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reasoning.

being overly conservative.

The working equations of the Belsheim-O'Hara dynamic analysis method are developed
nonrigorously, with @ minimum of mathematics, on the basis of physical and logical

The expressions for modal equivalent (or effective) mass, equivalent displacement, and
shock response of system masses are derived here using no postulates other than (a) a
definition of dynamic equivalence between vibratory modes of different systems, (b) the
assumption that system modes of equal frequencies and equal equivalent masses will re-
spond to the same shock condition at levels consistent with dynamic equivalence, and (c)
the requirement that the responses of arbitrary single-degree-of-freedom systems be
known, as from test data. The concept of equivalent displacement ratios is preferred to
that of the more-commonly used participation factors; the former are shown to be fixed
quantities for a given system mode, whereas the latter are not.

This approach reveals clearly that the method is not predicated upon any particular shape
or nature of the shock input to the system (such as a step velocity input) and can yield no
information about the initial phase relationships between the various modes.

Since in a real system the responses also decay rapidly, it follows that there is an in-
herent difficulty, in this method, of summing the effects of the various modes without

INTRODUCTION

In the analysis of complex structures sub-
jected to shock excitation, particularly in naval
shipboard equipment, the so-called dynamic
analysis method of Belsheim and O'Hara [1]
must often be used. The procedure involves, as
a first step, reducing the actual structure to a
lumped-parameter model of a finite number of
degrees of freedom and calculating by any ap-
propriate method the normal modes of vibration
of this system, as represented by their frequen-
cies and mode shapes (normalized displacements
of the masses). From this information two suit-
ably defined quantities, equivalent mass M_ and
participation factor P, must be computed for
each mode. Next, a shock velocity input v, the
design spectrum value, is prescribed for each
mode and is a function of modal frequency « and
equivalent mass M,. These inputs are empirical
values which have been deduced from the ob-
served responses of single-degree- of-freedom
oscillators of various masses and frequencies,
placed in actual vessels subjected to shock tests.

The final expression for the equivalent static

force on mass k, in the particular mode, can be
stated as follows:

F, = M X PV w. 1)
This expression is not derived in Ref. [1], al-

though undoubtedly rigorous derivations can be
found elsewhere.

This paper shows how Eq. (1) can be devel-
oped nonrigorously, using @ minimum of mathe-
matics and a maximum of physical-logical rea-
soning, with the thought that this may help to
clarify what assumptions are implicit in the
method and what the physical significance is of
some of the terms involved.

PHYSICAL ASSUMPTIONS AND
LOGICAL ARGUMENT

In the more usual rigorous approach to a
normal-mode analysis, the complete response
of a multi-degree-of-freedom system is ana-
lyzed for some assumed complete base motion
or excitation. Then that response is broken
down into normal modes, and the modal equiv-
alent mass is deduced by noting the similarity
between the form of the modal response equa-
tion and the single-degree-of-freedom equation.
In this nonrigorous approach, we shall regard




each mode as an entirely independent entity
from the beginning. We shall make no assump-
tions concerning the total system excitation, but
merely assume that each mode responds analo-
gously to a dynamically equivalent single-
degree-of-freedom system subjected to the same
shock environment.

First let us consider two systems in steady-
state vibration. We shall define as ''dynamically
equivalent' two systems vibrating at the same
frequency, if the net momentum and the total
energy of the two systems are the same. Since
this statement is quite general, each system may
represent a multi-degree-of-freedom system
vibrating in a particular mode, or a single-
degree-of-freedom system vibrating at its natu-
ral frequency. (The equality of net momentums
also implies that the two systems apply equal
forces to the "fixed base' at their points of at-
tachment.) We shall show that, if one of the
systems is indeed a single-mass-spring oscil-
lator, then dynamic equivalence requires a
definite relationship between the mass of the
latter, which we can now refer to as equivalent
mass M., and the masses and mode shape of the
other system. We shall also show that dynamic
equivalence requires a definite relationship be-
tween the vibratory displacement amplitude of
the single-mass system, which we can now refer
to as equivalent displacement X_, and the masses,
mode shape, and excitation level of the other
system.

It should be clearly noted — though one would
hardly expect anything otherwise — that the equiv-
alent mass is independent of the excitation level
of the multimass system, whereas the equivalent
displacement is proportional to the excitation
level of the multimass system. This implies,
however, that the ratio of the displacement of
any one of the masses in the multimass system
to the equivalent displacement is once again
independent of the excitation level, and, like the
equivalent mass, can be considered a property
of the given system vibrating in the given mode.
Let us call such ratios equivalent displacement
ratios.

To apply the foregoing'to shock analysis,
we must make the physical assumption that if
two systems of the same natural frequency and
the same equivalent mass are subjected to the
same transient disturbance at their base, their
steady-state responses will be such that they
are dynamically equivalent as defined previ-
ously. Hence, the vibratory amplitudes of the
two systems can be related to each other by
means of the equivalent displacement ratios.

Furthermore, we assume that the total re-
sponse of a multi-degree-of-freedom system to

a shock input is a superposition of the independ-
ent responses in each normal mode and that the
response of each mode can be computed by
means of the previous argument from the re-
sponse of a single-mass oscillator of the same
frequency and equivalent mass. The responses
of single-degree-of-freedom oscillators to
typical shock inputs, as a function of their mass
and frequency, are assumed known from em-
pirical data.

Note what assumptions do not have to be
made; in particular, the nature of the shock
disturbance, i.e., the displacement-time history
of the base, is not prescribed or defined in any
way, and, therefore, it also follows that no
phase relationships can be adduced for the re-
sponses in the various modes. Furthermore, in
real systems with damping the responses rep-
resent maximum rather than steady- state vi-
bratory amplitudes.

MATHEMATICAL DERIVATION

Consider a unidirectional, multi-degree-
of-freedom system vibrating in one of its nor-
mal modes, the angular frequency of which is
w,. All displacements are assumed to occur in
the x direction. The subscript a identifies the
particular mode under consideration; the sub-
script i identifies the particular mass.

The net or algebraic momentum X_ associ-
ated with a mode of harmonic oscillation in a
multi-degree-of-freedom system is

K :we;MiXia‘ (2)

a

The corresponding kinetic energy is
1 2
Ea = ‘—2—0)32 Z Mi Xia . (3)

The X,, values here represent any arbitrary
set of displacement amplitudes. Their relative
magnitudes are of course determined by the
mode shape or eigenvector of the mode under
consideration.

If the mass and displacement, respectively,
of the dynamically equivalent single-degree-
system are M_,, and X__, its momentum and
energy are expressed by

K = wﬂ Meﬂ xe a (4)
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Since by "dynamic equivalence' we mean
that X, = K, and E_, = E_, we can equate Egs.
(2) with (4), and (3) with (5) to obtain

Meaxea & ; Ml Xia (6)
and

2 2
Meaxca = Z Mi xia : (7)

Dividing Eq. (7) by (6) we obtain the equivalent
displacement, i.e., the displacement amplitude
of the dynamically equivalent system:

2
;Mixia (8)
Xea i ZMiXia .

Substituting Eq. {8) back into (6) results in the
expression for the equivalent mass:

M,, = —-———[iMi Xi:r‘ (9)
LM X,

It is important now to note that equivalent mass
M., is independent of the absolute values of the
X, .'s, as long as they bear the proper relation-
sl‘xips to one another as prescribed by the mode
shape of the mode considered. Any arbitrary
or arbitrarily normalized set of displacement
amplitudes describing that mode can be used to
compute M_ . On the other hand, equivalent
displacement X_, does depend on the excitation
level; if all X, 's are multiplied by some given
factor, the corresponding X,, is also multiplied
by that factor. This means, simply, that if the
amplitudes of a multi-degree-of-freedom sys-
tem are, say, doubled, then the amplitude re-

quired for dynamic equivalence, in the equivalent-

mass single-degree system, is also doubled.

We can now draw our attention to any par-
ticular mass k in the system, and define its
equivalent displacement ratio R, as follows:

Xk Xka Z.:Mi Xia
Rk = ¢ = —l—— . (10)
’ xea Z.:Mi Xfa

The R, values, which represent the ratios of
the displacements of the individual masses in
the multimass system to the displacement of
the dynamically equivalent single-mass system,
are once again functions of the masses and
mode shape only and can be computed from
arbitrarily normalized X, values.
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We are now ready to make use of the fore-
going relationships to deduce the response of
our multimass system under a typical shock
environment. We suppose that enough single-
degree systems have been observed under
typical shock environments to predict from
these measurements the displacement response
of any single-degree-of-freedom system of
arbitrary mass and frequency.

Therefore, for each normal mode a, we
can compute the frequency «, and equivalent
mass M,_,, and then from the empirical data
predict what actual shock displacement would
be recorded by a single-mass system of that
frequency and mass. Let this be denoted by
X.as- We then assert that the response of the
multimass system under the same environment
would be such as to satisfy the complete con- .
ditions of dynamic equivalence as previously
defined. This implies that ratios of the shock
displacements of the multimass system to that
of the equivalent single-mass system would
once again be given by the values R, , which
have been computed. Thus, the shock displace-
ment for mass k, in mode a, is given by:

xkas = Rkaxcas‘ (11)

The inertia force on mass k, which we in-
tend to use as an equivalent static loading in
the computation of shock stresses, is

X w? . (12)

ka "eas a

w?=M

F kas a k

wa = M X R
If the shock response of the equivalent sys-

tem is specified in terms of the velocity ampli-

tude v, rather than displacement X  _, we

can substitute the relationship X, = v, /o,
to obtain

F,_=MR V o . (13)

ka k Tka "eas a

The physical significance of Eq. (13) is evident:
the force is the product of the mass (M, ) being
considered, the shock acceleration of the equiv-
alent single-mass system (V,, «,), and the
ratio R, which relates the acceleration, veloc-
ity, or displacement of mass k to that of the
dynamically equivalent single-mass system.
Equation (13) can be shown to be identical to
Eq. (1), and it will be seen that Belsheim and
O'Hara's participation factor P, is nothing
more than the reciprocal of our equivalent dis-
placement. Hence R, = X, P , from Eq. (10).
The writer feels that the ratios R, which are
invariants for a given system and mode, are
more meaningful than a participation factor
whose magnitude depends on how the displace-
ment values have been normalized. In fact,

the R, , values could be regarded as rationally
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normalized displacements for the particular
system and mode. Note that the equivalent
mass can be expressed in terms of the g __ val-
ues simply as follows:

(14)

This can readily be seen by comparing Eqs. (9)
and (10).

The physical arguments which we have ad-
vanced make it easy to see how the equations
must be modified when a multidirectional sys-
tem (one which, when shock excited in a given
direction, will exhibit responses in all direc-
tions) is considered. Due attention must then
be given to the fact that momentum is a vector
quantity whereas energy is scalar. The com-
ponent of momentum which is significant is that
in the shock direction; therefore, in carrying
out the summation of Eq. (2), only the displace-
ments in the shock direction should be included.
On the other hand, in computing the system
energy by Eq. (3), the total energy as deter-
mined by all response directions must be in-
cluded.

SUMMARY AND CONCLUSIONS

The expressions for modal equivalent (or
effective) mass, participation factor, and shock
response of system masses have been derived
here using no postulates other than (a) a defi-
nition of dynamic equivalence between vibratory
modes of different modes of different systems,
(b) the assumption that system modes of equal
frequencies and equal equivalent masses will
respond te'the same shock condition at levels
consistent with dynamic equivalence, and (c) the
requirement that the responses of single-degree
systems are known, as from test data. The con-
cept of equivalent displacement ratios is pre-
ferred to that of participation factors. Implicit
in this approach is the agsumption that the modes
considered are uncoupled and the response of
each is completely unaffected by the existence of
other modes.

The term "'starting velocity'" is sometimes
used; this can lead to the erroneous inference
that this method is somehow based on the physi-
cal assumption of step velocity inputs. This
approach shows that the method makes no al-
legations about the shape or nature of the shock
input to the system or to the ship as a whole,
or about the initial phase relationship of the
modal vibrations.
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The prescribed design spectrum values
are based on the maximum measured responses
of certain instrumented equipment in full-scale
and model tests [ 1, pp. 26-27]. How and when
the buildup to the maximum response level oc-
curs will differ for different modes, depending
on the relationship of the frequency of vibration
to the velocity-time profile of the shock input
at the hull or foundation, and on the time re-
quired for propagation of the shock or stress
waves through the system. The latter is not an
insignificant effect, since the duration of the
shock pulse is on the order of milliseconds,
and in a millisecond a stress wave in steel
travels only 16 ft. Thus, design spectrum val-
ues obtained from compact equipment close to
the hull may not be valid for more extensive or
distant systems where the time delay and at-
tenuation inherent in the propagation process
would be expected to reduce the maximum re-
sponse in a given mode. The damping in a
complex system could be expected to be greater
than in a simple mass-spring oscillator.

There still follows the question of how the
effects (i.e., stresses or loads) of the various
modes are to be combined, which is one of the
outstanding problems in the application of this
procedure. Some of the remarks above, to-
gether with the known fact that shock-induced
vibrations decay rather rapidly from their peak
values, will suggest why phase coincidence of
many modes at their peak values is most un-
likely. Yet the normal-mode method is inher-
ently incapable of deriving, on a theoretical
basis, anything but the very conservative upper
bound obtained by direct superposition of the
maximum loadings in all modes. This is one
of its most serious deficiencies. To obtain
hopefully more realistic "rules" for combining
modes and predicting maximum stresses, re-
course must be had to empirical data once
again, or, perhaps, in systems with very many
degrees of freedom, to statistical methods.
Also, it will be found that the predicted maxi-
mum stresses can be very sensitive to the man-
ner in which the structure is broken down into
discrete masses and flexibilities to form the
analytic model. The guidelines proposed to
date for dealing with these problems have
seemed rather arbitrary, and more work, or
more englightenment, in this area is to be
encouraged.
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DISCUSSION

Voice: Could this method apply to all
systems? Could it be extended to very large
systems?

Mr. Heymann: The method is no different
from the DDAM. It is just one way of seeing
how the equations are arrived at. This method
does specify the velocity input and frequency for

any mode of a large system and equivalent mass.

You are making the analogy between one mode
of a large system and the response of a single
degree of freedom system. I think whatI am
trying to show is that you can't tell from this
analysis what the maximum response is going
to be when you superimpose modes. It can't
tell you anything about the time interval between
the arrival of a shock front at the hull and the
maximum response for different single degree
of freedom systems. You don't know what the
phase relationship is going to be, so you have
to look elsewhere for the rationale of some of
the modes.
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Mr. Forkois (Naval Research Lab.): How
do you determine the equivalent rotational mates
of vibration from that single mass? You show a
three mass system which obviously has some
unbalance. How do you determine the equivalent
modes on a single mass?

Mr. Heymann: In this case I don't. This is
simply a one-dimensional model to show the
principle. I have indicated in my paper that the
analysis can be extended to three dimensions.

I don't know about rotation. If the dynamic
equivalence is defined in terms of the energies
and momenta, when you have response in three
directions, you would only take the sum of the
momenta in the shock direction. Since energy
is a scalar quantity you would take the energies
involved in all three response directions. I
think maybe that you could extend that to include
rotational response, but I really haven't thought
it out.
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