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Vegard’s law is an approximate empirical rule which holds that a linear relation exists, at con-
stant temperature, between the crystal lattice constant of an alloy and the concentrations of the con-
stituent elements. Applications of a density-functional theory of nonuniform fluid mixtures to the
fluid-solid transition of simple binary mixtures of hard spheres demonstrates the importance of rela-
tive atomic sizes in determining lattice constants and suggests that for sufficiently small disparities
in atomic size Vegard’s law may also hold along the fluid-solid coexistence curve.

A fundamental problem in the theory and practice of
alloy formation is the manner in which the microscopic
crystal structures of alloys (solid mixtures) depend on the
atomic properties and relative concentrations of the con-
stituent elements. In an early application of x-ray
diffraction to the analysis of crystal structure, Vegard'
observed that in many ionic salt alloys a linear relation
held, at constant temperature, between the crystal lattice
constant and concentration. This empirical rule has since
come to be known as “Vegard’s law,” although in subse-
quent extensions of the rule to metallic alloys the majori-
ty of systems have been found not to obey it.2*

Several physical factors affecting the crystal structures
assumed by alloys can be readily identified.’ These in-
clude (i) the relative atomic sizes of the elements, (ii) the
relative volume per valence electron in crystals of the
pure elements, (iii) Brillouin-zone effects, and (iv) electro-
chemical differences between the elements. Here, we ex-
amine the role of the atomic-size factor alone by consid-
ering an idealized model mixture of hard spheres. This is
not to deny the importance of the other factors, but rath-
er to demonstrate that the simple but intuitively impor-
tant geometric factor of differing atomic sizes, by itself,
can play a significant role in determining the crystal
structures of alloys. Our approach is based on a density-
functional theory of classical nonuniform fluid mixtures,
which we recently proposed and also applied to fluid-
solid transitions in binary mixtures of hard spheres.%’
We report here an important additional outcome of this
application, namely a prediction for the concentration
dependence of the lattice constant of a random binary
hard-sphere alloy under coexistence conditions with the
fluid. By varying the ratio of the hard-sphere diameters,
we are able to study the form of the lattice-
constant—concentration relationship as a function of the
disparity in atomic sizes between the two components
and relate the results of Vegard’s law. We note that the
relationship between density-functional theory and
Vegard’s law has been briefly discussed by Barrat, Baus,
and Hansen.?

The central quantity in our density-functional theory®
is the (Helmholtz) free energy F|[p,,p,], a unique func-
tional of the two spatially varying densities, p,(r) and
po(r), which is minimized at constant average density by
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the equilibrium densities.® It is useful to separate
F{p,,p,] into physically distinct contributions by writing

Flpyp]=Fiylp,p ]+ Felpnpa] s (1)

where Fy is the ideal-gas free energy of the nonuniform
system in the absence of interactions and F., is the excess
free energy, originating in internal interactions. (We as-
sume here the absence of any external potential.) The ad-
vantage of this separation is that F;; may be expressed
exactly in the form
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where B=1/kgT and A; denotes the thermal de Broglie
wavelength of component i. In contrast, the exact F,, is
unknown and is here approximated by a straightforward
generalization to mixtures® of the modified weighted-
density approximation'® (MWDA). In its original formu-
lation for one-component systems, the MWDA is based
on the assumption that F,, for a nonuniform fluid may be
equated to its uniform-fluid counterpart, which is evalu-
ated, however, at an effective density defined as a certain
weighted average of the physical density (see Ref. 10 for
details). Our generalization to binary mixtures is ex-
pressed by setting

FYWPA [ p, 1/ N=(1—x)fo(p'",x)+xfo(p*,x), (3)

where N is the number of particles, x is the average con-
centration (of component 2, by convention) in the nonun-
iform mixture, f, is the excess free energy per particle of
the uniform mixture, and where 5! and 5% denote total
“weighted densities.” The latter are defined as bilinear
weighted averages of the physical densities with respect

to weight functions @;; according to
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where N; is the number of particles of component i. As

in the one-component case, the self-consistent choice of
the density argument of @;; in Eq. (4) is essential.® To en-
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sure that the approximation is exact in the uniform limit
[p(r)—po], the @;; must be normalized according to

[drw,(lr—rh=1, ij=1.2. (5)
A unique specification of the weight functions @;; follows

from requiring that FMWPA exactly satisfies the defining
relations
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for c,j , the two-particle (Ornstein-Zernike) direct corre-

lation functions (DCF’s) of the uniform mixture. Indeed,
substitution of FMWPA [Eq. (3)] into Eq. (6) yields simple
analytic expressions for @;; involving the uniform-state
functions f, and cm (see Ref. 6). We note that
specification of the welght functions according to Egs. (5)
and (6) ensures that the MWDA exactly satisfies two im-
portant sets of relations, namely the compressibility rela-
tions'' and the hierarchy relations between c/* and
higher-order DCF’s.

Together, Eqgs. (3)-(6) constitute our generalization of
the MWDA to binary mixtures. Application to the
fluid-solid (freezing) transition now involves three princi-
pal steps: (i) parametrization of the solid density, (ii)
minimization of the total free energy with respect to this

0 1
P ps,x)=ps 11— 2 ;S exp

28F6(p %) =177 650

4

_GZ

—+
Yi Vj

parametrized density, and (iii) location of the transition
at fluid-solid coexistence. Parametrization of the solid
density requires both the choice of a crystal structure and
an assumption for the form of the density distribution
about the lattice sites of the chosen crystal. Here we as-
sume, by way of example, a disordered-fcc structure, tak-
ing the atoms of the two components to be distributed
randomly over the sites of a perfect fcc lattice, and a sim-
ple Gaussian distribution of the form
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where x; is the concentration of component i, and ¥, and
v, are “localization parameters” determining the widths
of the Gaussians centered on the lattice sites at positions
R. It is important to note that the assumption of a ran-
dom distribution of atoms on a perfect lattice ignores
short-range order and local lattice distortions. Further-
more, the Gaussian approximation, although well tested
in the one-component hard-sphere system both by simula-
tion!? and by comparison with alternative parametriza-
tions, 13713 is still relatively untested in its application to
mixtures. However, we expect it to be quite reasonable
when the hard-sphere diameters of the two components
are sufficiently similar, which is the case here. ”

From Egs. (4) and (7), the weighted densities can now
be expressed as Fourier-space sums over the reciprocal-
lattice vectors G of the solid, according to
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where p, is the average solid density, and the prime on f|, signifies a partial derivative with respect to density. Equation

(i)

(8) is a self-consistent relation for g
required uniform-state functions f o and ¢,

, which is easily solved—at fixed p;, x, and y; —by numerical iteration. '°
we adopt the expressions following from Lebowitz’s analytic solution!” of

For the

the Percus-Yevick (PY) integral equation for hard-sphere mixtures. It is important to observe that in the MWDA these
functions are always evaluated at weighted densities, and these are usually sufficiently low that the known high-density
inaccuracies of the PY approximation'® are not expected to be significant. Substitution of p: [Eq. (8)] into Eq. (3) now
immediately gives FMVPA and addition of F;y then yields the approximate total free energy FMWPA, In the case of
nonoverlapping Gaussians—the case near freezing— F;4 [Eq. (2)] may be evaluated from the simple analytic expression
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Next, FMWPA is minimized with respect to 7, and 7, at
fixed values of p; and x (for a given choice of hard-sphere
diameter ratio a). The existence of a local minimum im-
plies that the solid is at least mechanically stable. Wheth-
er the solid is also thermodynamically stable is a matter
to be decided by comparing its free energy with that of
the fluid.

Finally, the freezing transition is located by identifying
the thermodynamic state of fluid-solid coexistence, as
characterized by equality of the temperature T, pressure
P, and chemical potentials between the two phases. The
relevant thermodynamic potential for this purpose is the
Gibbs free energy per particle g, which is related to the

[
Helmholtz free energy per particle F /N by

g=F/N+P/p, (10)
with P given by
(i)
P=p*— . 11
P ap(F/N) (1n)

At given values of T and P, equality of the chemical po-
tentials is ensured by constructing a common tangent to
the curves of g versus x for the two phases, the points of
tangency occurring at the coexistence concentrations.
For the solid, we obtain g from Egs. (10) and (11), ap-
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proximating F/N by the MWDA, as described above,
and evaluating the derivative in Eq. (11) numerically.
For the fluid, we adopt the analytic expression for g of
Mansoori et al.,' which is very accurate even at densi-
ties near freezing.!® By now varying T at fixed P, a
temperature-concentration (7 -x) phase diagram may be
traced out. Figure 1 shows results at P =1(kp /03)K for
several values of the hard-sphere diameter ratio «, to-
gether with available simulation data.?® The phase dia-
gram is seen to evolve, with decreasing «a, from a spindle
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FIG. 1. Theoretical phase diagrams (solid curves) of temper-
ature T (in units of K) vs concentration x (of the larger atoms)
describing freezing of binary mixtures of hard spheres into a
disordered-fcc crystal at pressure P=1(ky/03)K at indicated
values of the hard-sphere diameter ratio a=o0,/0,. The lower
curves correspond to the solid phase, and the upper curves to
the fluid phase. The open triangles represent corresponding
simulation data from Refs. 20 and 21 plotted against normalized
scales (see text for explanation).
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type in the range 1> a > 0.94 to an azeotropic type in the
range 0.94>a > 0.87 and finally to a eutectic type in the
range 0.87>a. After normalization to compensate for
small discrepancies in the one-component limits® (at x=0
and 1), theory and simulation are evidently in quite close
quantitative agreement. Furthermore, the predictions of
the theory for the onset of azeotropic behavior (at
a=0.94) and of eutectic behavior (at «=0.87) are in ex-
cellent agreement with very recent simulation results. !

At given values of T, P, and x, the density of the solid
ps is next computed by numerically inverting the equa-
tion of state, i.e., P=P(T,p,,x) [Eq. (11)], and the fcc
lattice constant is then immediately given by
a=(4/p,)!"?. In this way, the lattice constant of the
solid is obtained as a function of concentration x; under
fluid-solid coexistence conditions. Figure 2 shows result-
ing plots of a versus x; corresponding to the phase dia-
grams in Fig. 1. The theoretical predictions are seen to
adhere quite closely to a linear relationship at values of a
sufficiently close to unity, but to deviate with increasing
rapidity as a decreases, particularly near x,=1. It may
be observed that at «=0.85, where the relationship is far
from linear, the lattice constant can actually be double
valued at a given concentration. By comparison with the
phase diagram [inset to Fig. 1(b)], the two values are seen
to correspond to solids that coexist at different tempera-
tures with fluids of different concentrations.

In conclusion, the results of the (parameter-free)
density-functional theory presented here demonstrate
that, independent of other factors, a simple geometric
difference in atomic sizes can play a significant role in
determining the crystal structures—in particular, the

FIG. 2. Lattice constant a vs concentration x; for a
disordered-fcc hard-sphere crystal along the coexistence curves
in Fig. 1. The symbols are predictions of the theory: circles
(a=0.95), squares (a=0.90), diamonds (a=0.88), triangles,
(a=0.85). Linear interpolations between x, =0 and 1 illustrate
that the relationship between a and x; is very nearly linear for
sufficiently close to unity, but increasingly deviates from lineari-
ty as a decreases.
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form of the lattice constant-concentration relationship —
of binary alloys. They suggest, furthermore, that the
linear relationship predicted by Vegard’s law for alloys at
constant temperature may also extend—for sufficiently
small atomic-size disparities—to the fluid-solid coex-
istence curve, along which the temperature varies. It is
important to emphasize, however, that in real alloys the
form of the relationship may also be sensitive to other
factors beyond the simple atomic-size factor considered
here. Experimental determinations of lattice constants in
alloys of varying concentrations at fluid-solid coexistence
would clearly help to clarify this issue.

We are grateful to Dr. W. A. Curtin and to Professor
N. D. Mermin for helpful discussions. This work was
supported by National Science Foundation (NSF) Grant
No. DMR-88-18558 through the Materials Science
Center at Cornell University and NSF Grant No. DMR-
8715590. One of us (A.R.D.) gratefully acknowledges
partial support from the Natural Sciences and Engineer-
ing Research Council of Canada. The computations were
performed using the Cornell National Supercomputer Fa-
cility, a resource of the Center for Theory and Simulation
in Science and Engineering.

L. Vegard, Z. Phys. 5 17 (1921); Z. Kristallogr. 67, 239 (1928).

2C. S. Barrett, Structure of Materials McGraw-Hill, New York,
1952).

3W. Hume-Rothery, R. E. Smallman, and C. W. Hayworth, The
Structure of Metals and Alloys (The Metals and Metallurgy
Trust, London, 1969).

4Theory of Alloy Phase Formation, edited by L. H. Bennett (The
Metallurgical Society of AIME, New York, 1979).

SH. J. Axon and W. Hume-Rothery, Proc. R. Soc. (London),
Ser. A A193, 1 (19438).

6A. R. Denton and N. W. Ashcroft, Phys. Rev. A 42, 7312
(1990).

7For recent reviews of the density-functional method and its ap-
plications to classical fluids, see D. W. Oxtoby, in Liquids,
Freezing, and the Glass Transition, Les Houches session 51,
edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (El-
sevier, New York, 1990); M. Baus, J. Phys. Condens. Matter
2, 2111 (1990); R. Evans, in Liquids at Interfaces, Les
Houches session 48, edited by J. Charvolin, J. F. Joanny, and
J. Zinn-Justin (Elsevier, New York, 1989); M. Baus, J. Stat.
Phys. 48, 1129 (1987); A. D. J. Haymet, Prog. Solid State
Chem. 17, 1 (1986).

8). L. Barrat, M. Baus, and J. P. Hansen, Phys. Rev. Lett. 56,
1063 (1986); J. Phys. C 20, 1413 (1987).

9R. Evans, Adv. Phys. 28, 143 (1979).

10A. R. Denton and N. W. Ashcroft, Phys. Rev. A 39, 4701
(1989). The MWDA is a computationally simpler
modification of the weighted-density approximation of W. A.
Curtin and N. W. Ashcroft, Phys. Rev. A 32, 2909 (1985);
Phys. Rev. Lett. 56, 2775 (1986). See also P. Tarazona, Mol.
Phys. 52, 81 (1984); Phys. Rev. A 31, 2672 (1985).

1IN. W. Ashcroft and D. C. Langreth, Phys. Rev. 156, 685
(1967); 166, 934(E) (1967).

12D, A. Young and B. J. Alder, J. Chem. Phys. 60, 1254 (1974).

13B. B. Laird, J. D. McCoy, and A. D. J. Haymet, J. Chem.
Phys. 87, 5449 (1987).

143, L. Colot, M. Baus, and H. Xu, Mol. Phys. 57, 809 (1986).

I5W. A. Curtin and K. Runge, Phys. Rev. A 35, 4755 (1987).

16In computing the weighted densities from Eq. (8), we have in-
cluded 100-150 reciprocal-lattice-vector shells (a shell
comprising all vectors of the same magnitude) to ensure con-
vergence of the sum.

173, L. Lebowitz, Phys. Rev. 133, A895 (1964). The Fourier
transforms of ¢{?(r) have been given explicitly by Ashcroft
and Langreth. See Ref. 11.

18G. Jackson, J. S. Rowlinson, and F. van Swol, J. Phys. Chem.
91, 4907 (1987); P. H. Fries and J. P. Hansen, Mol. Phys. 48,
891 (1983); B. J. Alder, J. Chem. Phys. 40, 2724 (1964).

19G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W.
Leland, Jr., J. Chem. Phys. 54, 1523 (1971). Note that in ap-
plying the MWDA, we choose the PY approximation for the
uniform-state excess free energy over the more accurate ex-
pression of Mansoori et al. This is consistent with our use of
the PY approximations for the two-particle DCF’s, for which
there exist, to our knowledge, no alternatives consistent with
the excess free energy of Mansoori et al.

20W. G. T. Kranendonk and D. Frenkel, J. Phys. Condens.
Matter 1, 7735 (1989).

21w, G. T. Kranendonk, Ph.D. thesis, University of Utrecht,
1990; W. G. T. Kranendonk and D. Frenkel, Mol. Phys. (to
be published).



