

Water Erosion Resistant Surface Treatments Using Low Plasticity Burnishing

Outline

- Review
- Correlation between micro hardness and residual stress
- Residual stress measurement
- LPB high speed coupon preparation
- Timeline for the end of the project

Review

DOE for LPB

DOE for LPB ----Surface Roughness

DOE for LPB

----Surface Hardness

Correlation Between Micro Hardness and Residual Stress

Correlation Between Micro Hardness and Residual Stress

Correlation Between Micro Hardness and Residual Stress

Residual Stress Measurement ----Blind hole-drilling method

HBM

Residual Stress Measurement ----Blind hole-drilling method

n Measurement Using Hole Driling Tech.vi Fr dit View Project Operate Tools Win	ont Panel dow Help								- 0
☆ ⑧ ■ 15pt Application Font ▼	· Lov · · · · · · · · · · · · · · · · · · ·						► Sear	rch	٩ 🤋
stop (F)	ASTM	E 837-08: non-u	niform stress dist -α ← + → +α	tributio	7				
lole Diameter [mm] / 2	Maximum Hole	Depth [mm] 0		P Solution	Q Solution	T Solution	Sigma_max	Sigma_mir	Angle-
rid Centre Line Diameter [mm]	5.13	r Ratio 0	45°	0	0	0	0 +0 i	0 +0 i	0
tep Selector [in microns] 25	50 Rose			0	0	0	0 +0 i	— 0 +0 i	0
Number of Hole Driling Steps [20]	20 Current Hole Dr	iling Step 0	((2b) 45°	0	0	0	0 +0 i	0 +0 i	0
Press To Save Strain after Fac	Hole Dril Increment	Epsilon 1		Resid	lual Stre	ess Vs D	epth		
	There of the interestion	200 400 600 800					N	/laximum	Stress
epsilon 1	EMIME	0 0 1000		σ _x XY Grap	h		N	/inimum S	Stress
0	and and a design of the local division of the local division of the local division of the local division of the		2000 -	0.7					
	epsilon 3	200 400 600 800	1500 -	0.6					
	0	0 0 1000	- 1000 -	0.5					
T AT				Pal					
epsilo	n 2	Epsilon 3	E -500 -	≥ 0.4					
		200 400 600 800	-1000 -	S 0.3					
and the local data	and the second sec	0	-1500 -	1 0.2					
Channel 1 Channel 2	Channel 3		8:00:00 PM	dua					
		Press To Save Data	12/31/1903	e je 0.1					
	3 .	OFF	a Array a	0.0					
Zero Balance 1 Zero Balance	e Zero Balance 3	9		-0.1					
200 0000000 200 Balance 2			0.00000 0.00000 0.00000 0.00	000					
py the output from different chan	nels before drilling of h	oles to balance your circuits	0.00000 0.00000 0.000	-0.2	0.05 0.07	5 01	0125	0.15	175
						Der	oth h Imm	1	

LPB High speed Coupon Preparation

High Speed LPB Coupons

Factor of safety > 2

Timeline

----By the end of September

Activity	Description	Finishing percentage by the end of September 2013	Explanations	
Review of low plasticity burnishing		100%		
Process optimisation and evaluation of process parameters on mechanical effects	Based on DOE, samples will be manufactured and characterized by stress measurements, hardness measurements and microstructure analysis.	60% (In-depth micro hardness measurements and microstructure analysis should be able to be finished by then)	Since the residual stress measurement will be started in the middle of June (12+ week's delivery time of the hole-drilling equipment).	
Compilation of Water erosion tests	LPB with various stress distributions tested on the water erosion rig.	70% (Erosion test will be started as soon as the samples are ready)	The machining of the coupons will take time and the time for finishing the testing also depends on the working schedule of the water erosion rig.	
Testing	Correlation of erosion resistance and residual stresses.	<mark>60%</mark> (Correlation could be done with the tested samples)	Both the residual stress measurement and the water erosion rig test will take time and they depend on the uncontrollable factors, such as delivery time and machining time.	

Timeline

----By the end of 2013

Activity	Description	Finishing percentage by the end of 2013		
Review of low plasticity burnishing		100%		
Process optimisation and evaluation of process parameters on mechanical effects	Based on DOE, samples will be manufactured and characterized by stress measurements, hardness measurements and microstructure analysis.	100%		
Compilation of Water erosion tests	LPB with various stress distributions tested on the water erosion rig.	100%		
Testing	Correlation of erosion resistance and residual stresses.	100%		

Thanks

