Presenter: Wei Chen (Alex) Supervisor: Dr. Mamoun Medraj **Multilayer Coatings and Composite Coatings for Water Droplet Erosion Resistance Improvement Concordia University** June 17th, 2013 Concordia R **Rolls-Royce** 1

• Work to be done in 2013

Experiment Design

Composition #	B (wt%)	Na ₂ CO ₃ (wt%)	C(wt%)	Holding Time@1050C	Holding Time@1200C	
ВО	100%	-	-	24hrs		-
B1	50%	45%	5%	24hrs		
B2	50%	35%	15%	12, 24, 48hrs	12 hrs	_
B3	50%	25%	25%	12, 24, 48hrs	12 hrs, 72hrs	
B4	50%	15%	35%		72hrs	
B5	50%	5%	45%	24, 72hrs	72hrs	

Old results: B4 @1200°CX72hous

 RIG testing parameter: Speed: 14000 RPM Nozzle size: 400 µm

Time: 0-10 minutes Flow Rate: 0.050-0.070 L/min

Old results: B4 @1200°CX72hous

0 min

6 min

2 min

Experiment Design

Composition #	B (wt%)	Na ₂ CO ₃ (wt%)	C(wt%)	Holding Time@1050C	Holding Time@1200C	
во	100%	-	-	24hrs		
B1	50%	45%	5%	24hrs		-
B2	50%	35%	15%	12, 24, 48hrs	12 hrs	-
B3	50%	25%	25%	12, 24, 48hrs	12 hrs, 72hrs	
B4	50%	15%	35%		72hrs	Old
B5	50%	5%	45%	24, 72hrs	72hrs	New

New results: **B5** @1200°CX72hous

RIG testing parameter: Speed: 14000 RPM Nozzle size: 400 µm Initial water pressure: 30 psi

Time: 0-13 minutes Representative droplet size: 411 μm Flow Rate: 0.050 L/min

New results: **B5** @1200°CX72hous, Side A

Side A, with original coating

New results: **B5** @1200°CX72hous; Side A

7 min

9 min

13 min

New results: B5 @1200°CX72hous, Side A

Erosion curves of the original side vs Ti64

11

Percentage of weight loss

New results: **B5** @1200°CX72hous, Side B

Side B, coating removed

New results: **B5** @1200°CX72hous, Side B

Before erosion

2 min

5 min

New results: **B5** @1200°CX72hous, Side B

New results: **B5** @1200°CX72hous, Side A

New results: B5 @1200°CX72hous, Side B

16

New results: B5 @1200°CX72hous, Side B

Experiment Design

Composition #	B (wt%)	B ₄ C (wt%)	Na ₂ CO ₃ (wt%)	C(wt%)	Holding Time@1050C	Holding Time@1200C
B0	100%		-	-	24hrs	
B1	50%		45%	5%	24hrs	
B2	50%		35%	15%	12, 24, 48hrs	12 hrs
B3	50%		25%	25%	12, 24, 48hrs	12 hrs, 72hrs
B4	50%		15%	35%		72hrs
В5	50%		5%	45%	24, 72hrs	72hrs
B10		50%	5%	45%		72hrs

B5 @1200°C×72hr, pure boron

B10 @1200°C×72hr, **B₄C**

(1) Boronizing: 4 factors response surface design

Factor 1	Factor 2	14	Factor 3	Factor 4
B4C %wt	Na2CO3 %wt	C %wt	Temperature	Time
30	5	65	1050	84
60	35	5	1050	24
45	20	35	1150	54
60	35	5	1050	84
30	20	50	1150	54
45	20	35	1150	54
45	20	35	1150	84
60	35	5	1250	24
45	5	50	1150	54
30	5	65	1050	24
45	35	20	1150	54
30	35	35	1250	24
45	20	35	1150	54
45	20	35	1150	54
60	35	5	1250	84
60	20	20	1150	54
45	20	35	1150	54
30	35	35	1250	84
60	5	35	1250	84
60	5	35	1050	84
45	20	35	1150	54
60	5	35	1250	24
30	5	65	1250	24
60	5	35	1050	24
30	35	35	1050	84
45	20	35	1150	54
45	20	35	1050	54
30	5	65	1250	84
30	35	35	1050	24
45	20	35	1150	24
45	20	35	1250	54

Response: Erosion weight loss

Preparation period: 32 days

Output: Optimized coating technique with best erosion resistance.

(1) Boronizing: 4 factors response surface design

Expected output with response surface experiment design

(1) **Boronizing**: new improvment

(2) Multilayer coatings: erosion testing

(3) Stress wave analysis

 MATLAB programming Reproduce stress wave analysis result at least in 1-D mode

• Output:

A Stress wave analysis Software for multilayer coating design

(4) Laser cladding

• Erosion testing for previous Al_2O_3 cladded samples.

