Cu	cF4	(225) <i>Fm</i> -3 <i>m</i> – a

Cu [1], c.c.p. (cubic close-packed), f.c.c. (face-centered cubic), Strukturbericht notation A1 Structural features: Close-packed layers in c stacking, i.e. consecutive layers are shifted in the same direction. See Fig. I.37.

Experimental: single crystal, spectrometer, X-rays

References: [1] Bragg W.L. (1914), Philos. Mag. 28, 355-360.

Landolt-Börnstein New Series III/43A1

Cu ₂ MnAl	<i>cF</i> 16	(225) <i>Fm</i> -3 <i>m</i> – cba
----------------------	--------------	-----------------------------------

MnCu₂Al [2], Heusler phase, Strukturbericht notation L2₁; NaLi₂Sb [3]; LiRuGa₂ [5]; CsLi₂C₆₀ [4], fulleride-CsLi₂

Structural features: $Cu(Mn_4Al_4)$ cubes share all faces to form a 3D-framework. Alternatively: AlCu₈ and MnAl₈ cubes share all faces to form a 3D-framework. Ordering variant of W (b.c.c.), sequence along <111>: -Cu-Al-Cu-Mn-. NaLi₂Sb contains close-packed Sb layers in c stacking, Na occupies all octahedral and Li all tetrahedral voids. See Fig. I.41.

Fig. I.41. MnCu₂Al

Arrangement of Cu(Mn₄Al₄) cubes (Mn atoms dark, Al atoms light).

Soltys J. (1981) [1] AlCu ₂ Mn a = 0.5958 nm, $V = 0.2115$ nm ³ , $Z = 4$							
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
Cu1 Mn2 Al3	8 <i>c</i> 4 <i>b</i> 4 <i>a</i>	-43m m-3m m-3m	$\frac{1}{4}$ $\frac{1}{2}$ 0	$\frac{1}{4}$ $\frac{1}{2}$ 0	$\frac{1}{4}$ $\frac{1}{2}$ 0		rhombic dodecahedron Al ₄ Mn ₄ Cu ₆ rhombic dodecahedron Cu ₈ Al ₆ rhombic dodecahedron Cu ₈ Mn ₆

Experimental: powder, diffractometer, X-rays

Remarks: The centers of pseudo-spherical C_{60} units are considered for $CsLi_2C_{60}$ (orientational disorder). In the abstract of [3] the Wyckoff positions of the Li and Na sites are misprinted as 8*b* and 4*a* instead of 8*c* and 4*b*, respectively.

References: [1] Soltys J. (1981), Phys. Status Solidi A 66, 485-491. [2] (1931), Strukturberichte 1, 488, 551. [3] Hurng W. (1991), Mater. Res. Bull. 26, 439-442. [4] Hirosawa I., Prassides K., Mizuki J., Tanigaki K., Gevaert M., Lappas A., Cockcroft J.K. (1994), Science (Washington D.C.) 264, 1294-1297. [5] Czybulka A., Petersen A., Schuster H.U. (1990), J. Less-Common Met. 161, 303-312.

Th₆Mn₂₃ [1], Strukturbericht notation D8_a

Structural features: Intergrowth of Ca_3Ag_8 - (Th₆ octahedron surrounded by a Mn_8 cube and a Mn_{12} cuboctahedron) and W- (a central Mn atom surrounded by a Mn_8 cube, a Th₆ octahedron and a Mn_{12} cuboctahedron) type nested polyhedra units. See Fig. I.53.

Fig. I.53. Th₆Mn₂₃

Arrangement of Mn_{12} cuboctahedra, which represent 27-atom W-type (Mn central atom + Mn_8 cube + Th_6 octahedron + Mn_{12} cuboctahedron; light) and 26-atom Ca_3Ag_8 -type (Th₆ octahedron + Mn_8 cube + Mn_{12} cuboctahedron; dark) nested polyhedra units.

Florio J.V. et al. (1952) [1] $Mn_{23}Th_6$ $a = 1.2523 \text{ nm}, V = 1.9639 \text{ nm}^3, Z = 4$							
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
Mn1	32f	.3m	0.122	0.122	0.122		pseudo Frank-Kasper Mn ₁₀ Th ₃
Th3 Mn4	52J 24e 24d	.5m 4m.m m mm	0.322 0.297 0	0.322 $0^{1/4}$	0.322 $0^{1/4}$		7-capped pentagonal prism $Mn_{13}Th_4$ icosahedron $Mn_{\circ}Th_4$
Mn5	4a	<i>m</i> -3 <i>m</i>	ů 0	0	0		square prism (cube) Mn_8

Transformation from published data: origin shift $\frac{1}{2} \frac{1}{2}^{1}/_{2}$ Experimental: single crystal, Weissenberg and rotation photographs, X-rays, R = 0.100

References: [1] Florio J.V., Rundle R.E., Snow A.I. (1952), Acta Crystallogr. 5, 449-457.