the complete phase diagram. As an example, for a binary system with three
phases the equation gives

|HX 1 x)|d1/T)+|Vy 1 x}|dP/T =0. (8.40)

This gives the slope of the phase field for a univariant phase equilibrium in a projection
onto the (1/7), P side of the phase diagram. It can also be written as follows,

AP (o =) HE + (g — D) HE + (o —x)HY 1
dT (] =Dyt (¢ =)l + (o —xypd T

(8.41)

In Section 13.2 we shall see that the equation can be reduced to a much simpler form.
In fact, the numerator is equal to the heat of the three-phase reaction between «, 3 and
7 and is thus independent of the choice of reference states chosen for the H values. The
denominator is equal to the change in volume. Thus, the value of dP/dT is indepen-
dent of the choice of references, as it should be, and Eq. (8.41) is a generalization of
Eq. (8.17).

If we had eliminated d(w, /7 ) and dP instead of d(1t; /7") and d(u,/T') we would have
obtained

d(ua/T) _ (V= VE) Hay + (Vi — V) HE + (Wl — Vi) HY

- 8.42
d(1/T) (K — Vi) + (Ve — va)xb + (vl = v)x) (542

This is the slope of the phase field for a univariant phase equilibrium in a projection onto
the (u2/T), (1/T) side of the complete phase diagram. The value of the numerator here
depends upon the choice of reference states for the H values and that choice will thus
affect the value of d(u,/7)/d(1/T).

For p = ¢ we have a divariant equilibrium, v = 2, and the corresponding phase field
will form a surface in the phase diagram. We can, for instance, eliminate all d(x; /7) terms
except for d(u./7) and obtain a relation between d(1/7), dP and d(u./T), representing
the direction of the two-dimensional phase field in a three-dimensional projection of the
complete phase diagram:

|HE xPox) . xJd/D+|(veyT) xf X)L xe|dP

=& xP Xy o  xE|d(ue/T). (8.43)

c
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Under isobaric conditions we obtain a one-dimensional phase field, the slope of which
is given by

e xB xS HE[d(/ Ty =[x X X xE|d(ue/T).
(8.44)
For p = ¢ — 1 we obtain a similar equation but now two terms will remain of the
summations in Eqgs (8.38) and (8.39) since both ¢ and ¢ — 1 will be larger than p — 1.
Under isobarothermal conditions it simplifies to

e xb o x| dpen + P X |due = 0. (8.45)

We may thus evaluate the slope du./du.—; for the one-dimensional phase field in the

constant 7"and P section of the phase diagram. We can see that it is completely defined
by the ratio of two subdeterminants of the complete composition determinant.

For a two-phase equilibrium in a ternary system at constant 7" and P, the equation

reduces to
dus x¥x§ — x%x5 z¥ — %
2 _ X Y3 _ 4 3 (8.46)

XK€ X4.& o4 &
dus xX5x] — x{x§ z¥ — 2§

This is an example where the final result is simplified by introducing the z variables
defined as z; = x;/x;. This equation was derived in a more direct way when ternary
systems were discussed in Section 8.7. We could apply the present method to two-phase
equilibria in general, obtaining

Z (20 = 2 )dps = — (S — Shy)dT + (V& — V5 )dP (8.47)

2
c

Yo (@ = 2P/ T) = (HE, — HE)A(/T) + (Ve = VE)dP/T.  (8.48)
2

Exercise 8.11

Calculate the change of (1o for the Al + Al, O3 two-phase equilibrium when the pressure
is increased. The densities of the phases are 2.7 and 3.5 g/cm?, respectively.

Hint

Since p = 2 and also ¢ = 2, we have the case p = ¢ and there is a relation between
d(ue/T), d(1/T) and dP. It is thus necessary to define the problem better. Let us assume
that the intention was to keep 7 constant.

Solution

Let Albe a: V¢ = (1/2.7)-27 = 10cm?/mole of atoms. Let Al,O3 be B: Vrﬁ’ =
(1/3.5)-(102/5) = 5.8cm?/mole of atoms. (3(uo/T)/dP)r = (x{"VrE — x,[5 Vey/
T(x0xP —xPx¥) =(1-58—-0.4-10)/T(1-0.6 —0) = 3/T cm®/mol K.

Since T =constant,] =Nm and Pa = N/m> we get (dup/dP)r =3 x
10~ J/molPa.
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Extremum in temperature and pressure

For convenience we shall now use the relation derived from the Gibbs—Duhem relation
in its ordinary form, i.e. we shall use S instead of H.
For p = ¢ we obtain, by rearranging the terms in the determinants,
i ) B 5
—lxeoxy oo xb SE|dT | xS L X2, vE|dP

— [y B 5
= ox o x

x&|duee. (8.49)
Suppose the composition determinant on the right-hand side is zero, i.e., suppose
e xb . X2 x| =0 (8.50)

Under isobaric conditions this would yield d7/du,. = 0 for the linear phase field obtained
in the ., T phase diagram and the phase field must go through a temperature extremum.
Equation (8.50) is thus the requirement for an extremum to occur and it can also be
written in the following form because Xx; = 1 in each phase,

c—1 c

1 X .. X2, x| =0 (8.51)

This is a well-known equation from the theory of determinants and shows that the phases
fall on the same point (i.e. have the same composition) for ¢ = p = 2, they fall on a
straight line for ¢ = p = 3, on a plane surface for c = p = 4, etc. The first two cases
are described by Konovalov’s and von Alkemade’s rules, respectively (see Sections 10.8
and 10.9). Furthermore, if one knows that there is such a temperature extremum under
isobaric conditions, then one can conclude that the composition determinant must be zero
and the equation shows that there will also be a pressure extremum under isothermal
conditions. For a binary case, ¢ = p = 2, this is illustrated in Fig. 8.23.
For p = ¢ — 1 we obtain
— |xf‘ le3 T S&}dT + |xfc xz[3 oooxd, Vrfl|dP

c c

= xb o w X |dpenr + X XD X0, xf|dre. (852)

In order to obtain an extremum in 7 at constant P (and thus in P at constant 7), it is now
necessary that two determinants are zero,

B )

e Xy .o X2, x| =0 (8.53)
x* xP X6, xE=0 (8.54)
1 2 v c—-2 c : .

For a binary system this condition has no meaning because p = 1. For p =2 and ¢ =
3 it implies that the two phases fall on the same point in the composition plane (in
agreement with a generalization of Konovalov’s rule), for p = 3 and ¢ = 4 it implies
that the three phases fall on a straight line in the composition volume (in agreement with
a generalization of Alkemade’s rule), etc. For a ternary system this can be demonstrated
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Figure 8.23 Potential phase diagram for a binary system showing a divariant phase field having a
T extremum in an isobaric section (see thin horizontal curve). It follows that an isothermal
section will show a P extremum (see thin vertical curve).

easily
x5 =0 (8.55)
[x¢ xP|=0. (8.56)
By adding the two equations we get
0= |x (xf+x3ﬁ>’=|xf‘l|=xf‘—xlﬁ. (8.57)

orx{ = xlﬁ'. By inserting this in the Eqgs (8.55) and (8.56) we get x5 = xf and x5 = xf

and, consequently, also |x§‘x3[3 } = 0. This case is illustrated in Fig. 8.24 which may be
regarded as a diagram corresponding to the P section through the diagram in Fig. 8.23 but
with one more axis due to the third element. It follows from Eq. (8.52) that here will also
be an extremum in P under isothermal conditions but we would need four dimensions
to show a diagram corresponding to the whole diagram in Fig. 8.23.

For p = ¢ — 2 the conditions for an extremum in 7 at constant P (and thus in P for
constant 7) is obtained as a set of three determinants equal to zero and this means that
the compositions of the phases fall on the same point for p = 2 and ¢ = 4, same line for
p = 3 and ¢ = 5, same plane for p = 4 and ¢ = 2, etc.

Exercise 8.12

Consider a three-phase equilibrium at 1 bar in a ternary system between pure A, a com-
pound B C; and a third phase with variable composition. Can this equilibrium go through
a 7'maximum? Under what conditions?
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Figure 8.24 Potential phase diagram showing a divariant phase field with a 7 extremum at a
certain combination ug, ic. The complete phase diagram has been sectioned at a constant P.

Hint

Notice that p = 3 and ¢ = 3 and thus ¢ = p.

Solution
xroxy xg I oxy x5 1 0 0
0= x{5 xzﬁ xf =11 x2ﬁ x3ﬁ =11 05 05|= O,ng — O,ng,
x ox) x] 1 x) x) 1 x) x

or xp = x_. The variable phase must fall on the straight line between A and B;C; in
order for a 7 extremum to occur. However, we cannot tell if it will be a 7 maximum or
minimum.

Exercise 8.13

Consider a ternary system where the potential of the third component is kept constant
(by means of a high diffusivity and equilibrium with an external reservoir). The pressure
is also kept constant. Suppose one will thus find that there is a maximum temperature for
a certain & + 3 equilibrium. What conclusion can be drawn regarding the compositions
of the two phases? What would be the most convenient composition variable to use in
such a case?

Hint
p = ¢ — 1. Equation (8.52) was derived for that case. Under constant P and p. it yields

o4 B 5 e — |y B 5 3
x¢oxy o0 xS, x|dpenr = —Jx X xS, Sg[dT.
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Solution

At the T maximum, the equation yields |x{ xzf’ - xf,_z x;_ ;| =0 and for a
ternary system |x{* xzf’ | =0 orx{/x5 = xlﬁ /x£5 . The ratio of components 1 and 2 is
thus the same in the two phases. The most convenient composition variable in this case

isu; = x; /(1 —x.)sinceu; +uy + -+ u.—; = 1 and we find
B ) — B 5 —
|u‘1" uy ..Uy, u§_1| = |1 uy .. U, u§_1| =0.
For a ternary system we get |1 u§| =uy; — uf =0
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Molar axes

If one starts from a potential phase diagram, one may decide to replace one of the poten-
tials by its conjugate variable. However, the potential phase diagram has no information
on the size of the system and one should thus accept introducing a molar quantity rather
than its extensive variable. By replacing all the potentials with their conjugate molar
variables, one gets a molar diagram. One would like to retain the diagram’s character
of a true phase diagram, which means that there should be a unique answer as to which
phase or phases are stable at each location. In this chapter we shall examine the properties
of molar diagrams and we shall find under what conditions they are true phase diagrams.
Only then may they be called molar phase diagrams. However, we shall start with a
simple demonstration of how a diagram changes when molar axes are introduced.

Figure 9.1(a)—(d) demonstrates what happens to a part of the 7', P potential phase
diagram for Fe when Sy, and V},, axes are introduced. Initially the P axis is plotted in the
negative direction because V is conjugate to —P It can be seen that the one-phase fields
separate and leave room for a two-phase field. It can be filled with tie-lines connecting the
points representing the individual phases in the two-phase equilibrium. It is self-evident
how to draw them when one axis is still a potential but they yield additional information
when all axes are molar (Fig. 9.1(d)).

Figure 9.2(a)—(d) is a similar demonstration using a part of the Fe phase diagram with
a three-phase equilibrium, a triple point. It forms a tie-triangle when both potentials
have been replaced (Fig. 9.2(d)). All the phase fields are then two-dimensional. One may
also notice that each one-phase field from the potential diagram maintains its general
shape. Their corners still have angles less than 180° (see the 180° rule formulated in
Section 8.3).

It should be emphasized that the phase fields never overlap in these diagrams. They
may all be classified as true phase diagrams because each point represents one and only
one phase equilibrium. Three requirements must be fulfilled in order for this to happen.
Firstly, the two one-phase fields meeting at a two-phase line in a potential phase diagram
must move away from each other and leave room for an extended two-phase field, when
a molar axis is introduced. Secondly, the one-phase field extending from the two-phase
field in the direction of increasing values of a potential must also extend to increasing
values of the conjugate molar variable that is introduced. If it goes the other way, it
would overlap the two-phase region. The other one-phase field must extend in the other
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Figure 9.1 Introduction of molar axes instead of potential axes in a part of the unary phase
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Figure 9.2 Introduction of molar axes instead of potential axes in a part of the unary phase
diagram for Fe with three phases. All phase fields here become two-dimensional.
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Figure 9.3 S, H diagram for Fe. This is not a true phase diagram because S and H never appear in
the same set of conjugate variables.

direction, before as well as after replacing the potential with the conjugate molar variable.
Thirdly, a one-phase field is nowhere allowed to fold over itself.

The last two requirements are fulfilled if the system is everywhere stable because of
the stability condition from Eq. (6.28),

3Y®
— > 0. (9.1)
0X® ) e ya

The potential Y® and its conjugate variable X thus increase in the same direction.
However, as already emphasized, this stability condition requires that all the variables to
be kept constant, here represented by Y¢,X¢, come from the same set of conjugate pairs
as Y® and X°. Nine such sets were presented in Table 3.1 but it is necessary to examine
what happens to them when the size of the system is measured in different ways. This
will be discussed in the next section. Figure 9.3 is an example of what can happen if
one uses two molar variables which do not appear in the same set of conjugate variables,
S and H. It is not a true phase diagram according to the definition given at the very
beginning of this section. Other cases will be discussed in Section 10.7.

The first requirement can be tested as follows, using the form of the Gibbs—Duhem
relation with molar quantities introduced in Eq. (8.4),

c c+2

dpy = —=SmidT + VegdP — Y " zidp; = — Y X7, dY7. 92)
2 2

Consider two phases, o and 3, which are initially in equilibrium with each other. The
system is then moved away from equilibrium by changing the value of one poten-
tial, Y/, keeping the other independent potentials in the summation constant. Apply-
ing the Gibbs—Duhem relation to each of the two phases and taking the difference, we
obtain

et - ) = (x5 — B)ar. 0
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Vm1

'

Figure 9.4 Four-phase equilibrium in a phase diagram with three molar axes. The four-phase
field is tetrahedral and is covered by triangular prisms representing three-phase equilibria. The
two- and one-phase fields are not outlined but they are also three-dimensional.

Suppose « is the phase favoured by the increased Y/ value. Then 1§ must be smaller
than /L? as demonstrated by Fig. 8.3. We thus obtain

B
i b = 0 = i)

= > 0. (9.4)

It is thus evident that the two one-phase fields will move apart by a positive distance
Xﬁf{ — X{Tﬁ when Xﬁ'ﬂ is introduced as an axis instead of Y/. The one-phase fields will
separate and give room for the two-phase field in between, X Q’l‘ - X ﬁﬁ being the length
of the tie-line.

In a binary system there are three independent potential axes. If they are all replaced
by molar axes, all the phase fields become three-dimensional and the invariant four-
phase equilibrium expands into a tetrahedron. This is demonstrated by Fig. 9.4 which
corresponds to the central region of Fig. 8.11.

It was emphasized that the topology of potential phase diagrams is very simple and
each geometrical element is a phase field. A phase diagram with only molar axes has
a relatively simple topology. All the phase fields have the same dimensionality as the
diagram itself. For the unary system in Fig. 9.2 all the phase fields have two dimensions
and for the binary system in Fig. 9.4 they have three dimensions.

Exercise 9.1

Suppose one studies the total vapour pressure of a liquid mixture of two metals, A and
B, at a constant temperature. One finds that the total vapour pressure increases if more
B is added to the mixture. Show whether the vapour or the liquid is richer in B.
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(a) (b)
before a %8
vapour vapour
liquid liquid
Py after PY

Figure 9.5 Solution to Exercise 9.1.

Hint

At constant 7, the P, up potential phase diagram will be two-dimensional. Sketch it
using 1 as the dependent potential variable. Remember that the conjugate composition
variable to g would then be zg = Np/Na. High pressure should favour the liquid, being
much denser than the vapour.

Solution

The construction (Fig. 9.5) shows that the vapour would be richer in B than the liquid if
measured relative to A.

Sets of conjugate pairs containing molar variables

A molar variable can easily be introduced in the stability condition, Eq. (6.28), by dividing
X" with the quantity used to define the size of the system because that quantity is kept
constant. Expressing the size by NV, we get for instance,

aY® ay®
D¢ ye, X4 X e, xd

However, with this measure of size the Gibbs—Duhem relation gives
SwdT = VindP + > " xidps; =0, (9.6)
where one of the x; is dependent on the others because Y x; = 1. Choosing x| as the
dependent one, we obtain x; = 1 — )" x;,
2

—dpy = SpdT — VindP + ) xid(py — ). 0.7
2

Then it is logical to regard 11, as the dependent potential but the consequence is that the
conjugate variable to x; is no longer u; but (u; — ;).

If we instead measure the size with the amount of a certain component, Ny, then we
obtain the form given by Eq. (9.2),

— dpy = SpdT = VeydP + Y zidp;. (9.8)
2
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Table 9.1 Sets of conjugate pairs of independent state variables using
molar quantities defined by dividing with X N;

T, Sm =P, Vi ;(Mf — W), X
T,(TSw— PVa)/T  —P/T,TVy ;(m — 1), x;
T/P, PSp P,(TSn— PVy)/P ;(Mi — 1), x;
=1/T, Uy —P/T, Vn ;(Mi_ﬂl)/Tvxi
—1/T, Hy =P, Va/T XZJ(M[ —u)/ T, x;
—P/T, Hy/P —-1/P, PUy/T ;(Mi — )/ T, x;
T/P, Sm —1/P, Un ZZ:(Mi—m)/P,xi
—1/T, TUy/P —T/P,Fy/T ;(Mi — 1)/ P, xi
T, Su/P —1/P, Fx ZZZ(/M —p1)/ P, x;

In this way one may keep u; but its conjugate variable is z; = N;/N; and Sy; and Vg
are also defined by dividing with N;.

Sometimes it is convenient to measure the size as the total content of more than one
component, e.g. of those which do not easily evaporate. Suppose they are the first &
components. Using u; = 1 — ZIZ‘ u; we obtain

Sm(1...0dT = Vin1..idP + Zui(l...k)dﬂi =0 9.9)
2

k c
—dut = Sm..0)dT — Vina.ipd P + Zui(l,.,k)d(ﬂi - Ml)‘f‘zui(l..‘k)dlii =0.
2 1

(9.10)

where the S, J and u variables are defined in Section 4.3.

These three methods of measuring the size of the system can be applied to all the
rows in Table 3.1. We may thus construct Tables 9.1, 9.2 and 9.3 for the sets of conjugate
potentials and molar variables. Each row defines a set of conjugate variables and each
pair can be used to construct a stability condition if the variables to be kept constant are
taken from the same set. There is an important difference from Table 3.1 which gave
sets of conjugate pairs related by the Gibbs—Duhem relation. A dependent potential has
now been eliminated using the Gibbs—Duhem relation and the new tables contain one
pair less and give sets of pairs of independent variables.
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Table 9.2 Sets of conjugate pairs of independent state variables using
molar quantities defined by dividing with N,

T, Smi —P, Vi ;,u,-,z,-
T,(TSwmi — PVa)/T  —P/T, TV ;M,.,z,.
T/P, PSn P,(TSu — PVim)/P ;,u,—,z,-
=1/T, U —P/T, Vi ZZ:M[/TJ[
—1/T, Hy; —P, V/T XZ:Mi/T,z,»
—P/T, Hn /P —1/P, PUn /T ;,ui/T,zl-
T/P, Sm —1/P, Un XZ:,U,i/P,z,v
—1/T, TUp /P —T/P, F/T ;/L,-/P,Z,-
T, Sm/P —1/P, Fuy Xz:,u,i/P,z,v

Table 9.3 Sets of conjugate pairs of independent state variables using molar quantities defined by
dividing with N; + N,

T, Smiz —P, Va2 (2 — 1), Ui 23: Mis Ui(12)
T,(TSmi2 — PVii2)/ T —P/T, TVaiz (M2 — p1), Uj12) X}:,U«n Uj(12)
T/P, PSniz P, (TSmi2 — PVa2)/ P (t2 = 1), Uiy ;Mia Ui(12)
—1/T, Un2 —P/T, V2 (2 — 1)/ T, Ui(12) X}: wi/ T, Ui(12)
—1/T, Huiz =P, Vai2/ T (n2 —l/-l)/T, Ui12) ;Mi/Ta Ui12)
—P/T, Hyi2/ P —1/P, PUn12/T (2 — )/ T, uigrn) Z}:M/T, Ui(12)
T/P, Sui2 —1/P, Unn2 (2 — 1)/ P, Ui(12) ZS:MI'/R Ui12)
—1/T, TUn12/ P —T/P, Fu2/T (2 — 1)/ P, Uj12) Z}:Mi/Pﬂi(lz)

T, Smi2/ P —1/P, Fuiz (p2 — l‘«l)/P, Ui(12) Z Wi/ P, Uj(12)
3
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Figure 9.6 See Exercise 9.3.

Exercise 9.2

At the end of Section 6.6 we found that the stability limit in a binary solution is gy, = 0.
Show how this condition can be obtained from the list of conjugate variables presented
in Table 9.1.

Hint

The index 2 in gy, indicates a derivative with respect to x,, with x; as a dependent
variable. Thus, one should use a set of conjugate variables containing x;.

Solution

From the first row of Table 9.1 we can formulate the condition (d(u2 — p1)/0x2)7.p.N =
0. However, x; is a dependent variable and @, — u; = 0G,/dx, and our stabil-
ity condition can be expressed as 9°Gy/dx7 = 0 and g, is the notation for that
derivative.

Exercise 9.3

Two diagrams of the Mo—N system are presented in Fig. 9.6. How would you interpret
them?

Hint

In diagram (a) notice that the phase field for the gas is not included but isobars for the N,
gas are given. In order to interpret diagram (b) it is helpful first to construct a 7', log Py,
diagram and then replace the 7 axis with a logxy axis.

Solution

Diagram (a) above is a 7', xy diagram at 1 bar. The lines for various N, pressures should
be understood as isoactivity lines for N expressed as Py, of a gas which is not present.
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Figure 9.7 Solution to Exercise 9.3.
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Figure 9.8 (a) Elementary unit of a phase diagram with two molar axes. (b) Topological
equivalence.

Using these values of Py, it is easy to construct a 7', log Py, diagram (see Fig. 9.7(a)).
For convenience, we shall make T the abscissa. Next we shall introduce xy (With a
logarithmic scale) instead of 7, i.e. a molar quantity instead of a potential. The two-
phase fields will open up but there may be overlapping because the new variable, xy, is
not conjugate to the old one, 7 As an example, the  + L field falls inside the &« + Mo, N
field.

Phase boundaries

Since all the phase fields in a molar diagram have the same dimensionality as the diagram
has axes, it is evident that all other geometrical elements, surfaces, line and points in
a three-dimensional diagram, are not phase fields. They separate phase fields and may
be called phase boundaries. When discussing the topology of a molar phase diagram
in terms of the phase boundaries, it is possible and convenient to choose a smaller
elementary unit than a phase field. A smaller unit is shown in Fig. 9.8(a) and it is
composed of four linear phase boundaries meeting at a point. Topologically it may be
represented by two intersecting lines as shown in Fig. 9.8(b). Any complicated two-
dimensional phase diagram with molar axes is composed of such units.
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xm. A

k
Xm

Figure 9.9 Elementary unit of a phase diagram with three molar axes.

It can be seen by inspection of the three-dimensional diagram in Fig. 9.4, that it
is possible to divide it into four topologically identical, elementary units, each one
composed of a point where eight phase fields meet, although only four of them are shown.
Six linear phase boundaries radiate from these points. They are all shown for the 3 and
0 points. Topologically, this elementary unit can be represented by three intersecting
planes as shown in Fig. 9.9. Evidently, the topology of a complicated three-dimensional
molar diagram can be represented by a system of intersecting surfaces.

When studying two-dimensional molar diagrams, Masing [ 1 1] observed that the num-
ber of phases in the phase fields changes by one unit when one crosses a linear phase
boundary. This is easily verified by inspection of Fig. 9.2(d). Masing’s rule was later
generalized by Palatnik and Landau [12] who gave it the following form

DY +D =r—b, 9.11)

where DT and D~ are the number of phases that appear and disappear, respectively, as
one crosses a phase boundary of dimensionality b, and r is the number of axes in the
molar diagram. This rule may be referred to as the MPL boundary rule, after Masing,
Palatnik and Landau.

It may be added that phase boundaries sometimes have special names. The boundary
between a liquid phase and a liquid + solid phase field is called the liquidus and the
corresponding boundary for the coexisting solid phase is called the solidus. The boundary
between a solid and the two-phase field with another solid is sometimes called the solvus.

Exercise 9.4

In the central region of Fig. 9.4 there is a tetrahedron, representing a four-phase field.
Apply the MPL rule in order to find how many phases there are outside the & — 3 line
and outside the 3 point.

Hint

There are only four phases in the system and D+ must be zero when we move out from
the four-phase field because there is no new phase that can be added.
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Solution

This is a three-dimensional diagram, » = 3, and the dimensionality of the o« — 3 line
isone, b = 1. We get D~ =r — b =3 — 1 = 2. The number of phases has decreased
from 4 to 2. We have moved into the  + 3 two-phase region by crossing the o« — 3 line.
The dimensionality of the (3 point is zero, b = 0,andwe get D~ =r —b =3 —0=3.
The number of phases has decreased from 4 to 1. We have moved into the (3 one-phase
region by crossing the {3 point.

Sections of molar phase diagrams

A diagram with a full set of molar axes may be called a complete molar phase diagram.
For practical reasons one often likes to reduce the number of axes. A popular method is
to section at a constant value of a potential, e.g. P or 7" The resulting diagram looks just
like a complete molar phase diagram for a system with one component less. Another
method is to section at a constant value of a molar variable, a so-called isoplethal section
or an isopleth.

Since all phase fields in a molar phase diagram have the same dimensionality as
the phase diagram has axes, all kinds of phase fields may show up in that kind of
section whereas a phase field with the maximum number of phases (i.e. for an invariant
equilibrium) will disappear in an equipotential section because the section cannot be
expected to go exactly through a given point. The topology of a molar section is simplified
ifit is again accepted that it will not be possible to place a section exactly through a point.
All two-dimensional sections with molar axes will be composed of the elementary unit
shown in Fig. 9.8 and all three-dimensional sections will be composed of the elementary
unit shown in Fig. 9.9, independent of how many potential or molar axes have been
sectioned. Of course, if one adds a component, one must section once more in order
to keep the number of dimensions. As an example, two sections through Fig. 9.4 are
indicated in Fig. 9.10. In each case, the section gives the same arrangement of lines as in
Fig. 9.8(a). Furthermore, the MPL boundary rule applies to the sections, since the value
of r—b does not change by sectioning.

Inspection of the two sections in Fig. 9.10 reveals that one shows an intersection
between phase fields of 2, 3, 3 and 4 phases and the other 1, 2, 2 and 3 phases. We may
thus give the general picture shown in Fig. 9.11. For the sections shown in Fig. 9.10 we
have e = 3 and 4, respectively, where e is the highest number of phases in any of the two
adjoining phase fields. In fact, the maximum value of e in a two-dimensional diagram,
which is also the maximum number of phases in a phase field, depends upon the number
of sectioned molar axes, nys,

€max = 3+ Nms- (912)

Exercise 9.5

On the right-hand side of the tetrahedron in Fig. 9.10 there is a triangular prism. Make
a section through that prism parallel to the side of the tetrahedron. Make a sketch of the
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Figure 9.10 Two sections through the molar phase diagram of Fig. 9.4. The sections are shown
with thin lines.
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Figure 9.11 Elementary unit of a molar phase diagram, sectioned a sufficient number of times to
make it two-dimensional. The diagram may have units with different e values from 3 up to a
maximum, determined by the number of sectionings.

intersection obtained at the front edge of the prism. Indicate the number of phases in the
four adjoining phase fields.

Hint

It may be useful to go back to the Exercise 9.4.

Solution

The solution is given in Fig. 9.12.
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ZBA

Figure 9.12 Solution to Exercise 9.5.
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Figure 9.13 Elementary unit of a phase diagram with two molar axes. Two of the phase
boundaries of the one-phase field are shown.

Schreinemakers’ rule

When studying isobarothermal sections of ternary diagrams Schreinemakers [13] found
that the extrapolations of the boundaries of the one-phase field in the elementary unit
must either both fall inside the three-phase fields or one inside each of the two two-
phase fields. This is illustrated in Fig. 9.13 and is called Schreinemakers’ rule. It can be
generalized in the following way [14].

Let us examine if Schreinemakers’ rule applies to different e values and start by
considering a complete phase diagram constructed with molar axes only. A discussion of
thermodynamic properties should then be based upon the internal energy. For reversible
changes we obtain

dU = TdS — PdV + ) p;dN;. (9.13)
1

In Section 4.6 we saw that it is always possible to introduce a new set of components
instead of the old one by combining the components in a new way as long as we get
a complete set of independent components and do not change the value of the sum,
¥ u;dN;. We can do so by selecting ¢ points in the compositional space and make sure
that they can be used to define a new set of independent components by checking that
three of them never fall on a line, four of them never fall on a plane, etc. We shall use this
method of changing to a new set of components but we shall then consider entropy and
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(a)

Figure 9.14 General proof of Schreinemakers’ rule.

volume as components, whose amounts are expressed by S and ¥, and whose chemical
potentials are 7 and — P, respectively. The introduction of ¢ 4+ 2 new components instead
of the old ones will now be effected by selecting ¢ + 2 points in the state diagram. They
will each be identified by an index d.

We can follow the procedure outlined in Section 4.6 and obtain

c+2 c+2

dU =) " idN; = pgdNg, (9.14)
1 1

where g =), al.d w; and N; =3, al.d N,. For these generalized chemical potentials,
the following Maxwell relation is obtained

() = (o) 019
ONk )y,  ONEN; IN; )\,
When considering the cases in Fig. 9.13 with a tie-triangle in the section, we shall include
the 3 and y corners in the set of new components. In a more general case we shall denote
them by k and j (see Fig. 9.14).

At the point under consideration, one of the two boundaries, the extrapolations of
which we discuss, represents equilibrium with &, and is thus an equipotential line for £
in «. If it extrapolates outside the o« — k — j triangle, the potential of £ must increase on

moving closer to the point j, because this path intersects equipotential lines for £ in o
situated closer to the point £, i.e.

d
2o (9.16)
N,

(see thin line in Fig. 9.14(b)). Then, from the Maxwell relation,
I
Moo (9.17)
Ny

It follows that the second boundary must also extrapolate outside the « — k£ — j triangle.
On the other hand, if the & boundary extrapolates into the triangle, a movement towards
the point j will intersect equipotential lines for k further away from the point & (see thin
line in Fig. 9.14(a)). Both derivatives must then be negative, and both boundaries must
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Figure 9.15 Calculated phase diagram for system with seven components. The complete phase
diagram has two potential axes and six molar axes and has been sectioned at one constant
potential, P, and five constant molar quantities, x;. Schreinemakers’ rule holds at all
intersections. Numbers given are number of phases in each phase field.

extrapolate into the triangle. It has thus been shown that the extrapolations of both phase
boundaries under consideration must fall either outside the highest-order phase field or
inside it, in agreement with Schreinemakers’ rule. It may be emphasized that the rule also
holds for equipotential sections. In order to prove it in such a case, one must use a Maxwell
relation based on a thermodynamic function which allows the corresponding potentials
to be kept constant, for instance G in the case actually considered by Schreinemakers,
constant 7 and P

In the derivation of Schreinemakers’ rule it is essential that the two boundaries of
the highest-order phase field of those considered are straight lines. That this happens
in the ternary case under isobarothermal conditions is self-evident because then the tie-
triangle is situated in the plane of the diagram. In a quaternary system the sides of a
four-phase equilibrium will be planar and the intersections shown in a two-dimensional
section will be straight lines. The components & and j then represent two-phase mixtures
situated in the section. On the other hand, a three-phase equilibrium will not be bounded
by planar sides and its boundaries in the two-dimensional section will not be straight
lines. Then the boundaries of the one-phase field will not be equipotential lines for any
components k and j chosen in the section. It may be concluded that the proof, given above,
is not rigorous except when an equilibrium of the highest order allowed in the section
is involved. However, experience shows that Schreinemakers’ rule is obeyed in most
cases, and it may be used as a convenient guide when other information is lacking. As
an example, the result of a computer-operated calculation of a section through a seven-
component system is presented in Fig. 9.15. The rule is satisfied at all the intersections
in this diagram.

Figure 9.16 shows an apparent violation of Schreinemakers’ rule at the corner of the
bet phase field. However, this is not a true phase diagram because Sy, and z; never appear
in the same set of conjugate variables in Table 9.2.
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Figure 9.16 S,,,, zs, diagram for Pb—Sn at 1 bar. It shows an apparent violation of
Schreinemakers’ rule but is not a true phase diagram.
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Figure 9.17 Use of Schreinemakers’ rule to decide which phase fields have equal number of
phases.

Usually, Schreinemakers’ rule is used to predict the directions of phase boundaries.
On the other hand, if the phase boundaries are given, for instance from calculation or
experiment, then the rule can help to give the number of phases in the various phase
fields. Suppose the arrangement in Fig. 9.17(a) is given, but the numbers of phases in
the four adjoining phase fields are not known. One should then extrapolate all the lines,
as shown in Fig. 9.17(b). Two of the phase fields will contain one extrapolation each,
and these phase fields will be opposite to one another. According to Schreinemakers’
rule, these will be the phase fields with the same number of phases, e — 1 in Fig. 9.17(c).
Of the two remaining phase fields, one will contain two extrapolations and the other
none. These phase fields will contain one phase more and one phase less than the others,
respectively. However, the rule does not allow us to tell which has more and which less.
It would be possible to predict the number of phases in all the phase fields of Fig. 9.15
by this method, if it were known that the phase field in the upper left corner has one
phase.
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Figure 9.18 Sce Exercise 9.6.

Figure 9.19 Solution to Exercise 9.6.

Exercise 9.6

A diagram for a multicomponent system is given in Fig. 9.18 but the numbers of phases
have been left out except for one phase field. Try to decide the numbers of phases in all
the other phase fields.

Hint

Discuss first what kind of phase diagram it is.

Solution

It looks like a molar diagram because at each point of intersection there are four lines.
It may thus be reasonable to use Schreinemakers’ rule. The result is shown in Fig. 9.19.

Topology of sectioned molar diagrams

Before leaving the discussion of sections of molar phase diagrams we should further
consider the topology of diagrams with several phases. Figure 9.8 showed the elementary
unit of a two-dimensional molar diagram. The result of sectioning can vary depending
upon the direction of sectioning and the regularity of the diagram before sectioning.
However, topologically the whole section can be regarded as composed of intersecting
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(b)

Figure 9.20 Two diagrams topologically equivalent to the sectioned molar phase diagram of

Fig. 9.15.
(a) (b) (c)
AN
12321 1 1 1 2 1
2(3]4a3]2 2| 3 2 2|3/8\ 3|2
2|32 ]2

314|543 314]5\ 4|3 3[4 5 |43
213432 2|3[a)3]2 23| 4/3]2
112321 1]2{3 ]2 12321

Figure 9.21 Some possibilities for the topology of a sectioned molar phase diagram with several
phases. Both axes are molar axes.

(a) Cr (o)

Figure 9.22 (a) The Fe—W—Cr phase diagram at 1 bar and 1673 K. « and {3 are both bcc but do
not mix completely. 1 and o are intermetallic phases. (b) Topologically equivalent diagram but
drawn with lines without any sharp points. These lines represent the limit of existence for one
phase each, as given by the letters outside the triangle. The circle is the limit for o.
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Figure 9.23 Sece Exercise 9.7.

lines, and the elementary unit will be the same as in Fig. 9.8(b). By the same reasoning,
a three-dimensional diagram will have elementary units like the one in Fig. 9.9 and will
give units like the one in Fig. 9.8(b) after sectioning. A many-dimensional molar phase
diagram, after being sectioned a sufficient number of times, may look something like the
one illustrated in Fig. 9.20(a). It was constructed to be topologically equivalent to the
phase diagram in Fig. 9.15. In Fig. 9.20(b) it has been further simplified but it still has
the same topology. This is an unusually simple case. The lines may very well intersect
in a more complicated manner, as illustrated in Fig. 9.21.

The observation by Masing can be generalized. For each one of the lines in a two-
dimensional section of a molar phase diagram there is a phase which ceases to exist
on the line. It is illustrated for a complicated case in Fig. 9.22(a), using the topo-
logically equivalent diagram in Fig. 9.22(b). These lines running through a compli-
cated phase diagram have been called ‘zero-phase-fraction’ lines by Gupta, Morral
and Nowotny [15] and they can be used as a valuable tool for identifying the phase
fields and even for constructing a phase diagram from experimental information. The
same principle applies to the surfaces in three-dimensional sections of molar phase
diagrams.

Exercise 9.7

In order to investigate the phase relations in a quinary system Gupta, Morral and Nowotny
established equilibrium in 21 alloys by isothermal treatment at 1400 K and 1 bar. All
alloys had the same molar content of two components. The phases found in the various
alloys could thus be shown in a composition triangle (see Fig. 9.23, where the composi-
tions are represented by the relative fractions of the three remaining components). Draw
a reasonable phase diagram.
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Figure 9.24 Solution to Exercise 9.7.

Hint

The diagram is a molar phase diagram. Start by drawing lines showing the limit of
existence of each phase (zero-phase-fraction lines). Improve the diagram by making the
various phase boundaries reasonably straight. Phase boundaries for invariant equilibria
must be quite straight. Improve the diagram further by applying Schreinemakers’ rule.

Solution

At constant 7" and P the maximum number of phases in a quinary system is five. None
of the alloys falls in such a phase field. All the phase boundaries may thus be curved but
we may find that it is possible to use straight lines which is preferable when we do not
know in which direction a line should be curved. Figure 9.24 shows a possible solution.
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Schreinemakers’ projection of potential phase diagrams

Another method of reducing the number of axes is based on projection. By projecting all
the features onto one side of the phase diagram, one will retain all the features, but the fea-
tures of the highest dimensionality will no longer be visible because the dimensionality of
a geometrical element will decrease by one unit by projection and they may thus overlap
each other and also overlap features of the next-higher dimensionality. As an example,
Fig. 10.1(b) shows a P, T diagram obtained by projection of Fig. 8.11 (shown again as
Fig. 10.1(a)) inthe up direction. Such a P, T'diagram is called Schreinemakers’ projection
[16]. In a system with ¢ components it is obtained by projecting in the directions of ¢ — 1
w; axes. It will show invariant equilibria with ¢ + 2 phases as points, univariant equi-
libria with ¢ + 1 phases as lines and in the angles between them there will be surfaces
representing divariant equilibria with ¢ phases. Using a short-hand notation developed
by Schreinemakers, the coexistence lines for ¢ — 1 phases are here identified also by
giving in parentheses the phases from the invariant equilibrium which do not take part.
For example, the («) curve represents the a-absent equilibrium, i.e. 3 + vy + 8. By com-
parison with Fig. 10.1(a) it can be seen that the angle between () and (f3) is covered
by the v + & surface but also by the o« + 0 surface which extends to the (y) line and by
the 3 4 v surface which extends to the () line. The o one-phase field covers the whole
diagram and the other one-phase fields each cover part of it.

Suppose we have a binary system with five phases, denoted 1,2, 3,4 and 5. An invariant
equilibrium would have four phases. Suppose the system shows two such equilibria and
by giving the absent phase they may be denoted (1) and (5). The complete phase diagram
would have three dimensions (same as for a one-phase field). Projection would give just
one of the diagrams shown in Fig. 10.2 but by presenting two diagrams obtained by
projection in slightly different directions as a stereographic pair one can preserve the
three-dimensional information. It is thus evident that the apparent intersection between
the lines (1, 4) and (5, 3) is not an intersection in three dimensions. Therefore, it does
not represent an invariant equilibrium.

T, P diagrams obtained by projection are particularly useful for multinary systems and
are obtained by projecting in the direction of all the independent chemical potentials. We
shall return to such diagrams in Section 10.5 but first we shall consider simpler cases.

In a projected diagram one sometimes includes a series of parallel sections drawn
with thinner lines. Such lines may be called equipotentials (or isotherms or isobars when
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(a) (b)

*T <P B+y+d (o)
y| 0B O\ oerr+s B

B ug OH'B"'Y (®)
—

Figure 10.1 (a) The binary potential phase diagram of Fig. 8.11 reproduced to illustrate the

projection in the up direction. (b) The diagram obtained by projection. The positions of some of
the two-phase surfaces are shown.

—

Figure 10.2 Stereographic pair of Schreinemakers’ projection of a binary system, showing the
three-dimensional shape. The phases not taking part in an equilibrium are given in parentheses.
It can be seen that lines (1.4) and (5.3) do not intersect.

appropriate). Such a section was presented in Fig. 8.12. Figure 10.3(b) shows a diagram
with several parallel sections. In order to simplify this picture, only the equilibria with
the & phase are shown here. Arrows within the figure show the direction of decreasing
temperature.

Sometimes one uses both projecting and equipotential sectioning in order to reduce
the number of axes. One may be interested in the changes of various phase equilibria
with 7 and the chemical potential of some volatile component, e.g. oxygen, and one
is willing to limit the information by making an equipotential section at P = 1 bar.
Figure 10.4 gives an illustration from a quaternary system. According to Gibbs’ phase
rule an invariant equilibrium is obtained with ¢ + 2 = 6 phases for ¢ = 4, and six uni-
variant equilibria should radiate from it. Let us denote the phases by 1 to 6. A section
at P = P; will cut through the lines (1), (2) and (3). They will thus appear as points in
the right-hand part where one of the projected axes, (o,, is now shown. The surfaces
extending between the lines in the 7, P diagram (see Fig. 10.1(b)) will appear as lines in
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Figure 10.3 (a) Equipotential sections inserted in the potential phase diagram of Fig. 8.11

(b) The projection of the same potential phase diagram with inserted equipotential sections of
the two-phase surfaces involving the & phase

5
36 (4)
(1)

W

Figure 10.4 (a) Schreinemakers’ projection of a quaternary system. (b) Section at P = P;. The
new axis, [o,, is one of those projected in the 7, P diagram

the section. A major difference between the two diagrams is that in (a) all other potentials

»

were projected but in (b) one of them, P, was sectioned

Exercise 10.1

Find the section of the 2 + 4 + 5 4 6 equilibrium in the 7, o, diagram of Fig. 10.4
Then, find its surface in the 7', P diagram

Hint

How would that equilibrium be denoted using the absent phases?

207
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Solution

It would be (1.3). Inthe T, 1o, diagram it is represented by a line between the points (1)
and (3). In the T, P diagram its surface covers the angle between the (1) and (3) lines.

Exercise 10.2

A series of Fe—Cr alloys are heat treated together in a flowing gas of constant C and N
potentials. After heat treatment for a long time at 1273 K, it is sometimes found that
four phases are present but not all in the same specimen. The experiment is repeated
several times with different C and N potentials and in some of those experiments the
four phases are again found. It may be assumed that Cr is not transferred between the
alloys. Is it possible that the four phases are found in more than one experiment, i.e. at
different combinations of C and N potentials?

Hint

We may treat 7 and P as constant in addition to the potentials of C and N. With four
components we thus have the same situation as in a binary system at variable P and 7.
We may use Fig. 10.1(b) and identify ug with pc,, T with uc and — P with uy.

Solution

It is thus useful to look at a uy, uc diagram obtained by projection in the ¢, direction.
Each experiment should be represented by a point in that diagram but individual spec-
imens would fall on different positions along the projected ¢, axis, which may also
be regarded as a projection along the conjugate molar axis, z¢, according to Table 9.2.
Such a diagram is given in Fig. 10.1(b). We can see that all experiments falling between
lines («) and (3) may cut through three two-phase surfaces, together involving all four
phases. With all such combinations of ¢ and uy we will cut through all four one-phase
fields in Fig. 10.1(a). Four phases can thus be found in several of the experiments with
different values of pc and un.

The phase field rule and projected diagrams

In Section 8.5 we derived the phase field rule for equipotential sections. Expressed in
terms of the number of components, c, it was given by Eq. (8.23) and in terms of the
number of axes in the diagram, r, by Eq. (8.24) by the use of » = ¢ + 1 — ng. The rule
will now be extended to include projections as well. The dimensionality of phase fields
with a large number of phases will not change their dimensionality by projecting. For
example, the phase field for an invariant equilibrium will still be a point, Eq. (8.23) would
still hold,

d=c+2—p—ns (10.1)
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On the other hand, the dimensionality of the diagram would decrease by each projection,
yielding the following relation,

r=c+1—ny—np. (10.2)
Inserting this in Eq. (8.23), here reproduced as Eq. (10.1), we obtain instead of Eq. (8.24),
d=v—ng=c+2—p—ng=1+r—p+ng,. (10.3)

The dimensionality of the diagram after a number of projections may have decreased to
the dimensionality of a phase field, i.e. to ¥ = d, and that happens when np,, = p — 1 as
demonstrated by Eq. (10.3). Each further projection will decrease the dimensionalities
of the diagram and the phase field by one unit because a feature in the diagram can never
have a higher dimensionality than the diagram itself. We thus find that

d=r=c+1—ng—nyforn,>p—1 (10.4)

whereas Eq. (10.3) holds for n,, < p — 1.

A practical example is given in Fig. 10.5, concerning the Fe—O-S system. Since there
are four lines radiating from each point we may conclude that the invariant equilibria
concern four phases. The phase field rule in Eq. (10.3) gives, for large p,

O=c+2—p—ng

=34+2—-4—ng
=r+1—p+ny
=2+1—-4+ny

ng =1, nyp=1

It is evident that one has sectioned at a constant value of some potential, probably P at
1 bar. Then one has projected once, in the direction of g or up.. However, it must be
remembered that the complete phase diagram was first obtained from the fundamental
property diagram by projecting in the direction of some p;, the one which was consid-
ered as the dependent variable. Figure 10.5 has thus been obtained from the fundamental
property diagram by projecting twice, and sectioning once, and it does not matter which
projection was made first, i or jir.. It should be emphasized that n, represents the num-
ber of projections of the complete phase diagram. The first projection of the fundamental
property diagram is not included in 7.

It is interesting to note that the two three-phase lines h (FeO + Fe;O4 + L) and
f (Fe + FeO + L) stop inside the diagram. They stop at invariant three-phase points
in the binary Fe—O system which overlaps the diagram. In principle, the whole surface
of the diagram is covered by the binary Fe—O diagram which may be regarded as the
bottom plate of the three-dimensional phase diagram, where s = —o0, assuming that
the fundamental property diagram was first projected in the pp. direction to give a phase
diagram. On the bottom plate, there is no S and the number of components c is thus 2
instead of 3. Three-phase equilibria would thus appear as points and two-phase equi-
libria as lines. That bottom plate is shown in (b) but was not included in (a) because
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Figure 10.5 (a) Projected and sectioned (P = lbar) phase diagram for the Fe—O-S system.

(a) Fe + Fe;04 + FeS; (b) FeO + Fe;04 + FeS; (c) Fe + FeO + FeS; (d) FeO + FeS + L;

(e) Fe + FeS + L; (f) Fe 4+ FeO + L; (g) Fe;04 + FeS + L; (h) FeO + Fe;O4 + L. The invariant
four-phase equilibria are (I) Fe + FeO + Fe;O4 + FeS; (II) Fe + FeO + FeS + L; (III)

FeO + Fe;04 + FeS + L. (b) The Fe—O bottom plate.
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Figure 10.6 Potential phase diagram for (a) Cu—O—S and (b) Mn—O—S at 1 bar and 1000 K.
These phase diagrams are two-dimensional and are not projections.

it would have made the diagram difficult to interpret. Only the binary end-points for
FeO + Fe3;04 + L and Fe 4 FeO + L were marked.

In many cases one should consider the top plate as well as the bottom plate. A
log Pso,, log Po, diagram of the Cu—-Mn—O-S system under P = 1 bar and 7’ = 1000
K would be an example. The top and bottom would represent the Cu—O—S and Mn—O-S
systems, respectively, if the projected axis is taken as (ucy — mn)- These diagrams are
given in Fig. 10.6.

The solubilities of Cu in the Mn phases and of Mn in the Cu phases are all very
low. The equilibria between the Cu—O-S phases will not be affected by the presence



10.2 The phase field rule and projected diagrams 211

5 I 1
MnSO, /
+Cu28/cUzo

0 MnS +Cu,S &804

Mn30,
~ | +Cu,S
o)

@ 5| L
2 |
°
% |
10 MnS MnO +Cu
+Cu |Mn304
+CU2O
Mn30,+Cu —m |
/
-15 T T

T
-25 -20 -15 -10 -5
loghPo,

Figure 10.7 Projected phase diagram for Cu—Mn—O-S at 1 bar and 1000 K. For clarity, all the
lines from the Cu—O-S side are presented with dashed lines here.

of Mn, nor the Mn—O-S phases by Cu. Both diagrams can thus be plotted in the same
RT In Pso,, RT In Py, coordinate frame to form the Cu—Mn—O—S diagram (Fig. 10.7).
The lines in the ternary systems can be copied into the quaternary system and they
become surfaces in the projected direction and still appear as lines in the Cu—Mn—-O-S
diagram. New two-phase surfaces form between the previous one-phase fields and they
are identified in the diagram.

An interesting question is the choice of projected axis in Fig. 10.7. In order to treat Cu
and Mn in a symmetric way, it is convenient to consider (¢, + f4mn) as the projected axis
to give a phase diagram from the fundamental property diagram and then (cy — nvn)
as the axis used for projection of the phase diagram to reduce the number of axes to two.

Exercise 10.3

Only three lines intersect at the invariant equilibrium I in Fig. 10.5. What line is not
shown and why not?

Hint

The fourth line should be the one without FeS.

Solution

The Fe + FeO + Fe;04 line is not shown because one has projected the diagram exactly
in its direction and the line thus appears as a point. The reason is that the projection has
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been made in the g direction and S does not dissolve in any one of these three phases.
Thus, the equilibrium Fe + FeO + Fe;04 is not affected by S and its line goes exactly in
the ps direction. It exists at a certain 7', Po,, only, and it is shown in the binary Fe—O
diagram in Fig. 10.5(b).

Exercise 10.4

At 1000 K one measures the emf of an electrolytic cell where one electrode is a mixture
of MnS, MnO, Cu,S and Cu and the other is a mixture of Cu,O and Cu. The electrolyte
is solid zirconia stabilized with calcia. Use Fig. 10.7 to estimate the resulting emf.

Hint

The electrical current can pass through this electrolyte mainly by the diffusion of
072 ions. The emf will thus be an expression of the difference in oxygen potential
between the two electrodes and it can be estimated from the difference in RT In Pg, for
two points in the diagram representing the electrodes.

Solution

The point for Cu,O + Cu can be taken anywhere on the corresponding line yield-
ing log Po, = —10.2 in Fig. 10.6(a) (also dashed line in Fig. 10.7). The other point
is obtained as the intersection between two lines in the lower left part of Fig. 10.7
and yields log Po, = —21.2. We get Ajuo = 0.5Ap0, = 0.5RT (In P}, — In Pj) =
0.5RT In10-(—10.2 + 21.2) = 12.7 RT. Remembering that the O ion is divalent we
get E - 27 = Ap, where 7 is Faraday’s constant (96 486 coulomb/mole) and thus £ =
0.547 V.

Relation between molar diagrams and Schreinemakers’
projected diagrams

As demonstrated by Figs. 8.7 and 8.11, the elementary units of potential diagrams are very
simple from the topological point of view. In this sense, the projections of such diagrams
are more interesting. This is evident if one considers the dashed extrapolations shown in
the projected diagram in Fig. 10.8(b). Between the lines there are two extrapolations in
one case, one extrapolation in two cases, and no extrapolation in one case. In fact, this
is the only way to draw four lines in different directions if the 180° rule is to be obeyed.
It is evident that, in the projected direction, the four phases are related to each other in a
special way. This phenomenon will now be examined. In order to simplify the discussion
the method of identifying a univariant line by giving within parentheses the absent phase
is used in Fig. 10.8(b).

If potential axes are chosen for plotting the complete, three-dimensional phase diagram
of a binary system, the four phases of an invariant equilibrium will fall on one point. If
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Figure 10.8 (a) Binary phase diagram and (b) projection in the pp direction, taken from
Fig. 10.1. The extrapolations of the three-phase lines are marked with dashed lines.
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Figure 10.9 Introduction of a molar axis into the potential diagram of Fig. 10.8. Only the lower

half of that diagram is used here. The surface marked with horizontal tie-lines represents the
o + 3 + vy equilibrium.

one molar quantity is introduced, say, instead of ¥/, then the four phases will fall on a
line, just as the three phases in the three-phase equilibrium in Fig. 9.2(a) fall on a line
in Fig. 9.2(b). In that case, it is easy to see the order in which the phases are arranged
along the line. The hcp phase must be placed between bee and fec. Otherwise, there
would be some overlapping of the one-phase fields which is not allowed according to
Section 9.1. Using the same reasoning, it is easy to see the order in which the four phases
of Fig. 10.8 will be arranged when a molar quantity is introduced. One simply looks at

the direction of the two-phase surfaces. Each one will turn into a two-phase volume when
zp is introduced instead of the g axis. In Fig. 10.9 these volumes are demonstrated for
the three surfaces between «, (3 and 7. It is evident that v must fall between « and (3
along the zp axis.

When the phase diagram of Fig. 10.8(a) is projected in the pup direction and
Fig. 10.8(b) is formed, much information is lost. However, the information regarding the
order of arrangement along the projected direction, obtained when the molar quantity is
introduced, is not lost. This is because some conclusions can still be drawn regarding the
directions of the two-phase surfaces. They are situated between the three-phase lines.
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! | | | -
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Figure 10.10 One-dimensional molar phase diagram at constant 7" and P, showing the relative
position of four phases along the zp axis, introduced instead of a up axis, through the invariant
equilibrium in Fig. 10.8(a). The composition is here expressed with the zg variable because it is
the conjugate variable to up according to Table 9.2. The relative positions of all the four phases
along a zp axis, going through the invariant phase equilibrium are demonstrated schematically in
Fig. 10.3.

This was demonstrated in Fig. 10.1(a). It is thus possible to get an impression of the
relative positions of the six surfaces and thus of the relative positions of the phases along
the molar axis of the projection.

The simplest method to interpret an experimental diagram like Fig. 10.8(b) is to
draw the four extrapolations and then turn the diagram in the same way as Fig. 10.8(b)
with respect to the dashed extrapolations. The compositions of the phases will then be
arranged in the order given by Fig. 10.10 or in the completely reverse order. A more
logical method will be described in the following section.

Exercise 10.5

In Exercise 10.2 we considered a heat treatment of several Fe—Cr specimens under
carburizing and nitriding conditions at constant 7 and P It had been found that four
phases could be present in some experiments but not in the same specimen. Now try to
find what is the maximum number of phases in any one specimen.

Hint

As already explained, we can use Fig. 10.1(b) because our quaternary system at constant
T and P behaves like a binary system at variable 7'and P. In our case the two axes should
be pc and py and the projection has been made in the direction of pcy, which is the
same as the direction of z¢;.

Solution

In Exercise 10.2 we saw that four phases can be present if uc and un fall between
the lines () and () in Fig. 10.1. The specimens fall on different positions along the
projected axis. Most of them may fall between the surfaces representing two phases and
they will thus have only one phase. What is the chance that some fall on the two-phase
surface? Since the specimens are defined by their contents of Cr we should regard the
projected molar axis rather than the potential axis. The two-phase surface in the potential
diagram has a thickness when the molar axis has been introduced. There is thus definite
chance that a specimen falls within the two-phase region.
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Figure 10.11 Modification of Fig. 10.8 by rotation of the 3 + y surface until it is parallel to the
g axis. In the pup projection the 3 + v + 6(x) and &« + 3 + v + (8) lines will now coincide
and their extrapolations will not be visible.

On the other hand, if predetermined amounts of C and N are added to a set of specimens
in a capsule, then one could not use Fig. 10.1(b) directly. For each specimen one should
rather consider a molar diagram like Fig. 9.4 and it is evident that the four phases could
occur in the same specimen and this could even happen in more than one specimen in
the same experiment.

Coincidence of projected surfaces

The method to determine the relative compositions of phases, now to be described, can
be used in higher-order systems as demonstrated in the next section, but a binary system
will be considered first.

Suppose one could gradually change the properties of the system in such a way that
the 3 + v surface in Fig. 10.8 would rotate around an axis roughly parallel to the 7 axis.
One could thus make the two lines () and () in the projection approach each other
without changing the topology of the projected diagram. At the moment of coincidence,
one has a situation such as that illustrated in Fig. 10.11.

The 3 + v surface is now parallel to the direction of projection, g, and a continued
rotation would put the 3 + v surface on the other side of the () and () lines. Thus,
[3 and v would be transposed in Fig. 10.10. It is possible to conclude that the 3 and y
phases have the same value of zg if the ug projections of the (8) and () lines coincide
when they meet at the four-phase point. Evidently, before the gradual rotation the 3 and
v phases must have been neighbours along the zg line in Fig. 10.10. When the lines
coincide, the phases fall on the same point on the zg axis. This rule of coincidence is
closely related to Konovalov’s rule which will be discussed in Section 10.8. The relative
positions of the phases for the various cases of coincidence are shown in Fig. 10.12.
Other cases of coincidence may occur but not until at least one of these has occurred.
Before any rotation, the phases must have been arranged along the zg axis as shown in
Fig. 10.10 or in the completely reverse order.
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Figure 10.12 Three cases of coincidence of three-phase lines in a projected potential phase
diagram obtained by modifying Fig. 10.8.
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Figure 10.13 (a) Modification of Fig. 10.8 by rotation of the entire diagram until the

B + v + 8(x) is parallel to the up axis. All three surfaces, B + v,y + & and & + f3, are then
parallel to the g axis. In the ug projection (b), B + v + d(x) degenerates to a point and will
thus coincide with all the other lines without them coinciding with one another.

It is interesting to note from Fig. 10.8 that it should be possible to rotate the o« + 3
surface in such a way that the () and () lines approach each other and finally coincide.
However, the 180° rule prevents this from happening before there is another coincidence.

What happens if three of the four phases 3, v and 9, have the same zg value will
now be investigated. The three surfaces representing (3 + v, 3 + 0, Y + & must all be
parallel to the up axis and the 3 + v 4 0(x) line must point in the ug direction. It thus
degenerates to a point. This case is illustrated in Fig. 10.13.

Exercise 10.6

Prove mathematically that the compositions of 3 and y must coincide when the pp axis
in a binary system is parallel to the 3 4 y surface, as in Fig. 10.11.
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Hint
Apply Eq. (8.47) to the binary case.

Solution

For a binary system we get (zh — z}))dug = —(S°, — S )dT +(VF, — ¥))dP. When
the 3 + <y surface is parallel to ug, then we can change up and stay on the surface
without changing 7 or P, i.e. with d7" = 0 and dP = 0. The coefficient of djup must

; P _ v
thus be zero, i.e. z = zj.

Exercise 10.7

Suppose one has measured ¢ as function of 7 at 1 bar for a ternary A—B—C system.
What conclusion could be drawn if the diagram looks like Fig. 10.11(b) with p¢ inserted
instead of P?

Hint

Compared to Fig. 10.11 we have one component more but the dimensionality has been
reduced to the same by keeping P constant. In both cases a4 and up are the potentials
that are not shown in the projection, i.e. those used to reduce the number of axes by
projection from the four-dimensional fundamental property diagram.

Solution

One of 1 and wp is the dependent variable and the final projection has been made in the
direction of the other one. From the coincidence of the (o) and () lines we may conclude
that zg = z}} if pua is the dependent variable and zﬁ =z} if up is the dependent one.
These two results are identical since zg = Ng/Na = 1/zx.

Projection of higher-order invariant equilibria

The topological examination may be extended to higher-order invariant equilibria and
adjoining univariant equilibria, although the visibility is then lost. However, it has been
shown by analytical methods [17—19] that the same principles, which have been derived
here by inspection, apply. Three components will yield a four-dimensional phase diagram
and it must be projected twice in order to yield a two-dimensional picture. It may show an
invariant five-phase equilibrium and five adjoining four-phase lines. If no lines coincide,
they can arrange themselves in three different ways, as illustrated in Fig. 10.14.

For a closer discussion of the compositions of the phases taking part in the five-
phase equilibrium, the two potentials on the axes will be kept constant at the values of
the invariant equilibrium, while the two projected potentials will be replaced by their
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(a) (b) (c)

Figure 10.14 Possible Schreinemakers’ projections for a ternary system obtained by projecting the
Y/, Yk Y™ Y" phase diagram in the Y” and Y" directions. Points represent invariant five-phase
equilibria. The five lines radiating from each point represent four-phase equilibria and are

identified by giving the absent phase in parentheses. Dashed lines are metastable extrapolations.

(a) (b) (c)
A X[,
B
. B
5 5 A 5
y Y y
o Xm

Figure 10.15 Molar phase diagrams at constant ¥/ and Y* showing the relative positions of the
five phases in the invariant equilibria in Fig. 10.14. The change occurring when lines (¢) and (3)
in case (a) are rotated to approach each other can be illustrated by moving point  towards the
straight line between 6 and y. Case (b) is obtained by letting the (&) and ([3) lines pass one
another, thus making point o cross the d — y tie-line. Case (c) is obtained by letting the () and
(d) lines rotate and pass one another, whereupon ¢ will cross the 3 — vy line.

conjugate molar quantities. The five phases will fall on different points on the plane
formed by the two molar quantities, and Fig. 10.15 illustrates the arrangement of the
phases in the three different cases. Three phases may here be regarded as neighbours
if their points can be connected to form a triangle with no other point inside and if the
triangle can be changed into a line without any one of its points first moving inside any
other such triangle. If two lines in the projected potential phase diagram coincide, then
the three phases they have in common will fall on a straight line in the molar diagram.
Four components yield a five-dimensional phase diagram and it must be projected
three times in order to yield a two-dimensional picture. A six-phase equilibrium will
be invariant and represented by a point from which six lines will radiate, representing
univariant equilibria with one phase absent in each. The relative positions of the six lines
will reveal how the six phases are arranged in the three-dimensional compositional space
formed by three molar quantities. However, this is not easy to visualize. The rule relating
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Figure 10.16 See Exercise 10.8.

the coincidence of lines in a projected potential phase diagram to the positions of the com-
mon phases in the space formed by the molar quantities has been called the ‘coincidence
theorem’ [19]. The theorem can be generalized as demonstrated by the following exam-
ple. Suppose that two of the points, & and 0, in the left-hand picture of Fig. 10.15 coincide.
Then 6, xandy fall onaline, and lines (3) and (¢) in Fig. 10.14 should coincide. However,
[3, & and & would also fall on a line, and lines (y) and (¢) in Fig. 10.14 should also coin-
cide. As a consequence all three lines, (3), (v) and (¢), should coincide. It is thus possible
to generalize the coincidence theorem as follows. Consider a two-dimensional projection
of an r-dimensional potential diagram. It may have an invariant equilibrium involving
r + 1 phases. From this point, » 4 1 univariant equilibria, each with » phases, radiate. The
theorem concerns the positions of the phases in the (» — 2)-dimensional space formed
by the molar quantities conjugate to the projected potentials. If 7 of the phases fall in a
(t — 2)-dimensional section through that space, then all the univariant equilibria, which
contain the ¢ phases, coincide in the two-dimensional projection. There would be
r 4+ 1 — ¢ such equilibria.

Exercise 10.8

Figure 10.16 is part of the potential phase diagram for the Fe—Si—O system, showing the
five-phase equilibrium, metallic melt (met), liquid melt (L), wiistite (w), fayalite (fay)
and gas (gas). Use the information in the diagram to decide how the composition of L
falls relative to the other phases.

Hint

By extrapolating the lines we find that our case corresponds to case (b) in Fig. 10.14 with
L identified as «. Our diagram can be regarded as obtained by projecting the fundamental
potential diagram in the directions of P, ug. and us;, leaving 7 and po as axes in our
diagram. The first projection produces a complete potential phase diagram and, since
we are interested in comparing compositions, we shall regard P as subjected to the
first projection. We should thus write the Gibbs—Duhem relation as dP = (S/V)dT +
3 (N;/V)du;. The conjugate variable to the next two potentials to be projected would
thus be Ng./ V and Ns;i/ V. They should appear in our diagram as in Fig. 10.15(b).
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Neo/V

gas

Figure 10.17 Solution to Exercise 10.8.

Solution

Since L is identified as «, it will have to form within the quadrangle formed by the other
four phases. Fayalite is 2FeO - SiO,, wiistite is approximately FeO and the metallic melt
is mainly Fe. The gas has a very large volume and will thus fall close to the origin in the
diagram. Since the extension of the (L) line in our potential phase diagram falls between
(gas) and (fay), corresponding to (y) and (), its composition falls close to the gas + fay
join, corresponding to y + 0 join, as illustrated in Fig. 10.17.

The phase field rule and mixed diagrams

The number of axes in a complete phase diagram, whether a potential one or a molar
one, is ¥ = ¢ + 1. For a closed system one has fixed the composition and has actually
sectioned at ¢ — 1 molar axes. The number of remaining axesisr =c+1—(c — 1) = 2.
For a closed system the equilibrium state is thus uniquely defined by choosing values
for T'and P or their conjugate variables independent of how many phases it has. This is
called Duhem’s theorem.

In the most common type of phase diagram there is a temperature axis and a com-
position axis. It is thus an example of phase diagrams with a mixture of potential and
molar axes. Such diagrams are more complicated and due to the large variety no general
description will be given. However, it is worth discussing how the phase field rule can
be generalized to such diagrams but first it should be emphasized that the discussion
only concerns true phase diagrams, i.e. diagrams obtained from a single set of conjugate
pairs of variables. The nine possibilities were discussed in Section 3.5 and they resulted
in 27 sets when molar variables were introduced in Section 9.2. As a consequence, all
the variables in a mixed diagram, including those that have been projected or sectioned,
must come from one of the 27 sets in Tables 9.1, 9.2 and 9.3.

Figures 8.1 and 8.2 give the impression that the degrees of freedom increase by
one unit for each molar axis that is introduced instead of its conjugate potential axis.
However, it should be remembered that Gibbs’ phase rule was derived by considering
potentials and not molar quantities. The freedom to vary the amounts of the phases by
moving along a tie-line without varying the compositions of the individual phases is
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not regarded as a degree of freedom in Gibbs’ phase rule because the potentials do not
vary. Instead of redefining Gibbs’ phase rule we have thus decided to also to work with
a parallel concept, the dimensionality of a phase field. That was the main reason why the
phase field rule was introduced in Section 8.5. The effect of molar axes on Eq. (8.23)
yields

d=v—ng+ny=c+2—p—ng+npy, (10.5)

where 7, is the total number of sectioned quantities, potentials as well as molar quantities,
and ny, is the total number of molar quantities used, i.e. sectioned molar quantities, 7s,
as well as molar axes in the final diagram, n,,. Of course, 71y, = 115 + 72m,- On the other
hand, if we project a phase diagram in the direction of an axis, then it does not matter
what kind of variable was chosen on that axis, a potential or its conjugate molar quantity.
The projected phase diagram will look the same and all the projections will thus have
the same effect on the phase field rule. The number of projected molar quantities should
not be included in ny,.

As before, the number of axes in the phase diagram will be given by Eq. (10.2),
r =c+1—ns—ny, and Eq. (10.5) can thus be written as

d=c+2—p—ns+npn=14+r—p+ny+ngforp>1+n,+ny, (10.6)

This expression is valid only as long as p > 1 + n, + n, because it yields d = r for
p =1+ npy + ny. This is a critical value because when the number of projections or
molar axes is increased further Eq. (10.6) would yield d > r which is impossible. For
each one of further projections and molar axes both the phase field and the diagram will
lose one dimension and retain the relation d = r. For less phases we obtain instead of
Eq. (10.4),

d=r=c+1—ny—ns forp <1+ ny+nn. (10.7)

A few more considerations of the properties of mixed diagrams should be added. The
lowest possible dimensionality of a phase field will occur for the maximum number of
phases. In a potential phase diagram that dimensionality will be zero but it is evident
from the preceding discussion that it will increase by one unit for each molar axis and
the lowest possible dimensionality will thus be equal to the number of molar axes in the
final diagram, n.,,, and this will occur at the maximum number of phases. By inserting
Nms + Hma = Ny We obtain

Nma = Amin = € + 2 — Pmax — Rs + N =+ Mg
=r+1- Pmax + Npr + Pma + Nms (108)
Pmax =C+2—=ng+nmg =7 + 1 4+ npr + . (10.9)

The MPL boundary rule can be applied to mixed diagrams but only with caution. It
is important first to distinguish between phase fields and phase boundaries. The rule
concerns two adjoining phase fields separated by a phase boundary. As an example, we
may examine the case illustrated in Fig. 9.2(c). It is reproduced in Fig. 10.18 without
tie-lines and with the three-phase field bec + fee + hep marked with a thick line. All the
other lines are phase boundaries. The MPL rule cannot be applied to the contact between
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Figure 10.18 Mixed phase diagram from Fig. 9.2(c), reproduced without tie-lines. The thick line
represents the three-phase field. All other lines are phase boundaries.

fcc and bee 4 hep phase fields because they are not connected by a phase boundary but
separated by the three-phase field bee + fec + hep. For the contact between fec and bee +
fcc + hep the rule gives

b=r—DV—D =2-2-0=0,

in agreement with the fact that these two phase fields meet at a point, only. For the contact
between bee + hep and bee + fec the rule gives

b=r—-Dt—-D =2-1-1=0.

This is also correct because these two phase fields do not make contact along the thick
horizontal line, where they are separated by the bec + fcc + hep phase field. They
only make contact at the upper end-point of the thick line. Cases like this can be easily
analyzed by imagining that the one-dimensional phase field is a very thin triangle [12].
That method is also helpful if one wants to draw zero-phase-fraction lines. Each one-
dimensional phase field will have one such line on each side.

Exercise 10.9

The T, %C phase diagram (Fig. 10.19) is for a quaternary A—B—C-D system at 20% B
and 20% D and at 1 bar. Test it with the phase field rule.

Solution

There are four components, ¢ = 4. The complete phase diagram has been sectioned
three times, ng = 3, but two of the sections were for the molar quantities %B and %D,
nms = 2. In the final diagram there is one molar axis, ny,, = 1. There is no projection,
nye = 0. In the diagram we can see a horizontal line. Let us test if it is a phase field or
just a boundary between two-dimensional phase fields. A line has the dimensionality
landitthus gives |l =d =c+2—p—ng+nma+ims=4+2—-p—-3+14+2=
6 — p; p = 5. If the horizontal line is a phase field, it should have five phases. From
the neighbouring phase fields we find o« 4+ 3 + v + 6 + L. We may conclude that this
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Figure 10.19 See Exercise 10.9.
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Figure 10.20 7, S, diagram for Fe. This is not a true phase diagram.

line is a phase field. The diagram is two-dimensional, » = 2. Let us now check for
what number of phases a field should be two-dimensional, p < 1 + np; + nma + s =
140+ 1+ 2 = 4. This is also confirmed by the diagram.

Selection of axes in mixed diagrams

For mixed diagrams it is particularly important to pay attention to how the axes are
selected. As already emphasized, they must all come from a set of conjugate pairs
of variables and one from each conjugate pair. The various possibilities are listed in
Tables 9.1, 9.2 and 9.3. A number of examples will now be given in order to demonstrate
what could otherwise happen.

Figure 10.20 shows part of the 7', S, diagram for Fe. Two two-phase fields overlap
which is made possible by the fact that 7"and S, do not represent different conjugate
pairs in any of the sets in the tables. This is not a true phase diagram.
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Figure 10.21 S, up, diagram for Pb—Sn. This is not a true phase diagram.
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Figure 10.22 x(, ac diagram for Fe—Cr—C. This is not a true phase diagram.

Figure 10.21 shows the Sy, upp diagram for the Pb—Sn system at 1 bar. Two two-phase
fields overlap because S, and wp, do not come from the same set of conjugate pairs.
This is not a true phase diagram. One should have combined Sy, with pp, — sy or Sy
with ppp.

Figure 10.22 shows the x¢y, ac diagram for Fe—Cr—C at 1 bar and 1200 K. The inter-
secting phase boundaries in the upper left corner, forming two ‘swallow-tails’, indicate
that this is not a true phase diagram. The activity ac can be regarded as an expression
for pc/ T and should have been combined with uc; or z¢, but not xc;.

Figure 10.23 shows the T, x¢, diagram for Fe—Cr—C at 1 bar and ac = 0.3, relative to
graphite. The two intersecting phase boundaries on the right-hand side indicate that this is
not a true phase diagram. The two axes, 7 and x¢;, do belong to the same set of conjugate
variables but one must also consider the sectioned axes. In this case one has sectioned
at constant P and ac, i.e. uc/T. However, uc/ T and x¢; do not belong to the same set.

Figure 10.24(a) shows the Hy,, ac diagram for Fe—C at 1 bar. This is not a true phase
diagram although H,; and /7, here represented by ac, come from the same set of
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Figure 10.23 T, xc diagram for Fe—Cr—C at 1 bar and ac = 0.3. This is not a true phase diagram.
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Figure 10.24 H,,, ac diagram for Fe—C at 1 bar. This is not a true phase diagram as revealed by
the overlapping two-phase fields, shown when the tie-lines are included in (b).

conjugate variables. That is revealed by the tie-lines which are included in Fig. 10.24(b).
The reason is that the numerical values used for H,,; refer to reference states of Fe and
C at 298 K but ac refers to graphite at the actual temperatures. It is evident that one
should also be careful when representing the oxygen potential with Po,. It is only under
isothermal conditions that it should be combined with an axis for a molar quantity given
relative to references at 298 K. It should be noted that the diagrams in Figs 8.13 and
8.14 used pc — °GE or (uc — °GE)/ T as an axis and °G§ was defined at the actual
temperature which varied. That did not cause any problem because there was no molar
axis in those diagrams.

Exercise 10.10

Figure 10.23 showed an incorrect selection of axes. If one really wanted to section at a
constant value of ac, what composition axis should one have used?
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Hint
Consult the Tables 9.1, 9.2 and 9.3.

Solution

ac represents puc/ T which may be combined with —1/7, — P, and z¢, (according to
fifth row in Table 9.2) or uc; (according to fifth row in Table 9.3). Of course, —1/ T could
be replaced by 7.

Konovalov’s rule

The rule that two one-phase fields are separated from each other by a positive distance,
when the proper molar quantity is introduced instead of a potential, was described in
Section 9.1. That rule is not as trivial as it may appear. It was discovered experimentally
by Konovalov [20] when measuring the vapour pressure of liquid solutions of water and
various organic substances under isothermal conditions. He established that, compared
with the solution, the vapour contains a higher relative content of that component which,
when added to the solution, increases the total vapour pressure. In addition, he found
two cases with a pressure maximum and realized that the liquid and vapour must have
the same composition at such a point. A case of this type is shown in Fig. 10.25, and it
is evident that it is simply due to the fact that the molar quantity which is used, here zg,
replaces a potential whose axis happens to be parallel to a /ine tangential to the linear two-
phase field in the potential diagram. Except for that, the system has no unique properties
at this point. The point is sometimes called a singular point and the equilibrium under
this special condition is called singular equilibrium.

Figure 10.26(a) shows a three-dimensional diagram for the same kind of system but
including both temperature and pressure axes. It was presented in Fig. 8.23 and it was
then concluded that an extremum in P at constant 7 must lead to an extremum in 7 at
constant P. The corresponding diagram, where zg has been introduced instead of ug, is
shown in Fig. 10.26(b) and it confirms that the two phases have the same composition at
the point of extremum considered. In fact, there is a whole series of such points, marked
as a dotted line. This is the locus of points of tangency for tangents parallel to the pup
or zg axis. That line represents a singular equilibrium and could be included in the 7', P
diagram, obtained by projecting in the up (i.e. zg) direction, Schreinemakers’ projection.
The line representing singular equilibrium is called a singular curve. Singular equilibria
will be further discussed in Sections 12.6 and 13.7 to 13.9.

A major difference between univariant lines and singular curves should be noted. A
univariant line shows exactly where a particular univariant equilibrium occurs. A singular
curve shows the maximum extension of a divariant equilibrium which is otherwise not
shown in the diagram. It would thus be wise to indicate on what side of a singular curve
the particular equilibrium exists. This is done in Fig. 10.27, which is a projection of
Fig. 10.26.
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Figure 10.25 An isothermal section of a binary diagram with a singular point for two phases
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Figure 10.26 (a) A two-phase equilibrium in a binary system illustrated with the complete

three-dimensional potential phase diagram. Points of tangency for lines parallel to the up axis
are marked with a dotted line. (b) After up has been replaced by its conjugate molar quantity,

zp, the phases still coincide along the dotted line where the two phases have the same

composition, expressed through zg.

Points of extremum in P and 7 were discussed in Section 8.9 and Konovalov’s rule was
actually derived there in an analytical way, using the ordinary molar quantities, Sy, Vi
and x;. In Chapter 8 and the present one we have mainly used molar quantities defined by
dividing the integral quantities with the content of a certain component, N for instance.

We denote these quantities with Sy,1, Vi1 and z;. However, if all the molar quantities we
are interested in are molar contents, then the results look the same in both notations. As
an example, the insertion of x; = xz; in the result for p = ¢ in Section 8.9 yields

el |, B €
xc —‘xl .x2 . . xc
€ o, B 3
zo| - xPxy L

€

ZC

(10.10)

(10.11)
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Figure 10.27 Singular curve showing the maximum extension of the o + 3 equilibrium in
Fig. 10.25. Projected in the zg direction. The & + {3 surface is folded and to the left of the curve

one would intersect that surface twice by moving in the projected direction, i.e., perpendicular

to the picture.
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Figure 10.28 Sce Exercise 10.11.
We shall continue to use z; but it should be remembered that the results hold for x; as

well.

The importance of Konovalov’s rule stems from the fact that composition is often
used as an experimental variable. A system with a composition at a point of maximum
or minimum undergoes an azeotropic or congruent transformation on passing through

it and such a point is often given a special name, azeotropic (actually meaning ‘boiling

unchanged’) or congruent.

Exercise 10.11
The phase diagram (Fig. 10.28) is an isobarothermal section at 1273 K and 1 bar of the
Fe—Cr—N phase diagram under conditions where N, gas does not form. An isoactivity
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Figure 10.29 Solution to Exercise 10.11.

line for N has been drawn in the y phase field. Show a reasonable continuation of it after
first sketching the corresponding ¢, an phase diagram.

Hint

Notice that there is a tie-line for which the « and 'y phases have the same Cr content. It
should be a point of extremum for the N potential (or N activity).

Solution

The solution is given in Fig. 10.29.

General rule for singular equilibria

It is evident that Konovalov’s rule does not only apply to composition. It may thus be
generalized. Suppose that a linear two-phase field in a Y*, Y/ diagram, determined at
constant values of all the other potentials except ¥, which is chosen as the dependent
potential, shows a ¥/ maximum or minimum. At the point of extremum the two phases
must have the same value of ernfl' Furthermore, if Y/ is kept constant and another
potential is allowed to vary, it will also have an extremum at the same value of XI’;_I.
Let us now consider a two-phase equilibrium in an isobaric potential diagram for a
ternary system, which is three-dimensional. Thus, p = ¢ — 1. Suppose there is a point
of tangency for a plane parallel to the ug, puc plane (i.e. an isothermal plane) as shown
in Fig. 10.30(a) which is a reproduction of Fig. 8.24. As demonstrated in Fig. 10.30(b),
the two phases thus have the same composition and the point of extremum is a congruent
transformation point. This was already proved in Section 8.9 using an analytical method.
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Figure 10.30 (a) Isobaric potential phase diagram of a ternary system with a doubly singular
point on a divariant phase field. Thin lines represent points of tangency for lines parallel to the
e or e axis. Their intersection is a point of tangency on a ug, (e plane. It gives an extremum
of T. (b) By replacing up and wuc with their conjugate molar quantities, zg and zc, it is shown
that the two phases in the point of 7" extremum must have the same zg and the same z value.
The point of extremum thus defines the composition of an alloy which can transform
congruently between the two phases.

The point of extremum in Fig. 10.30 may be characterized as a doubly singular point.
It would also appear in a diagram with a P axis under a constant value of 7 equal to the
extreme value. In order to show in one diagram that this point is an extremum for P as
well as 7, one would need a fourth dimension. It is evident that the doubly singular point
in Fig. 10.30 would fall at a different 7 value if the constant P value was different and in
a P, T projection all such points would form a line, a doubly singular curve.

From Section 8.9 it is evident that Konovalov’s rule is just a special case of a more
general rule. In fact, for the ternary case, p = ¢ = 3, it was formulated by von Alkemade
[21]. His rule was originally formulated for a liquid which solidifies to two solid phases
and P is regarded as constant. It may be stated as follows, ‘The direction of falling
temperature of the liquid in equilibrium with two solid phases is always away from the
tie-line between the solid phases. If the liquid falls on the tie-line, then the three-phase
equilibrium is at a temperature maximum.’ Figure 10.31 illustrates von Alkemade’s rule.
It is evident that Alkemade neglected the possibility of having a temperature minimum.

The reasoning applied to Konovalov’s rule can also be applied to von Alkemade’s rule.
If T is kept constant at the extreme value and P is varied with the three phases present,
then one will find that P also has an extremum. At a different constant value of P, the
T extremum would occur at a different value. The locus of these three-phase equilibria
would also give a line in Schreinemakers’ projection, a singular curve.

From the mathematical study of conditions of extrema given in Section 8.9 it is evident
that Konovalov’s rule can be applied to two-phase equilibria and von Alkemade’s rule to
three-phase equilibria in systems with ¢ > p, although they were originally formulated
for ¢ = p. Konovalov’s rule: T at constant P and P at constant 7 have extreme values for a
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Figure 10.31 Ternary phase diagram at constant P and with two molar axes showing a
three-phase equilibrium with an extremum of 7' (here represented by Y”), illustrating von
Alkemade’s rule. The triangles are parallel to the X% ,, X’ | plane.

two-phase equilibrium if the two phases have the same composition, i.e. fall on the same
point; von Alkemade’s rule: 7 at constant P and P at constant 7 have extreme values for
a three-phase equilibrium if the compositions of the three phases fall on a straight line.
We can combine these cases into a general rule for singular equilibria: 7 at constant
P and P at constant 7 have extreme values for an equilibrium between p phases if their
compositions fall on a point for p = 2 (Konovalov’s rule), on a line for p = 3 (von
Alkemade’s rule), on a plane for p = 4, etc. In all these cases a curve representing the
locus of these equilibria can be plotted in the 7', P diagram obtained by Schreinemakers’
projection. For p = ¢ such aline is called a singular line, for p = ¢ — 1 a doubly singular
line, etc. The connection between such lines will be demonstrated in Fig. 12.15.

Finally, it may be instructive to apply the phase field rule to the diagram in Fig. 10.25(b).
For the two-phase field liquid 4 vapour we get

d=c=4+2—p—ng+nn=24+2-2—-1+1=2,

because we have sectioned once, ng = 1, by keeping temperature, which is a potential,
constant. There is one molar variable, used as axis in the P, zg diagram, n,, = 1. The
result agrees with the diagram because it shows a two-dimensional phase field for the
two phases. However, if we section once more, at a constant value of zg, then ny = 2
and we get d =2 +2 —2 — 24 1 = 1. The phase diagram is now just a vertical line
and in general it will show that the two-phase field extends over a range of P values in
agreement with the calculated 4 = 1. However, the special section, going through the
point of extremum (the singular point), will show the two phases coexisting at a point,
and one should thus have expected to obtain d = 0. It is evident that one should exercise
special care when applying the phase field rule to systems with singular points. This
problem will be discussed further in Chapter 13.

Exercise 10.12

Try to construct a diagram similar to Fig. 10.31 for a case where o falls between L and
[3 at the maximum.
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Figure 10.32 Solution to Exercise 10.12.

Solution

The solution is given in Fig. 10.32.
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Use of distribution coefficient

In this chapter we shall examine in more detail the direction of phase boundaries in molar
and mixed phase diagrams. As an introduction we shall first discuss some approximate
calculations based upon the use of the distribution coefficient of a component between
two phases but later we shall use a more general method.

In multinary systems one is often interested in the distribution of a particular com-
ponent between two phases. One may for instance define a distribution coefficient (also
called partition coefficient) which can be used to represent experimental data and to
carry out calculations of phase boundaries and changes in chemical potentials.

Let us consider the equilibrium between two solution phases, o« and {3, which exist
already without an element B. On adding B one finds that it partitions between the two
phases in a characteristic manner, which can be derived from the equilibrium condition
Gp = GS. By applying a general model for a solution phase we obtain

°GE + RT Inx§ + "G =°Gh + RT Inxf + *G5, (11.1)

in which FG% and G E represent the deviation from ideal solution behaviour. We may
define a distribution coefficient K’ /P as

Ki'P = xy/P/xb/* = exp [%(OGE —°GE+EGp - EG%‘)] . (12
In many cases the distribution coefficient is relatively independent of composition. This
occurs when the composition dependence of the partial Gibbs energy of each phase is
mainly given by the RT Inx term. In such cases the distribution coefficient may be a useful
tool. As an example we may consider the case where both phases are dilute solutions in
a major component A. The excess Gibbs energy terms may then be approximated by a
regular solution parameter L and we find, for low B contents,

K5'® = exp(AGg/RT) where AGy = °Glh —°G& + LP — L%, (11.3)

It should be emphasized that A G, being a Gibbs energy, may be represented as A Hg —
T ASg and we thus obtain

= K, exp(A Hp , .
KY® = Ky exp(AHg/RT) (11.4)
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in which K, and A Hp are often approximated as constant. When there are several minor
components, we can define a distribution coefficient for each one

x5 [xf = k5P (11.5)

For the major component we obtain, from G§ = Gﬁ,
°G% + RT Inx$ + PGS =°Gh + RTInx? + G5, (11.6)

but it is not useful to define a distribution coefficient for this component. Instead we can
apply another approximation if the total content of alloying elements is small,

Inxy = In(1 — Xx;) = —Xx;. (11.7)
For dilute solutions we may neglect the excess Gibbs energy for this component, obtaining

D P k= (°GR —°GY) /RT. (11.8)

For a binary system we thus have two equations derived from the equilibrium conditions
for the two components. For any temperature and pressure we can calculate two unknown
quantities, i.e. the compositions of the two phases. The temperature dependence of the
various parameters will give the directions of the two phase boundaries in a 7, x diagram.
In an isobarothermal section of a ternary system there will be three equations and each
of the two phase boundaries will be represented by a line. With the approximations used
here we have been able to simplify all the equilibrium equations to linear equations
and the phase boundaries will thus be approximately straight lines as far as the dilute
solution approximation is valid. It is thus possible to construct the A-rich corner of a
ternary diagram from the binary diagrams by simply using a ruler. Two examples are
given in Fig. 11.1 and it should be noticed that the construction of the second one is based
upon an extrapolation of the phase boundaries in one of the binary systems to negative
compositions. This is non-physical but in accordance with the form of the mathematical
equations.

Exercise 11.1

Fe has two allotropic modifications, y(fcc) and a(bec). At 1423 K v is more stable by
71 J/mol but « can be stabilized by alloying with 5 atom % Si. Estimate how much Si
is required if the alloy also contains 0.5 atom % Ni, which has a distribution coefficient
between y and « of 1.3.

Hint

First evaluate the distribution coefficient for Si from the information.
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(a) (b)

TV

Figure 11.1 Isobarothermal section of ternary phase diagram showing equilibrium between two
phases, both with the same major component.

Solution

Tx] — Ex¥ = (°G}, — °Gy)/RT = —71/8.3145 - 1423 = —0.006; For the binary
Fe-Si system: —0.006 = xJ; — x& = x&(KY/* — 1) = 0.05(KY/* = 1); KI/*=1-
0.12 = 0.88.

For Fe-Si-Ni alloy: —0.006 = x&(KY/* — 1) + x&(KY/* — 1) = x& - (0.88 — 1) +
0.005 - (1.3 — 1) = —0.12x& + 0.0015;  x& = 0.0075/0.12 = 0.0625.

Calculation of allotropic phase boundaries

On an allotropic phase boundary the two phases have the same composition (see
Section 7.5). When comparing two phases we get the following expression by definition
if we apply the regular solution model to both phases (FG,,, = xsxgL, see Section 7.1)
because the ideal entropy term will be the same for two solution phases of the same
compositions and will thus drop out.

Gt — G% = xA(°Gh —°G%) + xp(°Gh — °GE) + xaxp(LP — L*%). (11.9)
For low B contents it may be convenient to rearrange the equation as

GE — G% =°G% —°G% 4+ xp(°Gl — °G% —°Gh +°G% + LP — L%) — x3(LP — L)
(11.10)

At sufficiently low B contents we can neglect the last square term. Close to the temperature
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Figure 11.2 The effects of two types of alloying elements on the allotropic phase boundary.
The equilibrium phase boundaries (solid lines) fall one on each side of the allotropic phase

boundary (dashed lines). The diagrams are calculated with A"Gg%ﬁA = RT In2 and
A°GEPA = —RT 2.

of the allotropic phase transformation for pure A we can neglect the term "Gg —°GY in
the bracket, which is there close to zero, and we thus get

GP — G* =°Gh —°G% 4+ xp - A°GRTPA, (11.11)
where we have introduced the following notation
A°GYPA =oGB —oGa 4 1P — L%, (11.12)

We have already seen that the distribution coefficient of B between o« and 3 can be
approximated by an expression for low B contents

Ki/® = exp (4°G3 ™ RT) = exp[(°Gh ~*Gi + LP — L) [RT]. (11.13)

We thus find the following relation between the parameters used in the calculation of
allotropic boundaries as well as ordinary phase boundaries

A°GEPA = RTInK /P (11.14)

Within a narrow range of temperature and composition, it is reasonable to assume that
A"Gg_)B A is constant and we can then describe the effect of the alloying element as
a parallel displacement of the curve for OG/E — °G% by the amount x4 - AOGg_)ﬁA.
We shall thus get two types of alloying effect, which are demonstrated by B and C in
Fig. 11.2. There it is assumed that OGE: — °GY, varies linearly with temperature.
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Figure 11.3 The effects of two types of alloying elements on the allotropic phase boundary (thick
lines) when the low-temperature phase comes back at high temperatures. The phase boundaries
are here given with thin lines.

We can obtain an equation for the allotropic phase boundary by inserting GEl -Gy =
0in Eq. (11.11).

xillot — (0GR —°GY) /NGy PN = —(°Gh —°GY) /RTInKYP. (11.15)
Close to the transition point 7, for pure A we obtain
allot __ o orgB _ op«a 0 ~a—PA
xp = —(T - T,)(°Hy — °HY)/T,A° Gy~ "". (11.16)

This type of construction is especially interesting for iron because its high-temperature
phase 0 is identical to its low-temperature phase x. As a consequence, the allotropic
phase boundary must be strongly curved as demonstrated in Fig. 11.3. It should be
noticed that one can extrapolate all phase boundaries mathematically, even to negative
alloy contents if one avoids the use of mathematical expressions containing Inxg. The
two types of alloying effects on iron, the stabilization of austenite (y) by element B and
ferrite (o) by element C, thus look like each other’s mirror images. It should finally be
emphasized that the approximate equations derived in this section are valid only up to a
few atomic per cent of the alloying element.

Exercise 11.2

Suppose pure A has an oc/3 transition at 1000 K. An alloying element B, which itself
has the « structure at all temperatures, has been found first to expand the range of the
[3 phase to lower temperatures but at higher B contents the o« phase will win. Find
the congruent point for the &/ equilibrium from the following kind of expression for
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both phases: G, = x3Ga + xgGp + RT(xalnx + xglnxg) + Lxaxg, where °G{ —
°GR = R(T' — 1000); °G% —°GB = —RT; L%=200Rand L? = —1000R.

Hint

Atapoint of extremum, where the ordinary phase boundaries are horizontal, the allotropic
phase boundary coincides with them and is also horizontal. It is much easier to calculate
this point from the allotropic phase boundary than from the ordinary ones. It is given by
G% - GP =0.

Solution

G% — GP =xA(°GS —°GP) 4 xp(°GE —°GE) + (L* — LP)xaxp; xaR(T — 1000) +
xp(—=RT) + (200 + 1000)Rxpxp = 0;  RT(xs — xp) — 1000Rxs + 1200Rxpxp =
0; T =(1000xa — 1200xxp)/(xa — xp) = 1000(1 — 2.2xp + 1.2x2)/(1 — 2xp);
dT/dxg = 1000[(1 — 2xp)(—2.2 + 2.4xp) — (1 — 2.2xp 4 1.2x2)(=2)]/(1 — 2xp)* =
0; xp=0.092; T =990K.

Variation of a chemical potential in a two-phase field

We shall now consider the effect of a ternary alloying addition on a two-phase equilibrium
which exists already in a binary system. The effect of the minor binary component on the
chemical potential can be estimated rather accurately from the distribution coefficient
of the alloying element between the two phases without using any information on the
direction of the phase boundaries in the ternary system. In Section 8.8 we considered the
effect of any small change in composition of phases in a ternary system by combining
two Gibbs—Duhem relations at constant 7" and P. We can easily introduce a distribution
coefficient in Eq. (8.46).

B B B/
XEX5 — XpX 1—-K
duc = —BABTA gy = x5xb. ——— - dug. (11.17)
XAXE — XX XAXE — Xp X

By dividing through with (x§ + xg) - (x,{i + Xg), which is equal to 1, we can change
from the x composition to u (see Section 4.3). The distribution coefficient for B and A
between the two phases can be defined with both types of variable

kP = xgxg‘/xﬁxg = ugui/uiug. (11.18)

At low contents of B in both phases we can approximate x4 and uﬁ with unity and we
can apply Henry’s law to B in the & phase in the following form if the C content in o is
also low,

pg = G =°G}+ RT In f§ + RT Inuj (11.19)
dup = (RT [ujy) - duj. (11.20)
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Figure 11.4 The effect of the slope of tie-lines on the activity of a component in a two-phase field.

The equation is thus simplified to

B/
dﬂzjey*.il_l(moC

) (11.21)
dug ug - ug

By approximating the right-hand side with its value close to the binary A—C side of the
system, we can easily integrate and obtain

. o 1 — Kﬁ/a
Mgmary _ Mcmafy — RT . 5 B'?X Mg’ (1 122)
MC — HC

where 1} is the B content of o in the ternary alloy. By introducing the activity for C we
instead obtain

ternary B/
a 1 — Kga
In G = 5 - U (11.23)
dc Ug —uc

This is a useful equation for rough calculations. It demonstrates that an alloying element
which concentrates to the phase which is richest in C, i.e. which has K S /f‘ > 1if B is
the C-rich phase, will decrease the C activity for the two-phase equilibrium o« + (3. An
alloying element that concentrates to the C-poor phase will increase the C activity. From
the derivation it is evident that this effect is additive for several alloying elements if
evaluated for uc or Inac.

The value of Kgg“ is directly related to the slope of the tie-lines in the uc, um
phase diagram. We can thus illustrate the two cases with the phase diagrams in
Fig. 11.4 where the u parameters are used. The alloying element will have no effect on
the C activity of the two-phase equilibrium if the tie-lines are horizontal, i.e. if they are
directed towards the C corner which is situated infinitely far away in a diagram with the u
variable.

The equation shows that pc does not change in a two-phase field where K = 1, i.e.
where the two phases have the same content of B relative to A. This is thus a point
of extremum and the present result is in complete agreement with Konovalov’s rule.
Compare with Exercise 10.11 where N plays the role of C and Cr the role of B.
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The chemical potential of a two-phase equilibrium can also be strongly affected by
a difference in pressure, caused by the surface energy in a curved phase interface. The
complete form of the Gibbs—Duhem equation is the following:

xadua + xpdug + xeduc = VdP — SndT. (11.24)

Now we shall let the pressure vary in the 3 phase but keep the temperature constant.
Equation (11.17) will thus have one more term, which can be written as

ayBqph adph B
AT op AT m (11.25)
XAXE — Xp X ugue —uul 1 —xg
For low B contents we can thus write
duc =k -duf +1-dP°P, (11.26)

where k = RT(1 — KEI%)/(ul —u®)and I = VE/(1 — xB)wl — u).

Exercise 11.3

Low-carbon steels are sometimes carburized in order to increase the surface hardness.
This is done at a temperature where y(fcc) is the stable phase. A hard and brittle carbide
called cementite, Fe;C, may form if one uses a high carbon activity in the gas. In the
binary system it has a carbon activity of 1.04 when in equilibrium with y at 1173 K.
What would be the highest carbon activity to be used if one wants to avoid cementite for
a steel with 1.5 atom % Cr and 3 atom % Ni. They can both replace Fe in cementite and
the distribution coefficient K,f,f?:nme/ Yis 6 for Crand 0.1 for Ni.

Hint

The effects of two alloying elements on ztc or Inac are additive. The alloy contents given
are for the initial low-carbon steel and we should evaluate the u variable because it does
not change when C is added due to its definition. We obtain .. = 0.015 and u7;; = 0.03.
For cementite uc = 1/3 and for 7y in equilibrium with cementite at 1173 K we have 1.23
mass % C which gives uc = 0.059.

Solution

In(@® /ag™™) = [(1 — 6)-0.015 + (1 — 0.1)-0.03]/[(1/3) — 0.059] = —0.17;
aé"oy = agmary -exp(—0.17) = 1.04 - 0.84 = 0.88. This is the highest value one should
use.

Direction of phase boundaries

So far, we have discussed the direction of phase boundaries in some simple cases. For
the general case we need a more powerful method and we should then turn to the Gibbs—
Duhem relation. In fact, we have already calculated the directions of phase fields in
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potential phase diagrams by the application of the Gibbs—Duhem relation. However, in
order to calculate the directions of the phase boundaries in molar phase diagrams we
must introduce the molar quantities instead of the potentials as variables in the Gibbs—
Duhem relation. No general treatment can be given here in view of the large variety that
can occur in mixed phase diagrams. Only the special case will be treated where 7 and P
are retained but all the chemical potentials are replaced by molar contents.

The fact that the molar quantities of two phases in equilibrium are generally different,
although the potentials are equal, makes it necessary to choose one of the phases, for
instance «, and express the potentials through its molar quantities. If 7and P are retained,
then it is convenient to express the changes of the chemical potentials y; through the
composition dependence of the partial Gibbs energies in the « phase, G}*. In order to
make the enthalpy appear in the final expression instead of the entropy we shall use
the potentials occurring in the special form of the Gibbs—Duhem relation containing
enthalpy. It is obtained from the fifth line in Table 3.1.

HEA(1/T)+ (VE/T)dP =Y xPd(u/T) = 0. (11.27)
i=1
We shall now introduce the properties of the chosen phase o« by using u; = G}* and
with 1/7, Pand x for j > 1 as the independent variables, treating x{* as the dependent
composition variable. We can then eliminate d(u,/7) using

d(wi/ T) = L d(l/T)—i-a—G’%de/T—i—iangxj‘*/T. (11.28)
a(1/T) dP = ox;
We can insert
d(GX/T)/3(1/T) = HY (11.29)
IGr[oP = V. (11.30)

Applying Eq. (4.7) to the Gibbs energy we obtain by selecting component 1 as the
dependent one,

C
GY =Gy +0Gy [oxf =) x Gy [oxf. (11.31)
1=2

Using the notation of second derivatives of Gy, when component 1 is the dependent one,
which was introduced in Section 6.6, we obtain,

Gy [oxS =g — xg%. 11.32
i Jj glj Zgjl
1=2

It should be noted that g7'; does not exist since component 1 is the dependent one. When

inserting these expressions in Eq. (11.27) we shall also replace Hf by Exiﬁ Hi[3 and VP
by Exi(5 Viﬁ.

S xPrfdaymy+ Y xfvPap/T

— 3 af [Hi"‘d(l/T) +VP/T+) <g;; - Zx,“g;‘]) dx%/ T:| = 0. (11.33)
=2

=2
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However,
c ¢ <
inﬁ (g;; - le“g;cl> Zx g}z -1 le g/l = Z ’ _xi‘x)g;xi’
izl =2 i=2

(11.34)

since g;; for i =1 does not exist and the terms in the summation over index / are
independent of index i. We obtain, because d(1/7T) = —dT/T?

5 -l + S0 — ey - S0 -1 o
o (11.35)

This is the desired relation. Contrary to the Gibbs—Duhem relation this equation always
concerns two phases, and all the terms become zero when applied to the phase which was
chosen for expressing the chemical potentials. When applied to more than two phases it
yields a system of equations and some variables can then be eliminated with the method
used for calculating the direction of phase ﬁelds from the Gibbs—Duhem relation. The
elements of the determinants will then be E(x — x[)g;; instead of x . However, we
shall apply the equation to equilibria concerning two coexisting phases and the equation
can then be applied directly.
For a binary system under isobaric conditions we get for the phase boundaries

(%) _ 'xi|3 (Hla - Hlﬁ) + XZB (HZO( - HZB) — AI—IlEin(X (1136)

or coex (xzﬁ - xﬁx)gisz (xf - xéx)géxZT

(ﬁ) — xi“(HIB - Hlo() + X?(Hzﬁ - HZO() — AI—Ir‘Atzl(m{5 (11 37)
oT ) (x¢ —x)gb T (x§ —x5) e T

The numerator is equal to the heat of solution of the other phase (« or (3) in the phase
being considered ({3 or «). The phase boundary will be vertical if the heat of solution is
zero. Figure 11.3(c) shows a case where both boundaries turn vertical at almost the same
temperature and then lean the other way. Both phases were rich in one component, 1, and
the heat of solution mainly depended on the terms with (4* — H lﬁ), a quantity that went
through zero in that temperature range.

Either of these two equations can be used to evaluate the slope of a phase boundary
but also to calculate the width of a two-phase field if the slope is known.

AH Bina A Hocin[}

B o m m
N - . (11.38)
: ? gész (dxéx/dT)COCX gng(dxf /dT)COGX

Exercise 11.4

Derive an equation for the solubility of pure component 2 in a phase « which is almost
pure component 1.
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Hint

Section 7.1 gives g% = d*?G%/d(x$)? = RT/x$ if x§ is small. Also use xz[5 —xy =1

Solution

dx$/dT = AHy/(RT?/x3);d(Inx$)/d(1/T) = AHn/R; x3 =K -exp(AHy/RT).
Usually, AH,, is replaced by —L, where L is the heat given off by the dissolution
of (3.

Exercise 11.5

Apply Eq. (11.35) to a binary case at constant P. Then consider the «c/x + 3 phase
boundary in the 7, x phase diagram in a system where « is almost pure A and [3 is a bcc
phase close to the 50-50 composition. Suppose {3 has a sharp transformation at 7;, from
a perfectly ordered to a perfectly disordered state (which would never happen). Calculate
the angle of the oc/(x + 3) phase boundary at 7, (or, more precisely, the difference in
direction, dx/d7, of this phase boundary just below and just above T7j).

Hint

At constant P: [xP (HX — HP) 4+ xP(HE — H?)AT = (x§ — x$)g% Tdx$. Notice that
x{“” Hlf’ + xzf5 Hzf5 = HP and that the entropy of disordering is —R(x; Inx; + x; Inx;) =
R In2 for x; = x, = 0.5. For the dilute solution of component 2 in « we may use g5, =
RT [x{x5.

Solution

xP =xP =05 gives dx$/dT = 0.5(H* — HP + H¥ — HP)/(0.5 — 0)g% T. By tak-
ing the difference between just below and just above the transition, we eliminate H
and H® and thus get A(dx$/dT) = (HE — HJ)/0.5¢% T,. But HE — HF = AHY"™
and at the transition point the two states have the same Gibbs energy and thus
AHS — T,ASM =0;  A(dx$/dT) = T,AS99/0.5¢% T, = RIn2/(0.5RT,/x$) =
2x%1n2/T,.

Exercise 11.6

When adding a third component C to a certain binary system A—B under constant P,
one found that the depression of the freezing point of a stoichiometric phase A,B; only
depended upon the molar content x¢ and was independent of whether one kept x4, xp or
xa/xp constant. Examine if this result can be expected in general. Suppose the pressure
is constant.
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Hint

Apply the general equation for the direction of phase boundaries, Eq. (11.35), to the
ternary case, making C the dependent component 1. Remember that g, is the deriva-
tive of Gy, with respect to x,, keeping x3 constant, i.e. with dx; = —dx;. Writing G,
as Xx;(°G; + RT Inx;) + EGm(x2, x3) we get: @0 =°G, —°Gy + RT(Inx; — Inx;) +
dEGm/dx2 and gop = RT(1/x3 + 1/x1) + 3*5Gyy/3x3, etc. Look for the predominating
term when x; is small. Furthermore, the liquid composition is close to that of A,By.

Solution

For xc = xi — 0 we get [(x) — x})gh, + (xf — xD)ghldel + [(f — xD)gh, + (xf —
xhghldet = —[xL(HP — HE) 4+ xL(HP — H]AT/T under constant P. The pre-
dominating term in gy, is R7/x; and all the other second derivatives of g have the same
predominating term. By neglecting other terms we get [(xé3 — Xk + xf —x¥) - RT/x}]
del o+ [(F = xb +x8 — 5y RN} = (68 — b+ 28 = xb) - RT/xL(deE +
dx}) = —[sz(HzB — Hy) + x3L(H3[3 — H})]dT/T. The depression of the freezing point
thus depends on dx} + dx} which is equal to —dx( whether one keeps xa, xp or xa /X
constant.

Congruent melting points

It is immediately clear from our equations for dx/d7 that for a congruent transformation
point in a binary system, e.g. for xf = x}, the phase boundaries must be horizontal and
such a point must be a point of temperature extremum. This is also in agreement with
Konovalov’s rule (see also [22]). However, at the side of the system where x} approaches
zero, g, approaches infinity as R 7'/x} and the whole denominator in Eq. (11.37), with L
instead of B, approaches R7?(x%/x} — 1) which is not zero. Thus, the phase boundaries
do not turn horizontal on the sides of the system. The two cases are demonstrated in
Fig. 11.5.

The slopes of the phase boundaries at the left-hand side of the binary system in
Fig. 11.5 can be evaluated from the limiting value of g3, whichis RT /x5 when x3* — 0
(see Section 7.1).

(3)(?) _ 1 OHI(X_OHF _ K;‘/B oHloc_oHlﬁ (11 39)
0T ) coex xzf’ — x§ (RT/xf)T 1 — Kz"‘/f3 RT? '
oxb\ 1 cHP—eHr 1 CHE = CH]
o7 T a_ B Bypr /B RT2 (11.40)
oex X2 T X (RT/)C2 )T 1 -K,

The width of the two-phase field at some temperature 7" below the transformation point
T, for pure component 1 is obtained from the difference,
°HY —°Hf _d(xy —x5) _ xf —xf

- =~ . 11.41
RT2 aT T,—T (1141
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A

Figure 11.5 Binary T, x phase diagram at 1 bar. The point of congruent melting of 3 must have
horizontal phase boundaries. At the melting points of the two components the phase boundaries
are not horizontal.

Xy —

If one of the phases is liquid, one can often neglect the solubility in the solid phase
and one thus obtains a simple expression for the freezing-point depression,

T,— T =xy RT*/(°Hy — °HY). (11.42)

It should be emphasized that it would be difficult to see the horizontal part of a phase
boundary at a congruent transformation point if the properties of the phase change so
rapidly that gy, is very large. An obvious case is the 3/( + L) boundary when {3 is
almost stoichiometric, i.e. the composition of (3 does not vary noticeably. The phase
boundary of the surrounding phase, in our case L/(L + 3) can also be very sharp if the
properties of the liquid change rapidly with composition at the particular composition
of the congruent transformation. For such cases it may be interesting to evaluate the
curvatures of the two phase boundaries. At the congruent point we have x;* = xf’ and
the heat of solution of each phase in the other one is simply the heat of transformation
of the other phase into the phase under consideration.

of _ af/ar (HR - HY (S - x5)shT g%

dx’ dxg‘/dT a (H[ff - Hﬁ)(xf‘ - xzﬁ)gng gfz

&7 _ _ehT dx_f—l _ &l (&m (11.44)
d(xg)?  Hg — Hy \ & Hx — HE \ g5,

2
ero T a1\ _ T é_l _ PT (e
d(x9)?  Hy — Hg \dx} HE — He \ g% d(x2)* \gh

(11.45)

(11.43)

For an almost stoichiometric phase, gfz would be very large and for the liquid at a
congruent melting point we then get

d&’T T

a(s)  HE— g

(11.46)

It should be noted that HF — HY is negative and so is d*7'/d(x})%.
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Figure 11.6 See Exercise 11.7.

It should be emphasized that another possibility of finding a horizontal phase boundary
is by having g%, approach zero, i.e. a limit of stability.

Exercise 11.7

The T, x phase diagram of Al-Zn shows an unusual feature (Fig. 11.6). The solidus line
turns almost horizontal in the centre of the system but the liquidus does not. It thus seems
to be due to some property of the solid phase rather than the interaction between the two
phases. Examine the possible explanation by inspecting the equation for the slope of a
phase boundary. If a conclusion is reached, try to test it by examining other features of
the diagram.

Hint

If the explanation is to be found in the Gy, function of the solid, then the same factor
may have consequences for other phase equilibria with the solid.

Solution

The equation suggests that g is very small at the centre of the system. We may thus be
close to a limit of stability of the & phase where g5, goes through zero to turn negative.
Indeed, at lower temperatures one can see the top of a miscibility gap in the & phase where
a homogeneous fcc alloy starts to decompose in regions of two different compositions.

Exercise 11.8

In elementary textbooks one can sometimes see a series of sketched phase diagrams as
shown in Fig. 11.7. Criticize it.
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Figure 11.7 Sece Exercise 11.8.

Figure 11.8 Solution to Exercise 11.8.

Hint

The author may not have remembered that there are two different effects which can make
a phase boundary horizontal.

Solution

In diagram (a) the two phase boundaries at the minimum are horizontal because it is
a congruent transformation point. It is an effect of the combined properties of the two
phases. The top of the miscibility gap, &; 4+ &2, is horizontal because g3, = 0 and that
is a property of the « phase alone. It would be highly unlikely that these two phenomena
should occur at the same composition, as indicated in diagram (b). Figure 11.8 gives an
idea of how the two phase boundaries may meet. Compare with the phase diagram to
Exercise 11.7.

Exercise 11.9

Calculate what value of g, would give the melting point of a stoichiometric phase such
a strong curvature that it looks sharp. Compare with the value for an ideal solution.

Hint

Suppose Richard’s rule can be applied, A H,, = H* — H- = — RT. The maximum may
look sharp if the radius of curvature —1/(d?T/dx?) is less than 0.005/T.
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Figure 11.9 The 7, x phase diagram for Ag—Pb. The solidus of the Ag phase is retrograde.

Solution

Equation (11.46) yields —d’T/dx? = —g»T/(—RT) > T/0.005; g > 200RT. If
the solution is ideal we have g, = RT/x|x;, which is generally very much lower.

Vertical phase boundaries

It is also interesting to discuss the possibility of finding a vertical phase boundary. This
requires that the numerator is zero, i.e. that the heat of reaction, when f3 is dissolved in
«, is zero. An example is given in Fig. 11.9 showing a so-called retrograde solidus line.

As another example we may take the well-known case of the so-called y loop in
binary iron diagrams with «-stabilizing alloying elements (see Fig. 11.3(c)). Here both
phases are rich in iron and we can approximate the numerator in Eq. (11.36) for « with
HE — Hy., and for y with Hy, — Hg since the alloy contents are low. The characteristic
v loop thus depends upon the fact that the enthalpy difference between o—Fe and y—Fe
changes sign and goes through zero in this range of temperature.

Exercise 11.10

From the detail of the Fe—O phase diagram (Fig. 11.10), what can be said about the heat
of solution of y—Fe in the wiistite phase?

Hint

Examine the boundary representing the solubility of y—Fe in wiistite (W).

Solution

Since the y phase is almost pure Fe, the numerator in the expression for dxg) /dT,
obtained from Eq. (11.37), is x;/e(HF\Z - H;/e) +x2/)(H(\)V — Hg) = HQZ — Hgé, i.e. the
heat of solution of y—Fe in wiistite. This quantity is thus close to zero over a wide range
of temperature because the boundary is almost vertical.
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Figure 11.10 See Exercise 11.10.

Slope of phase boundaries in isothermal sections

For a ternary system under isobarothermal conditions we get

[ = 25)g8s + (x5 — x5)ghJabeg’ + [(x3 — x)s + (x5’ — x3) g5 Jdas’ = 0.
(11.47)
We can here introduce the slope of the o« + f3 tie-line,

n= (xé3 — xé")/(xz[5 - xf‘) (11.48)

dxo( @ x
5 8n g (11.49)
dx; 823 T ngs;3
As an application we shall examine when the /(o + 3) phase boundary is parallel to
the x, axis, i.e. when dx3'/dx5* = 0. We find the condition

5 /g5 = —n. (11.50)

When the « phase is a dilute solution of components 2 and 3 in 1, the leading term
in g55/RT is 1/x5 and it may be more convenient to recast the result into one of the
following forms by inserting g5 /RT — 1/x5 + 1/x5" instead of g55/RT .

1
&= — 11.51
2 g% /RT — 1/x¥ +ng /RT ( )

. x}
X =— . (11.52)

(7' = x$)(8/RT = 1/x5) + (x5 = x$)g%/RT — 1
The latter equation can be rearranged into a form which is even more convenient because
the ideal entropy of mixing gives a contribution of R7 /x{* to both g5, and g%,

X3

(8 —x$) (1/x{ + /x5 — g% /RT) + () —x)(1/x% — g5/ RT) +xF [xi
(11.53)
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We have thus made the first term in the denominator so small that it can often be neglected.
One could then write

X

(x3 _x3)(1/x1 g?z/RT) —i—xlﬁ/xf‘

It is common to introduce Wagner’s interaction parameter 3 which will be discussed in
Section 20.7. It yields

12

x$ (11.54)

B
— = (11.55)

Exercise 11.11

According to Schreinemakers’ rule the phase boundary o¢/( 4 y) in an isobarothermal
section of a ternary phase diagram must be directed towards the 3 point if oc/(ox + 3) is
directed towards the y point. Prove this using Eq. (11.49).

Hint

Denote the slope of the « + 7 tie-line by n*Y and the slope of the « + 3 tie-line by n*/P

Solution

n®Y = (dos/dx)P = —(g55 +n*Pg$h)/ (g% +n*/Pgss). Thus, —g¢ —n*Pgfh =
n*/Yg% + n*Yn*/P g% By rearranging the terms we get —g$ — n*/Yg% = n*/Pg% +
n®Bn*/¥ g% and we can form n®/P = —(g$ + n*/vg%) /(g% + n™/Yg%) which is equal
to (dx3/dx2)*/Y since g% = g%.

Exercise 11.12

Figure 11.11 shows the solubilities of the three oxides in liquid Fe at 1823 K according to
an experimental study. All curves show minima. Use this information in order to estimate
the Cr content of the two spinels.

Hint

Startby evaluating €2, from the minimum for the phase with a known composition, Cr3 Os.
Knowing e2, one can then calculate the Cr content for another oxide from its minimum.
Both spinels can be represented by the general formula (Fe,Cr);O4. Considering the
limited accuracy of the data it is justified to approximate mass fraction Cr in liquid Fe
as molar content Cr.

Solution

Let 3 = oxide; &« = liquid; 2 =Cr; 3 = 0. Then xf = O’“de =4/7 for all these
oxides and x§ = x5 = 0.
From the known composition of Cr;O4: 0.1 = x§, = x5 = —x; /e;"()c3 —x5) =

—(3/7)/e4/7); e =-3/4-0.1=-75.
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Figure 11.11 See Exercise 11.12.

Using this value we find: For an undistorted spinel: 0.02 = —xg’r‘ide /(=7.5)(4/7);
xg’r‘idc = 0.6/7. The formula is Fe, 4 Cro¢ Og.

For distorted spinel: 0.06 = —xg’r“de /(=7.5)4/7); x"’“de = 1.8/7. The formulais Fe; ,
Cry g Og.

The effect of a pressure difference between two phases

In Section 11.4 we derived an expression for the change in composition of an « phase in
equilibrium with a {3 phase caused by changes in 7'and P. It was then assumed that 7"and
P had always the same values in both phases. The derivation of Eq. (11.35) can be carried
out even if P changes in different ways in the two phases. This will occur when they are
separated by a curved interface. In Section 16.2 we will find the equilibrium condition
PP = P* 4 2°/r. Now we shall simply assume that « and 3 can be in equilibrium even
at a difference in pressure. The result will then be

ZZ xt)ghdx® = Zx (VFdPP — v2dP¥) Zx — HY)dT/T.

i=2 j=
(11.56)

Let us now apply this equation to a binary case in which dP* = 0 and d7 = 0. Using
VB = x{5 VlB + xz[5 Vf we get

yBapP
(x5 —x5)gs,
An expression for the simultaneous change in the 3 phase can be obtained by first
exchanging o and 3 in Eq. (11.56) and then applying it to the case dP* = 0andd7 = 0,

dxs = (11.57)

(x8 = x¥)ghdxd = (x¥VP + x3VF)dPP (11.58)

B (VP + xgvf)dpP
’ (xf - xg‘)gg’z

(11.59)

It is interesting to see that oc and 3 change their composition in the same direction.
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It should be noted that these equations were actually derived graphically by means of
molar Gibbs energy diagrams in Figs 7.15 and 7.16.

Exercise 11.13

For the o/f equilibrium in a ternary system at constant 7 and P* one obtains
(VB/RT)dPP = h*dx} + k*dx$. Show that A% = xb /x% — xP /x* and k% = xP /xg —
x{5 /x¥ if & and {3 are ideal solutions.

Hint

The right-hand side of Eq. (11.56) again yields ¥?dPP. For an ideal solution g5,/ RT =
1/x1+1/x2;5 g3 =gn=RT/x1; g3/RT =1/x;+1/x3.

Solution

The dx$ coefficient for (V. /RT)dPP, obtained from the left-hand side of Eq. (11.56)
for j =1, is (x2[3 —x5)g%/RT + (xé3 —x$)g%/RT = (xzf3 —x)(xf + x5 /x x4+
(=xf = 2 4 x4 )/ = Gl 4 fxg = gt — xdag — xfxg — xPxd 4
XSx A4 T8 xfxd = (xPr® — xPxg)/xoxg = xP/xs — xP/x® = h*. The dx{ coef-
ficient is obtained in the same way.
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12.1

Sharp and gradual phase
transformations

Experimental conditions

There will be a driving force for a phase transformation if the conditions of a system are
changed in such a way that the system moves from one phase field into another in the
phase diagram. In this chapter we shall examine the character of such phase transforma-
tions and we shall find that they depend upon the experimental method of controlling
and changing the conditions. It is important first to realize that the possibility of effi-
ciently controlling the various state variables is very different. For gaseous and liquid
phases it is comparatively easy to control the pressure. It can be kept constant or it can
be changed gradually according to an experimental programme. At any moment it is
very uniform in the system apart from effects due to the surface energy of curved phase
interfaces. For solid systems it is more difficult to control the pressure, in particular
during a phase transformation resulting in a volume change. This may give rise to local
deformation and internal stresses. On the other hand, solid phases are usually so dense
and rigid that the thermodynamic effect of pressure differences and stresses can often be
ignored. From a practical point of view we may often regard the pressure as an experi-
mental variable which can be reasonably well maintained at a low enough level to have
a negligible effect.

The temperature can often be kept relatively constant but in a large piece of material
it may be difficult to change the temperature according to an experimental programme.
This is due to the limited rate of heat conduction. As a consequence, in a well-controlled
experiment the required change of temperature must be slow enough. Another way to
change the temperature is to control the flow of heat to the system. If the pressure is kept
constant we have

dH =dU + d(PV)=dU + PdV + VdP =dQ + VdP =dQ.  (12.1)

and this is therefore a way of controlling the enthalpy rather than the temperature. Again,
the rate of heat conduction may be a limiting factor and in order for an experiment to be
well controlled it can only involve slow internal changes or small specimens. Further-
more, the heat content will change locally if there is a spontaneous phase transformation.
Only slow phase transformations or small specimens can thus be studied if one wants to
have at least approximately isothermal conditions.

If the chemical potential of an element is changed gradually by changing its value
in the surroundings, considerable potential differences within the system will normally
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prevail for a long time unless the change is extremely slow. This is because equilibration
of the chemical potential requires a change of the local composition, which can only be
accomplished by diffusion or convection. Diffusion is usually many orders of magnitude
slower than heat conduction.

There are cases where a particular component is much more mobile than the other
components. This may occur for elements with small atoms when dissolved interstitially
in solid phases. An example of some practical importance is carbon in steel. An even
better example is hydrogen in most metals and alloys. In such cases one may have some
success in controlling the chemical potential of that particular component.

A phase transformation may itself give rise to severe difficulties in the control of
the experimental conditions. Under the given values of the potential variables the new
phase will most probably have different values for all the molar quantities and there
will be a tendency for their conjugate potential variables to change locally during a
phase transformation, independent of what potential is being changed experimentally. In
practice, the difficulties in carrying out a well-controlled experiment may be the same
whatever potential one has decided to change. As an example, if the changed conditions
give rise to a phase transformation, then the transformation may in turn give rise to
a redistribution of the components by diffusion, heat flow by conduction and material
transport by plastic and elastic deformation.

Due to the complications caused by a phase transformation in a solid material it may
be somewhat easier to carry out a well-controlled experiment under constant values of
some extensive variables rather than potentials. However, that will affect the character
of the phase transformation. This will be evident from the discussion in this chapter.

Exercise 12.1

A solid substance is kept at its melting point 77 under a certain high pressure P;. Discuss
what happens if the pressure is suddenly released. Suppose that the liquid form of the
substance is less dense.

Hint

The solid phase with its higher density was favoured by the high pressure. 77 being the
melting point at P; is thus above the melting point at P = 0.

Solution

Melting will most probably start somewhere. The melt will instantaneously be at the new
melting point which is lower than 7;. Heat will thus start to flow into the melted region
from the remaining solid which may thus cool down to the new melting point. Thus,
a mixture of the two phases may be established and its temperature will be at the new
melting point. However, this may cause heat flow into the system from the surroundings
if they are kept at 7. The whole system will thus melt eventually. On the other hand, if
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Figure 12.1 Tllustration of the conditions for a sharp phase transformation in a simple case where
all external variables to be kept constant are potentials.

the new melting point is very low compared to 77, then the whole system may melt even
before any heat has flown into the system. See Exercise 14.2.

Characterization of phase transformations

In this section we shall neglect the difficulties mentioned in Section 12.1 regarding the
control of the variables. We shall limit the discussion to cases where we have selected
one variable to be varied in a controlled fashion, keeping all the others constant. Thus,
we shall not consider any projections here. The present question is not how we look at
the system but how we control it. From the phase diagram point of view this means that
c of the ¢ + 1 independent variables in a set of external state variables will be sectioned,
ng = ¢, and the selected variable can be represented on the resulting one-dimensional
phase diagram, r = 1.

When the selected variable is changed gradually, the system may move from one phase
field into another and a phase transformation may thus occur. It can be represented by a
reaction formula obtained by combining the names of the phase fields. For instance, when
moving from an « phase field into a 'y phase field we expect the transformation o« — . In
doing so we must pass an & + y phase field and one may characterize the transformation
as a sharp one if the o + y phase field has no extension in the one-dimensional phase
diagram we are using. The phase field rule, Eq. (10.6), must yield d = 0. Otherwise, it
may be characterized as a gradual transformation and has d > 1. These cases may be
illustrated by starting with two-dimensional phase diagrams. The main part of Fig. 12.1
is a two-dimensional diagram obtained by starting with only potential variables, ¢ — 1
of which have then been sectioned, ny = ¢ — 1, (here an isobaric section of a binary
system). A further sectioning (making ns = ¢) could be made at T = T, giving the one-
dimensional phase diagram in the lower part of the figure. The phase field rule yields for
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Figure 12.2 Tllustration of the conditions for a gradual phase transformation in the simple case
where one molar variable is used.

x+vid=c+2—p—ng+ny=c+2—2—c+ 0= 0and confirms that the phase
transformation & — y should be a sharp one if . is increased gradually. A similar result
would be obtained if one could keep wp constant at 1}, and gradually increase T (see the
right-hand part of Fig. 12.1).

Figure 12.2 shows the diagram for the same system when the chemical potential has
been replaced by the conjugate variable, zg. By sectioning at 7 = 7} one obtains the
one-dimensional diagram in the lower part. Compared to the lower part of Fig. 12.1,
the two-phase fields have opened up and the o« — 7y transformation will be gradual
if zg is increased gradually. It is evident that a transformation can never be sharp if
it occurs under a gradual increase of a molar quantity because all phase fields have
some extension in the direction of a molar quantity. The result would be the same if one
instead worked with the ordinary molar content, xg, which is the conjugate variable to
MUB — KA.

A section at zg =z}, is shown to the right of Fig. 12.2. It also shows a grad-
ual transformation when 7 is changed gradually but that result cannot be predicted
without inspecting the phase diagram or applying the phase field rule. In this case
c=2,p=2,ns=2(Pandzg)andn,, = 1(zg), yleldingd =c+2 — p —ns+ny =
c+2—-2—c+1=1.

Let us now return to the case of a sharp transformation in Fig. 12.1. If the gradual
change of ug at 7' = T is continued, then the sharp transformation o — vy will be
followed by another sharp transformationy — [3 at a higher value of . It is then inter-
esting to discuss what would happen if the section were made exactly at the temperature
of the three-phase equilibrium. The lower part of the figure would show a point for the
& + (3 + vy equilibrium instead of two points for « + y and y + 3. However, with p = 3
the phase field rule would yieldd =c+2 —p —ns+npy=c+2-3-04+0=—1.
Since d = 0 represents a point, one may conclude that d = —1 represents a phase field
which should not show up at all in the one-dimensional diagram and the reason is that it
is practically impossible to place the section exactly through the three-phase equilibrium.
Let us for a while neglect that practical difficulty and suppose that the section actually
goes right through the three-phase equilibrium. What phase transformation would one
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then observe on gradually increasing ug? One could expect to observe the sharp trans-
formation o« — vy, followed by Y — [3 but also a direct transformation o« — (3. We may
regard this as a case of overlapping sharp transformations.

Letusnextreplace wp by zg and still assume that 7' can be chosen and controlled in such
a way that the section goes right through the three-phase equilibrium, in this case right
through the three-phase horizontal in Fig. 12.2. The lower part of that figure would then
show an o« + 3 + 7y region instead of the three regions, &« + v, y and 'y + 3. For three
phases the phase field rule would now give d =c+2—p—ns+ny=c+2 -3 —
¢ + 1 = Oyielding the incorrect prediction of a three-phase point instead of an extended
region.

In order to understand this puzzling result one should remember that a transformation
can never be sharp when taking place under a gradual change of a molar quantity. If the
phase field rule gives d = 0 for amolar axis, the interpretation must be that it is practically
impossible to carry out such an experiment. It thus corresponds to the improbable case
of d = —1 for a potential axis. We may conclude that, if a molar quantity is varied,
d = 0 predicts overlapping gradual transformations (in the present case & — 3 or
o — 7y followed by y — [3). However, it is as unlikely as the case of overlapping sharp
transformations for d = —1.

It is evident that the only way to get a sharp transformation is to vary a potential.
Usually this is 7' and one keeps P and the composition constant, ng = cand ny, = ¢ — 1.
Using Eq. (10.6) we find that the sharp transformation will then occur when 0 =d =
c+2—p—ns+npn=c+2—p—c+(c—-1)=c+1—p,iec.p=c+1.

If p = ¢ + 2 under the same conditions, one would obtain d = —1, i.e. overlapping
sharp transformations. The present discussion thus results in two schemes for the char-
acter of phase transformations. When a potential is varied gradually we obtain

for d = +1: gradual transformation
for d = 0: sharp transformation
for d = —1: overlapping sharp transformations.

When a molar quantity is varied gradually, we obtain

for d = +1: gradual transformation
for d = 0: overlapping gradual transformations.

In a sharp transformation (i.e., d = 0 and a potential is varied) the fractions of the phases
(i.e. the extent of the transformation) are not fixed by the value of the changing variable.
This is why the corresponding state of phase equilibrium is sometimes called ‘indifferent’
[23]. On the other hand, the compositions of all the phases are fixed. This is why any
sharp transformation is sometimes called ‘azeotropic’ although that term is usually
reserved for the case with an extremum discussed in connection with Konovalov’s rule in
Section 10.8. Cases with an extremum have been neglected in the present discussion but
will be further discussed in Sections 13.7 to 13.9.

In addition, overlapping sharp transformations (i.e., d = —1 and a potential is varied)
are sometimes called ‘indifferent’, because the extent of transformation is not fixed. In
that case, however, there is more than one transformation and their relative progress is
also not fixed.
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Before leaving this topic, it should be emphasized that the present discussion is based
on considerations of equilibrium. In practice, there are many kinetic obstacles and it
is not impossible to observe overlapping transformations (often regarded as competing
reactions) if the experimental conditions come close to the improbable ones, for which
the phase field rule predicts overlapping transformations.

Exercise 12.2

Consider an A—B system with two solid phases, A-rich and B-rich, and liquid and gas.
What type of transformation should one expect between these phases if 7 is changed
gradually for a system with constant composition and pressure?

Hint

If needed, assume that A has a higher vapour pressure than B.

Solution

¢ =2, p=4and Gibbs’ phase rule yieldsv =c+2 — p =242 — 4 = 0. This equi-
librium would thus show up as a point in the complete potential phase diagram.
Under the present experimental conditions, n,, = ¢ — 1 (constant overall composi-
tion), and ng = ¢ (constant overall composition and pressure), the phase field rule
in Eq. (10.6) predictsd =c+2 —p—ns+nn=2+2—-4—c+(c—1)=—1.The
chance of observing the corresponding phase transformation would be negligible since
it would require that a particular value of P could be chosen and kept constant. If
we were to succeed in doing this, the system could transform with all four phases
present but it would be a case of overlapping sharp transformations. They could be
A+ B — liq., A + B — vapour, A + liq. — vapour, lig. — B + vapour.

Exercise 12.3

Consider the same system as in Exercise 12.2 but suppose that the system is heated
gradually.

Hint

As before, ny = ¢, but instead of a gradually changing temperature, we should now
consider a gradually changing enthalpy. Thus ny, =c— 1+ 1 =c.

Solution

Under the new experimental conditions d =c+2 —p —ng+ny=2+2—-4—c+
¢ = 0. We would observe the same overlapping transformations but they would now be
gradual.
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Figure 12.3 Phase transformation &« — [3 is a unary system under pressure P, and heating
through the surface. d is the distance from the surface.

Microstructural character

We shall now discuss how the phases will be distributed within a system as a result of a
phase transformation. With most materials one needs a microscope in order to study the
distribution of the phases, thus the term microstructure.

During a gradual transformation the new product will only occupy some fraction of the
volume. It there are many nuclei, the result may be an intimate mixture of the old and new
phases, with a gradual change of the fractions and of the compositions of the phases.
Such a transformation may be regarded as microstructurally gradual. On the other
hand, in a sharp phase transformation the new phase or phases will completely replace
the old ones but it may still be interesting to discuss the microstructural appearance
during the transformation because it is never instantaneous, due to kinetic restrictions.
Thus, let us first consider the effect of the limited rate of heat conduction when heating
a pure element with two solid phases, « and 3.

Whether one regards T or Hy, (enthalpy per mole of the system) as the controlling
variable, heat supplied from the surroundings must normally flow into the system through
the surface layer. If there is no other kinetic restriction, then the phase transformation
should start at the surface where the temperature must be at least slightly higher than in
the interior. After some time there will be a massive surface layer of the new 3 phase.
It will form with a sharp interface to the old o phase in the interior. Thus, the phase
transformation will be microstructurally sharp in both cases. Figure 12.3 illustrates the
variation of the local value of the molar enthalpy as a function of the distance from the
surface, assuming that the whole system was initially in a state of « at the temperature of
equilibrium with 3. The P axis has been added to Fig. 12.3(a) in order to illustrate that
P is kept constant. The difference between the two cases is that with 7 as the controlling
variable the process will not stop until the microstructurally sharp transformation has
proceeded through the entire system. With H,, as the controlling variable, the process
will stop when the average value of Hy,, has reached the prescribed value.

On the other hand, suppose that the phase transformation is so slow due to kinetic
reasons that it would be possible to increase H, of the initial & phase to a value falling
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inside the o + 3 phase field and, thus, to increase 7 to a value falling inside the {3 phase
field before the phase transformation starts. Wherever there are 3 nuclei, they could
then grow and an o + 3 mixture would develop, the final fractions of « and {3 being
controlled by the lever rule applied to the prescribed Hy, value. The kinetics may be so
slow that & and 3 are not in equilibrium, not even at the o/f3 interfaces, until the fraction
of 3 has approached its final value. In that case the progressing phase transformation
may look similar to the microstructurally gradual transformation.

We have here considered a phase transformation which is sharp when a potential is
varied. We have found that in order to predict its microscopic appearance one must first
examine if the transformation is slow due to other kinetic restrictions. If that is the case,
the transformation may be microstructurally gradual. If the transformation is fast enough
to follow the changes of the controlling variable, then it may be microstructurally sharp.
In both cases the result will be the same whether one varies the potential or its conjugate
molar quantity. However, in the remainder of the present chapter we shall always use a
potential as the variable.

Exercise 12.4

Is it possible to solidify a pure liquid substance by increasing P to a new value if the
solid form is denser? If so, will the solidification be complete or only partial? Will it be
microscopically sharp or not?

Hint

It all depends upon what other variable is controlled. One will probably try to keep some
variable constant. Consider two conditions, isothermal (very slow) and adiabatic (very
rapid). It may be helpful to sketch the appropriate phase diagrams.

Solution

We get complete solidification if 7' is kept constant. Adiabatic conditions are more
difficult to discuss, because they give, according to the first law,: dQ = dU 4+ PdV =0
and dQ = dH — VdP = 0 . Neither U nor H is thus constant when P is changed. In
order to find a state function which is constant, we must assume reversible conditions,
and, using the second law, we then get dQ = 7dS — Ddé = T'dS = 0. For this case we
should thus use an S,,, P diagram. We could then see that the solidification may be partial
or complete depending upon how large the P change is. This conclusion may not change
if there is some internal entropy production due to the transformation.

When considering the microstructural character we may first examine the adiabatic
case and accept that the change of P is more rapid than the transformation. Then many
nuclei distributed over the whole system may form and give the transformation a gradual
appearance. In the slow isothermal case we may assume that the transformation starts at
the surface or very close to it. The transformation will then be microstructurally sharp
if the phase field rule predicts that the dimensionality of the « + L phase field should
be zero. For a unary system Eq. (10.6) yieldsd =c+2—p—ng+npn=1+2—-2 —
1+0=0.
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(a) (b)

Figure 12.4 Illustration of difficulty for a phase transformation in a binary system to occur under
constant ug when 7'is increased under constant P.

Phase transformations in alloys

Diffusion is usually much slower than heat conduction and may thus give a very severe
kinetic restriction on the phase transformations in alloys. This is true even if we would
decide to control the experimental conditions by keeping all the potentials constant except
for 7, which is varied gradually. The complications are not immediately evident from the
T, up phase diagram but are clearly demonstrated by the 7, xg phase diagram at constant
PinFig. 12.4.

If we could keep up constant during an increase of 7, we would move through
the 7, xg phase diagram according to the broken arrow in Fig. 12.4(b). This corre-
sponds to the straight arrow in the 7, up phase diagram of Fig. 12.4(a) and represents
a sharp transformation « — y. However, this would require an exchange of atoms with
the surroundings and, due to the low rate of diffusion compared to heat conduction,
the system would rather move along the straight arrow in the 7, xg phase diagram of
Fig. 12.4(b), when T 'is increased, and the composition rather than the chemical potential
would stay constant if the time of the experiment is not very long. One would not manage
to keep up constant except in very special cases. The composition would not have time
to change much and the system would move into the o + vy two-phase field. A grad-
ual phase transformation would result. The transformation would be microstructurally
gradual and the system would show a mixture of « and 'y and the fraction of v would
gradually increase on increasing 7.

The effect of slow diffusion discussed here is the reason why most experimental
conditions can be approximated by assuming that the composition is constant during a
change of T (or P).

Exercise 12.5

Suppose the temperature is increased gradually under constant pressure. Consider a
phase transformation which would be sharp if a particular chemical potential were kept
constant. However, due to slow diffusion it is difficult to study a phase transformation
under a constant chemical potential. Instead, one keeps the molar content of the same
component constant. Is it thus possible to minimize the role played by diffusion?
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Hint

If d = 0 when the particular chemical potential is kept constant, then d = 1 if instead
the corresponding molar content is kept constant because 7, in Eq. (10.6) increases by
one unit. The transformation may thus be classified as gradual.

Solution

Since this transformation is now gradual, there will be a gradual change of the fractions
of various phases. One will thus get a mixture of phases. If they have different composi-
tions, diffusion is required over distances related to the coarseness of the microstructure.
However, such diffusion distances will normally be much shorter than those which are
necessary under conditions of constant potential.

Classification of sharp phase transformations

Sharp phase transformations in alloys at constant P involving few phases have been
classified into various groups. For unary systems there is only one type, o« — [3, and
it is called an allotropic transformation; melting may be regarded as a special case. In
binary systems there are two main types,

Y — a+ 3 eutectoid transformation
Y+ « — 3 peritectoid transformation.

The o + (3 mixture resulting from the first transformation is often called a eutectoid
structure or simply a eutectoid. In order to identify a particular eutectoid it is sometimes
denoted by the name of the parent phase. In the present case it would thus be called
y-eutectoid. In addition there are special names depending upon the role played by the
liquid phase. The following names refer to transformations occurring on cooling but, in
addition, the same names are often applied to the corresponding features in the phase
diagram and even to the phase diagrams with such features.

L—- a+ 3 eutectic

Ly - o+ L, monotectic
x—L+p metatectic
L+oa— f  peritectic
Li+ax— L,

L;+L, - « syntectic
x+p — L.

The first transformation to be given a name was the eutectic transformation L — o + f3.
The word ‘eutectic’ is taken from Aristotle who used it as meaning ‘beautifully or easily
melted’ and that was the definition when first used by Guthrie [24]. He was not yet aware
of the regular microstructure usually formed in such alloys on solidification, a lamellar
example of which is sketched in Fig. 12.5. Today, when we speak of a ‘eutectic’ we tend
to imply this type of microstructure. The eutectoid transformation has come to mean
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Figure 125 Cooperative growth of two phases in a eutectic transformation. The arrows indicate
possible diffusion paths.

XB‘

Figure 12.6 Conditions of a eutectic transformation, L — o + f3, in a binary system at constant
P and a constant overall composition. The temperature was decreased from T to 75.

v — &+ f independent of whether it occurs on heating or cooling or under isothermal
conditions and independent of how the phase diagram looks. It is interesting to note that
the eutectic type of microstructure can form on partial melting of an intermetallic phase
from a peritectic phase diagram.

The growth conditions for a eutectic transformation are illustrated by Fig. 12.6, where
two two-phase regions have been extrapolated to a transformation temperature below the
equilibrium temperature for L + o + (3. Figures 12.6(b) and (c) show the variation of
composition within the parent phase, L, in front of 3 and «, respectively. Diffusion of B
may thus occur inside the L phase from the « interface to the (3 interface and growth is
thus made possible. As illustrated by the arrows in Fig. 12.5, diffusion may also occur
inside the two growing phases, « and {3, when they grow side by side, but that diffusion
is generally much slower than diffusion in the liquid.

It is interesting to note that eutectoid transformations often result in a rather regular
arrangement of the two new phases. The reason is that such arrangements give short
diffusion paths. It is called cooperative growth.

The peritectoid transformations derive their name from the peritectic transformation,
L + o — 3, which occurs on solidification. The name ‘peritectic’ means that a phase
formed by such a reaction grows along the interface, i.e. along the periphery of the
primary solid phase as illustrated in the sketched microstructure of Fig. 12.7.
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>

Figure 12.7 Geometric arrangement of the growing 3 phase during a peritectic transformation,
obtained by growth along the previous phase interface, L/, and by subsequent thickening.

T= T2

Figure 12.8 Conditions for an L 4+ & — [3 transformation in a binary system at constant P and a
constant overall composition. The temperature was changed from 7; to 7. The arrows above
diagram (b) indicate the migration of the new phase interfaces during thickening.

Normally, all peritectoid transformations give the same type of geometric arrangement.
The growth conditions during a transformation can be illustrated by Fig. 12.8.

The diffusion distance is shortest close to the 3 tip advancing along the L/« interface
in Fig. 12.7. That growth process is thus rapid. The subsequent thickening of 3, can occur
only by diffusion through f{ itself. It grows slower the thicker it gets and a peritectoid
reaction seldom goes to completion. On continued cooling, 3 can also grow into the
matrix phase as an ordinary primary precipitation but it is common that some of the
primary solid phase, «, remains.

In ternary systems there are three kinds of sharp phase transformations.

«x— B +v+ 0 Four-phase eutectoid transformation or class I
four-phase transformation

x+ 3 — v+ Four-phase peritectoid transformation or class II
four-phase transformation

x+ 3 +v — 0 Class Il four-phase transformation.

The four-phase transformations are illustrated in Fig. 12.9.

Exercise 12.6

Vertical sections through two different ternary 7', xg, xc diagrams at constant P are
reproduced in Fig. 12.10. Discuss what type of sharp four-phase transformations the
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Figure 12.9 Different types of four-phase reactions in a ternary system, represented in a
compositional coordinate system.

1* 2* 3+ 4*

Figure 12.10 See Exercise 12.6.

four alloys, indicated by arrows, go through on cooling. Show projections of the four-
phase planes and draw lines representing the two sections.

Hint

In both diagrams all four three-phase fields connected to the invariant four-phase field are
shown in the section. It is thus possible to know the type of transformation. In diagram
(a), three of the four fall above the invariant one and these three all contain liquid. It is
evident that this is a four-phase eutectic transformation. Both the alloys, 1 and 2, give
L — o+ 3 + v and the parts of these alloys, already solidified, remain unchanged. In
diagram (b) there are two three-phase fields on each side of the four-phase horizontal.
This must be a class II transformation and both alloys, 3 and 4, give L + o« — 3 + .

Solution

The solution is shown in Fig. 12.11.
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(a) (b)

Figure 12.11 Solution to Exercise 12.6.

Applications of Schreinemakers’ projection

Schreinemakers’ 7, P diagram, introduced in Section 10.1, can be very useful in a dis-
cussion of phase transformations, in particular for higher-order systems where all other
methods of reducing the number of axes to two would yield much more complicated
pictures. As an introduction, consider the diagram in Fig. 10.1(b). It shows that there are
three two-phase surfaces covering the angle between the (o) and (3) lines. By keeping
P and T constant at values within that angle and varying ug we could expect the trans-
formations o« <> 8,y <> 0 and 3 <> y. Of course, they should occur one after the other
and only two reaction sequences are possible,  — y — 6 — « or the reverse. By this
consideration we can immediately conclude that the phases are arranged in this order
along the composition axis, zg. This is confirmed by Fig. 10.10. Similar considerations
based on the other angles will give less complete answers. Unfortunately, this very sim-
ple way of deciding the relative compositions of the phases taking part in an invariant
equilibrium gets much more complicated in higher-order systems. The method based on
coincidence, described in Section 10.4, may be more powerful.

Next, let us consider a transformation occurring by changing 7 or P and keeping
the other constant. If the composition is also constant, then the phase field rule from
Eq. (10.6) would yield

d=c+2—p—ns+npn=c+2—p—c+c—1=c+1-p

becauseng = 1 + ¢ — 1 = candny, = ¢ — 1. A sharp transformation should be obtained
for d =0, i.e. p =c+ 1, and should thus occur if the system would cross a uni-
variant line (for which p = ¢+ 1, see Section 10.1). This can be accomplished by
a suitable choice of composition. For illustration, see the arrow in Fig. 10.9. Then
the question is, what type of sharp transformation will it be. From the projection
in Fig. 10.1(b) we would only know that the (8) line should give a transformation
between «, 3 and y. However, the following method can be used to give more detailed
information.

Since & does not exist along the (8) line, it can only exist on the other side of the
invariant point. It will thus exist on the upper sides of the other univariant lines but
not on their lower sides (see Fig. 12.12(a)). Using the same kind of information from
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(a) (b)

P
-

Figure 12.12 Method to decide the type of transformation. For instance, the 6 phase only exists
on the other side of the invariant point, counted from the d-absent line, here denoted (8). The
arrow in Fig. 10.9, which is an expansion of the lower part of the present figure in the z
direction, illustrates the y — o + 3 transformation.

L+B

a+B/B a+B/ B a+p/p
P P, P, “

Figure 12.13 Detail of binary 7, x phase diagram with a point of minimum for the 3 + L
equilibrium. There the transformation 3 — L will be congruent. Three sets of lines
representing equilibrium with « at different P are given.

the other lines we get the results shown in Fig. 12.12(b). By crossing the () line from
left to right, i.e. by decreasing P, under a suitable constant value of zg, we thus get the
transformation o« + 3 — <. It should be emphasized that the transformations described
by the positions of the Greek letters in Fig. 12.12 only occur when a line is crossed in
the plane of the projected diagram. It gives no information on the transformations in any
other direction.

In Section 10.8 it was concluded that one can include in Schreinemakers’ projection
a curve showing where an equilibrium with p = ¢ phases degenerates by the phases
falling on the same point for a binary system, on the same line for a ternary system,
etc. An example was shown in Fig. 10.27. Such a singular curve may originate from
a univariant line, as demonstrated in Figs 12.13 and 12.14, using a binary system for
illustration.
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T
L+o L
p
o+p
L L
B B
| | |
Py P, P P

Figure 12.14 Schreinemakers’ P, T diagram corresponding to Fig. 12.13. The univariant line
changes character at the black point. That is where the singular curve originates and there is a
compositional degeneracy in that point. The o phase does not take part in the reaction there.

In order to simplify the construction, it was here assumed that the 3 + L equilibrium is
not affected by P but an increased P will increase the stability of cc. Lines for equilibrium
with « are presented for three P values. With the lowest P value, P, the «+ 3 + L
equilibrium is of the peritectic type. With the highest P value, Pj, it is of the eutectic
type and the intermediate P value, P,, shows the transition where o does not take part
in the transformation of L to 3. That will give a singular point on the univariant line for
« + P + L in Fig. 12.14 and that is where the singular curve for 3 4 L starts.

Atlow P (to the left of the transition point in Fig. 12.14) an alloy of suitable composition
would transform by L + o — [3 on the univariant line if its composition is such that it
reaches the three-phase horizontal in Fig. 12.13 on cooling. Otherwise, it would transform
by L — {3 at lower 7. That would happen if the composition is to the right of the L point
for Py in Fig. 12.13. In any case, the transformation L — 3 would be completed at or
before the point of minimum in Fig. 12.13, i.e. the singular curve in Fig. 12.14. At high
P (to the right of the transition point) an alloy of suitable composition would transform
by L — « + 3 on the univariant line. That would happen for compositions on both sides
of the L point for P; in Fig. 12.13, but usually after a proeutectic precipitation of « or
{3. If the liquid alloy can be undercooled by « not nucleating, it may solidify by L — f3
according to the part of the L 4 3 phase field below the eutectic temperature. The lowest
temperature of solidification by L — 3 according to the phase diagram is again the
minimum. However, this part of the L 4+ 3 phase field is only metastable at P3. That is
why the singular curve in Fig. 12.14 has been drawn with a dashed line to the right of
the transition point.

Figure 10.3 illustrated a congruent point in a ternary system and it was concluded
that the position of such points could also be illustrated by a line in Schreinemakers’
projection. The name ‘doubly singular’ was proposed. Such a curve can originate from a
transition point on a singular curve, much in the same way as the singular curve originates
from a univariant line. This is illustrated in Fig. 12.15 where an invariant equilibrium
is also included. The L + 3 + v surface covers the area between the («) and (8) lines.
However, to the left of the singular point L /(3 4 <) that surface, when coming from the
(o) line, will overshoot the (9) line, reach the singular curve and then bend back and
end up on the (9) line. If the composition is suitable, then the alloy will not transform by
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)

univariant
equilibrium

(v)

B invariant equilibrium

\doubly singular curve (L)

Figure 12.15 Schematic Schreinemakers’ projection of a ternary system, illustrating a possible

arrangement of a univariant line, a singular curve and a doubly singular curve.

L 4+ o« — (3 + v on the univariant line because there will be no « present. Such an alloy
will solidify by L — 3 + v below the univariant line but in any case not later than on
the singular curve. However, if there is a transition point on the singular curve, to the left
of which the solidification reaction is L 4+ y — [3, then the solidification can only occur
by L — (3 if there is no 7y present. The alloy may then pass the singular curve on cooling
but in any case it should have solidified before passing the doubly singular curve.

Exercise 12.7

What transformation would occur on crossing the () line in Fig. 10.14(b) by increasing
the value of Y* at constant values of Y/, X, and X7, ?

Hint

Use the method illustrated by Fig. 12.12.

Solution

B+v— 6+c¢.

Exercise 12.8

Use the three-phase reactions indicated by Fig. 12.12(b) to decide on the relative com-
positions of the four phases.

Hint

The reactions on decreasing 7ared — ¢+ 3,3 +8 — v,0 - a+yvandy — x+ 3.

Solution

b must fall between o and {3, y between [3 and 9, 6 between o and 'y and finally 'y between
o and 3. They must be arranged in the order {3, y, 0, & or in the opposite direction.
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Figure 12.16 Sce Exercise 12.9.

Exercise 12.9

Figure 12.16 gives a detail of Schreinemakers’ projection of a quinary system. It shows a
univariant line for the o« + 3 + v + & + ¢ + ¢ equilibrium and a singular curve for the
&+ B 4+ v + & + ¢ singular equilibrium. What transformation can be expected when
the univariant line is crossed?

Hint

Use the fact that the singular curve is stable only on the indicated side of the singular
point.

Solution

To the left of the transition point one can avoid the univariant reaction and reach the
singular curve if ¢ is not present before the univariant line is reached. Thus, ¢ does not
form by the univariant reaction but would be consumed if it were present. The reaction
must be x + 3 +v + ¢ — 5+ ¢. To the right of the transition point, the univariant
reaction cannot be suppressed, not even if ¢ is absent, and the reaction must be o« + 3 +
Y—=>d+e+ .

Scheil’s reaction diagram

In many types of systems, P has a negligible effect and without any loss of information
one can section at P = 1 bar. For a binary system one will thus get the usual 7, x diagram.
For a ternary system there is one dimension more but one could project in the 7 direction
and use xg and xc as axes. Such diagrams are useful but tend to be overloaded with
phase boundaries if many phases are solutions because there will be lines showing the
compositional changes of all those phases. A simpler diagram would be obtained by
using up and pc (or ag and ac) as axes. However, much information would be missing.
Using the method illustrated in Fig. 12.12 one could easily find what transformation
would occur on crossing a univariant line but that would be of limited use. In order to
hit the line one must now work with a constant heat content because the projected axis
is T. Furthermore, one would have to vary up or pc which is rarely very practical.

A rather useful method was proposed by Scheil [25] for ternary systems. His reaction
diagram shows how the lines representing three-phase equilibria are connected to form
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B-C B-A B-A-C A-C
[o] [or]
L
| Lo>o+p |
R |
| Loa+B+y |
]

Figure 12.17 Scheil’s reaction scheme for a simple ternary system with eutectic reactions.

Fe-Al Fe—Ni Fe-Ni-Al Ni-Al

|

L—0+(Al L+6 Al

—0+( )I + e|r+( ) Lot (Al
| L—ox+1+(Al) |

Figure 12.18 See Exercise 12.10.

four-phase equilibria as a function of 7' but with no regard for composition. His diagram
also shows what three-phase equilibria originate from the binary sides. In addition, the
reactions occurring on cooling through the four-phase equilibria are given explicitly in
boxes. The diagram for a simple eutectic system is presented in Fig. 12.17. Of course,
similar diagrams can be constructed for quaternary systems, showing four- and five-
phase equilibria.

Exercise 12.10

Part of Scheil’s diagram for the Al-Fe—Ni system is shown in Fig. 12.18, reproduced
from a publication. A mistake was made by joining the binary (L + A — ) with (L —
K + 11 + (Al)). Try to correct it.

Hint

What phases are common for the four-phase equilibria? What one-dimensional equilibria
should connect them?

Solution

The solution is shown in Fig. 12.19.
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Fe-Al Fe—Ni Fe-Ni-Al Ni-Al

L—0+(Al } L+6 Al
—0+(Al) +6 - t+(Al)

L—x+1t+(Al) i

L+0+x—1

Figure 12.19 Solution to Exercise 12.10.

(a) (b)
Wy

Figure 12.20 A section at constant P and x¢ through a ternary phase diagram in (b), compared
with a binary diagram in (a).

Gradual phase transformations at fixed composition

If a new component is added to a system where a sharp transformation with p = ¢ + 1
has been found at constant P (see Fig. 12.20(a)), then the value of ¢ increases by one
unit and for the same transformation one will now have p = c. The dimensionality of
the corresponding phase field will thus increase by one unit. This case may be illustrated
by an x¢ section at a low value of x¢ (see Fig. 12.20(b)).

It is evident that the phase transformation between y and o + {3, occurring when 7'is
changed, can no longer be sharp but is somewhat gradual. However, if the addition of
the new component is small, its effect on the actual phase transformation should also be
small and one may still recognize its characteristic features, for instance in the resulting
eutectic microstructure illustrated in Fig. 12.5, in particular if the temperature has been
changed enough to move the system from the y phase field to the & + 3 phase field
before the transformation has started. The transformation may thus appear as sharp even
though it is classified as a gradual transformation on thermodynamic grounds. As an
example, we shall now examine a case involving three phases and three components.
Figure 12.21 shows the T projection of such a phase diagram under constant P.
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(a) (b)

Figure 12.22 Conditions for (a) a eutectic transformation and (b) a peritectic transformation in a
ternary system under constant pressure and a gradual decrease of the temperature.

In this particular case the same three-phase equilibrium occurs in two of the binary
systems but it has different character, being eutectic on one side and peritectic on the
other. Evidently, there must be a transition between the two types somewhere inside the
ternary system. In order to decide where the transition is situated we must first examine
how we can recognize the two types when the compositions of the phases change during
the transformation. This is fairly easy if we consider a system which consists of an L
phase only and if it has the correct composition for equilibrium with the & and 3 phases.
As the temperature is lowered slightly, the three-phase triangle moves and covers the
composition of the system (see the cross in Fig. 12.22(a)). Evidently, we should expect
the reaction L — L + o + (3. Here we have included the L phase on both sides because
it has different compositions and it would be impossible to satisfy the mass balance
condition if that is not taken into account.

The dashed line in Fig. 12.22(a) is the extrapolation of the direction in which the L
phase is moving. It goes through the L corner of the triangle and the average composition
of the system, and it intersects the opposite side, ¢ and b being the intercepts. From
Fig. 4.5 it is easy to see that the & and 3 phases must form in the proportion b:a and this
will be the ratio between them in the microstructure. As far as o and 3 are concerned they
have formed from material corresponding to the circle. It may not be very important that
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Figure 12.23 See Exercise 12.11.

this material has been drawn from a phase with a different composition. From this point
of view, the reaction is clearly of the eutectic type. The result will be quite different if the
extrapolation does not intersect the opposite side. An example is given in Fig. 12.22(b).
The composition of the system will then fall outside the new three-phase triangle and
inside a two-phase field, L + 3. The reaction will simply be L — L + 3 and L will not
move in the direction of the L line in the phase diagram (solid arrow) but straight away
from the 3 phase (dashed arrow). L will no longer be in equilibrium with «.

The limiting case is found when the extrapolation, i.e. the solid arrow, is directed
away from the 3 corner. Using that criterion one could find the point of transition in the
phase diagram in Fig. 12.21 if it were equipped with a series of three-phase triangles for
slightly different temperatures. Even though the criterion was derived by considering an
alloy composed of an L phase only, it is more general because, in practice, it may often
be justified to neglect the diffusion inside the solidified material in comparison with the
rapid diffusion in the liquid phase. The progress of the reaction at each stage is thus
mainly determined by the momentary composition of the L phase and in which direction
it is moving. For a reaction, where three solid phases are involved, it may be necessary
to make a detailed analysis of the diffusion of all the elements in all the phases. In the
next section we shall consider a special case where one component diffuses much faster
than the others.

Exercise 12.11

The sketched detail of an isobarothermal section of a ternary phase diagram (Fig. 12.23)
shows how all the phases in a three-phase equilibrium change on cooling.

(a) Test how a melted specimen with the composition of the L corner will react on
cooling. Give a reaction formula.

(b) Test how a 3 phase specimen with the composition of the (3 corner will react on
cooling. Give a reaction formula.

(c) Compare the two results. Discuss anything that may seem surprising.
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(a) (b)

xg A ug A
B B B \B/

o fc /X\ Hc

o -

Figure 12.24 Conditions of a transformation under changing the content or chemical potential of
C in a ternary system. 7 and P are kept constant. The arrow in (a) points towards the C corner.
In (b) it would be horizontal.

Solution

(@)L — o+ B(+L); (b)p — L+ «x(+p); (c) The first reaction looks like a eutec-
tic reaction and the second one like a metatectic one although the phase diagram is the
same. The reason is that this is not a sharp transformation and the concepts developed
for sharp transformations cannot be strictly applied.

Phase transformations controlled by a chemical potential

Itis sometimes possible to contain a system inside a wall, which allows some components
to penetrate but not others. In alloy systems it sometimes happens that one component
diffuses much faster than the others. In other cases, one or a few components are volatile
and can easily be exchanged with the surroundings. In these cases it is possible to
produce a phase transformation by gradually changing the chemical potential of the
mobile component but keeping constant the content of all the other components and
also T and P. The conditions may be illustrated by the pair of xc, xg and wuc, ug phase
diagrams in Fig. 12.24(a) and (b), respectively, for a case where p = ¢ and the mobile
component is denoted by C. The arrow in Fig. 12.24(a) represents a discontinuous change
of the C content and is pointing towards the C corner. The ug variable in Fig. 12.24(b)
is explained in Section 4.3.

It is evident that the binary A-B alloy represented by a cross will eventually undergo
a phase transformation y — o + [3 if the C content is gradually increased. This may be
indicated in the following way using a reaction formula, y + C(source) — o + f3.

The wc, ug diagram demonstrates that the transformation will be sharp if the ¢
potential can be controlled experimentally and there are no kinetic restrictions. In fact,
the result of such a transformation would be very similar to the result of the well-known
pearlite transformation taking place on a gradual change of temperature in an iron—
carbon alloy. As a consequence, one should expect y to transform to an intimate mixture
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Ni+BeO+NiO

I ey

Figure 12.25 Sece Exercise 12.12.

of the two new phases, « and [3, a so-called eutectoid microstructure. This has actually
been observed in many carbon-containing alloyed steels when carburized.

As demonstrated by Fig. 12.24(a), the same transformation is predicted to be gradual if
the C content is increased. However, when the supply of C comes from the surroundings,
there must be a chemical potential difference driving the diffusion of C. A growing surface
layer of & + 3 will thus form and the transformation will behave as a microscopically
sharp one. A region has either transformed completely to « + {3 or is still pure y.

Exercise 12.12

Figure 12.25 shows a very rough sketch of the Ni-O-Be phase diagram at 1623 K and
1 bar. The hyperbolic solubility curve for BeO in the Ni-rich phase approaches the Ni
corner very closely. It is known that pure Ni oxidizes to NiO in air at 1623 K. Construct
a reasonable profile for the O content from the surface and into the interior of the Ni-Be
alloy denoted by the filled circle on the ug, axis, after some time in air at 1623 K.

Hint

The composition of all layers must lie on the horizontal line through the initial alloy
composition because the u g, axis has been used and the diffusion of Be is slow compared
to that of O. Remember that the inward diffusion of O requires a continuous decrease of
the O potential or, more conveniently in the present case, a continuous decrease of the
O content of the Ni phase close to the corner of the diagram (because its Be content is
too low to affect the O potential).

Solution

Suppose an oxide scale of NiO + BeO will form on the surface and also an inner layer
of Ni 4+ BeO. Between them there will be a sharp interface because a three-phase layer
of Ni 4+ NiO + BeO could not exist in a potential gradient. It can exist at a particular O
potential, only, that of the three-phase equilibrium. Furthermore, the average O content
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Figure 12.27 Sece Exercise 12.13.

in the layer of Ni + BeO varies quickly close to its inner side where the O solubility
in the Ni phase is low and the solubility line is almost vertical in the phase diagram
(Fig. 12.26). Otherwise, practically no O could diffuse through that part.

Exercise 12.13

The micrograph (Fig. 12.27) shows the structure of an Fe—20 mass% Mo—1 mass% C
alloy at a magnification of 500 x, which has been carburized further at 1273 K and then
quenched. The lower part shows the original structure of M¢C particles (black) in a
matrix of y (now martensite after quenching) and the upper part the new structure. The
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surface is above this picture. Explain the microstructure using the phase diagram which
is for the same temperature.

Hint

From the composition given we calculate uy;, = 0.13 and uc = 0.05. The value of uy,
does not change when we add more carbon. The alloy will thus move along a horizontal
line to the right in the phase diagram.

Solution

The alloy is initially in the y + M¢C phase field. Moving to the right in the phase
diagram the alloy may enter the three-phase triangle y + MC + M, C and approach the
Y + M;C phase field. We can thus understand that MgC must transform. A horizontal
line from the M¢C corner to the Y 4+ M, C side of the triangle would illustrate the reaction
MgC + carbon — M,C + . This may be regarded as a eutectoid transformation where
carbon plays the role usually played by heat. The conclusion is confirmed by the upper part
of the picture showing regions of a eutectic-like two-phase mixture, evidently M,C + v
formed from previous MgC particles by the above reaction formula.
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13.1

Transformations in closed systems

The phase field rule at constant composition

Most of the discussion in the preceding chapter concerned transformations in systems
of constant composition, so-called closed systems. We shall now examine that case in
more detail.

To keep a variable constant means that the phase diagram is sectioned at that value
of the variable. Constant composition means that ¢ — 1 molar axes have been sectioned
and thus ny, = ¢ — 1 = n,. This can be inserted in the phase field rule which is given
by Egs (10.6) and (10.7). They hold one on each side of a critical p value. Without any
projection the critical value will be

p=l+4+ny+nyg=1+0+(c—-1)=c. (13.1)
Equation (10.7) will then apply to all p < ¢, yielding
d=r=c+1l—-ns—np=c+1—-(c—-1)-0=2. (13.2)
The two variables are 7" and P. Equation (10.6) will apply to all p > ¢, yielding
d=c+2—p—ns+nn=c+2—p. (13.3)

This expression resembles Gibbs’ phase rule but it should be emphasized that it applies
to systems with constant composition only for p > ¢, and in all such cases we obtain
d<2.

In Sections 13.8 and 13.9 it will be shown that one must take special account of the
presence of congruent transformations. They were neglected when the phase field rule
was derived.

Exercise 13.1

Consider the equilibrium CH4 <> C(gr) 4+ 2H; at a constant pressure of 1 bar. Can it
exist at one temperature only or in a range of temperatures?

Hint

Graphite is solid C, CH4 and H, are both gaseous but there can be only one gas phase
which is thus a mixture of them.
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Solution

We have two components, C and H, ¢ = 2. We have two phases, graphite and gas, p = 2,
and thus p=candd =c+2 — p=2+42—2 =2. We may vary P and T, i.e. under
any value chosen for P we can still vary T.

Exercise 13.2

Consider the equilibrium CaCOj; <> CaO + CO; in an atmosphere, initially composed
of pure N,. Can the equilibrium exist in a range of temperature if the pressure is kept
constant at 1 bar?

Hint

CaCOj; and CaO are two different solid phases. If CO, forms, it will go into the gas and
may form several species, CO,, CO and O,, mixed with N,, but there will still be only
one gas phase.

Solution

We have four components, Ca, C, O and N, ¢ = 4. We have three phases, CaCO3, CaO
and gas, p = 3. Thus p < ¢ and the phase field rule gives d = 2. For any chosen value
of P we can still vary 7. It should be emphasized that without N, we could not vary 7 at
a chosen P.

Reaction coefficients in sharp transformations for p = ¢ + 1

Keeping P constant in a closed system, i.e. in a system with constant composition, we
have n, = ¢ — 1 but ng = c. Instead of Eq. (13.3) we obtain

d=c+2—p—ns+npn=c+2—p—c+(c+1l)=c+1—p. (13.4)

With p = ¢ 4 1 phases, we will thus get a sharp transformation (d = 0) by changing 7.
The result would be the same by keeping 7 constant and varying P. This is why we shall
now discuss the case p = ¢ + 1 in more detail.

Figure 13.1 shows conditions for a sharp transformation in (a) a binary and (b) a
ternary system. For the binary case (¢ = 2, p = 3) we can write the reaction formula for
the sharp transformation as follows if we omit any part of an initial phase that remains
when the reaction is completed.

x+p =y (13.5)

This is independent of whether one passes from o« + (3 to o« + y or from o +  toy + f3,
i.e. independent of whether some « or 3 will remain.
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(a) (b)
T
Y
o+y Y+B
a p
o+
XB

Figure 13.1 Conditions for (a) a three-phase transformation in a binary system and (b) a
four-phase transformation in a ternary system at a low constant value of xc. P is constant in both
cases.

Itis common to write chemical reaction formulas with reaction coefficients, v. Accepting
this procedure we can modify the reaction formula for the phase transformation and make
it more quantitative,

Vx4 vPp =Yy, (13.6)

It expresses the fact that v™ moles of the « phase react with vP moles of the 3 phase to
form vY moles of the y phase. As an example we may consider the oxidation of solid Ag
by gaseous O,

4Ag + 10, = 2Ag,0. (13.7)

In this simple case the reaction coefficients can be given as small integers. In the general
case this is not possible since the phases are not always stoichiometric.

By making the reaction coefficients negative for all the reactants and positive for all
the products we can simply write the formula as X v/J = 0. The v/ values will represent
the relative amounts of the phases taking part in the reaction, for instance expressed as
formula units. Naturally, the v/ values must be such that mass balance is fulfilled for
each component 7,

Z vja;’- =0 foreach component i, (13.8)
J

where aij is the number of i atoms per formula unit of phase j. We are considering a
sharp phase transformation with p = ¢ 4+ 1 and we thus have a system of ¢ equations
with p = ¢ + 1 coefficients each and in the form of a (¢ 4+ 1) x ¢ matrix. By excluding
the jth column of coefficients one obtains a ¢ x ¢ determinant and the value of each v/
is given by such a determinant.

Vo= (=1y e L dT dT L a] (13.9)
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It is easy to see that the above condition is fulfilled by this expression because we find

Joj
E alv’/ = a;
J

o« B v €
a* a; a . . a

v

B € B o v €
a, a . . a,|—a; ‘al a . . aC’+...

=0. (13.10)

The reason is that two columns in Eq. (13.10) have identical elements because i is one
of the numbers 1 to c. It should be noticed that in the calculation of v/ one makes no
distinction between reactants and products. Some of the v values will turn out positive
and others negative and one may thus identify the members of each group. If the value
for a selected phase turns out with the wrong sign, according to the direction chosen for
the reaction, then one should simply change all the signs.

When non-stoichiometric phases are involved it may be convenient to identify the g;
coefficients with the molar contents x;. We get, for instance,

=kl as

¥ = (=11 ‘x{s Xy . o.oxt

The reaction coefficients of a sharp phase transformation can be used for evaluating the
change of any molar quantity, X,,,, during the transformation. We obtain

(13.12)

c

A)(m = Zer;le = ‘Xg 0{5 a; .oLoabl.

This value refers to 1 mole of the reaction formula, as defined by the reaction coefficients.

It must be emphasized that the present discussion only applies to phase equilibria with
p = ¢ + 1,i.e. phase equilibria which are univariant in the complete phase diagram. That
is exactly the case considered in Section 8.8. There Eq. (8.39) was derived which can be
written as

o« By 3
HS x x, . . X,

dT/T:‘Vn‘f 8oxr L xldp. (13.13)

It can now be transformed into the simpler form

dP  AH./T

— = 13.14
dr AVn ( )

Consequently, this simple expression holds for any univariant equilibrium and not only
for the two-phase equilibrium considered initially in Section 8.3.

Exercise 13.3

Prove Kirchhoff’s law for a reaction between well-defined substances, (0AH/dT)p =
ACp.

Hint

For well defined substances all v/ are fixed. Express A H in terms of Hy, for the various
substances and the reaction coefficients.
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Solution

AH =SV H}),  (JAH/AT)p = (0Sv/ HL/dT)p = v/ (0H,/0T)p = Tv/C) =
ACp but only because (9v/ /dT)p = 0 for well-defined substances.

Exercise 13.4

From dilatometric measurements on the pearlite transformation in the Fe—C system at
1 bar we know 7 = 1000 K and A ¥, = 0.047 cm?/mol and from calorimetric measure-
ments we know that A H,, = —4540 J/mol. Calculate the pressure dependence of the
transformation temperature.

Hint

The pearlite transformation is y — « + Fe;C. First check how many degrees of freedom
this equilibrium has in a binary system. Then use an equation derived for that particular
case.

Solution

We have p =3 and ¢ =2 and, thus, p = c + 1, i.e. a sharp transformation at con-
stant P. For that case we get the slope d7/dP = TAV,/AHy, = 1000 x 0.047 x
1076/(—4540) = —1.04 x 108 K/Pa = —10~% K/bar.

Graphical evaluation of reaction coefficients

The reaction coefficients for a sharp transformation in a closed system can also be
evaluated graphically using the lever rule. For ¢ = 2, p = 3 one of the phases transforms
into a mixture of the other two. The composition of the first phase is thus equal to the
average composition of the other two and the lever rule can be applied directly. For
¢ =3, p = 4 there are three different cases as illustrated by Fig. 12.9. In class I and
class III reactions one of the phases may transform into a mixture of the other three
and, again, the composition of the first phase is equal to the average composition of the
others. If the reaction coefficient of the first phase is taken as —1, the coefficients of the
other phases are obtained as the fractions of the subsystems using one of the methods
described in Fig. 4.5.

Class II can be handled by considering that a mixture of two phases will transform into
a mixture of the remaining two phases. Evidently, the compositions of the two mixtures
must be equal and should thus fall on the point of intersection between the two diagonals,
point ‘i’ in Fig. 13.2.

If the average composition of the system does not coincide with the first phase dis-
cussed for classes I and III, then it falls inside one of the three smaller triangles (see
the diagram for & — o + 3 4+ v in Fig. 13.3(a)). The composition of & will be adjusted



284

Transformations in closed systems

B

Figure 13.2 Compositions of phases in a class II reaction in a ternary system. The weighted
average of the two reacting phases, say « and 'y, must fall on the intersection between the
diagonals and so must the weighted average of the two product phases, say (3 and 9.

(a) (b)

B

Figure 13.3 Relations between phase compositions in (a) a class I or III transformation and in (b)
a class II transformation.

by precipitation of first one and later two of the other phases in the small triangle as
the temperature of the four-phase plane is approached. There the rest of it will fall on
the § point in the diagram and will transform to a mixture of the other three phases.
The microstructure will show a matrix with a characteristic pattern of the three-phase
mixture in which one can see imbedded one-phase regions of the first phase to precipitate
and eutectoid regions of the two co-precipitated phases. If the average composition falls
outside the triangular four-phase plane, then the 6 phase will never reach the four-phase
plane.

For class II there are four alternatives and it is interesting to note that the range
of existence of each one of the four phases extends to both sides of the four-phase
plane. In Fig. 13.3(b) the three-phase fields o« + (3 + 0 and 3 + 0 + v extend to one side
and o« + 3 + v and « + v + & extend to the other side. If a specimen with an average
composition falling inside the & — 3 — 1 triangle is approaching the four-phase plane
from the first side, then it will contain a mixture of o« + 3 + 6 when reaching the four-
phase plane. From a mass balance point of view it may be regarded as a mixture of 3 +
falling on point i and some extra amounts of « and (3. The mixture of 3 4+ & will
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transform to « + y when the system crosses the four-phase plane. However, since the
extra amount of {3 is present in the 3 4+ & mixture over the whole specimen, there are no
particular 3 regions predestined not to take part in the 3 + & — o + y transformation.
The progress of the transformation will determine which parts of 3 will not transform
and, afterwards, they will be found scattered all over the specimen. The «, present before
the four-phase reaction, may indirectly take part in the reaction by providing favourable
sites for the precipitation of «.

Exercise 13.5

Suppose the d phase in Fig. 13.3(b) is a liquid and that the average composition of the
system is such that the liquid will be just about consumed by the four-phase reaction.
What phases will the system contain at a temperature just below the four-phase plane.

Hint

Suppose there is full equilibrium at each temperature. Remember that the amount of a
phase in a three-phase assemblage is given by the position in the three-phase triangle.

Solution

At an earlier stage the composition may fall inside the o« + 3 + 8(L) or 3 + v + &(L)
triangle. If a very slight amount of liquid should remain below the four-phase temperature
then the system would be in the & + 3 4 &(L) triangle. If the liquid would be just about
consumed then the system, should fall on the & 4 y line.

Reaction coefficients in gradual transformations for p = ¢

Let us now consider a gradual transformation in a closed system with p = ¢ by keeping
pressure constant and changing the temperature. In order to write a reaction formula with
the mass balance conserved it is now necessary also to include the change in composition
of regions not taking part directly in the phase transformation. As a simple example of
p = ¢ = 2, consider the precipitation of Al,Cu from « phase, a solution of Cu in fce-Al.
The solubility decreases with decreasing temperature at constant pressure and there will
thus be a gradual precipitation of Al,Cu. One way of writing this reaction would be

«(transformed) 4+ Cu(from remaining «) — Al,Cu. (13.15)

The reaction coefficients can then be evaluated with the same method used for sharp
transformations with p = ¢ + 1 but with the extra supply of Cu introduced instead of
the missing phase ¢ + 1. However, it should be emphasized that this way of writing the
transformation is not unique. Another possibility would be

«(to be transformed) — Al,Cu + Al(to the remaining ). (13.16)
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B

Figure 13.4 Gradual three-phase transformation in a ternary system. The arrow shows the
direction of change in composition of the L phase.

In order to define a unique way one would have to specify some special criterion. If one
is interested in the mechanism of the transformation, then one should consider exchange
of both Cu and Al but in proportions balanced according to their rates of diffusion in the
« phase.

A three-phase transformation in a ternary system is another case of gradual transfor-
mation, now with p = ¢ = 3. An example was given in Fig. 12.22 but in Fig. 13.4 it
is reproduced with the composition triangle included. Two of the ways of writing this
transformation are

L+(BC) - o+ B (13.17)
L — a+ B+ (AC), (13.18)

where (BC) and (AC) represent the compositions one can read on the two sides of the
composition triangle. In each case one can calculate the reaction coefficients by including
(BC) or (AC) instead of the missing phase ¢ + 1. The ratio between « and (3 will indeed
be independent of whether one includes (BC) or (AC). It will be /a according to the
lever rule.

Exercise 13.6

In an Al-Cu-Si specimen at 1 bar and 803 K one finds that the phases have the follow-
ing compositions at equilibrium: «(0.025Cu; 0.006Si) + L(0.16Cu; 0.05Si) + Al,Cu.
When the temperature is decreased, L changes in the direction away from the point
0.83A1;0.17Cu. Calculate the relative amounts of « and Al,Cu in the eutectic structure
formed by L — o + Al,Cu on further cooling. (The numbers given above are molar
contents.)

Hint

We have ¢ = 3 and p = 3 but we should write the transformation in a way resembling
a sharp transformation for p = ¢ + 1. The relative amounts of the two phases are then
obtained as the ratio of their reaction coefficients.
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Solution

Write the reaction as L 4 (0.83Al;0.17Cu) — « + Al,Cu. Eq. (13.11) yields

Al Cu Si
—~0.79 —0.16 —0.05
V= (—1)"! [=0.83 —0.17 0 | =-+0.0245
2 1 0
Al Cu Si
—0.79 —0.16 —0.05
pARCY — (11 | 083 —0.17 0 | =+0.00719

0.969 0.025  0.006
pARCY /)% = 0.00719/0.0245 = 0.2935 = 0.23 : 0.77.

Driving force for sharp phase transformations

The driving force for the precipitation of a new phase under a gradual transformation in
a closed system was discussed in Section 7.7. As an introduction to a discussion of the
driving force for a sharp transformation we shall now consider a eutectoid transformation
in a binary alloy. We have seen that it usually gives rise to an intimate mixture of the two
new phases, illustrated by Fig. 12.5. It may give the material advantageous properties.
The most famous example is pearlite, the eutectoid formed from the austenite phase in
steel.

Because the rate of transformation is controlled by slow diffusion and evolution of the
heat of transformation will thus be slow, it is often possible to control the temperature and
it makes sense to discuss the transformation under isothermal conditions, for instance
at 7, in Fig. 12.6. The character of the transformation as sharp is evident from its
progress. A region has either been completely transformed or is not at all affected. The
transformation occurs by the growth of colonies composed of an intimate mixture of the
two new phases and, under isothermal conditions, the growth continues until the whole
system has transformed.

It is well known that the mixture will be the finer, the lower the temperature of formation
is. The reason is that the interfaces in the mixture have surface energy and cannot
form without the supply of a corresponding amount of driving force. According to an
approximate treatment, one-half of the available driving force goes into surface energy
and the other half is used for driving the diffusion.

The conditions for cooperative growth of the two new phases can be illustrated by
extrapolating the phase boundaries in the 7', xg phase diagram as shown in Fig. 12.6. This
kind of construction is given again in Fig. 13.5(a) but a solid phase, 'y, has been substituted
for the liquid phase and the diagram has been rotated. The transformation temperature is
now denoted by 7. The diagram shows how one can evaluate the composition difference
driving the diffusion in each one of the phases if there is local equilibrium with the y
phase (see the arrows in Fig. 12.5).
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Figure 13.5 Evaluation of the differences in composition (a) and chemical potential (b) driving
the diffusion in a three-phase transformation in a binary system.
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Figure 13.6 Gibbs energy diagram illustrating the eutectoid transformation y — o + 3 at 7 in
Fig. 13.5.

A similar construction in the 7', up phase diagram in Fig. 13.5(b) yields a difference in
chemical potential of B, A ME, which may be used in a treatment of the rate of diffusion
of B in vy, although the composition difference is usually used for that purpose. The
conditions for the eutectoid reaction Yy — o + 3 may also be illustrated with a molar
Gibbs energy diagram at 7 (see Fig. 13.6).

As explained in Section 7.7, the driving force for the precipitation of a new phase in
a gradual transformation decreases during its growth but for the whole reaction one can
define and evaluate an integrated driving force along the reaction path. This problem is
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absent if the phase transformation is a sharp one because the parent phase which has not
yet transformed has not changed at all. Under constant 7 and P the driving force is thus
constant and the integrated driving force is equal to the momentary driving force if they
are both expressed per mole of the transformed structure. Under constant 7" and P we
obtain, by identifying the extent of the transformation, &, with the number of moles of
the products which is also equal to the number of moles of transformed reactants,

G
D=— (—) = —Gp(products) + G (reactants). (13.19)
9 Jr.p.N,

This quantity is illustrated in Fig. 13.6 for a eutectoid transformation y - «+ 3 ina
binary system.

The value of the driving force may be calculated using the reaction coefficients for a
sharp phase transformation at fixed composition. Per mole of the reactant, 'y, we obtain
from Eq. (13.12),

D=-AGn=-Y G/~ =-|cx «f |/|xp f] (320

Even though this expression looks quite simple, it may sometimes be difficult to evaluate
all the molar contents to be inserted. A useful approximation would be to assume that
all the phases have the same compositions they have at the equilibrium temperature. If
it is further assumed that the resulting value of AG,, varies linearly with temperature,
we could use the method introduced in Section 3.9 for a transformation that we now
recognize as a sharp one. Since D stays constant for a sharp transformation, we get

AS(Ty — Ty) = AH(T) — Ty)/ Ty = —AG = / DdE = D/dg = DAE. (13.21)

Let A& be the number of moles transformed. The driving force for the transformation
of one mole is thus

D = ASy(Ty — To) = AHn(Ty — To)/ To. (13.22)

Here, T, is the equilibrium temperature and 77 is the actual temperature of the transfor-
mation. For small AT the heat of transformation may be taken as the value at 7. It may be
available from direct measurements. For larger undercoolings one may have to consider
variations of A H;,, with temperature, for instance due to changes of the compositions of
various phases.

Let us now examine the situation below the equilibrium temperature in more detail.
Figure 13.6 demonstrates the complexity found in a eutectoid transformation in a binary
system. Each one of the phases is in contact with the other two phases and two dif-
ferent compositions are thus defined for each phase. Figure 13.5 shows how they are
obtained from the phase diagram by extrapolating the phase boundaries to the tempera-
ture of transformation 7 under the assumption of local equilibrium at all the two-phase
interfaces.

The situation gets even more complicated if one tries to analyze how the driving force
is consumed during the transformation. This is illustrated in Fig. 13.7. This diagram
demonstrates several complications. Firstly, &« and 3 grow under an increased pressure
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Figure 13.7 Molar Gibbs energy diagram for a binary system with a eutectoid transformation,
showing three dissipations of the driving force, AG,, AG, and AG3.

because the interfaces to the parent 'y are curved (as illustrated in Fig. 12.5). The corre-
sponding —A G is consumed by the creation of all the o/ 3 interfaces in the eutectoid
structure. Secondly, the two new phases are not formed with their final compositions,
which are governed by the /3 equilibrium, because they grow from the y phase. The
corresponding —A G, is consumed by diffusion from the interior of « to the interior of 3
behind the reaction front. The remaining part of the driving force, —AG3, is consumed
by diffusion at the reaction front.

As already mentioned, according to an approximate treatment of the rate of transfor-
mation, the highest growth rate is obtained when one-half of the total driving force goes
into the surface energy of all the o/ 3 interfaces.

Exercise 13.7

The difference in chemical potential of B driving the diffusion in the y phase during
the eutectoid transformation, shown in Fig. 12.5, was identified in Fig. 13.5(b). Find the
corresponding differences for o and for 3. How are the three related?

Solution

Apgy is found between the lines for v/x and 3/« and A,ug is found between the lines
for B/ccand B/y. Evidently, Au), = Au& + A/,LE.
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Exercise 13.8

The heat of formation of pearlite from austenite is A H,, = —4.5kJ/mol and the equi-
librium temperature is 7, = 1000 K. Estimate the coarseness of pearlite formed at
T\ = 950 K, assuming that all the driving force goes into interfacial energy between the
two phases of pearlite. Suppose that the interfacial energy is approximately o = 1 J/m?
and the molar volumes of all the phases are approximately Vy, =7 x 107%m3/mol.
Compare with an experimental value of the coarseness, w = 0.14 pm.

Hint

w is the total thickness of one lamella of each phase in pearlite. One mole of pearlite
then contains an area of 2V}, /w of interfaces.

Solution

The total interfacial energy is 20 Vy,/w J/mol. The driving force is (A Hy/ To)(T) —
15). Thus, 20 Vi /w = (AHuy/ T Ty — To); w =20V To/(—AHW)(To — T) =2 X
1 x7x107° x 1000/4500 x 50 = 6 x 10~*m = 0.06 pum.

The observed value is about twice as large, which is expected if only one-half of the
driving force should go into interfacial energy.

Driving force under constant chemical potential

In the preceding section it was shown how the driving force for a sharp transformation
can be estimated from the undercooling A7 at which the transformation occurs. In the
same way, the driving force for a y-eutectoid transformation in a ternary A—B—C system,
controlled by the chemical potential of a mobile component C under constant 7" and P,
should depend upon the difference in chemical potential of C during the transforma-
tion and at equilibrium, Apc. We can illustrate the conditions by extrapolations in the
e, up phase diagram in Fig. 12.24 or in the corresponding ¢, up phase diagram (see
Fig. 13.8 where the diagram has been rotated in order to emphasize the similarity with
the binary case in Fig. 13.5).

Since uc is assumed to be constant instead of N, we must evaluate the driving force
from a new alternative of the combined first and second law,

Ddé = VdP — ST + Y 11;dN; + pucdNe — dG + Nedpue — Nedpe
j#C
= VdP — SdT + Z“def — Nedpe — d(G — Nepe) (13.23)
J#C
where G — Ncjuc is a new characteristic state function. At constant I', P, N; and pc
we get

Ddg = —d(G — Nepe). (13.24)
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Figure 13.8 Evaluation of the driving force,A ¢, for an isobarothermal transformation under
changing C content in a ternary system.
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Figure 13.9 Sharp transformation y — o + f3 in a ternary system with a mobile component, C.
The increase of the C content can be read directly.

However, by identifying the extent of the transformation, &, with the increased content
of C, N¢, we return to more well known quantities,

D = —(G/dNc)r PN, + e = =l + e = Apuc. (13.25)
By definition, the first term is the chemical potential of C at equilibrium. Therefore,
D = pc—"uc = Apc. (13.26)

This is the driving force per mole of C added to the system. It should be multiplied by
the amount of C required by the transformation. That quantity is conveniently expressed
in terms of the uc fraction, the amount of C per mole of A + B. Figure 13.9 demon-
strates how the increase Auc can be evaluated graphically and the driving force for the
transformation y — o + 3 expressed per mole of A + B is given by

D = Auc x Auc.
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cementite

0 T
0 0.2 0.4
A «
Figure 13.10 See Exercise 13.9.

Figure 13.9 resembles Fig. 12.24 but the choice of u axis makes the arrow horizontal.
The analytical evaluation of Auc is described in the next section.

Exercise 13.9

In the Fe—C system the y phase exists above 1000 K and at lower temperatures it trans-
forms to a lamellar aggregate of o« and cementite (Fe; C) that is called pearlite. The phase
diagram (Fig. 13.10) for 923 K shows that it is possible to stabilize 'y by the addition
of Mn. Consider an alloy composed of 'y with a composition falling exactly on the y
corner of the & + vy + cementite triangle at 923 K. That alloy must have a C activity of
0.7. By carburizing such an alloy one can form a surface layer of pearlite. Estimate its
coarseness if one carburizes with an atmosphere having a carbon activity of 0.9. Use the
values Vy, = 7 x 10~°m?/mol and surface energy o = 1J/m?.

Hint

It should first be realized that we do not know how much of the difference in carbon
activity is lost by driving the diffusion of carbon through the carburized layer. In order to
get a numerical result, let us assume that all the driving force acts at the reaction front.

The increase of the C content is obtained from a horizontal construction in the three-
phase triangle. The increase in C potential is obtained from the activity through uc =
°uc 4+ RT Inac. Assume that half of the driving force goes into surface energy. Express
the coarseness with w, the total width of one lamella of @ and one of cementite. The area
of o/cementite interfaces is then 2V}, /w per mole of the material and we thus get the
relation 2Vi,o/w = 0.5 X AucApuc.

Solution

By measuring the horizontal distance of the y point from the o + cementite side
of the triangle we get Auc = 0.08. By comparing the C activities we get Auc =
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RT In(0.9/0.7) = 1930 J/mol and using half of this we find w = 2V};,6 /0.5AucApc =
2x7x107°%1/0.5x0.08 x 1930 =2 x 107" m = 0.2 um.

Reaction coefficients at constant chemical potential

In Section 13.2 we were able to calculate the fractions of the various phases taking
part in a sharp transformation in a system of constant composition because p was equal
to ¢ + 1. Now we shall consider the case p = ¢ where one of the components is very
mobile and is controlled through its potential. The total contents of all the other com-
ponents in the system will be kept constant, i.e. n,, = ¢ — 2. Together with the constant
potential and pressure we have ny =c —2+ 1 + 1 = ¢ and instead of Eq. (13.3) we
nowobtaind =c+2—p —ng+ny=c+2—c—c+(c—2)=0. This will also be
a sharp transformation. The mobile component will be denoted C and will be given the
number c. By not considering that component we get the same condition as before but
must now express the molar contents without regard for the mobile component. Thus
we must use the u variable instead of the ordinary molar content x, and we obtain for
instance

Vo=l b Wy u . (13.27)

The mobile component is not included in the determinant. The amount of the 'y phase
taking part in the reaction, v?, is here expressed without regard for the mobile component.
The change in content of the mobile component can be evaluated just like the change of
any other molar quantity using Eq. (13.12).

Auc = [ug u® w¥ . . oui | (13.28)
This is the increase of C per mole of units of the reaction formula as given by the v/
values. If 7y is the only reactant and all the other phases are products, it is interesting
to evaluate Auc per mole of all the other components in <. It is obtained by dividing
with — VY,

Auc = |ud u? uy .. uﬁ_l‘/u‘lx u? ug Coooul (13.29)

c—1|

If a mixture of « and 3 in the ternary A—B—C system is treated under conditions of a
lower chemical potential for C, the system will move from right to left in Fig. 13.9 and
one should expect the reverse transformation

x4+ 3 = v + C(sink).

This is a peritectoid transformation and one should primarily expect the new y to form
at the /3 interfaces. If the transformation is not inhibited due to slow diffusion of the
two sluggish elements, it will look almost as a sharp phase transformation.

Exercise 13.10

The equation for Auc, the addition of a mobile component C consumed by a sharp
transformation, can be applied to the reaction 'y 4+ C(source) — o+ 3 in a ternary
system at constant 7 and P and the result will be Auc/vY = |ug‘u‘13u’2/|/|u‘1"u£5 |. Show
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that the same result is obtained if C(source) is regarded as a phase taking part in the
transformation.

Hint

According to the text we really have p = ¢ = 3 but now we shall insert p =c+1 =4
which is the condition for a sharp transformation. We can then use the ordinary equations
expressed in terms of x fractions. We can calculate the amount of the ‘phase’ C, taking
part in the reaction, as v°. The amount per mole of metal in y is V¢ /vVY(1 — x{).

Solution

Let C(source) be the fourth phase and let C be the third component.
Then, V¢ = —|x{ xzB x| = —|xg xF xJ|  and VY = —|x¥ xf x&| =
—x® xP| since xS=x{=1 and xC=0=x{. Thus, vC/V(1 —x))=
—x& xP o P —xd) =@ Wb Wl ub). The minus sign is

due to the fact that C(source) must lose C in order for the mixture of the other phases to
gain C.

Compositional degeneracies for p = ¢

Let us now return to transformations in closed systems, i.e. systems of constant com-
position. In Chapter 11 we saw that a transformation involving ¢ + 1 phases will be
sharp if P and the composition are kept constant and 7 is varied gradually (or 7 is kept
constant and P is changed gradually). In Section 13.2 we then saw how one can calculate
the reaction coefficients for each phase in a sharp transformation from the determinant
obtained by omitting the corresponding column from the composition matrix. A phase
transformation involving less than ¢ + 1 phases will normally be gradual. It will extend
over a range of 7 at constant P and the compositions of non-stoichiomtric phases will
normally change gradually. However, it sometimes happens that such a transformation
is sharp even for p < ¢ + 1. This possibility will now be examined.

Let us start with the case p = ¢, which normally yields a gradual transformation. We
saw in Section 13.4 that the reaction coefficients in such a case can be calculated by
treating the exchange of components with the remaining parts of the system as a reaction
with a hypothetical phase ¢ + 1. The amount of that exchange is thus obtained as

v = (e k¢ xP L xE. (13.30)
If this coefficient happens to be zero, then there is no exchange with the real parts of the
system and the transformation between them is sharp in spite of the fact that p = ¢ and
not ¢ + 1. The condition for having a sharp transformation with p = c is thus that the
composition determinant involving the real phases is zero:

x* xP 0 x| =o. (13.31)
1 2
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A C

Figure 13.11 Projection of a ternary phase diagram at P = 1 bar, showing a temperature
maximum for a three-phase equilibrium.

This means that the real phases fall on a point, line, plane, etc., when p = ¢ = 2, 3,4,
etc. This was shown in Chapter 9 in connection with Konovalov’s and von Alkemade’s
rules. As an illustration, Fig. 13.11 presents a three-phase equilibrium in a ternary system
with a temperature maximum. A liquid with the composition represented by the point
will thus solidify by a sharp transformation. A three-dimensional illustration of the same
situation was given in Fig. 10.31.

In many cases of p = ¢, where the composition determinant is zero, all the phases are
stoichiometric. The reason may be that their compositions are governed by the valency of
the elements. This puts a constraint on the compositions of the phases which is manifested
mathematically by the composition determinant being equal to zero. This phenomenon
may thus be called stoichiometric constraint. However, Fig. 13.11 demonstrates that it
may happen even if the phases are not stoichiometric and we shall thus use the more
general term compositional degeneracy. We can formulate the following rule: ‘A trans-
formation involving p = ¢ phases will be sharp when 7 or P is varied if there is one
compositional degeneracy’ and that may be tested with Eq. (13.31). In Section 10.8 we
called the corresponding phase equilibrium singular.

In order to evaluate the reaction coefficients in sharp transformations where p = ¢, we
can make any convenient assumption regarding the composition of the additional phase
because it does not take part in the reaction anyway. If we assume that the additional
phase is pure component 1 we obtain

bl xf
x ) x) L xd
Ve = =‘x§x§ el (13.32)
xX{ x5 oxyo.o.xg
100000
vP = —|xgx) L oxE, (13.33)

etc.
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(a) (b)
NaBr KBr
NacCl KCI

Figure 13.12 The composition space for a quaternary, reciprocal system reduced to a plane due to
a stoichiometric constraint, common to all the phases.

The mass balance is satisfied because for each component i from 2 to ¢ we find,

E x/ /= x&
1 1
J

B Y 3

Blyx Y €
Xy X3 . . XX }xz X3 .. xc|+...

=0. (13.34)

This is zero because there are two identical columns, since i has a value from 2 to c.

In this example, the first column of elements in the composition matrix dropped out
because the additional phase was taken as pure component 1. For a different choice,
another column would have dropped out. We may summarize the result of this section
as follows: If the composition determinant for a phase transformation with p = ¢ is
equal to zero, then it is a sharp transformation and there is a compositional degener-
acy. The reaction coefficients can be calculated from the determinants obtained by first
omitting any column from the composition matrix and then, in turn, the row correspond-
ing to each phase. In addition, a minus sign must be added for the second, fourth, etc.,
phase.

Figure 13.11 illustrates a case where a compositional degeneracy occurs only in a
particular place in the phase diagram where the phases happen to fall on a line. There
is another very important case where the compositions of several phases are subject to
a stoichiometric constraint that results in a compositional degeneracy for equilibrium
between those phases in an extended portion of the phase diagram. An example is an
ionic system where each element has a fixed valency (see Fig. 13.12 which gives the
composition space for the Na—K—CI-Br system). It is evident that all possible mixtures
of the ionic phases will fall on a plane inside the three-dimensional space. The phase
relations can thus be plotted in a diagram with one dimension less. Such a diagram is
called a quasi-ternary diagram. In the same way, a ternary system can sometimes be rep-
resented with a quasi-binary diagram. In practice, one often uses the word quasi-binary
to describe an isopleth section of a ternary diagram when many or the most important
tie-lines fall in or close to the section even without full stoichiometric constraints. In the
present case a composition square can be used and, except for the different outer shape,
the diagram would have the same properties as a triangular diagram for a ternary system.
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This is often called a reciprocal system because the amounts of the four components
are not independent but are related by a reciprocal reaction

NaCl 4+ KBr — NaBr + KCI.

All ionic phases in a reciprocal system will fall in the composition square and the
composition of each phase can only move inside the square. As an example, the liquid
phase may cover the whole square at high temperatures and each solid covers a small area
close to its corner at low temperatures. However, it should be realized that the chemical
system under consideration may contain other phases which are not subject to the same
constraint. In the present case there may be metallic phases of Na and K and a gas phase
composed mainly of Cl, and Br,. They fall outside the plane and they can be shown only
by the use of the three-dimensional quaternary diagram in Fig. 13.12(a).

The results of this section may be summarized as follows. When there is a composi-
tional degeneracy for the phases taking part in a certain transformation, it is possible to
define the compositions of the phases with a new set of components having one member
less but at least one of the components in the new set cannot be a member of the initial
set. If ¢ still represents the initial number of components, one should modify Gibbs’
phase rule to

v=c—ngg+2—p, (13.35)

where 7.4 is the number of compositional degeneracies. In the section through the phases,
taking part in the transformation, the phase diagram has the properties of a system with
¢ — n¢q components. Normally, it is interesting to calculate such a section only if the
degeneracies are caused by stoichiometric constraints. If there are other phases in the sys-
tem, not subjected to the same stoichiometric constraints, it may be inconvenient to apply
anew set of components for the equilibria containing only some of the phases. It may be
more convenient to introduce an additional component into the calculation with a com-
positional constraint. The amount of that component will automatically come out as zero.

Exercise 13.11

Suppose we have a computer program for the calculation of phase equilibria. When trying
to calculate the equilibrium temperature for SiO; + Al,SiOs + Al,O5 at a pressure of 1
bar we get the message, ‘cannot calculate because degrees of freedom not zero’. What
action could we take?

Hint

Evidently, the program can only deliver a unique answer and there is a unique temper-
ature for the equilibrium only if it is invariant at the given pressure, i.e., monovariant
according to the Gibbs’ phase rule. The program may require p = ¢ + 1. We should
start by checking if our transformation is sharp, although p = ¢. Otherwise, we have a
gradual transformation or overlapping transformations and cannot expect to calculate a
unique value of 7.
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Solution

The composition determinant is

Si O Al
Si0O, 1 2 0
ALSiIOs |1 5 2| =10—4—-6=0.
ALO; |0 3 2

This transformation thus has a compositional degeneracy and is sharp. The reason is that
all the ¢ phases fall on the straight line going from SiO, to Al,Os3. It is thus possible to
calculate a unique transformation temperature. Our program seems to need p = ¢ + 1
phases. We can solve the problem by introducing a fourth phase in the AI-O-Si system,
which is outside the straight line, e.g. pure Al. It will not affect the equilibrium between
the initial phases.

Exercise 13.12

We have seen the following. For p = ¢ + 1 we get a sharp transformation by gradually
changing T, keeping the composition and P constant. For p = ¢ we get a sharp trans-
formation by gradually changing © for a mobile component, keeping the composition
constant except for the mobile component, and keeping P and 7 constant.

Then we saw that for p = ¢ it may happen that one gets a sharp transformation by
gradually changing 7T and keeping the composition and P constant. Discuss whether it
is possible also to get a sharp transformation in a system where p = ¢ — 1 by gradually
changing p for a mobile component, keeping the composition constant, except for the
mobile component, and keeping P and 7T constant. If so, what should be the expression
for the reaction coefficients, v¥, etc.

Hint
Accept that equations for the case of a mobile component are obtained by using u; instead

Ofxl«.

Solution

For p = ¢ we can get a sharp transformation in the ordinary case by gradually chang-
B

ing Tif [x¥ x; . . x| =0 for constant P. For p = ¢ — 1 we would get a sharp
transformation by gradually changing uc if |uf uf .. u._;| =0 for constant P
and T.

Effect of two compositional degeneracies for p = ¢ — 1

Let us now consider whether there can be a sharp transformation in a closed system
if p = ¢ — 1. By comparison with Section 13.8 it may be suggested that we need two
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compositional degeneracies in order to get a sharp transformation at constant composition
and pressure or temperature. If this is correct, we could treat this case by introducing
two additional phases, ¢ and ¢ + 1, and then require that their reaction coefficients are
both zero. We can try this suggestion by first letting phase ¢ be pure component 1. The
requirement for phase ¢ + 1 to represent a degeneracy would be

xfooxs o oxg .o xf
N
v =l == K x| =0
xXp o x5 X5 x5
I 0 0 0 0 O

(13.36)

By letting phase ¢ 4+ 1 be pure component 2, the requirement for phase ¢ to represent a
degeneracy would be

Vo= (=D X)L L X =0 (13.37)

We have thus found that two compositional degeneracies can be defined for a system,
which has a sharp transformation between ¢ — 1 phases in a closed system when P or
T is varied. In Section 10.9 we called the corresponding equilibrium doubly singular.
The conditions of the two compositional degeneracies may be obtained by forming two
determinants from the composition matrix by omitting first one column and then another,
irrespectively of which ones, and putting to zero the two determinants thus obtained. Such
a set of two equations was obtained in Section 8.9 when extrema in both 7 and P were
discussed and it was concluded that they imply that the compositions of the phases fall
on the same point for p = 2, same line for p = 3, etc. The same is true here, of course.

We may also look at the situation from the other side and conclude that there is a sharp
transformation at constant composition and pressure in the case p = ¢ — 1 if there are
two compositional degeneracies. Then we may evaluate the reaction coefficients from
the determinants obtained by omitting two columns from the composition matrix and
then the row corresponding to each phase, one at a time

P )

vh = P I XL x| (13.38)
1 0 0 00 0
0 1 0 00 0

We may summarize the result of this section as follows: If the composition determinants,
obtained in a case of p = ¢ — | by excluding one column at a time, are equal to zero,
one will get a sharp transformation when 7 or P is varied The reaction coefficients can
be calculated from the determinants obtained by excluding any two columns from the
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composition matrix and, in turn, the row corresponding to each phase. In addition, a
minus sign must be added for the second, fourth, etc. phase. A sharp transformation at
constant composition and constant 7 or P thus requires that there are negg = c+ 1 — p
composition degeneracies.

We may generalize the above result. A transformation involving p phases in a system
with ¢ components will be sharp if the composition determinants, obtained by omitting
¢ — p columns from the composition matrix, are all zero. The reaction coefficients can
then be evaluated from the determinants obtained by omitting ¢ + 1 — p columns and
then omitting in turn the row corresponding to each phase.

When a chemical reactio