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There is considerable interest in determining the fraciure toughness of brittle
materials by measuring the extent of cracking associated with a Vickers
indentation because of the ease of specimen preparation and the simplicity of the
test. However, confusion has been engendered by the multitude of models and
equations in the literature relating the degree of cracking to the fracture
toughness. In Part 1 of this work, nineteen of these equations are reviewed and
then modified in a standard manner for both experimental convenience and direct
comparison. MSTj 1050a
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Introduction

FEATURES OF VICKERS INDENTATION
TOUGHNESS TEST
The application of the Vickers indentation fracture
toughness test to brittle materials, particularly glasses and
ceramics, has become widespread because (i) it can be used
on small samples of material not amenable to other fracture
toughness tests, (ii) specimen preparation is relatively
simple requiring only the provision of a polished, reflective
plane surface, (iii) the Vickers diamond indenter used to
produce the hardness indentations is a standard item used
on a dedicated hardness tester or on a universal testing
machine, (iv) in many instances the crack lengths can be
measured optically without undue difficulty, and (v) ii is
both quick and cost effective.

The undoubted advantages of the technique are,
however, offset by a number of complications; namely (i)
the accuracy to which the crack lengths can be measured
(and hence to which the fracture toughness can be calcu-
lated), (ii) all the indentation fracture models given in the
literature assume that either one or the other of two ideal-
ised crack systems is formed during a Vickers indentation
test, which mayor may not be the case for the material in
question, (iii) the diversity of indentation fracture toughness
equations reported in the literature, and (iv) the often
reported discrepancy between the indentation fracture
toughness of a material and its fracture toughness as
measured by conventional methods, such as the single edge
notched beam (SENB) test.

These complicating factors form the underlying basis of
this two part paper which critically assesses the Vickers
indentation fracture toughness test. In Part 1, 19 of the
indentation toughness equations to be found in the litera-
ture are reviewed and formulated into a standard form for
easy comparison and use and in Part 2, 1 these standardised
equations are evaluated using Vickers indentation
toughness test data for a range of brittle materials.

ORIGINS OF VICKERS INDENTATION
TOUGHNESS TEST
The extent of the surface radial cracking which generally
occurs when non-ductile materials are indented by 'sharp'

indenters such as a Vickers or Knoop indenter was first
explicitly recognised as being indicative of the fracture
toughness of the material in 1957 by Palmqvist2-4 who
worked exclusively on cermets, e.g. WC-Co. However, the
surface radial cracking frequently observed surrounding
Vickers indentations (and less often around Knoop
indentations) in other more brittle materials, e.g. glasses,
ceramics, and glass ceramics, was generally regarded as an
unwelcome feature of hardness testing. This view was
fundamentally reversed when Lawn and co-workerss-7

published their seminal work on the principles of
indentation fracture in 1975.

It is worth summarising the results of Palmqvist and
later workers on cermets before 1975 as they clearly illus-
trate the need to consider the stress state of the material
surface before indentation when interpreting experimental
Vickers indentation test data. Palmqvist2 initially derived
the following equation by considering the work done when
a Vickers indenter moves a distance into a solid material
under the action of a load P

A = 0'0649(PK)(PK/Hy)l/2 (1)

where A is the critical work required to initiate such
cracking around a Vickers indentation, Hy is the Vickers
hardness, and PK is the critical indenter load required to
initiate cracking.

However, it was experimentally difficult to detennine PK

accurately. The problem was solved when Palmqvist3,4

observed that a plot of the sum of the lengths of the cracks
at the four corners of the Vickers indentation L I against
the indenter load P was a straight line

II=alP-a2 • • • • (2)

where al is the slope and azis the intercept at P = O.This
linear relationship was confirmed by Dawihl and
Altmeyer.8 Thus, the critical indenter load PK is given by
the intercept at L 1=0 when P = PK' Palmqvist, however,
went a step further and redefined equation (1) as

A300 = 0'0649(P300)(P300/Hy)l/2 (3)

where A300 is the work required to generate cracks of a
total summed length of 300 Jlm around a Vickers indent-
ation in cemented carbides and P300 is the necessary
indenter load, which can be calculated for a given cermet by
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Schematic idealised plan view and cross-sectional view of a Vickers indent radial-median or 'halfpenny' crack
system and b Vickers indent radial Palmqvist crack system
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resistance' W, which is given by

W=P/Il

Vickers indentation fracture toughness
models

Note that according to equation (4), W also equals 1/al and
has the dimensions of force per unit length which corres-
ponds to energy per unit area. In addition, it is independent
of the Vickers hardness Hv and does not specify an experi-
mental critical load, such as PK or P300 in equations (1) and
(3), respectively.

The numerous indentation fracture models reported in the
literature are classified into two groups; in one group it is
assumed that the cracks which form as a result of Vickers
indentation are well developed radial-median, 'halfpenny'-
shaped cracks (see Fig. 1a), and in the other group it is
assumed that radial Palmqvist cracks are formed (see
Fig. 1b). There have been two recent and essentially
theoretical reviews of indentation fracture dealing with
indentation by both blunt and sharp indenters;lO,l1
however, neither review covers all the models dealt with
chronologically in Part 1 of the present work, nor do they
report, as does Part 2,1 the application of any given model
to materials other than those used by the originators of the
model.

MODELS BASED ON A RADIAL-MEDIAN
CRACK GEOMETRY
Lawn and Swain equation (1974)
Lawn and Swains used a standard two dimensional
linear elastic fracture mechanics approach based on the
Boussinesq solutions for the stress field in an isotropic,
linear elastic half-space under normal point loading to
model the propagation of a 'well behaved' median crack
associated with the indentation caused by a sharp indenter.
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using given values for al and a2 with L 1= 300 Jim in
equation (2) or taken graphically from a plot of L 1
versus P.

To obtain consistent and reproducible results when using
equations (1) and (3) the specimen surface conditions had to
be highly reproducible and well defined as the crack length
was strongly dependent on the surface treatment.3,4,8 For
example, for a given cermet, (i) surface grinding before
indentation using a diamond instead of a SiC abrasive
wheel resulted in significantly longer crack lengths, (ii)
diamond polishing after diamond grinding gave rise to the
longest indentation cracks, with the crack length increasing
somewhat with increasing polishing time, and (iii) after
diamond polishing, the intercept at L 1 =0 occurred at very
low values of P, tending towards P = O.

The dependence of the surface radial crack lengths in
cermets on the preindentation surface preparation method
was critically analysed by Exner9 in 1969. He clarified the
inconsistent and often contradictory explanations in the
literature for this dependence by providing experimental
evidence that the shorter cracks about Vickers indents in
surface ground samples were the result of residual com-
pressive surface stresses produced within the cobalt phase
by grinding and that these stresses could be removed by
annealing or polishing. Thus, the increase in crack length to
a maximum length after annealing or polishing was a result
of the removal of the surface layer deformed by grinding
and hence the extrinsic residual compressive surface
stresses. Exner also concluded that the existence of a signifi-
cant (i.e. non-zero) critical indenter load for crack initiation
was indicative of the presence of superimposed surface
compressive stresses; thus, A in equation (1) was not a valid
fracture toughness parameter as it was determined solely by
the surface stress state.

Thus, Exner set a2 in equation (2) to zero, obtaining

II= alP (4)

and rather than use a parameter such as A300 in equation
(3), which requires the fixing of an experimental parameter,
i.e. constant L 1, he defined a parameter called the 'crack
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Ponton and Rawlings Vickers indentation fracture toughness test: Part 1 867

To a first approximation, they regarded a well behaved
median crack as a penny-shaped internal crack having a
crack diameter D. The equation they derived can be written
in a form applicable to a Vickers indentation as follows

ljJ= 2·7, can be written as

Kc = 0'1704(Hval/2) log (4' 5a/c)
= 0'079(P /a3/2) log (4' 5a/c) . (10)

assuming J1 = 0 and taking 8 as 74°, even though the
Vickers indenter is not a conical indenter. Furthermore, the
substitution of c for D is acceptable for opaque material.12

where <I>= 8± arctan (J1), in which 8 is the indenter cone
half-angle and J1 is the coefficient of sliding friction between
the indenter and the material. Equation (7) can be rewritten
for a standard Vickers indenter as

Evans and Charles equation (1976)
The validity of the functional relationships in equation (9)
was further investigated by Evans and Charles14 using
conventional double torsion (DT) fracture toughness data,
obtained in a dry nitrogen environment for a number of
technologically more important ceramic materials, in place
of Kc' i.e. assuming Kc = KIc in the general belief that DT
specimen fracture effectively occurs by tensile opening or
mode I crack propagation to give a KIc value. They found
that for Vickers indentation data, cia correlated with
KcljJ/(Hyal/2) and increased with decreasing hardness.
Their assumption was that the influence of v on cia was not
significant and that a dependence of J1 on hardness was not
likely, but that the hardness dependence of cia was due to
rp/a increasing with decreasing hardness and rp/a being
proportional to a power function of E/(Jy, i.e. of EljJ/H.

Evans and Charles carried out a dimensional fracture
mechanics analysis which gave

KcljJ/(Hal/2) = F1(c/a)F2(EljJ/H) . . . . (11)

The assumption of a power function for F2 was justified by
data fitting, giving F2 = (E4>/H)2/S. The slope of the plot

log {[KIc4>/(Hyal/2)](Hy/E4»2/S}

versus log (c/a) was effectively - 3/2 for the high cia poly-
crystalline data; this is also the slope of the elastic solution
for a penny-shaped crack wedged at its centre by a load P*

K = P*(nc)-3/2 . . . . . . . . . . . . (12)

Using P* = P/(2 tan 74°) as given by Ref. 7 together with
P = Hya2/O'4636, equation (12) can be written as

K = Hya2/[0'4636(2 tan 74°)(nc)3/2] . . (13)

By taking ljJ= 2'7, the following equation, after Evans and
Charles, can be derived

Kc4>/(Hya1/2) = k[2'7/(0'4636n3/2 2 tan 74°)J(c/a)-3/2
= 0'15k(c/a)-3/2 . . . . (14)

where k is a correction factor to equation (12) required by
the presence of the free surface; Evans and Charles found
empirically that k = 3·2 at large values of cia. Substituting
0'4636P/a2 for Hy in equation (14) and rearranging gives

Kc = 0'1777Hya2/c3/2 = 0'0824P/C3/2 .... (15)

Evans and Davis equation (1979)
Evans 15 has reviewed the elastic-plastic stress field
approach to indentation fracture, demonstrating that either
a generalised stress analysis in conjunction with linear
elastic fracture mechanics concepts or a dimensional analy-
sis procedure could be used to obtain the following crack
extension relationship

Kc/(Ha1/2) = gl (c/a)g2(E/H) (16)

where gl (c/a) and g2(E/H) are independent dimensionless
functions if stresses within the indentation plastic zone exert
a negligible influence on the crack extension. Evans treated
the indenter as a wedge and applied the elastic solution for
a penny-shaped crack wedged by a force P* at its centre, i.e.
equation (12), to obtain an analogous crack extension
relationship for a Vickers indenter

Kc/(Ha1/2) = f(H/E)(c/a)-3/2 . . . . (17)

where f(H/E) is a function. Comparing equations (16) and
(17) shows that gl(c/a) = (c/a)-3/2. Evans found from data
analysis that a suitably simple form for g2(E/H) was
(E/H)2/5; a plot of log{[KIc/(Hyal/2)](Hy/E)2/5} versus

(7)

(8)

(9)

(6)

Kc = 0'0515P/D3/2

Kc = [(1- 2v)/2ns/2](HP/D)I/2

where Kc is the critical stress intensity factor for indent-
ation fracture, P is the applied indenter load, D is the major
median crack depth, v is Poisson's ratio, and H is
the mean contact or indentation pressure exerted by the
Vickers indenter. Note that H is given by P /2a2, where a is
the indentation half-diagonal length, and is independent of
the applied indenter load; furthermore, equation (6) is only
valid for D ~ 2a. Although D can be measured directly in
transparent materials, later studies 7,12 on soda-lime glass
have shown that D ~ c (see Fig. la, where c is the more
easily measured surface radial crack length), while further
work on alumina and opaque glass ceramics12 indicates
that the substitution of c for D in equation (6) is also
acceptable for opaque materials.

Evans and Wilshaw equation (1976)
Evans and Wilshaw13 recognised that the indentation stress
field due to a sharp indenter is essentially elastic-plastic in
nature. By carrying out a dimensional fracture mechanics
analysis of indentation fracture using elastic stress field
solutions modified by the presence of the indentation
plastic zone they showed that the indentation surface radial
crack length c should be related to the indentation half-
diagonal length a, as follows

Lawn and Fuller equation (1975)
Lawn and Fuller 7 noted that internal penny-shaped median
cracks ultimately develop into near ideal halfpenny-shaped,
radial-median crack systems during unloading (owing to
the residual stresses resulting from the strain mismatch
between the plastically deformed indentation zone and the
elastic matrix surrounding it). By means of a linear elastic
fracture mechanics analysis of the problem of a well
developed halfpenny crack loaded at the centre by a
conical indenter and primarily propagated by the wedging
component (of the indentation force P) acting normal to the
median crack plane, they derived the following equation,
valid for D ~ 2a

where (Jy is the uniaxial yield stress, rp is the indentation
plastic zone radius, and F1, F2, F3, F4 are empirically deter-
mined functions. They assumed that F2, F3, and F4 are
approximately constant, in which case cia should be a
strong function of Kc/((Jya1/2) or KcljJ/(Hya1/2), since

- H/(Jy = ljJ, where ljJ=f(E/(Jy, v), Hy = 0'9272H, and E is
Young's modulus.

Evans and Wilshaw carried out a least squares fit of the
indentation radial crack data and the KIc data for a number
of materials plotted as KIcljJ/(Hyal/2) against cia and
obtained an equation apparently valid for· 0·6 ~ cia < 4·5,
which, on noting that Hy = 0'4636P/a2 and assuming

Materials Science and Technology September 1989 Vol. 5
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log(c/a) produced an unexpectedly good correlation of the
Evans and CharlesI4 data despite the exclusion of their
constraint factor c/J. Evans also reported a polynomial fit to
this plot after Davis (see Ref. 15) of log A == F, where

A = [Klc/(Hval/2)](Hv/E)2/5
and

F = -1'59-0'34B-2'02B2+ 11·23B3

-24'97B4+16'32B5 . (18)

where B = log (c/a). Since A = 10F, an equation for Kc can
be written as follows

Kc = Hval/2(E/Hv)2/5 x 10F

= 0·6305Eo·4pO·6 X 10Fa-O'7 • (19)

However, the fit produced a slope of -1'32 (Ref. 16) rather
than - 3/2 as indicated by equation (17). Evans attempted
to correlate the data in terms of g I(c/a) alone, i.e. as if
residual stresses and the plastic zone size are not important
factors; no satisfactory correlation was found, suggesting
their importance via the term g2(E/H).

Blendell equation (1979)
Blendell17 curve-fitted the data of Evans and CharlesI4 and
obtained the following equation

[Kcc/J/(Hyal/2)](Hy/Ec/J)2/5 = 0·055 log (8'4a/c) . . (20)

which, taking c/J = 2·7, can be written as
Kc = 0'0303(Hyal/2)(E/Hy)2/510g(8'4a/c) . (21)

This equation has the same form as equation (10) due to
Evans and WilshawI3 except for the presence of the E/Hy

term.

Lawn, Evans, and Marshall equation (1980)
The elastic-plastic model of indentation fracture caused by
a 'sharp' indenter was extended by Lawn et aI.18 who
explicitly resolved the complex elastic-plastic stress field
beneath the indentation into a reversible elastic stress field
component and an irreversible residual stress field com-
ponent. The contribution of the elastic component to crack
propagation is small compared with that of the residual
component as a result of its reversible nature.

The elastic component is taken to operate outside the
indentation plastic zone; it enhances subsurface (median)
crack propagation, but suppresses surface (radial) crack
propagation during the loading half cycle, then completely
reverses its operation during the unloading half cycle
enhancing the latter and suppressing the former. The resid-
ual component provides the driving force for continued
radial and median (as well as lateral) crack extension during
the unloading half cycle resulting in the attainment of a
halfpenny equilibrium crack configuration upon complete
unloading.

The residual stress component is regarded as being
concentrated at a point located at the crack centre at the
elastic/plastic interface, acting as a crack mouth opening
point-force. Furthermore, it is assumed that the indentation
plastic zone volume can be equated to the volume of an
internally pressurised spherical cavity, allowing the use of
Hill's elastic-plastic solution to the expanding spherical
cavity problem.19 Lawn et aI. thus derived the following
crack extension relationship

c = {<Dr(cot8)2/3[(E/H)I/2 /Kc]}2/3 p2/3 . (22)

where c is the equilibrium surface radial crack length after
unloading, <Dris a dimensionless constant independent of
the indenter-specimen system, and 8 is the characteristic
indenter half-angle. The point force approximation used by
Lawn et aZ. has been shown to be valid for cia > ~ 2 for
Vickers indents with fully developed cracks, 2° in which case

Materials Science and Technology September 1989 Vol. 5

c is proportional to p2/3, i.e. p/C3/2 is constant. The
constant <Drwas evaluated as 0'032±0'002 using 8 = 74°
and the E/H ratio for soda-lime glass, thus 'calibrating'
equation (22), which can be rewritten as

Kc = 0'0139(E/H)I/2(P/c3/2) . (23)

Anstis, Chantikul, Lawn, and Marshall equation
(1981 )

, Anstis et aZ.2I undertook a critical evaluation of the Vickers
indentation fracture toughness measurement technique

, using equation (23) in the form

Kc = 0r(E/H)I/2(p/c3/2) . (24)

where Or is a material independent constant. In order to
evaluate On a number of ceramic materials, e.g. glasses, a
glass ceramic, and polycrystalline ceramics, were chosen as
'reference' materials. These materials were tested to deter-
mine their H, E, and double cantilever beam (DCB) K1c
values (or literature values taken), and were also indented
with a Vickers indenter to determine c as a function of P.
From plots of p/C3/2 against P it was found that P/C3/2 was
independent of P for each material within experimental
scatter. Substituting KIe for Kc and using the H, E, and
mean p/C3/2 values for each material in the following
equation

Or = KIc/[(E/H)I/2(p/C3/2)J . . (25)

a value of Or was obtained for each material. Thus, a mean
calibration constant Or = 0'016±0'004 was obtained, giving
the following equation

Kc = 0'016(E/H)I/2(P/C3/2) . (26)

Anstis et aZ. concluded that an accuracy of better than 30 to
40% should be attainable for those materials which are well
behaved in their indentation response.

Niihara, Morena, and Hasselman equation (1982)
Niihara et aZ.22 have proposed that the apparent invalidity
of the relationship p/C3/2 = constant (based onthe assump-
tion of a well developed halfpenny crack) for cia < ~ 3 is
due to a transition from a radial-median crack system (see
Fig. 1a) for cia > ~ 3 to a Palmqvist crack system (see
Fig. 1b) for cia < ~ 3. Their proposal is based on the obser-
vation that equation (20) does not give a good fit to data
for WC-Co materials containing > 6 vol.-%Co, which
developed Palmqvist cracks with cia < 3.

They plotted the data of Evans and Wilshaw,13 Evans
and Charles,14 and Dawihl and Altmeyer8 on axes of
log{[Kcc/J/(Hyal/2)](Hy/Ec/J)2/5} versus log(c/a) or log(l/a)
since Z/a = cia -1. Correlation analyses showed that for
data with cia ~ ~ 2·5 the best correlation was in terms of
cia via the equation

[Kcc/J/(Hyal/2)](Hy/Ec/J)2/5 = 0'129(c/a)-3/2 . (27)

Assuming c/J = 2'7, this equation can be written as
Kc = 0'0711(Hyal/2)(E/Hy)2/5(c/a)-3/2 . (28)

However, for data with cia ~ ~ 2'5, the best correlation was
provided via Z/a rather than cia, such that for Z/a in the
range '" 0·25 to '" 2·5, i.e. cia in the range '" 1·25 to '" 3'5,
the best fit equation was

[Kcc/J/(Hyal/2)](Hy/Ec/J)2/5 = 0'035(Z/a)-1/2 . . . (29)

Lankford equation (1982)
Lankford23 used the WC-Co indentation data of Niihara
et aZ.22 and indentation data for four other materials that
form Palmqvist cracks at low indentation loads and well
developed radial-median cracks at high loads to generate
log-log plots of [Kcc/Jf(Hval/2)](HyfEc/J)2/5 against Zfa and
cfa. Representing the individual Zfa dependence of each of
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for cia ~ ::::::2'8, respectively.
As a consequence of being able to separate their derived

expression into two equations about a pivot point of
cia ::::::2'8, Miranzo and Moya25 concluded that the
apparent discrepancy between experimental data for
materials with cia < ::::::3 and the indentation models based
on a fully developed radial-median crack system, depends
on the value of cia rather than there being a transition in
the crack system morphology from Palmqvist morphology
at low values of cia to radial-median morphology at high
values of cia.

Laugier equations (1985)
Laugier27 derived a modified equation of the form of
equations (22) and (24) by employing the analytical approx-
imation P = (E/H)1/3 (where P is the relative plastic zone
size) to the following function resulting from Hill's elastic-
plastic expanding spherical cavity solution 19 (see also Refs.
18,26)

E/H = 9[(1- v)P3 - 2(1- 2v)/3]/[2(1 + In P3)] .. (37)
rather than p:::::: (E/H)1/2 as chosen empirically by Lawn
et al.18 He obtained the following equation

Ke = O'010(E/H)2/3(P/c3/2) .... . (38)

in which the calibration constant of 0·010+0·002 was
evaluated using the data of Anstis et al.21 excluding data on
WC-Co, which does not satisfy the criterion c» a.

Laugier used the same data to calibrate the crack exten-
sion relationship of Evans and Charles,14 i.e.

Ke oc (E¢/Hy)2/5(p/C3/2)

using the equation
k = K1e/[(E/H)2/5(p/C3/2)]

which neglects the constraint factor 4>, and obtained
k = 0·022±0·005. Thus,

Ke = 0'022(E/Hy)2/5(p/C3/2) (39)

Tanaka equation (1987)
Tanaka28 proposed a new model of elastic-plastic indent-
ation fracture termed the 'inclusion core model', in which
the pressure due to the indenter is interpreted as a hemi-
spherical compressible, hydrostatic core rather than as an
expanding spherical cavity.18,26 In the inclusion core
model, the material volume displaced by the indenter is
accommodated by the compressible, hydrostatic core in
conjunction with the hemispherical plastic zone outside the
core, whereas in the spherical cavity model the cavity
volume is equated with the indentation volume.18,26 By
applying the Hill elastic-plastic expanding spherical cavity
analysis to the plastic zone and the Eshelby spherical
inclusion analysis to the core (see Ref. 28), Tanaka
ultimately derived the following analytical equation

Ke = 0'035(E/Hy)1/4(p/C3/2) (40)

MODELS BASED ON PALMQVIST CRACK
GEOMETRY
Niihara, Morena, and Hasselman equation (1982)
Niihara et a1.22 conducted a data fitting analysis of the data
of Evans and Wilshaw,13 Evans and Charles,14 and Dawihl
and Altmeyer8 as discussed above. They contend that for
Vickers indentation data with cia < ::::::3, the crack system is
Palmqvist in nature rather than radial-median;22,29 thus,
the characteristic crack length is I rather than c, where
I/a = c/a-1 (compare Figs. 1a and 1b). Niihara et al.
obtained a best fit equation for cia data in the range '" 1·25

. . . . . . (36)

for cia ~ ::::::2·8and
Ke = 0'09[f(E/H)]Hyal'58/cl'08

Miranzo and Moya equation (1984)
Miranzo and Moya25 derived an analytical expression
using a model after Chiang et al.26 based on the Hill19
solution to the problem of an internally pressurised
spherical cavity in an infinite isotropic elastic-plastic solid,
but which takes account of the reduced constraint factor
resulting from the stress free surface of the indentation. The
expression derived is a continuous function of cia valid for
c/a> ::::::1'3, but being analytically complex is not readily
usable. However, Miranzo and Moya report that the data
of Evans and Charles14 were in good agreement with the
expression for c/a> 1'3; thus, they were able to decompose
their original unwieldy expression into the following
equations

[Ke/(Hyal/2)][f(E/H)]-1 = 0'05(c/a)-O'5 .. (33)

valid for cia ~ ::::::2'8, and
[Ke/(Hyal/2)][f(E/H)]-1 = 0'09(c/a)-1'08 . (34)

valid for cia ~ ::::::2·8.
The function f(E/H) = [(P~xp/£5) -1·5]/(1- v), where

£5 = 2[1 + 3ln PExp]/3 and PEXPis the experimental relative
plastic zone size, Le. the experimental value of rp/a. A least
squares analysis by Ponton, using the E, H, and PEXPdata
cited by Chiang et al.,26 of PEXP= A(E/H)B, where A and B
are constants gives PEXP= 0'792(E/H)o'408 (which is an
empirical approximation to equation (37)). Equations (33)
and (34) can be rearranged as

Ke = 0'05[f(E/H)]Hya/cO'5 (35)

the five material types by (l/a)-m, he found that m ranged
from 0·5 to 1·05with the lines diverging at low values of I/a,
where equation (29) should be most appropriate, with a
mean slope of 0·85± 0·22. By contrast, when representing
the individual cia dependence of each material by (c/a)-n, n
ranged from 1·45 to 1·66 with a mean of 1·59± 0·08 and all
the data lines clustered around the 'universal' line of Evans
and Charles14 (n = 1'5) in a roughly parallel manner.

Lankford also noted that equation (27) lies close enough.
to the centroid of the data band such that using it for
materials on the band periphery would involve an error of
no more than '" 35%. He reduced the error by finding the
best curve through his data, the WC-Co data of Niihara
et al.,22 and the original data of Evans and Charles14 to
give

[Ke¢/(Hyal/2)](Hy/E¢)2/5 = 0'142(c/a)-1'56 .. (30)

which, assuming ¢ = 2'7, can be written as
Ke = 0'0782(Hyal/2)(E/Hy)2/5(c/a)-1'56 .... (31)

Furthermore, he concluded that the basic Evans and
Charles14 relationship in terms of cia is valid for non-
ductile materials over the entire indentation fracture
morphology spectrum, from Palmqvist to radial-median
morphology and capable of giving Ke to an accuracy of
better than 35%, given adequately accurate E and H data.
Note that ¢ (=H/(Jy) affects the Ke value because it
depends on v and E/(Jy (e.g. see Refs. 19,24). Using v = 0·25
and E/(Jy ::::::75, which are typical values for ceramics,15 in
the following equation proposed by Marsh24

H/(Jy = 0·28+ (0'60B) InZ . . . . . . . . . (32)
where

B = 3/[3-(1- 2v)((Jy/E)]
and

Z = 3(E/(Jy)/[4+v-((Jy/E)(1-2v)(1 + v)]
gives ¢ = 2'7, which is the value assumed in this paper and
explains why in the literature on Vickers indentation
toughness, ¢ is quoted as being '" 3 and taken as a
pseudoconstant.

Materials Science and Technology September 1989 Vol. 5



P
ub

lis
he

d 
by

 M
an

ey
 P

ub
lis

hi
ng

 (
c)

 IO
M

 C
om

m
un

ic
at

io
ns

 L
td

870. Ponton and Rawlings Vickers indentation fracture toughness test: Part 1

. (43)

STANDARDISED FORMS OF INDENTATION
EQUATIONS
The following points were noted when reviewing the litera-
ture on indentation toughness models in the previous
section.

1. The possibility of confusion arising from the use of the
Vickers hardness Hy or the mean contact pressure H, and
an indenter half-angle of 74° or 68°, depending on the
indentation fracture model in question.

2. The unfortunate reporting of </J as being '" 3, which is
an unhelpful approximation when one attempts to evaluate
the constant term in certain of the equations.

3. The differing functional importance given to Poisson's
ratio by the various models, i.e. v is (i) not considered to
be a significant parameter (Refs. 7, 15, 18, 21, 27, 35),
(ii) incorporated explicitly as a variable (Refs. 5, 25, 31), or
(iii) incorporated implicitly as a constant (Refs. 13, 14, 17,
22, 23, 28, 30), e.g. within </J, presumably as 0·25.

4. The need for standardised equations that are directly
comparable and convenient to use experimentally.
In view of the above points, the authors have rewritten the
relevant equations, taking v and </J as 0·25 and 2'7, respect-
ively, in terms of the following experimental parameters, as
and where necessary (see Figs. 1a and 1b): the applied
indenter load P, the mean radial surface crack length c, the
mean Palmqvist (surface) crack length l, the mean indent-
ation half-diagonal length a, and the Young's modulus/
Vickers hardness ratio E/Hy. The modified equations are
given in Table 1.

where KCLP = (1/n3/2)(PR/c3/2) is the stress intensity factor
for a penny-shaped crack loaded at its centre by a point
force PR• The force PR is the residual plastic crack driving
force given by Laugier in a previous paper27 which varies
as P(E/H)2/3(cot 8f/3, where 8 = 68°. He calibrated
equation (49) using the data of Anstis et al.,21 excluding
their WC-Co data to give

Kc = 0'015(l/a)-1/2(E/H)2/3(p /C3/2) . . . . . . (50)

Summary of Vickers indentation toughness
equations

GENERIC FORMS OF INDENTATION
EQUATIONS
It is apparent that the multitude of halfpenny and
Palmqvist equations in the literature, the alternative defini-
tions of the indenter half-angle and hardness, and the
differing degrees of· significance given to Poisson's ratio
tend to confuse an already complex subject. This confusion
detracts from the stated experimental advantages of the
Vickers indentation fracture toughness technique. However,
having formulated standardised forms of the 19 equations
reviewed, it becomes clear that if the Vickers hardness is
independent of P (i.e. a = rxp1/2 where rx is a constant), all
halfpenny and Palmqvist equations can be described by one
of the generic forms given in Table 2. Furthermore, in these
generic equations, the factor k is an adjustable constant
which is different for each form of generic equation and
may contain an (E/Hy)n term, where n is a constant less
than one, e.g. k == k'(E/Hy)n or k"{f[(E/Hyt]}, where k, k',
and k" may be empirical, semiempirical, or theoretical
constants.

As a generalisation, equations (51), (52), (55), and (56)
indicate that radial-median, i.e. halfpenny cracking, is to be
expected if an experimental plot of In P versus In c produces
a slope between 1 and 2, whereas if an experimental plot of
In P versus In 1 gives a slope between 1/2 and 1 then
Palmq vist cracking is to be expected; the converse is also
implied. Alternatively, the constancy of p/C3/2, Pic, and P/l

. . . . . . (41)

Niihara equation (1983)
Niihara 30 also proposed a model based on theoretical
fracture mechanics and elastic-plastic indentation theory in
which he modelled Palmqvist cracks as semielliptical
surface flaws and derived the following relationship

[Kc</J/(Hya1/2)](Hy/E</Jf/5 = k2(l/a)-1/2 . . . . (42)

to '" 3'5, i.e. l/a data in the range '" 0·25 to '" 2·5 (see
equation (29) above), which, on assuming </J = 2'7, can be
written as

where k2 is a constant equal to 0'085ko k1. The term ko is
the free surface correction factor and k 1 is the crack depth
factor, which is assumed to be independent of the crack size.
Niihara estimated the value of k2 by using ko = 1·12 and
k1 = 0·5 to give k2 = 0·048. When deriving equation (42),
Niihara assumed that: (i) typically 1 ~ l/a ~ 2'5, (ii) d/l ~ 1
for typical Palmqvist cracks, where d is the crack depth,
and (iii) the maximum crack depth on unloading is about
the order of the indentation depth. Assuming </J = 2'7,
equation (42) can be rearranged as

Kc = 0'0264(Hya)(E/Hy)2/5(l-1/2)

* It has been noted by Ponton32 that the exponent of 1r in equation (46), i.e.
5/2, is missing from the same equation given in the original paper of Shetty
et al.,31 (equation (12) in Ref. 31), and in two subsequent papers by Shetty
et a1.33.34 As far as the present authors are aware, the corrected version,
i.e. equation (46) above, first appears in Ref. 32.

Shetty, Wright, Mincer, and Clauer equation
(1985)
Using Exner's definition9 of the crack resistance W in
equation (5), which can also be written as

W = P/4l . (44)

Shetty et al.31 noted that equation (42) after Niihara30

could be modified to
Kc = !(Hy W)1/2 (45)

by using Hy = 0'4636P/a2 in conjunction with equations
(43) and (44). However, !, which is a function of E/Hy, was
not explicitly defined; in fact ! = 0·0360(E/Hy)2/5. They
carried out an approximate fracture mechanics analysis to
explain the nature of equations (44) and (45); each collinear
pair of Palmqvist cracks (see Fig. 1b) was represented as a
two dimensional through thickness crack, since the crack
depth was of a similar magnitude to the indentation plastic
zone depth. The residual crack opening force was regarded
as a rigid wedge loading the crack at its centre such that the
crack is in equilibrium with the wedge; the wedge thickness
was taken as being equal tp the indentation plastic zone
expansion required to accommodate the indentation
volume. Shetty et al. were thereby able to derive· the
following equation*

Kc = [1/[3(1_v2)(21/2n5/2 tan 8)1/3]] [HP/(4l)] 1/2 (46)

where 8 = 68°. Equation (46) can also be written as
Kc = r(HW)1/2 (47)

where r = 1/[3(1-v2)(21/2n5/2 tan 8)1/3] and 8 = 68°. When
v= 0'25, equation (47) becomes

Kc = 0'0902(HW)1/2 = 0'0937(Hy W)1/2 . . . . (48)

Laugier equation (1987)
Laugier35 recently derived the following analytical stress
intensity factor for Palmqvist cracks KSc, by representing
individual Palmqvist cracks as semicircles

KSC = 2[n/(2 + n)] 1/2(l/a)-1/2 KCLP • • . . . . (49)
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Table 1 Modified equations (unless stated otherwise, for halfpenny equations it is implicitly
assumed that cia ~ ~2)

Equation

Radial-median (halfpenny-shaped) crack equations
Kc=0'0101PI(ac1/2) .
Kc = 0·051 5 PI C3/2 • • • • • • • • • • •

Kc = 0'079(Pla3/2) log (4'5alc) for 0·6 ~ cia < 4·5
Kc = 0·0824 PI C3/2 • • • • • • • •
Kc = 0'4636( PI a3/2)( £ I Hv)2/5(1 OF) * . •
Kc = 0·0141 (PI a3/2) (£ I Hv)2/510g (8'4al c)
Kc = 0'0134( £ I Hv) 1/2(PI C3/2)
Kc = 0'0154( £ I Hv) 1/2(PI C3/2) .
Kc = 0'0330( £ I HV)2/5( PI C3/2) for cl a ~ ~ 2·5
Kc = 0'0363(£1 Hv)2/5(p la1-5)(alc)1.56
Kc=0'0232[f(£IHv)]PI(ac1/2)t for cla~~2'8
Kc = 0'0417[f(£1 Hv)] P I (a°-42c1.08)t for cia ~ ~2'8
Kc = 0'0095( £ I Hv)2/3( PI C3/2)
Kc = 0'022( £ I Hv)2/5( PI C3/2)
Kc = 0'035( £ I Hv) 1/4(PI C3/2)

Palmqvist crack equations
Kc = 0'0089(£1 Hv)2/5PI(a/1/2) for Iia ~0'25 to ~2'5
Kc = 0'0122(£1 Hv)2/5PI(a/1/2) for 1 ~ Iia ~2'5
Kc = 0'0319P l(a/1/2)
Kc = 0'0143( £ I Hv)2/3(al I) 1/2(PI C3/2)

Designation
Ref. no. in Part 21

(6) 5 LS
(8) 7 LF

· (10) 13 EW
· (15) 14 EC
· (19) 15 ED
· (21) 17 B
· (23) 18 LEM
· (26) 21 ACLM
· (28) 22 NMH1
· (31) 23 JL
· (35) 25 MM1
· (36) 25 MM2
· (38) 27 L1
· (39) 27 L2
· (40) 28 T

· (41) 22 NMH2
· (43) 30 N
· (48) 31 SWMC
· (50) 35 L3

* Where F= -1'59-0'348-2'0282+ 11'2383-24'9784+ 16.3285 and 8 = log (cia).
t Where f(£IHv) = [(P~xp/£5)-1'5]/0'75, in which £5=2(1 +3InPEXp)/3 and PExp=0·768(£IHv)O'408.

with increasing P can be investigated, for example, by
calculating the coefficient of variation of p/C3/2, P/c, and
P/1, respectively. However, equation (57), which employs
both the classic halfpenny and Palmqvist model para-
meters, i.e. p/C3/2 and (P/n1/2, respectively, implies that, on
the basis of the invariance of either one of these parameters
with P, one would not be able to predict the morphology of
the cracks developed as a result of indentation.

Conclusions

Modification of the 19 Vickers indentation toughness
equations into directly comparable forms has given rise to
seven generic equations. The nature of these generic
equations implies that an experimentally confirmed func-
tional dependence of c or 1on P may not actually indicate a
specific crack morphology. The implications of this will be
investigated in Part 21 together with the relative ability of
the standardised equations to predict the fracture tough-
nesses of a range of brittle ceramics.
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Table 2 Generic equations

Radial-median (halfpenny) crack equations
Kc = k P I C3/2 •••••••••••• • (51 )
Kc = kPI(ac1/2) == k (P la3/2)(alc)1/2 == k(P IC)1/2 . (52)
Kc=k(Pla3/2) log (Jalc)* .(53)
Kc=k(Pla3/2)10Ft , . (54)
Kc = k (P I a3/2)(alc)m == kP l(a1-5-mcm) == k (pO'5+0'25/mlc)m + . (55)

Palmqvist crack equations
Kc = kP l(a11/2) == k (P I a3/2)(al I) 1/2 == k (P 11)1/2 . (56)
Kc = k (P Ic3/2)(al I) 1/2== k (P I C3/2)(p I I) 1/2 . . (57)

* Where J is an empirical constant obtained by data fitting.
t Where F == f[log (cia)] and is determined by data fitting.
+ Where m is an empirical constant between 1 and 2, found by data fitting.
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