[H₃O]₅Zr₆BCl₁₈[H₂O]₁₉

*cI*98

(H₃O)₅[(Zr₆BCl₁₂)Cl₆]·19H₂O [1]

Structural features: BZr_6Cl_{18} clusters (a central B atom surrounded by a Zr_6 octahedron, a Cl_{12} cuboctahedron and a Cl_6 octahedron) are loosely interconnected via water molecules.

Xie X., Hughbanks T. (1999) [1] BCl₁₈H_{53.04}O₂₄Zr₆

a = 1.1	38749 nn	n, $V = 2.6$	$5711 \text{ nm}^3, Z$	Z = 2				
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment	
M1 Cl2 Zr3 Cl4 P5	48 <i>k</i> 24 <i>h</i> 12 <i>e</i> 2 <i>a</i>	m m.m2 4m.m 4m.m	0.1605 0 0.1657 0.3575	0.1605 0.1831 0 0	0.3987 0.1831 0 0		non-coplanar triangle $(OH_2)_3$ non-colinear Zr_2 octahedron BCl ₅ single atom Zr	

 $M1 = 0.79OH_2 + 0.21OH_3$

Experimental: single crystal, diffractometer, X-rays, R = 0.022, T = 213 K

Remarks: Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Xie X., Hughbanks T. (1999), Angew. Chem. Int. Ed. 38, 1777-1779.

 $[N_{2}H_{5}]_{2}Mg_{3}V_{18}[VO_{4}]_{0.4}[SO_{4}]_{0.6}O_{42}[H_{2}O]_{36}$

*cI*288

$(N_2H_5)_2[Mg_3(H_2O)_{12}V_{18}O_{42}(EO_4)]\cdot 24H_2O[1]$

Structural features: $(V,S)V_{18}O_{46}$ units consisting of eighteen VO₅ square pyramids sharing edges and vertices around a $(V,S)O_4$ tetrahedron (orientational disorder) are loosely interconnected via Mg(H₂O)₄ units to form two interpenetrating 3D-frameworks.

Khan M.I. et al. (1999) [1] $H_{72}Mg_3N_{4.01}O_{82}S_{0.63}V_{18.37}$ a = 1.54913 nm, V = 3.7176 nm³, Z = 2

site	Wyck.sym.		x	У	Ζ	occ.	atomic environment
01	48 <i>k</i>	<i>m</i>	0.08248	0.08248	0.21259		non-coplanar triangle V ₃
O2	48k	<i>m</i>	0.16132	0.16132	0.35578		
N3	48j	<i>m</i>	0	0.253	0.4497	0.167	
O4	48j	<i>m</i>	0	0.3883	0.4311	0.5	
V5	$24\dot{h}$	<i>m.m</i> 2	0	0.16685	0.16685		square pyramid O ₅
O6	24h	<i>m.m</i> 2	0	0.23947	0.23947		single atom V
O7	16 <i>f</i>	.3 <i>m</i>	0.058	0.058	0.058	0.5	4-vertex polyhedron SO ₃
V8	12e	4 <i>m.m</i>	0.25971	0	0		square pyramid O ₅
O9	12e	4 <i>m.m</i>	0.3659	0	0		colinear VMg
Mg10) 6 <i>b</i>	4/ <i>mm.m</i>	0	$^{1}/_{2}$	$^{1}/_{2}$		-
M11	2a	<i>m</i> -3 <i>m</i>	0	0	0		square prism (cube) O_8
H12	96 <i>l</i>	1	0.1552	0.2163	0.3448	0.5	
H13	48k	<i>m</i>	0.1081	0.1081	0.4565		
H14	48 <i>k</i>	<i>m</i>	0.1449	0.1449	0.3182		

M11 = 0.63S + 0.37V

Experimental: single crystal, diffractometer, X-rays, R = 0.028, T = 133 K

Remarks: H of N_2H_5 not located. Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Khan M.I., Yohannes E., Doedens R.J., Tabussum S., Cevik S., Manno L., Powell D. (1999), Cryst. Eng. 2, 171-179.

$[\mathrm{NH}_4]_2\mathrm{SrCl}_4 \qquad \qquad cI16$					<i>cI</i> 16	(229) Im-3m – cba	
(NH ₄) ₂ S Structura vacant (c	rCl ₄ [1 al featu disorde	l] 1res: Subst er).	titution	derivative of	of CsCl of	ideal com	position $[A_3B][Cl_4]$, with part of the A positions
Stehlik H $Cl_4H_8N_2$ a = 0.712	B., Wei Sr 5 nm, 1	identhaler V = 0.3655	P. (193)	(58) [1] Z = 2			
site V	Vyck.	sym.	x	У	Z	occ.	atomic environment
Cl1 (NH ₄)2 Sr3	8 <i>c</i> 6 <i>b</i> 2 <i>a</i>	3m 4/mm.m m-3m		$\frac{1}{4}$ $\frac{1}{2}$ 0	$\frac{1}{4}$ $\frac{1}{2}$ 0	0.667	rhombic dodecahedron $Sr_2(NH_4)_6Cl_6$ rhombic dodecahedron $Cl_8Sr_2(NH_4)_4$ rhombic dodecahedron $Cl_8(NH_4)_6$

Experimental: powder, X-rays

Remarks: Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments. The description by the authors in space group (211) I432 does not take into consideration all symmetry elements of the proposed structure.

rhombic dodecahedron Cl₈(NH₄)₆

References: [1] Stehlik B., Weidenthaler P. (1958), Chem. Zvesti 12, 197-200.

[NH₄]₃Cr₃[SCN]₁₂[NH₃]₆[H₂O]₂

*cI*100

 $NH_4[Cr(SCN)_4(NH_3)_2] \cdot H_2O$ [1], Reinecke's salt, reineckate NH_4 Structural features: Single $Cr[(NCS)_4(NH_3)_2]$ octahedral complexes with N=C=S linear units parallel to <110> and NH_3 in axial positions.

Saito Y. et al. (1955) [1] $C_{12}Cr_3H_{34}N_{21}O_2S_{12}$ a = 1.325 nm, V = 2.3262 nm³, Z = 2

site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment
S1	24 <i>h</i>	<i>m.m</i> 2	0	0.238	0.238		single atom C
C2	24h	<i>m.m</i> 2	0	0.334	0.334		single atom N
N3	24h	<i>m.m</i> 2	0	0.395	0.395		single atom C
(NH_3)	4 12 <i>e</i>	4 <i>m.m</i>	0.338	0	0		single atom Cr
M5	8c	. - 3m	$^{1}/_{4}$	$^{1}/_{4}$	$^{1}/_{4}$		octahedron S_6
Cr6	6 <i>b</i>	4/mm.m	0	1/2	1/2		octahedron $N_4(NH_3)_2$
M7	2a	<i>m</i> -3 <i>m</i>	0	0	0		18-vertex polyhedron $S_{12}(NH_3)_6$

 $M5 = 0.6NH_4 + 0.4OH_2; M7 = 0.6NH_4 + 0.4OH_2$

Experimental: single crystal, Weissenberg photographs, X-rays, R = 0.116

Remarks: Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Saito Y., Takeuchi Y., Pepinsky R. (1955), Z. Kristallogr. 106, 476-477.

$Ag_{1.5}(S_{0.5}I_{0.5})$	<i>cI</i> 34	(229) <i>Im-3m</i> – gca

Ag₃SI α [1]

Structural features: (S,I) forms a W-type (b.c.c.) framework; Ag in tetrahedral and linear voids (partial disorder).

Didish	Jidisheim J.J. et al. (1986) [1]									
Ag _{1 55}]	$Ag_{1,55}I_{0,50}S_{0,50}$									
a = 0.4	$V = 0.4934 \text{ nm}$ $V = 0.1201 \text{ nm}^3$ $Z = 2$									
<i>u</i> 0.	19911111	,, 0.12		-						
site	Wyck.	sym.	x	v	Z	occ. atomic environment				
Aσ1	24σ	mm?	0.156	0	$^{1}/_{2}$	0 104				
1.51	218	2	1/	1	1/2	0.101				
Ag2	8 <i>C</i>	. - 3m	·/4	·/4	·/4	0.075				
M3	2a	<i>m</i> -3 <i>m</i>	0	0	0	square prism (cube) Ag ₈				

M3 = 0.5I + 0.5S

Experimental: single crystal, diffractometer, neutrons, R = 0.029, T = 596 K

Remarks: Phase stable at T > 509 K. Short interatomic distances for partly occupied site(s).

References: [1] Didisheim J.J., McMullan R.K., Wuensch B.J. (1986), Solid State Ionics 18/19, 1150-1162.

 $Ag_{1.8}Au_{0.2}S$

*cI*52

Ag_{1.8}Au_{0.2}S [1]

Structural features: S forms a W-type (b.c.c.) framework; Au in linear coordination; Ag distributed over 42 positions per unit cell.

Folmer J.C.W. et al. (1976) [1] $Ag_{1.80}Au_{0.22}S$

a = 0.4	4905 nm,	V = 0.118	30 nm ³ ,	Z = 2		
site	Wyck.	sym.	x	У	Ζ	occ. atomic environment
Ag1	24 <i>h</i>	<i>m.m</i> 2	0	0.375	0.375	0.075
Ag2	12d	-4 <i>m</i> .2	$^{1}/_{4}$	0	$^{1}/_{2}$	0.12
Au3	8c	3 <i>m</i>	$^{1}/_{4}$	$^{1}/_{4}$	$^{1}/_{4}$	0.054
Ag4	6 <i>b</i>	4/ <i>mm.m</i>	0	$^{1}/_{2}$	$^{1}/_{2}$	0.061
S5	2a	<i>m</i> -3 <i>m</i>	0	0	0	square prism (cube) Au ₈

Experimental: powder, diffractometer, X-rays, T = 563 K

Remarks: Phase stable at T > 386 K, homogeneity range $Ag_{2-x}Au_xS$, x = 0-0.28 at 473 K. Idealized coordinates. Short interatomic distances for partly occupied site(s).

References: [1] Folmer J.C.W., Hofman P., Wiegers G.A. (1976), J. Less-Common Met. 48, 251-268.

Ag ₂ S	<i>cI</i> 20	(229) <i>Im-</i> 3 <i>m</i> – dba

Ag₂S β [1], argentite; K_{0.33}Pb_{0.67}F_{1.67} [4]

Structural features: S forms a W-type (b.c.c.) framework; Ag in tetrahedral and octahedral voids (disorder).

Cava R.J. et al. (1980) [1] Ag_2S $a = 0.486 \text{ nm}, V = 0.1148 \text{ nm}^3, Z = 2$ Wyck. sym. atomic environment site х \boldsymbol{Z} occ. v ¹/₂ $^{1}/_{4}$ 12*d* -4*m*.2 0 0.266 Ag1 ì/2 1/2Ag2 6*b* 4/mm.m0 0.135 S3 2a*m*-3*m* 0 0 0 octahedron Ag₆

Experimental: single crystal, diffractometer, neutrons, R = 0.026, T = 459 K

Remarks: Phase stable at 450 < T < 866 K. Above 473 K the octahedral site is vacant. Short interatomic distances for partly occupied site(s). Supersedes a structure proposal reported in [2]. Ag₂S α (acanthite) is referred to as Ag₂S β in [3].

References: [1] Cava R.J., Reidinger F., Wuensch B.J. (1980), J. Solid State Chem. 31, 69-80. [2] Rahlfs P. (1936), Z. Phys. Chem., Abt. B 31, 157-194. [3] Frueh A.J. Jr. (1958), Z. Kristallogr. 110, 136-144. [4] Hull S., Berastegui P., Eriksson S.G., Gardner N.J.G. (1998), J. Phys.: Condens. Matter 10, 8429-8446.

AgI	<i>cI</i> 38	(229) <i>Im-3m</i> – hda

AgI α [2]

Structural features: I forms a W-type (b.c.c.) framework; Ag in tetrahedral and trigonal voids. See Fig. I.9.

Experimental: powder, diffractometer, neutrons, R = 0.031, T = 453 K

Remarks: Phase stable at high temperature. Diffraction data from [2]; we took the cell parameter from the same reference. Short interatomic distances for partly occupied site(s). The present model is considered to be a good approximation, however, the authors state that the best agreement was obtained for a model with Ag only in Wyckoff position 12d (V₂H α type), but including higher-order harmonics in the representation of thermal motion. Strukturbericht notation B23 was defined on a structure proposal where Ag partly occupies also Wyckoff position 6*b*.

References: [1] Cooper M.J., Sakata M. (1979), Acta Crystallogr. A 35, 989-991. [2] Wright A.F., Fender B.E.F. (1977), J. Phys. C: Solid State Phys. 10, 2261-2267.

AuSb	3					<i>cI</i> 8	(229) <i>Im-</i> 3 <i>m</i> – ba				
AuSb: Struct	AuSb ₃ [1] Structural features: Infinite 3D-framework of fused (Au ₂ Sb ₆) cubes. Substitution derivative of α -Po and NaCl.										
Palatn AuSb ₃ a = 0.0	ik L.S. et 508 nm, 1	t al. (1961) V = 0.2248	[1] nm ³ , Z =	2							
site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment				
Sb1 Au2	6b 2a	4/mm.m m-3m	0 0	¹ / ₂ 0	¹ / ₂ 0		octahedron Au ₂ Sb ₄ octahedron Sb ₆				

Experimental: thin film, electron diffraction

Remarks: Metastable phase.

References: [1] Palatnik L.S., Kosevich V.M., Tyrina L.V. (1961), Phys. Met. Metallogr. 11(2), 75-80 (Fiz. Met. Metalloved. 11, 229-235).

Ba _{0.25}	Bi _{0.75} O ₁	.375				cI8		(229) <i>Im</i> -3 <i>m</i> – b	ba
BaBi ₃ Struct octabe	O_{5.5} ht [2 ural feat edra) with	2] tures: Sup h 64% vac	perpositi ancies o	on of two n the O sites	ReO ₃ -type 5.	structi	ures (frameworks	of vertex-sharing	(Bi,Ba)O ₆
Esmae Ba _{0.25} $a = 0$.	eilzadeh Bi _{0.75} O _{1.0} 43798 nr	S. et al. (20 $_{8}^{8}$, $V = 0.08$	(000) [1]	, Z = 2					
site	Wyck.	sym.	x	У	Z	occ.	atomic environme	ent	
O1 M2	6b 2a	4/mm.m m-3m	0 0	¹ / ₂ 0	${0}^{1/2}$	0.36	octahedron Bi ₂ O ₄ octahedron O ₆		

M2 = 0.75Bi + 0.25Ba

Experimental: single crystal, diffractometer, neutrons, wR = 0.053

Remarks: Incommensurate structure, $q_1 = 0.3835a^*$, $q_2 = 0.3835b^*$, $q_3 = 0.3835c^*$.

References: [1] Esmaeilzadeh S., Berastegui P., Grins J., Rundlöf H. (2000), J. Solid State Chem. 152, 435-440. [2] Abbattista F., Hervieu M., Vallino M., Michel C., Raveau B. (1993), J. Solid State Chem. 104, 338-344.

C	<i>cI</i> 16	(229) <i>Im</i> -3 <i>m</i> – f
---	--------------	---------------------------------

C₈[1]

Structural features: Distorted tetrahedral 3D-framework. C_8 cubes centered at 0 0 0 and $\frac{1}{2} \frac{1}{2}$ are interconnected via short C-C bonds to form a 3D-framework.

Matyushenko N.N. et al. (1981) [1] С a = 0.4279 nm, V = 0.0784 nm³, Z = 16Wyck. sym. atomic environment site х y \boldsymbol{Z} occ. C1 16*f* .3m 0.1667 0.1667 0.1667 tetrahedron C4

Experimental: thin film, electron diffraction

Remarks: Idealized coordinates. The description by the authors in space group (204) *Im*-3 does not take into consideration all symmetry elements of the proposed structure.

References: [1] Matyushenko N.N., Strel'nitskii V.E., Gusev V.A. (1981), Sov. Phys. Crystallogr. (Engl. Transl.) 26, 274-276.

C_2Cl_6	<i>cI</i> 28	(229) <i>Im</i> -3 <i>m</i> – fe

C₂Cl₆ form III [1], hexachloroethane

Structural features: Cl₃C-CCl₃ molecules in staggered conformation (Cl₆ octahedron) parallel to <111> (4-fold orientational disorder).

.

.

Gerlach P. et al. (1981) [1] C_2Cl_6 $a = 0.755 \text{ nm}, V = 0.4304 \text{ nm}^3, Z = 2$ site Wyck

site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
C1 Cl2	16 <i>f</i> 12 <i>e</i>	.3m 4m.m	0.0579 0.2681	0.0579 0	0.0579 0	0.25	

Experimental: single crystal, diffractometer, neutrons, R = 0.110, T = 423 K

Remarks: Phase stable at T > 344 K. Cell parameter taken from figure. Short interatomic distances for partly occupied site(s). Wyckoff position 12e was used as approximation for a theoretical position 48k with 1/4occupancy.

References: [1] Gerlach P., Hohlwein D., Prandl W., Schulz F.W. (1981), Acta Crystallogr. A 37, 904-908.

Ca ₄ Rl	$n_{3}H_{12}$					<i>cI</i> 38	(229) <i>Im</i> -3 <i>m</i> – edcb
Ca ₄ RI Struct	1₃H₁₂ [1] ural featu	ıres: RhH ₆	octahedra	share v	ertices to fo	rm a 3D-	-framework.
Brong Ca ₄ D ₁ a = 0.7	er W., Bı 2Rh3 7283 nm,	weil L. (199 $V = 0.386$	98) [1] 53 nm ³ , Z =	= 2			
site	Wyck.	sym.	x	У	Z	occ.	atomic environment
D1 D2 Ca3 Rh4	12e 12d 8c 6b	4m.m -4m.2 3m 4/mm.m	$0.2622\\^{1}_{/_{4}}\\^{1}_{/_{4}}\\0$	$0\\0\\{}^{1}_{/_{4}}\\{}^{1}_{/_{2}}$	$0\\1/2\\1/4\\1/2$		single atom Rh colinear Rh_2 cuboctahedron D_{12} octahedron D_6

Experimental: powder, diffractometer, neutrons, R = 0.021

Remarks: Refinement of the occupancies of the D sites showed no significant deviation from unity.

References: [1] Bronger W., Breil L. (1998), Z. Anorg. Allg. Chem. 624, 1819-1822.

Cs_{0.2}Na_{1.2}Cd_{4.8}Al₁₁Si₃₇O₉₆ ht [1], zeolite RHO-Cd,Cs ht

Structural features: $(Si,Al)O_4$ tetrahedra share vertices to form a RHO-type zeolite framework with α cages (26-face truncated cuboctahedra) interconnected via octagonal prisms; Cs at the centers of octagonal prisms, Cd near the centers of 6-rings.

Parise J.B. et al. (1991) [1] Al_{5.52}Cd_{2.40}Cs_{0.11}O₄₈Si_{18.48} a = 1.502 nm, V = 3.3885 nm³, Z = 2

site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
O1 O2 M3 Cd4 Cs5	48k 48j 48i 16f 6b	m m 2 .3m 4/mm.m	0.168 0 ¹ / ₄ 0.237 0	0.168 0.219 0.1023 0.237 1/2	$\begin{array}{c} 0.374 \\ 0.38 \\ 0.3977 \\ 0.237 \\ {}^{1}\!/_{2} \end{array}$	0.3 0.037	non-colinear Si_2 non-colinear Si_2 tetrahedron O_4 square prism (cube) O_8

M3 = 0.77Si + 0.23Al

Experimental: powder, diffractometer, X-rays, $wR_p = 0.230$, T = 783 K

Remarks: Phase stable at T > 573 K. Composition $Cs_{0.22}Na_{0.06}Cd_{4.8}Al_{11}Si_{37}O_{96}$ from chemical analysis, fixed for the refinement. We adjusted the charge balance in the chemical formula given above by adding more Na (not located). Short interatomic distances for partly occupied site(s).

References: [1] Parise J.B., Liu X., Corbin D.R., Jones G.A. (1991), Mater. Res. Soc. Symp. Proc. 233, 267-272.

$Cs_{0.5}H_{4.65}(Al_{0.21}Si_{0.79})_{24}O_{48}[H_2O]_{15}$	<i>cI</i> 282	(229) <i>Im-</i> 3 <i>m</i> – lkjiheb	
--	---------------	---------------------------------------	--

Cs_{0.95}H_{9.35}Al_{10.3}Si_{37.7}O₉₆·30H₂O [1], zeolite RHO-H hydrated

Structural features: $(Si,Al)O_4$ tetrahedra share vertices to form a RHO-type zeolite framework with α cages (26-face truncated cuboctahedra) interconnected via octagonal prisms; water molecules clustered close to the framework (disorder).

Parise J.B. et al. (1984) [1] Al_{5.11}D_{8.42}O_{52.21}Si_{18.89} a = 1.5027 nm, V = 3.3933 nm³, Z = 2

site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment
(OD ₂) O2 O3 M4 (OD ₂) (OD ₂) (OD ₂)	1 96 <i>l</i> 48 <i>k</i> 48 <i>j</i> 48 <i>i</i> 5 24 <i>h</i> 6 12 <i>e</i> 7 6 <i>b</i>	1 m m 2 m.m2 4m.m 4/mm.m		$\begin{array}{c} 0.095\\ 0.1645\\ 0.2072\\ 0.1055\\ 0.25\\ 0\\ {}^{1}\!/_{2}\end{array}$	$\begin{array}{c} 0.335\\ 0.3762\\ 0.3834\\ 0.3945\\ 0.25\\ 0\\ {}^{1}\!/_{2}\end{array}$	0.014 0.125 0.24 0.2	non-colinear Si ₂ non-colinear Si ₂ tetrahedron O_4 non-colinear O_2 colinear $(OD_2)_2$

M4 = 0.787Si + 0.213Al

Experimental: powder, diffractometer, neutrons, $R_B = 0.075$, T = 423 K

Remarks: Composition $D_{9,15}Cs_{0.95}Al_{10.3}Si_{37.7}O_{96}$ from chemical analysis. We adjusted the charge balance in the formula given above by adding H. The authors state that Cs probably substitutes for H₂O in Wyckoff position 6*b*; major part of H₂O not located. Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments. Contrary to dehydrated zeolite RHO, hydrated zeolite RHO remains centrosymmetric at room temperature (see [2]; 30 H₂O per unit cell not located).

References: [1] Parise J.B., Gier T.E., Corbin D.R., Cox D.E. (1984), J. Phys. Chem. 88, 1635-1640. [2] Fischer R.X., Baur W.H., Shannon R.D., Staley R.H., Abrams L., Vega A.J., Jorgensen J.D. (1988), Acta Crystallogr. B 44, 321-334.

Eu[NH ₃] ₆	<i>cI</i> 14	(229) <i>Im-3m</i> – ea

Eu·6NH₃ [2]; Ca·6NH₃ [1]

Structural features: Single Eu(NH₃)₆ octahedral units in a W-type (b.c.c.) arrangement; :NH₃ ψ -tetrahedra in 4-fold orientational disorder (data for isotypic Ca(NH₃)₆).

Von Dreele R.B. et al. (1975) [1] CaD₁₈N₆

a = 0.	90137 nn	n, $V = 0.7$	7323 nm³, 2	Z = 2				
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment	
N1	12e	4 <i>m.m</i>	0.298	0	0		single atom Ca	
Ca2	2a	<i>m</i> -3 <i>m</i>	0	0	0		octahedron N ₆	
D3	96 <i>l</i>	1	0.082	0.13	0.286	0.25		
D4	48 <i>j</i>	<i>m</i>	0	0.1	0.328	0.25		

Experimental: powder, diffractometer, neutrons, $wR_p = 0.098$, T = 75 K

Remarks: Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments. In [1] the occupancy of former D2 is misprinted as 50% instead of 25% (agreement with the nominal composition).

References: [1] Von Dreele R.B., Glaunsinger W.S., Bowman A.L., Yarnell J.L. (1975), J. Phys. Chem. 79, 2992-2995. [2] Oesterreicher H., Mammano N., Sienko M.J. (1969), J. Solid State Chem. 1, 10-18.

 $H_{0.2}Cs_{0.2}Al_{1.3}(Al_{0.18}Si_{0.82})_{24}O_{48}[H_2O]_5$

*cI*186

$Cs_{0.4}H_0$ Structur face true the cener Gameso $Al_{4,30}Cs_0$ a = 1.50	$AI_{2.6}[A]_{a.6}[A]_{a.6}[A]_{a.6}[A]_{a.6}[A]_{a.6}[A]_{a.6}[A]_{a.6}[A]_{a.15}[A]$	$M_{8.6}Si_{39.4}O$ tres: (Si,A cuboctahed -rings. al. (1988) [$SO_{50.08}Si_{19.7}$ V = 3.383	96] • xH ₂ O [1)O ₄ tetrah dra) interco $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 70 \\ 1 \end{bmatrix}$ nm ³ , Z =	1], zeolite edra share onnected v	RHO-Cs,H vertices to ia octagona	(Al ₂ O ₂ form a al prism) residual water RHO-type zeolite framework with α cages (26- s; Cs at the centers of octagonal prisms, H ₂ O at
site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment
01	48 <i>k</i>	<i>m</i>	0.1721	0.1721	0.3702		non-colinear Si ₂
O2	48j	<i>m</i>	0	0.2014	0.406		non-colinear Si ₂
M3	48 <i>i</i>	2	$^{1}/_{4}$	0.0987	0.4013		tetrahedron O ₄
$(OH_2)^2$	4 24 <i>h</i>	<i>m.m</i> 2	0	0.25	0.25	0.008	non-colinear O ₂
(OH ₂):	5 12e	4 <i>m.m</i>	0.4	0	0	0.33	
Čs6	6 <i>b</i>	4/ <i>mm.m</i>	0	$^{1}/_{2}$	$^{1}/_{2}$	0.21	

M3 = 0.821Si + 0.179Al

Experimental: powder, diffractometer, X-rays, $wR_p = 0.171$, T = 25 K

Remarks: Approximate composition, ~2.6 additional Al per unit cell not located. Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments. Ambiguous data: part of the water molecules are stated to be at the centers of 6-rings $\binom{1}{4}\binom{1}{4}\binom{1}{4}$, however, the atom coordinates of this site are given as $\frac{1}{4}\binom{1}{4}\binom{1}{4}$ (twice).

References: [1] Gameson I., Rayment T., Thomas J.M., Wright P.A. (1988), J. Phys. Chem. 92, 988-991.

II C.	. (1 1	C :	$) \cap$	
$H_{1.05}CS$	50 55(Alo	075100	$33)24O_{48}$	

Cs_{1.1}H_{2.1}Al_{3.2}Si_{44.8}O₉₆ [1], zeolite RHO-Cs calcined

Structural features: $(Si,Al)O_4$ tetrahedra share vertices to form a RHO-type zeolite framework with α cages (26-face truncated cuboctahedra) interconnected via octagonal prisms; Cs at the centers of octagonal prisms, additional Al near the centers of 8-rings.

Fischer R.X. et al. (1986) [1] Al_{2.39}Cs_{0.54}O₄₈Si_{22.39} Z = 2

siteWyck.sym.xyzocc.atomic environmentO148km0.16540.16540.3728non-colinear Si2O248jm00.21750.383non-colinear Si2M348i2 $^{1}\!\!/_{4}$ 0.10350.3965tetrahedron O4Al412e4m.m0.35000.13Cs56b4/mm.m0 $^{1}\!\!/_{2}$ $^{1}\!\!/_{2}$ 0.18	a = 1	.485 nm,	V = 3.2748	$3 \text{ nm}^3, Z =$	2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	site	Wyck.sy	ym.	x	у	Ζ	occ.	atomic environment	
	O1 O2 M3 Al4 Cs5	48 <i>k</i> 48 <i>j</i> 48 <i>i</i> 12 <i>e</i> 6 <i>b</i>	m m 2 4m.m 4/mm.m	0.1654 0 ¹ / ₄ 0.35 0	0.1654 0.2175 0.1035 0 1/2	$\begin{array}{c} 0.3728 \\ 0.383 \\ 0.3965 \\ 0 \\ {}^{1}\!/_{2} \end{array}$	0.13 0.18	non-colinear Si_2 non-colinear Si_2 tetrahedron O_4	

M3 = 0.933Si + 0.067Al

Experimental: powder, diffractometer, neutrons, $wR_p = 0.087$, T = 13 K

Remarks: Deep-bed calcined sample. $D_{2.1-x}H_xCs_{1.1}Al_{3.2}Si_{44.8}O_{96}$, 0 < x < 0.2. Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Fischer R.X., Baur W.H., Shannon R.D., Staley R.H., Vega A.J., Abrams L., Prince E. (1986), J. Phys. Chem. 90, 4414-4423.

 $H_{2.65}Cs_{0.35}Al_{2.5}(Al_{0.125}Si_{0.875})_{24}O_{51.75}$

*cI*252

Cs_{0.7}H_{5.3}Al₆Si₄₂O₉₆·2.5Al₂O₃ [1], zeolite RHO-Cs,H (Al₂O₃)

Structural features: $(Si,Al)O_4$ tetrahedra share vertices to form a RHO-type zeolite framework with α cages (26-face truncated cuboctahedra) interconnected via octagonal prisms; Cs near the centers of octagonal prisms, additional AlO_x near 6-rings, H is assumed to form bridging OH groups.

Fischer R.X. et al. (1987) [1] Al_{5.76}Cs_{0.84}D_{4.20}O_{50.45}Si₂₁ a = 1.5062 nm, V = 3.4170 nm³, Z = 2

site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
01	48 <i>k</i>	<i>m</i>	0.1667	0.1667	0.376		non-colinear Si ₂
O2	48 <i>k</i>	<i>m</i>	0.197	0.197	0.125	0.102	
Al3	48 <i>k</i>	<i>m</i>	0.208	0.208	0.263	0.115	
O4	48 <i>j</i>	<i>m</i>	0	0.2173	0.3841		non-colinear Si ₂
M5	48 <i>i</i>	2	$^{1}/_{4}$	0.1029	0.3971		tetrahedron O ₄
Cs6	12 <i>e</i>	4 <i>m.m</i>	0.452	0	0	0.14	
D7	48 <i>j</i>	<i>m</i>	0	0.154	0.381	0.175	

M5 = 0.875Si + 0.125Al

Experimental: powder, diffractometer, neutrons, time-of-flight, $wR_p = 0.037$, T = 623 K

Remarks: Shallow-bed calcined sample. Approximate composition. The H content was calculated from the charge balance of the framework, additional Al is assumed to be compensated for by additional O. Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments. The same data are also reported in [2].

References: [1] Fischer R.X., Baur W.H., Shannon R.D., Staley R.H. (1987), J. Phys. Chem. 91, 2227-2230. [2] Fischer R.X., Baur W.H., Shannon R.D., Staley R.H., Abrams L., Vega A.J., Jorgensen J.D. (1988), Acta Crystallogr. B 44, 321-334.

H ₂ PF ₇	H ₂ Ol ₅	
1121 I /	112015	

$HPF_6 \cdot 5H_2O \cdot HF$ [1]

Structural features: (H_2O,F) forms a clathrate-type framework with PF_6 octahedra in truncated octahedral voids (orientational disorder).

Wiebcke M., Mootz D. (1986) [1] $F_7H_{12}O_5P$ $a = 0.7544 \text{ nm}, V = 0.4293 \text{ nm}^3, Z = 2$										
site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment			
F1 M2 P3 H4	48k 12d 2a 48j	m -4m.2 m-3m m	0.1363 ¹ / ₄ 0 0	0.1363 0 0 0.291	0.0751 ¹ / ₂ 0 0.428	0.25 0.5	tetrahedron O ₄			

M2 = 0.833O + 0.167F

Experimental: single crystal, diffractometer, X-rays, R = 0.030, T = 107 K

Remarks: Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments. Supersedes a structure proposal for so-called HPF₆·6H₂O [2].

References: [1] Wiebcke M., Mootz D. (1986), Z. Kristallogr. 177, 291-299. [2] Bode H., Teufer G. (1955), Acta Crystallogr. 8, 611-614.

$H_6(Al_{0.25}Si_{0.75})_{24}O_{48}$	
--------------------------------------	--

H₁₂Al₁₂Si₃₆O₉₆ ht [2], zeolite RHO-H ht

Structural features: $(Si,Al)O_4$ tetrahedra share vertices to form a RHO-type zeolite framework with α cages (26-face truncated cuboctahedra) interconnected via octagonal prisms; H is bonded to the O site in Wyckoff position 48*j*. See Fig. I.13.

*cI*144

M3 = 0.812Si + 0.188Al

Experimental: powder, diffractometer, neutrons, time-of-flight, $R_p = 0.021$, T = 623 K

Remarks: Phase stable at high temperature. Hydrated zeolite RHO remains centrosymmetric at room temperature (see [3]; 30 H_2O per unit cell not located). No non-framework Al was detected. Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Baur W.H., Fischer R.X., Shannon R.D., Staley R.H., Vega A.J., Abrams L., Corbin D.R., Jorgensen J.D. (1987), Z. Kristallogr. 179, 281-304. [2] Robson H.E., Shoemaker D.P., Ogilvie R.A., Manor P.C. (1973), Adv. Chem. Ser. 121, 106-115. [3] Fischer R.X., Baur W.H., Shannon R.D., Staley R.H., Abrams L., Vega A.J., Jorgensen J.D. (1988), Acta Crystallogr. B 44, 321-334.

$HPF_6[H_2O]_6$

HPF₆·6H₂O [1]

Structural features: Single PF_6 octahedra (orientational disorder) in $(H_2O)_{24}$ truncated octahedra that share faces to form a 3D-framework.

Bode H., Teufer G. (1955) [1] $F_6H_{12}O_6P$ a = 0.7678 nm, V = 0.4526 nm³, Z = 2

•••••••	, , , , , ,	,	·• ···· , =	-		
site	Wyck.	sym.	x	у	Ζ	occ. atomic environment
F1 O2 P3 H4	96 <i>1</i> 12 <i>d</i> 2a 48j	1 -4m.2 m-3m m	0.072 ¹ / ₄ 0 0	0.124 0 0 0.345	0.174 ¹ / ₂ 0 0.403	0.125 0.5

Experimental: powder, Debye-Scherrer, X-rays, R = 0.104

Remarks: H not belonging to H_2O was not located. Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments. On page 613 of [1] the Wyckoff position of the F site is misprinted as 96*e* instead of 96*l*. The structure was redetermined on single crystal data in [2].

References: [1] Bode H., Teufer G. (1955), Acta Crystallogr. 8, 611-614. [2] Wiebcke M., Mootz D. (1986), Z. Kristallogr. 177, 291-299.

Hg ₄ Pt	Hg ₄ Pt						(229) <i>Im</i> -3 <i>m</i> – ca		
PtHg ₄ [1]; NiHg ₄ [2] Structural features: PtHg ₈ cubes share vertices to form a 3D-framework.									
Bauer E. et al. (1953) [1] Hg ₄ Pt $a = 0.61865 \text{ nm}, V = 0.2368 \text{ nm}^3, Z = 2$									
site	Wyck.	sym.	x	У	Z	occ.	atomic environment		
Hg1 Pt2	8 <i>c</i> 2 <i>a</i>	3m m-3m	¹ / ₄ 0	¹ / ₄ 0	¹ / ₄ 0		8-vertex polyhedron Pt_2Hg_6 square prism (cube) Hg_8		

Experimental: powder, film, X-rays

Remarks: The description by the authors in space group (211) *I*432 does not take into consideration all symmetry elements of the proposed structure (see [3]).

References: [1] Bauer E., Nowotny H., Stempfl A. (1953), Monatsh. Chem. 84, 692-700. [2] Lihl F., Nowotny H. (1953), Z. Metallkd. 44, 359. [3] Fischer W., Koch E. (1983), Acta Crystallogr. A 39, 907-915.

K 4	٦J	L	\cap	11	25
IN 4.	5 C	י צי	\mathbf{O}	11	.25

 $K_9U_6O_{22.5}$ [1], perovskite A₄AB₃O₁₂

Structural features: UO_6 octahedra share vertices to form a 3D-framework; K in remaining octahedral and cuboctahedral voids. Distorted perovskite of ideal composition $A_4[AB_3]O_{12}$.

Saine M.C. et al. (1987) [1] K_{4.50}O_{11.28}U₃

a=0.	$a = 0.8722 \text{ nm}, V = 0.6635 \text{ nm}^3, Z = 2$											
site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment					
01	12 <i>e</i>	4 <i>m.m</i>	0.3064	0	0		single atom U					
02	12 <i>d</i>	-4 <i>m</i> .2	$^{1}/_{4}$	0	$^{1}/_{2}$	0.88	colinear U_2					
K3	8c	3 <i>m</i>	$^{1}/_{4}$	$^{1}/_{4}$	¹ / ₄		cuboctahedron O_{12}					
U4	6 <i>b</i>	4/ <i>mm.m</i>	0	$^{1}/_{2}$	$^{1}/_{2}$		octahedron O ₆					
K5	2a	<i>m</i> -3 <i>m</i>	0	0	0	0.5	octahedron O ₆					

Experimental: single crystal, diffractometer, X-rays, R = 0.092

References: [1] Saine M.C., Gasperin M., Jove J., Cousson A. (1987), J. Less-Common Met. 132, 141-148.

$Li_2Zr_6MnCl_{15}$	<i>cI</i> 56	(229) <i>Im</i> -3 <i>m</i> – hedba

$Li_2Zr_6MnCl_{15}$ [1]; $Na_xTh_6FeBr_{15}$ [2]

Structural features: $MnZr_6Cl_{18}$ clusters (a central Mn atom surrounded by a Zr_6 octahedron, a Cl_{12} cuboctahedron and a Cl_6 octahedron) share vertices of the Cl_6 octahedron to form a 3D-framework.

Zhang J., Corbett J.D. (1991) [1] Cl₁₅Li₂MnZr₆

a = 1.0	$i = 1.03459 \text{ nm}, V = 1.1074 \text{ nm}^3, Z = 2$										
site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment				
Cl1 Zr2 Li3 Cl4 Mn5	24h 12e 12d 6b 2a	m.m2 4m.m -4m.2 4/mm.m m-3m	0 0.2331 ¹ / ₄ 0 0	0.248 0 0 1/2 0	0.248 0 ¹ / ₂ ¹ / ₂ 0	0.333	coplanar square Zr_2Li_2 octahedron MnCl ₅ octahedron Cl ₆ octahedron Li ₄ Zr_2 octahedron Zr ₆				

Experimental: single crystal, diffractometer, X-rays, R = 0.024, T = 293 K

Remarks: The occupancy of the Li site was fixed in agreement with the nominal composition.

References: [1] Zhang J., Corbett J.D. (1991), Inorg. Chem. 30, 431-435. [2] Böttcher F., Simon A., Kremer R.K., Buchkremer Hermanns H., Cockcroft J.K. (1991), Z. Anorg. Allg. Chem. 598/599, 25-44.

 $Li_6V_{18}Mn_3[VO_4]_{0.5}[SO_4]_{0.5}O_{42}[H_2O]_{36}$

$Li_{6}[Mn_{3}(H_{2}O)_{12}V_{18}O_{42}(V,SO_{4})]\cdot 24H_{2}O[1]$

Structural features: $(V,S)V_{18}O_{46}$ units consisting of eighteen VO₅ square pyramids sharing edges and vertices around a $(V,S)O_4$ tetrahedron (orientational disorder) are loosely interconnected via Mn(H₂O)₄ units to form two interpenetrating 3D-frameworks.

Khan M.I. et al. (1999) [1] $H_{72}Li_6Mn_3O_{82}S_{0.50}V_{18.50}$ a = 1.55378 nm, V = 3.7512 nm³, Z = 2

site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment
01	48 <i>k</i>	<i>m</i>	0.08211	0.08211	0.2098		non-coplanar triangle V ₃
O2	48 <i>k</i>	<i>m</i>	0.16143	0.16143	0.3544		single atom (OH ₂)
Li3	48j	<i>m</i>	0	0.251	0.444	0.25	
(OH_2)	4 48 <i>j</i>	<i>m</i>	0	0.3737	0.4398	0.305	
V5	24h	<i>m.m</i> 2	0	0.16563	0.16563		square pyramid O ₅
O6	24h	<i>m.m</i> 2	0	0.2379	0.2379		single atom V
(OH_2)	7 24h	<i>m.m</i> 2	0	0.4023	0.4023	0.39	
08	16f	.3 <i>m</i>	0.0568	0.0568	0.0568	0.5	4-vertex polyhedron SO ₃
V9	12e	4 <i>m.m</i>	0.25621	0	0		square pyramid O ₅
O10	12 <i>e</i>	4 <i>m.m</i>	0.3612	0	0		colinear VMn
Mn11	6 <i>b</i>	4/mm.m	0	$^{1}/_{2}$	$^{1}/_{2}$		
M12	2a	<i>m</i> -3 <i>m</i>	0	0	0		square prism (cube) O_8
H13	96 <i>l</i>	1	0.14	0.209	0.355	0.5	
H14	48 <i>k</i>	<i>m</i>	0.137	0.137	0.311		

M12 = 0.50S + 0.50V

Experimental: single crystal, diffractometer, X-rays, R = 0.037, T = 183 K

Remarks: Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Khan M.I., Yohannes E., Doedens R.J., Tabussum S., Cevik S., Manno L., Powell D. (1999), Cryst. Eng. 2, 171-179.

Li₈La₁₆Fe_{3.2}O_{33.44}

Li_{0.5}LaFe_{0.2}O_{2.09} [1]

Structural features: FeO₆ octahedra, high degree of disorder.

Mazza Fe _{3.21} I	1 D. et al. $La_{15.96}Li_8($	(1985) [$O_{33.72}$ V = 1.82	1]	2			
a = 1	Wyck.	v = 1.82 sym.	x	= 2 Y	Ζ	occ.	atomic environment
01	48 <i>k</i>	<i>m</i>	0.1386	0.1386	0.3046	0.89	non-colinear FeLi
La2	24h	<i>m.m</i> 2	0	0.30568	0.30568	0.88	10-vertex polyhedron O_{10}
O3	24g	mm2	0.134	0	$^{1}/_{2}$	0.4	single atom O
Li4	16f	.3 <i>m</i>	0.133	0.133	0.133		8-vertex polyhedron O_6Fe_2
05	12e	4 <i>m.m</i>	0.143	0	0	0.88	single atom Fe
La6	12 <i>e</i>	4 <i>m.m</i>	0.34724	0	0	0.9	tricapped trigonal prism O_9
O7	12d	-4 <i>m</i> .2	$^{1}/_{4}$	0	$^{1}/_{2}$	0.38	colinear O_2
Fe8	8 <i>c</i>	. - 3m	1/4	$^{1}/_{4}$	1/4	0.6	8-vertex polyhedron O ₆ Li ₂
Fe9	2 <i>a</i>	<i>m</i> -3 <i>m</i>	0	0	0	0.81	octahedron O ₆

Experimental: single crystal, diffractometer, X-rays, wR = 0.033

Remarks: Partial substitution of Li for Fe could not be excluded. Space group (204) Im-3 was tested and rejected.

References: [1] Mazza D., Abbattista F., Vallino M., Ivaldi G. (1985), J. Less-Common Met. 106, 277-285.

LiBa ₄ Sb ₃ O ₁₂	<i>cI</i> 40	(229) <i>Im-3m</i> – edcba

LiBa₄Sb₃O₁₂ [2], perovskite A₄BB'₃O₁₂; K₆Ba₂CaU₆O₂₄ [3]

Structural features: LiO_6 and SbO_6 octahedra share vertices to form a 3D-framework; Ba in cuboctahedral voids. See Fig. I.10.

Fig. I.10. LiBa₄Sb₃O₁₂

Arrangement of LiO₆ octahedra (dark), SbO₆ octahedra (light) and Ba atoms.

Alons Ba ₄ Li a = 0.8	o J.A. et O ₁₂ Sb ₃ 8224 nm,	al. (1987) , $V = 0.556$	[1] 52 nm ³ , Z	<i>x</i> = 2				
site	Wyck.	sym.	x	У	Z	occ.	atomic environment	
01	12 <i>e</i>	4 <i>m.m</i>	0.272	0	0		colinear SbLi	
O2	12 <i>d</i>	-4 <i>m</i> .2	$^{1}/_{4}$	0	$^{1}/_{2}$		colinear Sb ₂	
Ba3	8c	. - 3m	$^{1}/_{4}$	$^{1}/_{4}$	$1/_{4}$		cuboctahedron O_{12}	
Sb4	6 <i>b</i>	4/ <i>mm.m</i>	0	1/2	1/2		octahedron O ₆	
Li5	2 <i>a</i>	<i>m</i> -3 <i>m</i>	0	0	0		octahedron O ₆	

Experimental: powder, X-rays, R = 0.025

Remarks: Perovskite of ideal composition $A_4BB'_3O_{12}$. Site occupation $(K_{0.75}Ba_{0.25})_8(Ca_{0.5} \ _{0.5})_2U_6O_{24}$ was reported for $K_6Ba_2CaU_6O_{24}$.

References: [1] Alonso J.A., Mzayek E., Rasines I. (1987), Mater. Res. Bull. 22, 69-74. [2] Jacobson A.J., Collins B.M., Fender B.E.F. (1974), Acta Crystallogr. B 30, 1705-1711. [3] Saine M.C. (1987), J. Less-Common Met. 134, 245-248.

LiCa ₄ B ₃ N ₆	<i>cI</i> 28	(229) <i>Im-3m</i> – ecba

LiCa₄(BN₂)₃ [1]; NaSr₄(BN₂)₃ [2]

Somer M. et al. (1994) [1]

B₃Ca₄LiN₆

Structural features: N-B-N linear units parallel to <100>. Ordering variant of Sr_{4.5}B₃N₆. See Fig. I.7.

Fig. I.7. LiCa4(BN2)3

Arrangement of N-B-N units (N atoms light, B atoms dark), Li (medium) and Ca (large) atoms.

a=0.	7115 nm,	V = 0.360	$02 \text{ nm}^3, Z$	= 2				
site	Wyck.	sym.	x	У	Z	occ.	atomic environment	
N1	12e	4 <i>m.m</i>	0.313	0	0		single atom B	
Ca2	8c	. - 3m	$^{1}/_{4}$	$^{1}/_{4}$	$^{1}/_{4}$		octahedron N_6	
B3	6 <i>b</i>	4/ <i>mm.m</i>	0	$^{1}/_{2}$	$^{1}/_{2}$		colinear N ₂	
Li4	2 <i>a</i>	<i>m</i> -3 <i>m</i>	0	0	0		octahedron N ₆	

Experimental: single crystal, diffractometer, X-rays, R = 0.032, T = 293 K

Remarks: The atom coordinates of NaSr₄B₃N₆ have not been published.

References: [1] Somer M., Herterich U., Curda J., Peters K., Von Schnering H.G. (1994), Z. Kristallogr. 209, 182-182. [2] Womelsdorf H., Meyer H.J. (1994), Z. Anorg. Allg. Chem. 620, 262-265.

Na₁₅Al₁₅Si₃₃O₉₆·98H₂O [1], zeolite KFI-Na

Structural features: (Si,Al)O₄ tetrahedra share vertices to form a KFI-type zeolite framework with α (26-face truncated cuboctahedra) and γ (18-face truncated octahedra) cages; Na near the centers of 6-rings.

Meier W.M., Kokotailo G.T. (1965) [1] Al_{14.88}Na₈O₉₆Si_{33.12} a = 1.875 nm. V = 6.5918 nm³ Z = 2

u 1.0	<i>575</i> mm, <i>1</i>	0.57	10 mii , 2	2			
site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment
M1	96 <i>l</i>	1	0.084	0.2015	0.322		tetrahedron O ₄
O2	48 <i>k</i>	<i>m</i>	0.1245	0.1245	0.321		non-colinear Si ₂
O3	48 <i>k</i>	<i>m</i>	0.2475	0.2475	0.0955		non-colinear Si ₂
O4	48 <i>j</i>	<i>m</i>	0	0.183	0.327		non-colinear Si ₂
O5	48 <i>i</i>	2	$^{1}/_{4}$	0.1125	0.3875		non-colinear Si ₂
Na6	16 <i>f</i>	.3 <i>m</i>	0.1315	0.1315	0.1315		non-coplanar triangle O ₃

M1 = 0.69Si + 0.31Al

Experimental: powder, diffractometer, X-rays, R = 0.180

Remarks: ~ 14 Na and 98 H₂O per cell not located. Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Meier W.M., Kokotailo G.T. (1965), Z. Kristallogr. 121, 211-219.

*cI*288

Na₃₀Al₃₀Si₆₆O₁₉₂·xH₂O [1], zeolite KFI-Na hydrated

Structural features: (Si,Al)O₄ tetrahedra share vertices to form a FKI-type zeolite framework with α (26-face truncated cuboctahedra) and γ (18-face truncated octahedra) cages.

Meier W.M., Kokotailo G.T. (1965) [1] Al_{14.88}O₉₆Si_{33.12}

a = 1.	$u = 1.866 \text{ nm}, V = 6.4973 \text{ nm}^3, Z = 2$							
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment	
M1 O2 O3 O4 O5	961 48k 48k 48j 48j	1 m m 2	$\begin{array}{c} 0.085\\ 0.1265\\ 0.249\\ 0\\ {}^{1}\!/_{4}\end{array}$	0.204 0.1265 0.249 0.187 0.1095	0.323 0.325 0.1015 0.328 0.3905		tetrahedron O_4 non-colinear Si_2 non-colinear Si_2 non-colinear Si_2 non-colinear Si_2	

M1 = 0.69Si + 0.31Al

Experimental: powder, diffractometer, X-rays, R = 0.110, T = 423 K

Remarks: Na and H₂O not located. Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Meier W.M., Kokotailo G.T. (1965), Z. Kristallogr. 121, 211-219.

Na ₃ W ₄ O ₁₂ $cI110$ (229) $Im-3m - k^2cb$	$Na_3W_4O_{12}$	<i>cI</i> 110	(229) $Im-3m - k^2cb$
--	-----------------	---------------	-----------------------

Na_{0.75}WO₃ [1], tungsten bronze cubic

Structural features: WO₆ octahedra share vertices to form a 3D-framework (distorted O sublattice).

Atoji M., Rundle R.E. (1960) [1] $Na_3O_{12}W_4$ a = 0.769 nm, V = 0.4548 nm³, Z = 2Wyck. sym. site atomic environment x y \boldsymbol{Z} occ. 0.235 0.235 0.25 01 48*k* 0.011 ..*m* ..*m* 0.25 O2 48*k* 0.267 0.267 0.011 $^{1}/_{4}$ W3 $^{1}/_{4}$ $^{1}/_{4}$ 8c.**-**3m 1/21/2Na4 6*b* 4/mm.m0

Experimental: twinned crystal, neutrons, R = 0.170

Remarks: Cell parameter from [2]. Short interatomic distances for partly occupied site(s).

References: [1] Atoji M., Rundle R.E. (1960), J. Chem. Phys. 32, 627-628. [2] Brown B.W., Banks E. (1954), J. Am. Chem. Soc. 76, 963-966.

Na₄Ca₄Al₇F₃₃

Na₄Ca₄Al₇F₃₃[1]

Structural features: CaF₆ and AlF₆ octahedra share all vertices to form a 3D-framework.

Hemon A., Courbion G. (1990) [1] Al₇Ca₄F₃₃Na_{4.03} a = 1.0781 nm, V = 1.2531 nm³, Z = 2

site	Wyck.	sym.	x	У	Z	occ.	atomic environment
F1	48 <i>k</i>	<i>m</i>	0.0239	0.0239	0.1633	0.25	
F2	48 <i>k</i>	<i>m</i>	0.1159	0.1159	0.3363		single atom Al
A13	12 <i>e</i>	4 <i>m.m</i>	0.3298	0	0		
Na4	12 <i>d</i>	-4 <i>m</i> .2	$^{1}/_{4}$	0	$^{1}/_{2}$	0.672	10-vertex polyhedron F_{10}
Ca5	8 <i>c</i>	. - 3m	$^{1}/_{4}$	$^{1}/_{4}$	$^{1}/_{4}$		octahedron F ₆
F6	6 <i>b</i>	4/ <i>mm.m</i>	0	$^{1}/_{2}$	$^{1}/_{2}$		colinear Al_2
Al7	2a	<i>m</i> -3 <i>m</i>	0	0	0		

Experimental: single crystal, diffractometer, X-rays, wR = 0.031

Remarks: Short interatomic distances for partly occupied site(s).

References: [1] Hemon A., Courbion G. (1990), J. Solid State Chem. 84, 153-164.

$Nb_3(Sb_{0.5}Te_{0.5})_4Te_3$	<i>cI</i> 40	(229) <i>Im-</i> 3 <i>m</i> – fed
--------------------------------	--------------	-----------------------------------

$Nb_3Sb_2Te_5$ [1]

Structural features: $Nb(Sb,Te)_8$ square antiprisms share atoms to form a 3D-framework. Partly ordered variant of Ru_3Sn_7 .

Jensen P., Kjekshus A. (1967) [1] $Nb_3Sb_2Te_5$

a = 0.98155 nm, V = 0.9457 nm³, Z = 4

site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment
M1	16f	.3m	0.165	0.165	0.165		pseudo Frank-Kasper Nb ₃ Sb ₄ Te ₆
Nb2	12e	4m.m	0.3426	0	0		tricapped trigonal prism Sb ₄ Te ₄ Nb
Te3	12d	-4m.2	¹ / ₄	0	1/2		16-vertex Frank-Kasper Nb ₄ Te ₄ Sb ₈

M1 = 0.5Sb + 0.5Te

Experimental: single crystal, Weissenberg photographs, X-rays, R = 0.089

References: [1] Jensen P., Kjekshus A. (1967), J. Less-Common Met. 13, 357-359.

NdO_1	.5					<i>cI</i> 26	(229) <i>Im</i> -3 <i>m</i> – ga			
Nd ₂ O ₃ Struct	Nd₂O₃ form X [1]; La ₂ O ₃ form X [1], sesquioxide X; AgI α [2] Structural features: Nd forms a W-type (b.c.c.) framework; O in tetrahedral voids (disorder).									
Aideb NdO _{1.3} a = 0.4	ert P., Tr 50 141 nm, 1	averse J.F V = 0.085	P. (1979) 8 nm ³ , Z	[1] = 2						
site	Wyck.	sym.	x	у	Z	occ.	atomic environment			
O1 Nd2	24g 2a	mm2 m-3m	0.18 0	0 0	¹ / ₂ 0	0.125	24-vertex polyhedron O ₂₄			

Experimental: powder, diffractometer, neutrons, $R_B = 0.055$, T = 2498 K

Remarks: Phase stable at T > 2423 K. The *x*-coordinate of the O site could not be determined with accuracy. Short interatomic distances for partly occupied site(s). Several models were tested (atom coordinates published). A similar model with $x(O) = \frac{1}{2}$ gave R = 0.041 but was rejected because of short interatomic distances. On page 318 of [1] the occupancy of the O site is misprinted as $\frac{1}{4}$ instead of $\frac{1}{8}$.

References: [1] Aidebert P., Traverse J.P. (1979), Mater. Res. Bull. 14, 303-323. [2] Wright A.F., Fender B.E.F. (1977), J. Phys. C: Solid State Phys. 10, 2261-2267.

NiCl₂[NCNH₂]₄

*cI*114

Ni(NCNH₂)₄Cl₂[1]

Structural features: Single Ni[(NCNH₂)₄Cl₂] octahedral complexes with NCNH₂ (cyanamide) units parallel to <110>.

Liu X. et al. (2001) [1]

C₄Cl₂H₈N₈Ni

a = 1.2593 nm, V = 1.9970 nm³, Z = 6

site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
N1 C2 N3 Cl4 Ni5	48 <i>k</i> 24 <i>h</i> 24 <i>h</i> 12 <i>e</i> 6 <i>b</i>	m m.m2 m.m2 4m.m 4/mm.m	0.2497 0 0.30281	0.2497 0.32203 0.38499 0 1/2	0.0252 0.32203 0.38499 0 1/2	0.5	single atom Ni octahedron N_4Cl_2
H6	48 <i>j</i>	<i>m</i>	0	0.183	0.266		

Experimental: single crystal, diffractometer, X-rays, R = 0.025, T = 293 K

Remarks: Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Liu X., Kroll P., Dronskowski R. (2001), Z. Anorg. Allg. Chem. 627, 1682-1686.

Pt ₃ O ₄						<i>cI</i> 14		(229) <i>Im-3m</i> – cb		
Pt ₃ O ₄ Struct	Pt_3O_4 [1] Structural features: PtO_8 cubes share faces and edges to form a 3D-framework.									
Gallor O_4Pt_3 a = 0.0	ni E.E., R 6226 nm,	offo A.E. V = 0.241	Jr. (1941) 3 nm ³ , $Z =$	[1] = 2						
site	Wyck.	sym.	x	у	Z	occ.	atomic environment	nt		
O1 Pt2	8 <i>c</i> 6 <i>b</i>	3m 4/mm.m	¹ / ₄ 0	¹ / ₄ ¹ / ₂	¹ / ₄ ¹ / ₂		cuboctahedron Pt_6 cuboctahedron O_8I	\mathcal{D}_6 $\mathcal{P}t_4$		

Experimental: powder, film, X-rays

Remarks: This structure proposal is stated to be doubtful in [3]. Composition Pt_3O_8 ($Pt_3[O_2]_4$) was proposed in [2] (see discussion in [3]).

References: [1] Galloni E.E., Roffo A.E. Jr. (1941), J. Chem. Phys. 9, 875-877. [2] Shishakov N.A., Andreeva V.V., Andrushchenko N.M. (1959), Stroenie i Mekhanism Obrazovaniya Okisnykh Plenok na Metallakh, Akad. Nauk SSSR, Moscow. [3] Muller O., Roy R. (1968), J. Less-Common Met. 16, 129-146.

Ru ₃ Sı	n ₇				<i>cI</i> 40	(229) <i>Im</i> -3 <i>m</i> – fed				
Ru ₃ Su Struct	Ru₃Sn₇ [1], Strukturbericht notation D8 _f ; Co ₃ Al ₃ Si ₄ [3]; Ir ₃ Ge ₇ [2]; Ir ₃ Sn ₇ [1] Structural features: RuSn ₈ square antiprisms share atoms to form a 3D-framework.									
Nial C Ru ₃ Sn a = 0.9	D. (1947) ¹⁷ 9351 nm,	[1]	77 nm ³ , Z =	= 4						
site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment			
Sn1 Ru2 Sn3	16f 12e 12d	.3m 4m.m -4m.2	0.156 0.342 ¹ / ₄	0.156 0 0	0.156 0 1/2		7-vertex polyhedron Ru ₃ Sn ₄ tricapped trigonal prism Sn ₈ Ru 16-vertex Frank-Kasper Ru ₄ Sn ₁₂			

Experimental: powder, film, X-rays

Remarks: The Strukturbericht notation was defined on Ir₃Ge₇. The authors of [3] could not determine whether Al

and Si are ordered or randomly distributed over Wyckoff positions 16*f* and 12*d*. References: [1] Nial O. (1947), Sven. Kem. Tidskr. 59, 172-183. [2] Pfisterer H., Schubert K. (1950), Naturwissenschaften 37, 112-113. [3] Burger K.O., Wittmann A., Nowotny H. (1962), Monatsh. Chem. 93, 9-14.

SF_6						<i>cI</i> 14	(229) <i>Im-3m</i> –	ea
$SF_6 r f$ Struct Cocko F_6S $a = 0.$	t [2] ural featu croft J.K., 57951 nn	ures: Sing , Fitch A. n, V=0.1	gle SF ₆ octa N. (1988) [.946 nm ³ , Z	hedra in [1] Z = 2	a W-type	(b.c.c.) arr	angement.	
site	Wyck.	sym.	x	У	Z	occ.	atomic environment	
F1	12e	4 <i>m.m</i>	0.2685	0	0		single atom S	
S2	2 <i>a</i>	<i>m</i> -3 <i>m</i>	0	0	0		octahedron F ₆	

Experimental: powder, diffractometer, neutrons, $R_B = 0.039$, T = 115 K

Remarks: Phase stable at T > 96 K. Refinement with symmetry-adapted spherical-harmonic functions, F shell radius 0.1556(3) nm. An approximated model ignoring rotational disorder, used by the authors to calculate interatomic distances, is reported here. Rotational disorder is also studied in [3].

References: [1] Cockcroft J.K., Fitch A.N. (1988), Z. Kristallogr. 184, 123-145. [2] Taylor J.C., Waugh A.B. (1976), J. Solid State Chem. 18, 241-246. [3] Powell B.M., Dolling G. (1988), Can. J. Chem. 66, 897-903.

$Sr_{39}Co_{12}N_{31}$ cI200 (229) Im-3m - k ² h ³ edba	
---	--

Sr₃₉Co₁₂N₃₁[1]

Structural features: Single N-Co-N linear units parallel to <110>, additional N in Sr₆ octahedra.

Kowach G.R. et al. (1998) [1] $Co_{12}N_{31}Sr_{39}$ a = 1.491 nm, V = 3.3146 nm³, Z = 2Wyck. atomic environment site sym. x y \boldsymbol{Z} occ. Sr1 48*k* 0.0331 0.0331 0.1646 0.25 ..*m* 7-vertex polyhedron N₄SrCo₂ ..*m* Sr2 48*k* 0.1228 0.1228 0.3143 N3 24h *m.m*2 0 0.201 0.201 single atom Co Co4 24h *m.m*2 0 0.2879 0.2879 colinear N₂ N5 24hoctahedron CoSr5 m.m20 0.373 0.373 12e 0.328 0 N6 4*m.m* 0 $^{1}/_{4}$ $^{1}/_{2}$ 12*d* 0 Sr7 -4*m*.2 tetrahedron N₄ $^{1}/_{2}$ $^{1}/_{2}$ Sr8 6b 4/mm.m0 octahedron N₆ N9 2a*m*-3*m* 0 0 0

Experimental: single crystal, diffractometer, X-rays, wR = 0.063, T = 291 K

Remarks: Short interatomic distances for partly occupied site(s).

References: [1] Kowach G.R., Lin H.Y., DiSalvo F.J. (1998), J. Solid State Chem. 141, 1-9.

Sr _{4.5} B	N_3N_6				<i>:1</i> 28	(229) <i>Im</i> -3 <i>m</i> – ecba				
Sr ₃ (B Struct	Sr₃(BN₂)₂ [1]; Ca ₃ (BN ₂) ₂ α [2]; K ₅ H(CN ₂) ₃ [3] Structural features: N-B-N linear units parallel to <100>.									
Wome B_3N_6S a = 0.7	elsdorf H 5r _{4.49} 76456 nn	., Meyer H n, V=0.44	L.J. (1994) 69 nm ³ , Z	[1] = 2						
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment			
N1 Sr2 B3 Sr4	12e 8c 6b 2a	4m.m 3m 4/mm.m m-3m	0.3224 ¹ / ₄ 0 0	$0\\1/4\\1/2\\0$	$0 \\ \frac{1}{4} \\ \frac{1}{2} \\ 0$	0.49	single atom B octahedron N_6 colinear N_2 octahedron N_6			

Experimental: single crystal, diffractometer, X-rays, R = 0.034

References: [1] Womelsdorf H., Meyer H.J. (1994), Z. Anorg. Allg. Chem. 620, 262-265. [2] Wörle M., Meyer H., Nesper R. (1998), J. Alloys Compd. 264, 107-114. [3] Becker M., Jansen M., Lieb A., Milius W., Schnick W. (1998), Z. Anorg. Allg. Chem. 624, 113-118.

$Sr_4Al_6[CrO_4]O_{12}$ $cl70$ (229) $lm-3m-h^2dca$

 $Sr_8Al_{12}O_{24}(CrO_4)_2$ ht [1], sodalite SACR ht, zeolite SOD-Sr (CrO₄) ht Structural features: AlO₄ tetrahedra share vertices to form a SOD-type zeolite framework with β cages (14-face truncated octahedra) centered by CrO₄ tetrahedra (orientational disorder); Sr at the centers of 6-rings.

Depmeier W. et al. (1987) [1] Al₆CrO₁₆Sr₄ $= 0.0427 \text{ spm}^3 \text{ Z} = 2$

site	Wyck.	sym.	x	2 – 2 y	Z	occ.	atomic environment
01 02 Al3 Sr4 Cr5	24 <i>h</i> 24 <i>h</i> 12 <i>d</i> 8 <i>c</i> 2 <i>a</i>	m.m2 m.m2 -4m.2 3m m-3m	$0\\0\\{}^{1/_{4}}\\{}^{1/_{4}}\\0$	$0.125 \\ 0.3407 \\ 0 \\ {}^{1/_{4}} \\ 0$	0.125 0.3407 ¹ / ₂ ¹ / ₄ 0	0.333	5-vertex polyhedron O_4Cr non-colinear Al_2 tetrahedron O_4 icosahedron O_{12} cuboctahedron O_{12}

Experimental: single crystal, diffractometer, X-rays, R = 0.048, T = 330 K

Remarks: Phase stable at T > \sim 293 K. Space group (217) *I*-43*m* could not be rejected.

References: [1] Depmeier W., Schmid H., Setter N., Werk M.L. (1987), Acta Crystallogr. C 43, 2251-2255.

Tb ₃ Ni ₆ Al ₂ H _{0.5} $cI94$ (229) $Im-3m$ – jheca	
---	--

$Tb_{3}Ni_{6}Al_{2}H_{0.5}[1]$

Structural features: Filled-up derivative of Ce₃Ni₆Si₂ with H in tetrahedral (TbNi₃) and octahedral (Tb₆) voids.

Yartys' V.A. et al. (1992) [1] Al_{2.02}D_{0.51}Ni_{5.98}Tb₃ a = 0.89413 nm, V = 0.7148 nm³, Z = 4

site	Wyck.	sym.	x	У	Ζ	occ. atomic environment
D1 M2	48j 24h	m m.m2	0 0	0.189 0.335	0.437 0.335	0.036
Tb3 M4	12e 8c	4m.m 3m	0.292	$0^{1/4}$	$0^{1/4}$	non-coplanar square D ₄ octahedron Ni ₆
D5	2 <i>a</i>	<i>m</i> -3 <i>m</i>	0	0	0	0.147 octahedron Tb_6

M2 = 0.96Ni + 0.04Al; M4 = 0.89Al + 0.11Ni

Experimental: powder, diffractometer, neutrons, $R_B = 0.089$

Remarks: In table 2 of [1] the cell parameter is misprinted as 0.9841 nm instead of 0.8941 nm.

References: [1] Yartys' V.A., Pavlenko V.V., Khidirov I. (1992), Sov. J. Coord. Chem. 18, 371-377 (Koord. Khim. 18, 428-435).

Tb₃Ni₆Al₂H_{6.5}

$Tb_{3}Ni_{6}Al_{2}H_{6.5}[1]$

Structural features: Filled-up derivative of Ce₃Ni₆Si₂ with H in tetrahedral (TbNi₃, Tb₃Al and Ni₄) voids.

Yartys' V.A. et al. (1992) [1] Al_{2.02}D_{6.48}Ni_{5.98}Tb₃ $a = 0.9064 \text{ nm}, V = 0.7447 \text{ nm}^3, Z = 4$

site	Wyck.	sym.	x	У	Ζ	occ. atomic environment
D1 M2 D3 Tb4 D5 M6	48 <i>j</i> 24 <i>h</i> 16 <i>f</i> 12 <i>e</i> 12 <i>d</i> 8 <i>c</i>	<i>m</i> <i>m.m</i> 2 .3 <i>m</i> 4 <i>m.m</i> -4 <i>m</i> .2 3 <i>m</i>	$0 \\ 0 \\ 0.123 \\ 0.293 \\ {}^{1}\!\!/_{4} \\ {}^{1}\!\!/_{4}$	$\begin{array}{c} 0.175\\ 0.329\\ 0.123\\ 0\\ 0\\ {}^{1}\!/_{4} \end{array}$	$\begin{array}{c} 0.458 \\ 0.329 \\ 0.123 \\ 0 \\ {}^{1}\!\!/_{2} \\ {}^{1}\!\!/_{4} \end{array}$	$\begin{array}{c} 0.183\\ 0.919 \hspace{0.1cm} \text{single atom Al}\\ \hspace{0.1cm} \text{square antiprism } D_8\\ 0.204\\ \hspace{0.1cm} \text{colinear } D_2 \end{array}$

M2 = 0.96Ni + 0.04Al; M6 = 0.89Al + 0.11Ni

Experimental: powder, diffractometer, neutrons, $R_B = 0.083$

Remarks: The same data are also reported in [2].

References: [1] Yartys' V.A., Pavlenko V.V., Khidirov I. (1992), Russ. J. Inorg. Chem. 37, 12-16 (Zh. Neorg. Khim. 37, 25-31). [2] Yartys' V.A., Pavlenko V.V., Khidirov I. (1992), Sov. J. Coord. Chem. 18, 371-377 (Koord. Khim. 18, 428-435).

$\mathrm{Th}_{6}\mathrm{Br}_{15}\mathrm{H}_{7}$	<i>cI</i> 58	(229) <i>Im-3m</i> – hfeb

Th₆Br₁₅H₇[1]

Structural features: Th_6Br_{18} clusters (Th_6 octahedron surrounded by a Br_{12} cuboctahedron and a Br_6 octahedron) share vertices of the Br_6 octahedron to form a 3D-framework. Part of the Th_6 octahedron faces are capped by H atoms (disorder).

Simon A. et al. (1991) [1] Br15D7.04Th6 a = 1.13761 nm, V = 1.4722 nm³, Z = 2site Wyck. sym. occ. atomic environment х y \boldsymbol{Z} Br1 24h *m.m*2 0 0.2582 0.2582 4-vertex polyhedron D₂Th₂ D2 16f 0.0901 0.0901 0.0901 0.88 non-coplanar triangle D₃ .3m non-coplanar square D₄ Th3 12e 4*m.m* 0.24 0 0 $^{1}/_{2}$ colinear Th₂ Br4 6*b* 4/mm.m0 $^{1}/_{2}$

Experimental: powder, diffractometer, neutrons, $wR_p = 0.075$

Remarks: The same data are also reported in [2].

References: [1] Simon A., Böttcher F., Cockcroft J.K. (1991), Angew. Chem. 103, 79-80. [2] Böttcher F., Simon A., Kremer R.K., Buchkremer Hermanns H., Cockcroft J.K. (1991), Z. Anorg. Allg. Chem. 598/599, 25-44.

Tl_7Sb_2	<i>cI</i> 54	(229) <i>Im</i> -3 <i>m</i> – hfea

Tl₇Sb₂ [2], Strukturbericht notation L2₂

Structural features: 27-atom nested polyhedra units consisting of a central Tl atom surrounded by a Tl_8 cube, a Sb_6 octahedron and a Tl_{12} cuboctahedron.

Stokhuyzen R. et al. (1977) [1] Sb₂Tl₇

a = 1.	$v = 1.1618 \text{ nm}, V = 1.5682 \text{ nm}^3, Z = 6$								
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment		
T11 T12	24 <i>h</i>	<i>m.m</i> 2	0	0.3497	0.3497		rhombic dodecahedron Sb_4Tl_{10}		
Sb3	10 <i>j</i> 12 <i>e</i>	. <i>3m</i> 4 <i>m.m</i>	0.3138	0.1704	0.1704		rhombic dodecahedron $Tl_{13}Sb$		
Tl4	2a	<i>m</i> -3 <i>m</i>	0	0	0		rhombic dodecahedron Tl ₈ Sb ₆		

Experimental: single crystal, diffractometer, X-rays, wR = 0.060

Remarks: Space group (217) I-43m was tested and rejected.

References: [1] Stokhuyzen R., Chieh C., Pearson W.B. (1977), Can. J. Chem. 55, 1120-1122. [2] (1931), Strukturberichte 1, 488.

$U_4(Re_{0.17}Si_{0.83})_{13}$	<i>cI</i> 34	(229) <i>Im-3m</i> – edca
--------------------------------	--------------	---------------------------

U₄(Si,Re)₁₃ [1]

Structural features: Close-packed U(Si,Re)₃ layers in c stacking (Cu₃Au-type substructure), additional (Si,Re) in octahedral voids.

Akselrud L.G. et al. (1978) [1] Re2.21Si10.79U4 a = 0.8192 nm, V = 0.5498 nm³, Z = 2Wyck. sym. site atomic environment х y Zocc. 0.302 0 0 tricapped trigonal prism Si₅U₄ M1 12e 4m.m1/2 $^{1}/_{4}$ cuboctahedron Si₈U₄ M2 12*d* -4*m*.2 0 ¹/₄ ì/4 $\frac{1}{4}$ U3 8c.**-**3m cuboctahedron Si₁₂ M4 2a*m*-3*m* 0 0 0 octahedron Si₆

M1 = 0.83Si + 0.17Re; M2 = 0.83Si + 0.17Re; M4 = 0.83Si + 0.17ReExperimental: powder, diffractometer, X-rays

References: [1] Akselrud L.G., Yarmolyuk Y.P., Gladyshevskii E.I. (1978), Dopov. Akad. Nauk Ukr. RSR, Ser. A 1978, 359-362.

U ₄ Re ₇ Si ₆	<i>cI</i> 34	(229) <i>Im-3m</i> – edca

U4Re7Si6[1]

Structural features: Close-packed $U_2Re_3Si_3$ layers in c stacking (ordered Cu_3Au -type substructure), additional Re in octahedral voids. Ordering variant of pseudo-binary $U_4(Si_1Re)_{13}$. See Fig. I.8.

Fig. I.8. U4Re7Si6

Arrangement of $U(Re_6Si_6)$ cuboctahedra (Re atoms light, Si atoms dark) and additional Re atoms (at the origin).

Aksel Re ₇ Si $_{a}$	rud L.G. 5U4 8224 nm,	et al. (19 , $V = 0.55$	78) [1] 562 nm ³ , Z	Z = 2			
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
Si1	12e	4 <i>m.m</i>	0.29	0	0		tricapped trigonal prism Re ₅ U ₄
Re2	12 <i>d</i>	-4 <i>m</i> .2	$^{1}/_{4}$	0	1/2		cuboctahedron Si ₄ Re ₄ U ₄
U3	8c	. - 3m	$^{1}/_{4}$	$^{1}/_{4}$	$^{1}/_{4}$		cuboctahedron Re ₆ Si ₆
Re4	2 <i>a</i>	<i>m</i> -3 <i>m</i>	0	0	0		octahedron Si ₆

Experimental: powder, diffractometer, X-rays, R = 0.105

Remarks: Space group (217) I-43m was tested and rejected.

References: [1] Akselrud L.G., Yarmolyuk Y.P., Gladyshevskii E.I. (1978), Dopov. Akad. Nauk Ukr. RSR, Ser. A 1978, 359-362.

$U_6Rh_2Se_{15.5}$	<i>c1</i> 98	(229) <i>Im-3m</i> – khdcb

U₆Rh₂Se_{15.5} [1]

Structural features: RhSe₆ octahedra and USe₆Se₂ bicapped trigonal prisms share atoms to form a 3D-framework; additional Se (partial disorder) in intersecting channels.

Daoudi A., Noel H. (1996) [1] Rh₂Se_{15.56}U₆

a = 1.2	3737 nm,	V = 2.592	$22 \text{ nm}^3, Z =$	= 4			
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment
Se1 U2 Se3 Rh4 Se5	48k 24h 12d 8c 6b	m m.m2 -4m.2 3m 4/mm.m	0.1287 0 ¹ / ₄ ¹ / ₄ 0	$\begin{array}{c} 0.1287\\ 0.2966\\ 0\\ {}^{1}\!/_{4}\\ {}^{1}\!/_{2}\end{array}$	$\begin{array}{c} 0.3101 \\ 0.2966 \\ {}^{1/2} \\ {}^{1/4} \\ {}^{1/2} \end{array}$	0.37	4-vertex polyhedron RhU ₃ square antiprism Se ₈ 14-vertex Frank-Kasper U ₄ Se ₁₀ octahedron Se ₆ 16-vertex polyhedron Se ₁₂ U ₄

Experimental: single crystal, diffractometer, X-rays, R = 0.055

References: [1] Daoudi A., Noel H. (1996), J. Alloys Compd. 233, 169-173.

V₁₈Fe₃[VO₄]_{0.5}[SO₄]_{0.5}O₄₂[H₂O]₃₆

[Fe₃V₁₈O₄₂(H₂O)₁₂((V,S)O₄)]·24H₂O [1]

Structural features: $(S,V)V_{18}O_{46}$ units consisting of eighteen VO₅ square pyramids sharing edges and vertices around a $(S,V)O_4$ tetrahedron (orientational disorder) are loosely interconnected via Fe(H₂O)₄ units to form two interpenetrating 3D-frameworks.

Khan M.I. et al. (1999) [1] Fe₃H₇₂O₈₂S_{0.51}V_{18.49} a = 1.54679 nm, V = 3.7008 nm³, Z = 2

site	Wyck.	sym.	x	у	Ζ	occ.	atomic environment
01	48 <i>k</i>	<i>m</i>	0.0824	0.0824	0.2113		non-coplanar triangle V ₃
(OH_2)	2 48 <i>k</i>	<i>m</i>	0.1612	0.1612	0.3552		
(OH_2)	3 48 <i>j</i>	<i>m</i>	0	0.3849	0.4294	0.5	
V4	24h	<i>m.m</i> 2	0	0.16645	0.16645		
O5	24h	<i>m.m</i> 2	0	0.239	0.239		
06	16 <i>f</i>	.3 <i>m</i>	0.0574	0.0574	0.0574	0.5	
V7	12e	4 <i>m.m</i>	0.25815	0	0		square pyramid O_5
08	12e	4 <i>m.m</i>	0.3639	0	0		colinear VFe
Fe9	6 <i>b</i>	4/ <i>mm.m</i>	0	$^{1}/_{2}$	$^{1}/_{2}$		
M10	2a	<i>m</i> -3 <i>m</i>	0	0	0		square prism (cube) O ₈

M10 = 0.51S + 0.49V

Experimental: single crystal, diffractometer, X-rays, R = 0.045

Remarks: Short interatomic distances for partly occupied site(s). Hydrogen atoms are not taken into consideration for Pearson symbol, Wyckoff sequence and atomic environments.

References: [1] Khan M.I., Yohannes E., Doedens R.J. (1999), Angew. Chem. Int. Ed. 38, 1292-1294.

VH _{0.5}		<i>cI</i> 14	(229) Im-3m – da
VH _{0.5} [1], (VH) α; AgI α Structural features: Filled tetrahedral voids.	[2] d-up derivative of V	V (prototype for a t	ody-centered cubic atom arrangement) with H in
Westlake D.G. et al. (197) $D_{0.50}V$ a = 0.314 nm, $V = 0.0310$	73) [1] 0 nm ³ , $Z = 2$		
site Wyck. sym.	x y	<i>z</i> 0cc.	atomic environment
D1 12 d -4 m .2 V2 2 d m -3 m	$\frac{1}{4}$ 0	$\frac{1}{2}$ 0.083	tetrahedron D_4

Experimental: powder, diffractometer, neutrons, T = 425 K

Remarks: Cell parameter taken from figure. Partial occupation of the octahedral site in Wyckoff position 6b by H could not be excluded. So-called (VH) α ' crystallizes in the same structure type, but contains more H.

24-vertex polyhedron D₂₄

References: [1] Westlake D.G., Mueller M.H., Knott H.W. (1973), J. Appl. Crystallogr. 6, 206-216. [2] Wright A.F., Fender B.E.F. (1977), J. Phys. C: Solid State Phys. 10, 2261-2267.

W [2], b.c.c. (body-centered cubic), Strukturbericht notation A2; Fe α [3] Structural features: Infinite 3D-framework of fused WW₈ cubes. See Fig. I.6.

cI2

Experimental: powder, film, X-rays

Remarks: According to [4] ferromagnetic Fe a has tetragonal symmetry.

References: [1] Hartmann H., Ebert F., Bretschneider O. (1931), Z. Anorg. Allg. Chem. 198, 116-140. [2] (1931), Strukturberichte 1, 15, 61. [3] (1931), Strukturberichte 1, 16, 66. [4] Izyumov Yu.A., Naish V.E., Ozerov R.P. (1991), Neutron Diffraction of Magnetic Materials, New York: Consultants Bureau, 1991, p. 50.

W

Y₃Fe₆₂B₁₄[1]

Structural features: Distorted Fe(Fe₁₁Y) icosahedra interpenetrate to form a 3D-framework.

De Mooij D.B. et al. (1987) [1] $B_{14}Fe_{62}Y_3$ a = 1.236 nm, V = 1.8882 nm³, Z = 2Wyck. sym. site x atomic environment y \boldsymbol{Z} occ. Fe1 48*k* 0.156 0.156 0.4 icosahedron Fe11Y ..*m* 0.291 14-vertex Frank-Kasper B₃Fe₁₀Y Fe₂ 48j 0 0.148 *m*.. 0.083 0.083 7-vertex polyhedron B₆Fe B3 16f .3m 0.083 Fe4 16*f* .3m 0.191 0.191 0.191 14-vertex Frank-Kasper BFe₁₃ B5 0 square antiprism Fe₄B₄ 12e 4*m.m* 0.21 0 Fe6 12d $^{1}/_{4}$ 0 $^{1}/_{2}$ 14-vertex Frank-Kasper Fe₁₂Y₂ -4*m*.2 $^{1}/_{2}$ $^{1}/_{2}$ 22-vertex polyhedron Fe₂₀B₂ Y7 6b4/*mm.m* 0

Experimental: powder, diffractometer, X-rays, $R_B = 0.150$

Remarks: Metastable phase.

References: [1] De Mooij D.B., Daams J.L.C., Buschow K.H.J. (1987), Philips J. Res. 42, 339-349.

Y ₄ PdGa ₁₂						<i>cI</i> 34	(229) Im-3m - edca			
Y_4PdGa_{12} [1] Structural features: Close-packed YGa ₃ layers in c stacking (Cu ₃ Au-type substructure), Pd in octahedral voids. Ordered variant of pseudo-binary U ₄ (Si,Re) ₁₃ .										
Vasilechko L.O. et al. (1988) [1] Ga ₁₂ PdY ₄ $a = 0.8598 \text{ nm}, V = 0.6356 \text{ nm}^3, Z = 2$										
site	Wyck.	sym.	x	у	Z	occ.	atomic environment			
Ga1 Ga2 Y3 Pd4	12e 12d 8c 2a	4m.m -4m.2 3m m-3m	$0.296 \\ {}^{1}_{/_{4}} \\ {}^{1}_{/_{4}} \\ 0$	$\begin{array}{c} 0 \\ 0 \\ {}^{1}\!/_{4} \\ 0 \end{array}$	$0\\1/2\\1/4\\0$		tricapped trigonal prism $PdGa_4Y_4$ cuboctahedron Ga_8Y_4 cuboctahedron Ga_{12} octahedron Ga_6			

Experimental: powder, diffractometer, X-rays, $R_B = 0.075$

References: [1] Vasilechko L.O., Noga A.S., Grin Y.N., Koterlin M.D., Yarmolyuk Y.P. (1988), Russ. Metall. 1988(5), 216-220 (Izv. Akad. Nauk SSSR, Met. 1988(5) 216-220).

Yb ₁₁	$Vi_{60}C_6$					<i>cI</i> 154	(229) <i>Im</i> -3 <i>m</i> – kjfe ² db					
$ Yb_{11}Ni_{60}C_6 [2]; Tm_{11}Ni_{60}C_6 [3] $ Structural features: C in YbNi ₅ octahedral voids.												
Moss M.A., Jeitschko W. (1992) [1] $C_6Ni_{60}Yb_{11}$ $a = 1.2441 \text{ nm}, V = 1.9256 \text{ nm}^3, Z = 2$												
site	Wyck.	sym.	x	У	Ζ	occ.	atomic environment					
Ni1 Ni2	48k	<i>m</i>	0.32644	0.32644	0.09298		pseudo Frank-Kasper Ni ₉ Yb ₃ C					
Yb3	16 <i>f</i>	.3m	0.16817	0.14800	0.16817		19-vertex polyhedron $Ni_{15}C_3Yb$					
N14 C5	12e 12e	4m.m 4m.m	0.1446 0.2944	0 0	0		single atom C square pyramid Ni_5					
Ni6 Yb7	12 <i>d</i> 6b	-4m.2 4/mm.m	$\frac{1}{4}$	0 1/2	$\frac{1}{2}$ $\frac{1}{2}$		14-vertex Frank-Kasper Ni ₁₂ Yb ₂ 22-vertex polyhedron C ₂ Ni ₂₀					

Experimental: single crystal, diffractometer, X-rays, R = 0.024

Remarks: Refinement of the site occupancies showed no significant deviation from unity. Data for $Tm_{11}Ni_{60}C_6$ also reported in [4]. A report on so-called $Y_5Ni_{29}C_3$ [5] is superseded (see [1]).

References: [1] Moss M.A., Jeitschko W. (1992), J. Alloys Compd. 182, 157-164. [2] Putyatin A.A. (1987), Moscow Univ. Chem. Bull. (Engl. Transl.) 42, 108-113. [3] Khalili M.M., Bodak O.I., Marusin E.P., Pecharskaya A.O. (1990), Sov. Phys. Crystallogr. (Engl. Transl.) 35, 812-813. [4] Pecharskaya A.O., Bodak O.I., Marusin E.P., Halili M.M. (1989), XII Eur. Crystallogr. Meet., Moscow, 1989, Coll. Abs. 2, 127. [5] Stadelmaier H.H., Kim S.B. (1984), Z. Metallkd. 75, 381-383.