

Multilayer Coatings & Compsite Coatings

Wei Chen (Alex)

Supervised by: Drs. D. Kevorkov & M. Medraj

Concordia University

Feb 19th, 2013

OUTLINES

- Part I Stress wave analysis & multilayer coatings
- Part II Boronizing coatings
- Part III TiC-TiB₂-TiAl₃ coatings
- Part IV Laser cladding coatings

Part I Stress Wave Analysis & Multilayer Coatings

Theoretical Background & Simplifications

Background: Simplifications

Theoretical Background & Simplifications

Background: Simplifications

Simplifications:

- **1. Single droplet** (Φ16.65 μm, 500m/s)
- 2. Linear and rectangle wave
- 3. Incident stress = 1 unit
- **4. Incident time range = 100t_0** (t_0 =3.3E-10 s)
- 5. 100 pulses
- 6. No energy loss
- **7. Thickness design** (t_0 by integer) 1 t_0 -----3.5 µm TiN / 1.6 µm Ti layer

Simplifications:

8. Base metal thickness: infinite

Calculated Results

2

Coating Design

	Configuration (From inner to	Layers	Thickness of						
Coating #	outside)	Amounts	Layer 1 (µm)	Layer 2 (µm)	Layer 3 (µm)	Layer 4 (µm)	Layer 5 (µm)	Layer 6(µm)	Layer 7 (µm)
1	TiN (1T)	1	1.10						
2	TiN(5T)	1	5.52						
3	TiN(9T)	1	9.93						
4	TiN-Ti-TiN (2T-T-2T)	3	2.21	0.50	2.21				
	TIN-TI-TIN-TI-TIN								
5	(2T-T-2T-T-2T)	5	2.21	0.50	2.21	0.50	2.21		
	TIN-TI-TIN-TI-TIN								
6	(T-T-T-T)	5	2.21	0.50	2.21	0.50	2.21		
	TIN-TI-TIN-TI-TIN								
7	(3T-T-3T-T-3T)	5	3.31	0.50	3.31	0.50	3.31		
	TIN-TI-TIN-TI-TIN								
8	(T-2T-T-2T-T)	5	1.10	0.50	1.10	0.50	1.10		
	TIN-TI-TIN-TI-TIN-TI-TIN								
9	(2T-T-2T-T-2T-T-2T-T-2T)	9	2.21	0.50	2.21	0.50	2.21	0.50	2.21
	TIN-TIAIN-TIN-TIAIN-TIN								
10	(2T-T-2T-T-2T)	5	2.21	1.07	2.21	1.07	2.21		
	TIN-TIAIN-TIN-TIAIN-TIAIN								
11	(2T-T-2T-T-2T-T)	6	2.21	1.07	2.21	1.07	2.21	1.07	
	TIN-CrN-TIN-CrN-TIN								
12	(2T-T-2T-T-2T)	5	2.21	0.78	2.21	0.78	2.21		
	TIN-CrN-TIN-CrN-TIN-CrN								
13	(2T-T-2T-T-2T-T)	6	2.21	0.78	2.21	0.78	2.21	0.78	

Part II Boronizing Coating Results

Boronizing Diffusion Coatings

Experiment Design

Composition #	B (wt%)	Na ₂ CO ₃ (wt%)	C(wt%)	Holding Time@1050C	Holding Time@1200C
во	100%	-	-	24hrs	
B1	50%	45%	5%	24hrs	
B2	50%	35%	15%	12, 24, 48hrs	12 hrs
B3	50%	25%	25%	12, 24, 48hrs	12 hrs, <mark>72hrs</mark>
B4	50%	15%	35%		72hrs
B5	50%	5%	45%	24, 72hrs	72hrs

Effect of Powder Composition I

Same Heat Treatment: 1050°C 24 hrs

Effect of Powder Composition II

Same Heat Treatment: 1050°C 72 hrs

B1, 1050°C 72 hrs

B5, 1050°C 72 hrs

Effect of Holding Time I

Same Composition B3, Same heating temperature

1050°C 12 hrs B3: 50%B, 25%Na₂CO₃, 25%C

 1050°C 24 hrs
 1050°C 48 hrs

 B3: 50%B, 25%Na2CO3, 25%C
 B3: 50%B, 25%Na2CO3, 25%C

 Optical
 SEM (BSE)

Optical

TiB₂ Layer: Discontinuous Overall coating structure: No significant change

Effect of Holding Time II

Same Composition B1, Same heating temperature

B1, 1050°C 24 hrs

B1, 1050°C 72 hrs

TiB₂ Layer: Discontinuous Overall coating structure: some change in TiB size

Further Exploration for Better Coatings

B3, 1200°C, 72hrs

B5, 1200°C, 72hrs

Composition B5, 1200°C X 72 hrs

SEM (BSE)

Composition B5, 1200°C X 72 hrs

EDS (Mapping)

Composition B5, 1200°C X 72 hrs

B Ka1_2

Al Ka1

Electron Image 1

22

EDS (Line Scan)

Composition B5, 1200°C X 72 hrs

EDS (Point Identification)

Composition B5, 1200°C X 72 hrs

Water Erosion Testing

- Samples preparation: Boronizing with powder compositon B4, @1200°CX72hous
- RIG testing parameter:
- Speed: 14000 RPM
- Time: 0-10 minutes
- Nozzle size: 400 µm
- Flow Rate: 0.050-0.070 L/min

Water Erosion Testing, B4- 1200°C X 72 hrs Vs Ti64

0 min

6 min

2 min

[4] Pant 2010, [5] Rogers 2008, [6] Swaminathan 2008,

Part III TiC-TiB₂-TiAl₃ Coatings

30

Al Ka1

Al concentrated in the bonding field, indicating possibility of good bonding & higher percentage of strengthening phases in the coating

Water Erosin Testing

Ti64 Uncoated Vacuum: 44-50 mBar Speed: 8000 RPM Time: 40 minutes Nozzle distance: 30mm Flow Rate: 0.065-0.070 L/min

TiC-TiB₂-TiAl₃ coating

Weight Loss: 0.0005 g

Weight Loss: 0.0358 g

Ti64 Uncoated Vacuum: 44-50 mBar Speed: 8000 RPM Time: 40 minutes Nozzle size: 600 µm Nozzle distance: 30mm Flow Rate: 0.065-0.07 L/min

TiC-TiB₂-TiAl₃ coating

Weight Loss: 0.0005 g

Weight Loss: 0.0358 g

Profile of the edge of eroded coupons

-TiC-TiB₂/TiAl₃ In-situ Coatings Eroded Surface SEM - Low magnification

TMG 15.0kV 66.9mm x9 SE

36

5.00mm

- TiC-TiB₂/TiAl₃ In-situ Coatings Edge of the stream – Original pores on the coating

stream

Uneroded

— TiC-TiB₂/TiAl₃ In-situ Coatings Edge of the stream – Original pores on the coating

38

-TiC-TiB₂/TiAl₃ In-situ Coatings Edge of the stream – Erosion of the coating

-TiC-TiB₂/TiAl₃ In-situ Coatings Edge of the stream – Erosion of the coating

40

-TiC-TiB₂/TiAl₃ In-situ Coatings Center of the stream - Erosion of the substrate

41

—TiC-TiB₂/TiAl₃ In-situ Coatings Center of the stream – Erosion of the substrate

Part IV

Erosion Testing of Al₂O₃ Laser Cladding Coatings

Al₂O₃ Laser Cladding Coating

cladding surface

by Thuan

Al₂O₃ Laser Cladding Coating

Vacuum: 18-40 mBar Speed: 14000 RPM Time: 6 minutes Nozzle size: 400 µm Flow Rate: 0.03 L/min

Ti64 Uncoated Weight Loss:

0.0135 g

Al₂O₃ Laser cladding coating

Weight Loss: 0.0095 g

70% weight loss for half cladding

~41% weight loss for full cladding

Thank you!

Questions?