

Nanocomposite hard coatings for protection against LIE

Matjaž Panjan, Etienne Billot Oleg Zabeida, Jolanta Klemberg-Sapieha

Engineering Physics Department, Ecole Polytechnique PROJET CRIAQ MANU419 Concordia University, December 21th

Overview

- Review of liquid impingement erosion process
- TiN and TiSiN coatings by HiPIMS
- Plasma nitriding
- Summary and outlook

Liquid impingement erosion mechanism

Liquid impingement causes fatigue of material through propagation of **shockwaves**

Q. Zhou, N. Li, X. Chen, T. Xu, S. Hui, D. Zhang, International Journal of Mechanical Sciences, 50 (2008) 1543

damage by discrete water jet

J.E. Field, Wear, 233-235 (1999) 1-12.

R. Li, H. Ninokata, M. Mori, Progress in Nuclear Energy, 53 (2011) 881

Approaches to protect against LIE

Approaches to protect against LIE

Important mechanical properties for protection against LIE

Properties of material that minimize shockwave damage :

high hardness

.

- low elastic modulus \vdash high ratio H^3/E^2
- high fracture toughness

Influence of interfaces on the shockwave energy

monolithic material

e.g. TiN or nitriding

multilayered material

e.g. TiN/Ti

composite material

e.g. WC/Co or nc-TiN/a-SiN

Interface splits shockwave energy into reflected and transmitted wave!

$$E_i = E_t + E_r$$

- Interfaces confine damage to smaller area of material!
- Interfacial bonding has to be strong enough to withstand high shockwave stresses!

Coatings deposited by HiPIMS

deposition system at FCSEL

HiPIMS power supplies

High Power Impulse Magnetron Sputtering Discharge

HiPIMS discharge

DCMS discharge

Advantages of High Power Impulse Magnetron sputtering

1. control of ion energy and direction

DCMS – line-of-sight deposition

2. Improved adhesion of coatings

A.P. Ehiasarian, J.G. Wen, I. Petrov, Journal of Applied Physics, 101 (2007) 054301

Distance from interface, nm

Depositions of hard coatings by HiPIMS

diamond tip with 200 µm

L₃ = 22 N

Indentation measurements of TiN deposited by HiPIMS and DCMS

Indentation measurements of **TiSiN** deposited by HiPIMS

Plasma nitriding

DC/RF plasma source

Nitriding and plasma nitriding experiments

sample	N111007	N111013	N111028	N111107	N111114	N111202	N111214	N111216
temp [°C]	600	600	700	700	600	700	700	700
p [mtorr]	250	500	400	540	530	500	510	270
ϕ_{N2} [sccm]	50	77	46	77	77	70	70	9
ϕ_{H2} [sccm]	0	0	0	14	14	20	14	2
time [h]	5	5	5	5	5	2	3	3
type of nitriding	nitriding	plasma	plasma	plasma	plasma	plasma	plasma	plasma
power supply		inductively coupled RF	inductively coupled RF	inductively coupled RF	inductively coupled RF	direct DC	direct RF	direct RF
power [W]	/	100	100	100	200	50	60	130

Hardness of nitrided layer

N111214

N111216

bare

HV 600 ± 30

HV 340 ± 10

Summary

- Protection against liquid impingement erosion is possible with materials that are hard, elastic and tough
- Nanocomposite TiSiN deposited by HiPIMS show promising elasto-plastic properties (H= 38 GPa, E= 250 GPa)
- Inductively coupled plasma nitriding produced thin and non-uniform nitrided layer, while direct plasma nitriding produced more uniform nitrided layer

Outlook

- Improve elasto-plastic properties of nanocomposite coatings by precisely controlling coating stoichiometry
- Add other elements to the coating (e.g. carbon, aluminum) to further improve tribological properties of the coatings
- Modify parameters for plasma nitriding to achieve thick and uniform nitrided layer