

Hard nanostructured coatings on plasma nitrided Ti6Al4V

<u>Matjaž Panjan</u>, Damian Batory, Ganesh Kamath, Oleg Zabeida, Jolanta Klemberg-Sapieha

Engineering Physics Department, École Polytechnique de Montréal PROJET CRIAQ MANU419 Concordia University, June 17th

Overview

- Problem of coating spallation from substrate after first erosion tests
- Improving coating adhesion to Ti6Al4V by two types of plasma nitriding approaches:
 - RF nitriding
 - HiPIMS nitriding
- Nanocomposite TiSiN and multilayer TiN/Ti coating on HiPIMS nitrided surface
- Water erosion tests of nitrided samples and coated samples with HiPIMS nitrided surface
- Summary and outlook

Coating spallation under water erosion

TiN-TiSiN multilayer

Ti-TiSiN multilayer

Severe spallation of coating after 30 seconds of erosion test! Problem of coating adhesion to Ti6Al4V!

> Erosion time: **30** s Nozzle: **400 μm** Impinging speed: **350 m/s** Estimated droplets size: **450 μm** Water pressure: **30 psi** Water flow: **0.05 l/min**

Problem of depositing hard coating on soft substrate

- soft substrate does not offer good support for brittle coating under high loads
- large difference in elastic modulus between coating and substrate causes high stress on the coating/substrate interface causing poor adhesion and failure during tribological operation
- difference in crystal structure of coating and Ti6Al4V is not favorable for adhesion

- soft substrate does not offer good support for brittle coating under high loads
- large difference in elastic modulus between coating and substrate causes high stress on the coating/substrate interface causing poor adhesion and failure during tribological operation
- difference in crystal structure of coating and Ti6Al4V is not favorable for adhesion

- soft substrate does not offer good support for brittle coating under high loads
- large difference in elastic modulus between coating and substrate causes high stress on the coating/substrate interface causing poor adhesion and failure during tribological operation
- difference in crystal structure of coating and Ti6Al4V is not favorable for adhesion

- soft substrate does not offer good support for brittle coating under high loads
- large difference in elastic modulus between coating and substrate causes high stress on the coating/substrate interface causing poor adhesion and failure during tribological operation
- difference in crystal structure of coating and Ti6Al4V is not favorable for adhesion

- soft substrate does not offer good support for brittle coating under high loads
- large difference in elastic modulus between coating and substrate causes high stress on the coating/substrate interface causing poor adhesion and failure during tribological operation
- difference in crystal structure of coating and Ti6Al4V is not favorable for adhesion

Improving adhesion of coating to Ti6Al4V

Duplex process: plasma nitriding + hard coating

- nitrided surface improves load-bearing capacity
- nitriding provides more gradual stress distribution from substrate to the coating due to smaller mismatch in shear modulus
- better lattice match and chemical affinity between nitrided surface and nitride coatings improves adhesion
- when coating is removed nitriding prevents fast erosion of substrate

plasma nitriding

Molinari, G. Straffelini, B. Tesi, T. Bacci, and G. Pradelli, *Wear* **203–204**, 447 (1997) M. K. Lei, Z. L. Zhang, and T. C. Ma, *Surf Coat Technol* **131**, 317 (2000) D. Nolan, S. W. Huang, V. Leskovsek, and S. Braun, *Surf Coat Technol* **200**, 5698 (2006) F. Yildiz, A. F. Yetim, A. Alsaran, and A. Çelik, *Surf Coat Technol* **202**, 2471 (2008)

Improving adhesion of coating to Ti6Al4V

Duplex process: plasma nitriding + hard coating

- nitrided surface improves load-bearing capacity
- nitriding provides more gradual stress distribution from substrate to the coating due to smaller mismatch in shear modulus
- better lattice match and chemical affinity between nitrided surface and nitride coatings improves adhesion
- when coating is removed nitriding prevents fast erosion of substrate

plasma nitriding

Molinari, G. Straffelini, B. Tesi, T. Bacci, and G. Pradelli, *Wear* **203–204**, 447 (1997) M. K. Lei, Z. L. Zhang, and T. C. Ma, *Surf Coat Technol* **131**, 317 (2000) D. Nolan, S. W. Huang, V. Leskovsek, and S. Braun, *Surf Coat Technol* **200**, 5698 (2006) F. Yildiz, A. F. Yetim, A. Alsaran, and A. Çelik, *Surf Coat Technol* **202**, 2471 (2008)

Approaches to plasma nitriding of Ti6Al4V

Nitrided samples by RF and HiPIMS

RF nitriding

HiPIMS "nitriding"

type of nitriding	temp (°C)	p (mtorr)	φ _{Ar} (sccm)	φ _{N2} (sccm)	time (h)	voltage (V)	thickness (μm)	H (0.5 N) (GPa)
RF	700	700	10	90	4	-1000	~30	8-10
HiPIMS	450	5	35	2	3	-800	~2-3	6-8

Deposition of hard coatings on nitrided Ti6Al4V

nanocomposite coating

TiSiN

HiPIMS nitrided	\$~2 μm \$~3 μm
Ti6Al4V	

multilayer coating

3×(TiN/Ti)/TiN – 10 layers

process	TiSiN	TiN/Ti
# of layers	1	10
nitriding time (h)	2	2
deposition time (h)	4	3.5
deposition temp (°C)	450	450
p (mtorr)	5	5
φ _{Ar} : φ _{N2}	17:1	17:1
substrate bias (V)	-45	-45
total thickness (µm)	~5	~5
hardness	35	22
elastic modulus	240	190

Water erosion test of nitrided samples

RF nitriding

HiPIMS "nitriding"

Erosion time: **2 min** (30s + 30s + 60s) Nozzle: **400 μm** Impinging speed: **350 m/s** Droplets size: **~450 μm** Water pressure: **30 psi** Water flow: **0.05 l/min**

speed: 350 m/s, nozzle: 400 μm, droplets size: 450 μm, water pressure: 30 psi, water flow: 0.05 l/min

Erosion track of coated samples

TiSiN//HiPIMS nitrided

TiN/Ti//HiPIMS nitrided

Comparison of erosion tracks on coated and nitrided samples after 2 minutes test

HiPIMS nitrided

HiPIMS nitrided

TiSiN//HiPIMS nitrided

TiN/Ti//HiPIMS nitrided

Summary

- **plasma nitriding** of Ti6Al4V was used to improve adhesion and load-bearing capacity for hard coatings
- two approaches for plasma nitriding were chosen:
 RF and HiPIMS nitriding
- **TiSiN nanocomposite** and **TiN/Ti multilayer** coatings were deposited over HiPIMS nitrided substrate
- nitriding alone improves water erosion resistance
- coated samples with HiPIMS nitrided layer show better water erosion resistance compered to HiPIMS nitrided samples

Plan of activities until the end of year

- mechanical, structural and chemical analysis of nitrided layer and coatings
- continuation of improving plasma nitriding: **DC nitriding**
- deposition of thick TiSiN nanocomposite and TiN/Ti multilayer coating (~10 μm) on RF or DC and HiPIMS nitrided surface
- incorporation of **carbon** into TiSiN coating for increasing H^3/E^2 ratio and deposition of thick coating (~10 µm) on nitrided surface

Research Activity	Progress	Risk of going beyond 2013
Literature Review	finished	no
Materials Selection	finished	no
Process Development	finished	no
Coating Characterization	in progress	no
Testing and optimization	in progress	no