

Hard nanostructured coatings on plasma nitrided Ti6Al4V

Ganesh Kamath, Matjaž Panjan, Damian Batory, <u>Oleg Zabeida</u>, Jolanta Klemberg-Sapieha

Functional Coating and Surface Engineering Laboratory Polytechnique Montréal

CRIAQ MANU419 Project Meting, October 3rd 2013

Introduction

- RF plasma nirtiding
- HiPIMS treatment
- Nitriding + HiPIMS TiN
- Summary and open questions

Coating spallation

CRIAQ MANU419 Polytechnique

TiN-TiSiN multilayer

Ti-TiSiN multilayer

Severe spallation of coating after 30 seconds of erosion test! Problem of coating adhesion to Ti6Al4V!

Erosion time: **30** s Nozzle: **400 μm** Impinging speed: **350 m/s** Estimated droplets size: **450 μm** Water pressure: **30 psi** Water flow: **0.05 l/min**

Coating spallation

CRIAQ MANU419 Polytechnique

Ti-TiN multilayer, HiPIMS pre-treatment (450 °C)

Plasma nitriding

CRIAQ MANU419 Polytechnique

Plasma nitriding is a surface modification process that makes use of a glow discharge to harden the surface and subsurface of different metals by introducing active nitrogen for subsequent diffusion into the bulk.

Fick's second law

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$
$$D = D_0 exp^{\left(\frac{-Q}{RT}\right)}$$
$$x^2(t) = 2Dt$$

http://www.calphad.com/titanium-nitrogen.html A. Fick, Phil. Mag. (1855), **10**, 30

CRIAQ MANU419 Polytechnique

550 °C – 950 °C (plasma and/or external heating)

Advantages:

- Deep surface treatment (up to hundreds of µm)
- Uniformity (no rotation)
- Plasma heating
- Low vacuum
- Low price
- Ecological
- Possibility of pretreatment and deposition in one process

Disadvantages:

 High temperature required for fast diffusion may affect the overall properties of modified substrate

CRIAQ MANU419 Polytechnique

Set 1 process parameters:

No.	Gas		Temp (°C)	Time (h)	
#6	Ar / N ₂	1/9	615	4	And the owner of the owner owner owner owner o
#12	Ar / N ₂			8	
#13	H_2 / N_2			4	
#14	$\rm H_2$ / $\rm N_2$			8	
#15	H_2 / N_2		700	4	
#16	H_2 / N_2			8	
#17	Ar / N ₂			4	
#18	Ar / N ₂			8	

Samples are heated only by plasma, RF power (80-120 W) is regulated to keep constant the sample temperature, measured by a pyrometer

CRIAQ MANU419 Polytechnique

Less of golden color (TiN) when nitrided in Ar/N_2 mixture

CRIAQ MANU419 Polytechnique

Surface roughness increased after nitriding

CRIAQ MANU419 Polytechnique

Ar / N₂ - 1 / 9; 700^oC; 4h

H₂ / N₂ - 1 / 9; 700⁰C; 4h

Different zones like - compound layer, - alpha case, -diffusion region, are visible after nitriding.

Hardness profile

CRIAQ MANU419 Polytechnique

CRIAQ MANU419 Polytechnique

1 minute

2 minutes

1 minute

Microstructure change

CRIAQ MANU419 Polytechnique

The proportion of beta-phase increased after the nitriding, especially at higher temperature, presumably due to the rapid quenching.

CRIAQ MANU419 Polytechnique

New set of plasma nitrided samples, slow cooling

No.	Gas flow	v ratio	Temp (⁰ C)	Time (h)
#51	Ar / N ₂		580	4
#52	$\rm H_2$ / $\rm N_2$	1/0	580	4
#53	H ₂ / N ₂	1/9	700	8
#54	Ar / N ₂		700	8

XRD results

Samples nitrided 8 hours at 700 °C

XRD results

Samples nitrided 4 hours at 580 °C

CRIAQ MANU419 Polytechnique

H2/ N2

Before

1 minute

6 minutes

Ar/N2

Before

1 minute

6 minutes

CRIAQ MANU419 Polytechnique

Samples nitrided 4 hours at 580 °C

Ar/N2

Before

5 minutes

6 minutes

H2/ N2

3 minutes

6 minutes

CRIAQ MANU419 Polytechnique

Samples nitrided at low temperature show longer incubation time and lower mass loss.

Coating deposition setup

CRIAQ MANU419 Polytechnique

Hardness profile

CRIAQ MANU419 Polytechnique

LDE for HIPIMS pretreated+ TiSiN coating on Ti6V4-alloy

Erosion Time (min)

CRIAQ MANU419 Polytechnique

HiPIMS TiSiN after 5 min of test

HiPIMS TiN after 7 min of test

LIE for Nitriding+polished+HIPIMS pretreated Ti6V4-alloy substrate

LDE surface of Nitriding+HIPIMS pretreated Ti6V4-alloy

TiN coating deposited by HIPIMS stays well adhere to substrate after 7 min of water impact

Best samples so far

CRIAQ MANU419 Polytechnique

Ar/N₂ RF nitriding

5 minutes

H_2/N_2 RF nitriding +HiPIMS

5 minutes

- Hard coatings need a solid intermediate foundation to be an effective protection against LIE.
- Plasma nitriding and particularly RF plasma nitriding of Ti6Al4V alloys provides such interface layer.
- Ti6Al4V samples treated at rather mild niriding conditions (580 °C, 4 hours) perform the best in LIE rig test.
- HiPIMS coatings give better results than their DCMS counterparts.
- HiPIMS TiN film deposited on RF nitrided sample gives the lowest mass loss to date

Open questions

- Ar vs H_2 as a companion gas in RF nitriding
- What is the lowest nitriding temperature ?
- Polishing after RF nitriding is it needed before deposition of (super)hard coating
- Will RF niriding work on real parts (temperature distribution)
- What properties of coatings to look for?

Papers to come

- D. Batory, M. Panjan, O. Zabeida, J.E. Klemberg-Sapieha, ... "RF plasma nitrided Ti64 alloy with improved water erosion resistance"
- 2) G. Kamath, M. Panjan, O. Zabeida, J.E. Klemberg-Sapieha, ..."LIE resistant coatings deposited by HiPIMS"
- 3) HiPIMS on RF nitrided Ti64

CRIAQ MANU419 Polytechnique

